ZIMBABWE SCHOOL EXAMINATIONS COUNCIL

General Certificate of Education Advanced Level

BIOLOGY

9190/2

PAPER 2

Friday 4 JUNE 2004

Morning

2 hours 30 minutes

Additional materials:
Answer paper

TIME 2 hours 30 minutes

INSTRUCTIONS TO CANDIDATES

Write your name, Centre number and candidate number in the spaces at the top of this page and on any separate answer paper used.

Section A

Answer all questions.

Write your answers in the spaces provided on the question paper,

Section B

Answer two questions.

Your answers to Section B must be in continuous prose, where appropriate. Write your answers on the separate answer paper provided.

At the end of the examination.

- I fasten all separate answer paper used securely to the question paper,
- 2. enter the number of the Section B questions you answered in the grid below.

All working for numerical answers must be shown.

INFORMATION FOR CANDIDATES

The intended number of marks is given in brackets [] at the end of each question or part question.

You may use a calculator.

The quality of your language will be taken into account in the marking of your answer to Section B.

FOR EXAMINER'S USE		
Section A	C	
Section B	Se .	
TOTAL		

This question paper consists of 14 printed pages and 2 blank pages.

Copyright: Zimbabwe School Examinations Council, J2004.

Fig. 1.1

ишпе	the organienes labelled A, B and C.
A	
B	
C	

[3]

(b)	Explain the significance of the structure labelled D	1.
		[
	, •	[Total:
In F of ic	ig. 2.1, A and B show how water molecules are arrange and water respectively.	ed in the same volume
40	٠	
(<u>\</u>	, CO Y	1990
10.3		
RE	d. 1. 000	
	A Hydrogen bonds	
	Hydrogen bonds	В
		,
	Fig. 2.1	
(a)	Use Fig. 2.1 to explain why ice floats on water.	
		*
		[
	*	
	· 3	

	,			·	
		,		-	•
	ucture of an imp	portant	biological	molecule.	
н с-	-coo~~~	~~	~		
_ 1	-00-	~~	~		
ңс -	-o-p-o-				,
	0				
	Fig. 2.2				
Name the mo	lecule.			ï	
	-		•		
Relate the str	ucture of this m	nolecule	to its fun	ction in cell	s.

Fig. 3.1 shows some of the stages of meiosis in a cell with four chromosomes.

Fig. 3.1

(2)	(1)	Identify stages A and C.		
	, ,	A		
		C	CARTON TO THE STATE OF THE	
	(ii)	In stage B state the term t	used to describe structure X.	

(b) In the space provided below, draw sketch diagrams to show the distribution of chromosomes in the resultant daughter cells.

	g* 1		
Jan Land	- intigeden in the	arasis is a	_ ,

Table 4.1 shows the nucleotide base compositions of DNA from various organisms.

Table 4.1

	Base composition (mole percent)				
Organism	A	T	G	C	
Escherichia coli (K 12)	26.0	23.9	24.9	25.2	
Sireptococcus руситопіае	29.8	31.6	20.5	18.0	
Mycobacterium (uberculosis	15.1	14.6	34.9	35.4	
Yeast	31.3	32.9	18-7	17.1	
Sea urchin	32.8	32.1	1217	. 18,4	
Human	30.9	29.4	19.9	19.8	

The state of the s	s Maria de Caracteria de C		
	The latest the second	B 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

[3]

For Examiner's

(b)	Suggest the im pairs up with the	portance to the structure of the structu	cture of DNA	that adenine alwrith cytosine.	ays
	11.				
	417				•
	1				[2]

(c) Fig. 4.1 shows a representative portion of DNA.

Fig. 4.1

(i) Label the diagram fully to show a nucleotide and how the nucleotides are joined together to produce a double stranded DNA molecule.

[3] [Total: 8]

Section B

Seeses say tv	vo questions. You are advised to spend one hour in this section.	
Brief Bernett s	should be illustrated by large, clearly labelled diagrams, where appropriate.	
Sing monet t	nust be in continuous prose, where appropriate.	
ing a skillid	onal marks are awarded for quality of language.	
SHIP MINETS	must be set out in sections (a), (b) etc, as indicated in the question.	
(a) O	Describe the role played by microorganisms in the nitrogen cycle.	[6]
(0)	Discuss how deforestation may affect the environment.	[6]
(4) (6)	Discuss the short term effects of physical exercise on muscles and gaseous exchange.	[6]
(0)	Describe how emphysema and chronic bronchitis affect the gaseous exchange system.	[6]
(72 (0)	Describe how you would measure the rate of a reaction catalysed by the enzyme catalase.	[6]
(b)	Explain the effects of the following on an enzyme-catalysed reaction:	
	(i) enzyme concentration,	[3]
	(ii) substrate concentration.	[3]
(a)	Describe how an action potential is transmitted along a myelinated neurone.	[6]
(4)	Explain the mechanism of transmission of a nerve impulse across a cholinergic synapse.	[6]