Section A

Answer any two questions from this section.

(a) The kinetics of the reaction shown were investigated.

$$NO_{2(g)} + CO_{(g)} \rightarrow NO_{(g)} + CO_{2(g)}$$

The results of the investigation are shown in Table 1.1.

Table 1.1

time/sec	0	20	50	75	150	300	400
[NO ₂]/× 10 ⁻¹ moldm ⁻³	5.0	4.4	3.8	3.4	2.5	1.25	0.8

- (i) Plot a graph of the results.
- (ii) Deduce the
 - 1. half-life for the reaction,
 - order of the reaction with respect to [NO₂].
- (iii) Calculate the rate constant, k.

[7]

- (b) (i) Describe how the standard electrode potential of Sn⁴⁺_(aq)/Sn²⁺_(aq) half cell can be measured.
 - (ii) The Sn⁴⁺_(aq)/Sn²⁺_(aq) half cell was connected to a standard half cell of I_{2(aq)}/I_(aq) as shown in Fig. 1.

Fig. 1

- Write a balanced ionic equation for the overall cell reaction.
- Calculate the standard cell potential for the cell.

[8] [Total: 15]

- (1) Define the term lattice Energy.
 - (ii) Write an equation to represent the lattice energy of a magnesium compound MgX_(i).

[2]

- (b) (i) State Hess' Law.
 - (ii) Construct a Born-Haber cycle for MgX₍₀₎ given that element X exists as X_{2(g)} at r.t.p.
 - (iii) Calculate the lattice energy of MgX given that:

$$\Delta H_{atm}^{\theta}(MgX) = 148 \text{ kJmol}^{-1}$$

$$\Delta H_{f}^{\theta}(MgX) = -602 \text{ kJmol}^{-1}$$

$$\Delta H_{atm}^{\theta}(X) = +250 \text{ kJmol}^{-1}$$

$$X_{(g)} + e^{-} \rightarrow X_{(g)}^{-} \Delta H^{c} = -141 \text{ kJmol}^{-1}$$

$$X_{(g)}^{-} + e^{-} \rightarrow X_{(g)}^{2-} \Delta H^{\theta} = +798 \text{ kJmol}^{-1}$$

[Use of relevant data from the data booklet is recommended.]

(iv) Explain why the second electron affinity of X is endothermic.

[8]

(c) Sulphur trioxide decomposes to form sulphur dioxide and oxygen according to the equation:

- (i) Draw sketch graphs, on the same axes, to show how the concentrations of sulphur trioxide and sulphur dioxide change with time.
- (ii) Explain the shape of each graph.

[5] [Total: 15] (a) Define the term

3

- (i) electronegativity,
- (ii) bond polarity.

[2]

- (b) (i) Describe, using a 'dot-and-cross' diagram, the bonding in carbon disulphide CS2.
 - (ii) Suggest the shape of the CS₂ molecule and give its bond angle.
 - (iii) Comment on the polarity of CS2.

[6]

(c) Table 3.1 shows ΔH^θ values of three different compounds.

Table 3.1

compound	Δ H _f /kjmol-	
SO _{2(g)}	-298	
CO _{2(g)}	-395	
SO _{2(g)} CO _{2(g)} CS _{2(g)}	+119	

- Define the term standard enthalpy change of formation.
- (ii) Write an equation to show the enthalpy change of formation of CS₂ under standard conditions.
- (iii) Carbon disulphide reacts with oxygen according to the equation.

$$CS_{2(g)} + 3O_{2(g)} \rightarrow CO_{2(g)} + 2SO_{2(g)}$$

Calculate the standard enthalpy change of combustion of CS₂.

(iv) Suggest two safety precautions to take into account when using carbon disulphide.

[Total:

6031/3 J2024

Tu

	-	Describe	and	ext	laio
3.	(a)	Describe	and	CAL	1

- (i) the trend in the boiling points of halogens,
- (ii) the trend in the acidicity of hydrogen halides,
- (iii) what happens when bromine gas is bubbled through
 - aqueous potassium iodide,
 - 2. aqueous potassium chloride.

[10]

- (b) Compare and comment on the
 - (i) solubility of potassium chloride and iodine in water,
 - (ii) electrical conductivity of potassium chloride and iodine.

[5] [Total: 15]

5 (a) The equation shows how iron is extracted from its ores.

$$2Fe_2O_{3(s)} + 3C_{(s)} \xrightarrow{heat} 4Fe_{(l)} + 3CO_{2(g)}$$

- (i) Name, with reasons, this method of extraction.
- (ii) Explain why aluminium can not be extracted from its oxide by a similar method.
- (iii) State any three advantages of obtaining iron by recycling rather than the method shown in (i).

[6]

- (b) Iron is converted to more useful iron alloys by alloying.
 - (i) Define the term alloy.
 - (ii) Explain how alloying makes iron more suitable for its uses.

[3]

6031/3 J2024

Section C

Answer any two questions from this section

6 (a) The equation shows how esters react with sodium hydroxide.

$$H_{2}C - o - \stackrel{\circ}{C} - R$$
 $\downarrow \qquad \qquad 0$
 $HC - o - \stackrel{\circ}{C} - R + 3NaOH \underline{heat} \rightarrow 3X + g \text{ lycerol.}$
 $\downarrow \qquad \qquad 0$
 $H_{2}C - o - \stackrel{\circ}{C} - R$

- (i) Deduce the structural formula of product X.
- (ii) Explain why glycerol
 - 1. has a high boiling point,
 - is highly soluble in water.

[4]

(b) Fig. 6.1 shows the structural formulae of three organic acids, L, M and N.

$$H = \begin{bmatrix} H & O \\ I & - \end{bmatrix} =$$

Fig. 6.1

Identify, with reasons, the strongest organic acid.

[4]

6031/3 12024

- (ii) Draw the structural formula of the organic products formed when the compound shown in Fig. 7.2 reacts with
 - HBr_(nq)
 - bromine water,
 - ethanoyl chloride.
- (iii) Name the type of reaction undergone in each of the reactions in (ii).

[8]

- (c) Nonane and 2,4-dimethylheptane are isomers with the molecular formula C₉H₂₀.
 - (i) Draw displayed structural formula of
 - nonane,
 - 2,4-dimethylheptane.
 - (ii) State the type of isomerism shown by these alkanes.
 - (iii) Describe and explain how a mixture of these two alkanes can be separated.

[5] [Total:15]

8 (a) Fig. 8.1 shows the structural formula of an organic compound.

Fig. 8.1

- (i) Name the functional groups in the organic compound.
- (ii) Describe and explain how the compound reacts with
 - sodium carbonate,
 - hot dilute hydrochloric acid,
 - sodium metal.

[9]

(c) Fig. 6.2 shows the structural formulae of three chlorine containing organic compounds, O, P and Q.

Fig. 6.

Describe and explain the relative ease of hydrolysis of O, P and Q.

[7] [Total:15]

(a) Fig. 7.1 shows the structural formula of an organic compound Z.

Z. Fig. 7.1

- Name the group of organic compounds to which Z belongs.
- (ii) State any one use of Z.

[2]

(b) An organic compound shown in Fig. 7.2 reacts to form an intermediate S, which can be converted to Z.

Fig. 7.2

- (i) Deduce the structural formula of the
 - intermediate S,
 - compound that reacts with S to form Z.

6031/3 J2024

Turn o