	_	
(b)	The p	oH of 0.01 moldm ⁻³ benzoic acid, C ₆ H ₅ COOH, is 3.09 at 25 °C.
	(i)	Write an equation for the dissociation of C ₆ H ₅ COOH.
	(ii)	Calculate the acid dissociation constant of benzoic acid at 25 °C.

(c) The values of the ionic product of water, K_w at different temperatures are given in Table 1.1.

Table 1.1

temperature/°C	K _w /mol ² dm ⁻⁶
0	0.10 × 10 ⁻¹⁵
25	1.00 × 10 ⁻¹⁴
50	5.47 × 10 ⁻¹⁴

(i) Write an expression for Kw.

Por Preminer's Use

[5] [Total: 10]

2 (a) Fig. 2.1 shows the Boltzmann distribution curve for reacting gas molecules at temperatures T₁ and T₂.

Fig. 2.1

4	38	

6031/2 J2024

[Turn over

(b) S	Mark the position on Fig. 2.1, of the activation energy for the catalys reaction using letter P. [3] ketch an energy profile diagram to show the effect of a catalyst for an adothermic reaction.	ed Practice Use
	[3	
s) Sta	te the Collision Theory.	
	lain the significance of the given steps in water purification.	1
(i)	Aeration	
(ii)	Addition of Al2(SO4)3	
	[Total: 10	

(a)	(i)	Write two equations to show the amphoteric nature of aluminium oxide.	P
	(ii)	Explain why aluminium oxide is amphoteric in terms of bonding and structure.	
(b)	Expl	ain why	[4]
	(i)	bond energies quoted in the Data Booklet are referred to as average bond energies.	
	(ii)	the bond energy of fluorine is lower than that of chlorine.	
(c)	(i)	Write an equation for the reaction between chlorine and sodium thiosulphate.	[3]
	(ii)	Explain why the reaction between iodine and hydrogen is reversible whereas that between chlorine and hydrogen is not.	
		6031/2 J2024	[3] al: 10]

Scanned with CamScanner

Drug D was boiled in acidified KMnO4. (b) State the observable change that occurred. (i) Name the organic product formed. (ii) [2] Fig. 4.2 shows the general structural formula of nylon. (c) Fig. 4.2 Explain why clothes made of nylon should not be washed in boiling water.

[Total: 10]

	(ii)	Describe the importance of cracking.	- N	Exam
			[6] [Total: 10]	
(a)	Expl	ain why transition elements		
	(i)	show variable oxidation states,		
	(ii)	act as catalysts.		
			[3]	
(b)	Expla	nin why radioactive waste is		
	(i)	concentrated by incineration before disposal,		1
	(ii)	diluted to acceptable levels before being discharged.		
			[4]	1

Scanned with CamScanner