

ZIMBABWE SCHOOL EXAMINATIONS COUNCIL

General Certificate of Education Ordinary Level

MATHEMATICS

4008/1

PAPER 1

JUNE 2014 SESSION

2 hours 30 minutes

Candidates answer on the question paper.

Additional materials:

Geometrical instruments

Allow candidates 5 minutes to count pages before the examination.

TIME

2 hours 30 minutes

INSTRUCTIONS TO CANDIDATES

Write your name, Centre number and candidate number in the spaces at the top of this page and your Centre number and Candidate number on the top right corner of every page of this paper.

Answer all questions.

Check that all the pages are in the booklet and ask the invigilator for a replacement if there are duplicate or missing pages.

Write your answers in the spaces provided on the question paper using **black** or **blue** pens. If working is needed for any question, it must be shown in the space below that question. Omission of essential working will result in loss of marks.

Decimal answers which are not exact should be given correct to three significant figures unless stated otherwise.

Mathematical tables, slide rules and calculators should not be brought into the examination room.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets [] at the end of each question or part question.

FOR EXAN	IIN.	ER'	SU	SE
----------	------	-----	----	----

This question paper consists of 24 printed pages.

Copyright: Zimbabwe School Examinations Council, J2014.

©ZIMSEC J2014

Turn over

Centre Number	Candidate's Number

NEITHER MATHEMATICAL TABLES NOR SLIDE RULES NOR CALCULATORS MAY BE USED IN THIS PAPER.

- (a) the nearest ten,
- (b) 2 decimal places,
- (c) 2 significant figures.

Answer:	(a)	[1]
	<i>(b)</i>	[1]
	(c)	[1]

Centre Number	Candidate's Number

- 2 Evaluate, giving your answers as common fractions in their lowest terms
 - (a) $\frac{3}{5} + \frac{1}{7}$,
 - **(b)** $\frac{5}{8} \times \frac{32}{45}$,
 - (c) $\frac{5}{24} \div \frac{1}{3}$.

Answer: (a) [1]

(b) [1]

(c) _____[1]

Centre Number	Candidate's Number

3 Giving your answer as a decimal, find the exact value of

- (a) 0,175 0,049,
- **(b)** $\sqrt{0.0144}$,
- (c) $(0,06)^2$.

Answer:	(a)	[1]
	<i>(b)</i>	[1]

(c)

[1]

Centre Number	Candidate's Number

- 4 (a) Expand (2a-b)(1+c).
 - **(b)** Simplify $\frac{m^2 mn}{n^2 np} + \frac{m}{(n p)}.$

Answer: (a) [2]

(b) [1]

5 It is given that

$$\xi = \{30; 31; 32; 33; 34; 35; 36; 37; 38; 39\},\$$

A is the set of odd numbers and B is the set of prime numbers.

- (a) List the elements of
 - (i) A,
 - (ii) B^1 .
- (b) Find $n(A \cap B^1)$.

Centre Number	Candidate's Number

Answer:	(a)	(i)	{}}	[1]
		(ii)	{}}	[1]
	<i>(b)</i>			[1]

	Centre N	umber	Candidate's Num	ber
	Centre			
	7			
State the special type of a	triangle wh	nich has on	e line of symmetry.	
A polygon has n sides. The remaining $(n-2)$ ext	wo of its ex erior angle	terior angl s are each 2	es are 55° and 45°. 20°.	
Calculate the value of n .				
,	Z \			[1]
Answer:	(a)			-
	<i>(b)</i>	n =		[2]
Express 9 minutes after	midnight as	s time on th	ne 24 hour clock.	Annual State of the State of th
In 1998 the population of the population was 3,5 x	of a village $< 10^2$.	was 2,8 × 1	10 ² . In 2004,	

Express 9 minutes (a)

In 1998 the popula **(b)** the population wa

6

7

(a)

(b)

Calculate the percentage increase of the population from 1998 to 2004.

[1] (a) Answer: [2] (b)

Centre Number	Candidate's Number	
		7

8 Solve the simultaneous equations

$$\frac{1}{3}x = y,$$

$$2x + y = -7.$$

- Given that f(x) = (x-1)(x+6) and that f(0) = p, find the value of p.
 - (b) If yk = ax bk, make k the subject of the formula.

Answer: (a)
$$p =$$
 [1]

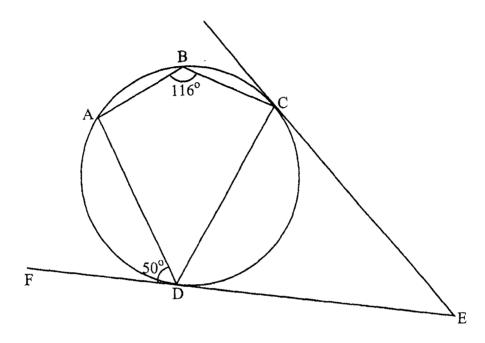
$$(b) \qquad k = \underline{\hspace{1cm}} [2]$$

Centre Number Candidate's Number

9

10 (a) Express $3^4 + 3^2 + 3$ as a number in base 3.

- **(b)** Evaluate
 - (i) $143_8 + 57_8$ giving your answer in base 8,
 - (ii) $4_5 2_3 + 1_2$ giving your answer in base 10.


Answer: (a) [1]

(b) (i) [1]

(ii) [1]

Centre Number	Candidate's Number

11

In the diagram, ABCD is a circle. Tangents at C and D meet at E and ED is produced to F such that $\hat{ADF} = 50^{\circ}$ and $\hat{ABC} = 116^{\circ}$.

Calculate

- (a) ADC,
- (b) CDE,
- (c) CÊD.

Answer:	(a)	[1]
	<i>(b)</i>	 [1]
	(c)	[1]

		Centre Number	Candidate's Number
		11	
The cos Kuda h	st of making a telephone cal as p cents and is able to mal	l on Teneco is 25 ce ke a call.	ents per minute.
Xolani	has q cents which is insufficed by the state q	cient to make a call	Write down 3 inequalities in
terms o	of p and/or q , other than $p > 1$	0 and $q > 0$, that sat	isty the given conditions.
	Answer:	(i)	[1]
		(ii)	[1]
		(iii)	[1]
AB is	a line whose equation is 6y	=7x+48.	
Find			
(a)	the gradient of line AB,		
(b)	the equation of the line par	rallel to AB which p	passes through the point
\ ''/	(3; 1), giving your equation	n in the form $ay + b$	px + c = 0.
			14
	4	(a)	[1]
	Answer:	(a)	[2]

13

Centre Number	Candidate's Number

14	(a)	Given that $4m = 7n$, find the ratio m :	n
	()	the three title into the title the title in the title	,,

(b) A holiday trip to South Africa cost R333. If the exchange rate was US\$1 to R8, calculate the cost of the trip in US\$, giving your answer to the nearest cent.

Answer: (a)	(a)		[1]
	<i>(b)</i>	US\$	[2]

15 Factorise completely

$$3x^3y - 12xy^3.$$

Answer:

[3]

Centre Number	Candidate's Number

16 Solve the equation

$$\left(y + \frac{1}{4}\right)^2 = \frac{9}{16}.$$

Answer: y =_____ or ____ [3]

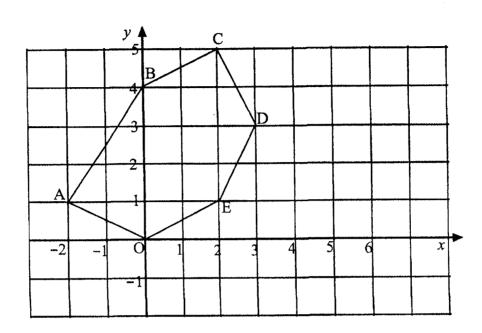
- 17 (a) Simplify $(32x^{10})^{\frac{1}{5}}$.
 - (b) Given that $\frac{2^{-2} \times 2^c}{2^4} = 2^3$, find the value of c.

Answer: (a) [2]

(b) c = [2]

Centre Number	Candidate's Number

It is given that $P = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$ and Q = 2P - I where I is the identity matrix.


Find

- (a) P^{-1} ,
- (b) Q.

4	/ \	ra1
Answer:	(a)	141
11110 11 VI .	1 647	

(b) [2]

19

In the diagram, OABCDE is a hexagon.

- Express as column vectors (a)
 - ΘË, **(i)**
 - $\overrightarrow{OA} + \overrightarrow{AD}$. (ii)
- Describe fully the single transformation which maps side BC onto (b) side OE.

Answer:

(a) (i)
$$\overrightarrow{OE} = \begin{pmatrix} \\ \\ \end{pmatrix}$$
 [1] (ii) $\overrightarrow{OA} + \overrightarrow{AD} = \begin{pmatrix} \\ \\ \end{pmatrix}$ [1]

(ii)
$$\overrightarrow{OA} + \overrightarrow{AD} = \begin{pmatrix} \\ \end{pmatrix}$$
 [1]

(b)

[2]

	Centre Number	Candidate's Number
L		

All lengths on a map are $\frac{1}{500}$ of their actual lengths.

Calculate

- (a) the actual length of line represented on the map by a line 7,3 cm,
- (b) the area on the map which represents an actual area of 525 m², giving your answer in cm².

Answer:	(a)	· ·	[1]
	(b)	em ²	[3]

Centre Number Candidate's Number

17

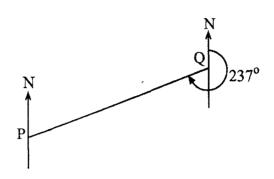
21 Evaluate

- $(a) \qquad \frac{\log_5 64}{\log_5 4},$
- **(b)** $1 + \log_3 9$.

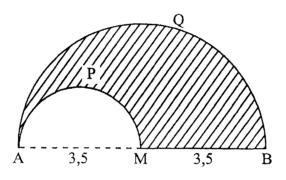
Answer: (a) [2]

(b) [2]

4008/1 J2014


·	Centre Number	Candidate's Number
Ĺ		

- In the answer space below, is a line segment AB which is 7 cm long.
 - (a) Using ruler and compasses only, construct the locus of points
 - (i) 3 cm from B,
 - (ii) above AB, which are 2 cm from line AB.
 - (b) (i) Mark and label P₁ and P₂, points which are 3 cm from B and 2 cm from line AB.
 - (ii) Measure the distance P_1P_2 .



Answer:	(a)	<i>(i)</i>	on diagram	[1]
		(ii)	on diagram	[2]
	<i>(b)</i>	(i)	on diagram	[1]
		(ii)	cm	[1]

23 (a)

In the diagram, P and Q are points on level ground. The bearing of P from Q is 237°. Find the bearing of Q from P.

(b) The diagram shows two semi circles APM and AQB. AM = MB = 3,5 cm. Taking π to be $\frac{22}{7}$, calculate the perimeter of the shaded region.

Answer:

(a)

[2]

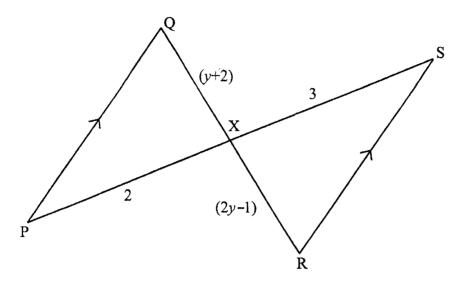
(b)

_cm [3]

	Centre Number	Candidate's Number
į.		1

24

age in years	11	12	13	14	15
no of pupils	3	10	8	6	3


The ages of pupils in a class of 30 are shown in the table.

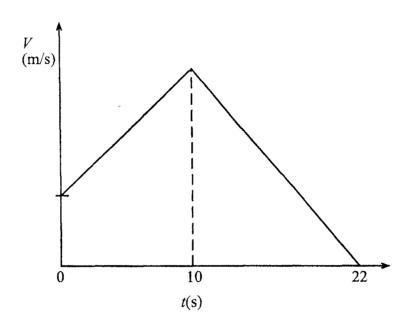
- (a) Two pupils are chosen at random from the class, find the probability that one is aged 11 years and the other is aged 14.
- (b) Calculate the mean age of the pupils.

Answer:	(a)	[2]
	(b)	[3]

 Centre Number	Candidate's Number

25

In the diagram, PQ is parallel to RS. PS and QR intersect at X. It is given that PX = 2 cm, SX = 3 cm, QX = (y + 2) cm and RX = (2y - 1) cm


- (a) Name the triangle which is similar to triangle PQX.
- (b) Using your results in (a), find the value of y.
- (c) Write down the length of QR.

(b)
$$y =$$
 [3]

$$(c) \qquad QR = \underline{\qquad} \qquad [1]$$

Centre Number	Candidate's Number

26

The diagram is the velocity-time graph of an object which accelerated uniformly for 10 seconds. During this time the velocity, V m/s, at time t seconds from the start, was given by V = 6 + 2t. It then decelerated uniformly to rest in a further 12 seconds.

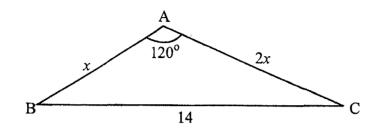
Calculate

- (a) the velocity of the object when t = 0,
- (b) the deceleration of the object,
- (c) the distance covered by the object in the 22 seconds,
- (d) the average speed of the object for the whole journey.

Centre Number	Candidate's Number

26

Answer: (a) ______m/s [1]


(b) _____m/s^2 [2]

(c) _____m [2]

(d) _____m/s [1]

Centre Number	Candidate's Number

27

In the diagram, ABC is a triangle in which AB = x cm, AC = 2x cm, BC = 14 cm and BÂC = 120° .

Using as much of the information given below as is necessary, calculate

- (a) the value of x, leaving your answer in surd form,
- (b) the area of triangle ABC.

$$[\sin 60^{\circ} = 0.87; \cos 60^{\circ} = 0.5; \tan 60^{\circ} = 1.73]$$

Answer:

(a) _____

[4]

(b) ____

[2]