ZIMBABWE SCHOOL EXAMINATIONS COUNCIL General Certificate of Education Ordinary Level

MATHEMATICS PAPER 1 4008/1, 4028/1

NOVEMBER 1999 SESSION

2 hours 30 minutes

NEITHER MATHEMATICAL TABLES NOR SLIDE RULES NOR CALCULATORS MAY BE USED IN THIS PAPER.

Express 0,072 1.

- (a) as a fraction in its lowest terms,
- as a percentage, (b)
- in standard form. (c)

Answer	(a)	
	(b)	
	(c)	

- 2. Find the value of
 - 5,08 + 0,946, $\sqrt{0,0081},$ 5,6 7,5.(a)
 - (b)
 - (c)

Answer	(a)	
	(b)	
	(c)	

3.

- (a) Simplify $2m(3m + n) 5m^2$
- (b) Given that f(x) = 3 5x, find
 - (i) f(4)(ii) f(7a).

Answer	(a)	[1]
	(b) (i)	[1]
	(ii)	[1]

In the diagram, the lines ABC and PQR are parallel. The triangle AQB is equilateral. Given that $QRB = 37^{\circ}$, calculate

- (a) RBC,
- (b) AQR,
- (c) QBR.

Answer (a) RBC = ____ [1]

(b) AQR = _____ [1]

5. ABCD is a rhombus whose diag	gonals meet at O.
---------------------------------	-------------------

State

- the number of lines of symmetry of the rhombus, (a)
- the order of rotational symmetry of the rhombus, (b)
- the size of AÔB. (c)

Answer	(a)	
al a bala	(b)	Charles and the second
	(c)	

- A solid rectangular block meaning 6m x 5m x 2m is made up of metal 6. whose density 7850 kg/m³.
 - Find the mass of the block in tonnes. Convert 7850 kg/m³ to g/cm^3 . (a)
 - (b)

Answer	(a)	1 Jan	tonnes [2]
	(b)		g/cm ³ [1]

- 7. The cost of 5 rulers is \$11,25. The cost of 3 rulers and a pen is \$9,35. Calculate the cost of
 - (a) a ruler.(b) a pen.

Answer	(a)	\$ [1]
	(b)	\$ [2]

8. The minimum temperatures recorded in degrees Celsius on six consecutive days were as follows:

- 6, 3, -2, 6 -1, 0.
- (a) Write down
 - (i) the lowest temperature recorded;
 - (ii) the modal temperature.
- (b) Calculate the median temperature.

Answer	(a) (i)	°C [1]
	(ii)	°C [1]

(b) _____°C [1]

9. Solve the simultaneous equations

$$3x + 2y = -14$$
,
 $3x - 5y = 56$.

Answer	x =		<u></u>
		Today Non Light	E BAR
	y =	<u></u>	
181 46	1. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	NRI HALLAN	NO L

10. The exchange rate on a certain day was 3,8 dollars for 1 rand.

Calculate the equivalent of

- (a) 150 rands in dollars,
- (b) 304 dollars in rands.

Answer	(a)	\$ [1]
	(b)	[2]

Answer x = _____ or ____ [3]

- 12. In the diagram, Q is due north of R. PQR is an isosceles triangle wit PQ = PR and $QPR = 36^{\circ}$.
 - (a) Calculate, giving each answer in three-figure notation,
 - (i) the bearing of Q from P,
 - (ii) the bearing of P from R.
 - (b) Calculate reflex QPR.

In the diagram, ABCD is a cyclic quadrilateral. DC produced meets AB produced at E. given that BC = BE, $ABC = 84^{\circ}$ and $DAC = 19^{\circ}$, calculate

- (a) BĈE,
- (b) ADC,
- (c) CÂB.

- 14. (a) (i) Solve the inequality 3x 5 > 21.
 - (ii) Write down the smallest integer value of x for which 3x 5 > 21.
 - (b) Illustrate the inequality $-4 < x \le 2$ on the number line shown in the answer spa below.

Answer (a)	(i)[1]
	(ii)[1]
(b)	
	$(b) = -\frac{1}{-3} - \frac{1}{-3} - \frac{1}{-3} - \frac{1}{-2} - \frac{1}{-1} - \frac{1}{0} - \frac{1}{2} - \frac{1}{3} - \frac{1}{4} - \frac{1}{3} \rightarrow 1$

- 15. The scale on a map is such that 6 cm on the map represents 2,5 km on the ground. Calculate
 - (a) the length, in kilometers, of a road which measures 42 cm on the map,
 - (b) the area on the map, in square centimeters, that represents a lake of area 8 km^2 .

Answer	(a)	km[1]
ada da	(b)	cm ² [2]

- 16. (a) Evaluate $234_5 + 142_5$, giving your answer in base 5.
 - (b) Subtract 28 minutes 27 seconds from 58 minutes 4 seconds, giving the answer in minutes and seconds.
 - (c) Convert 2 days, 6 hours and 27 minutes to minutes.

17. Find the value of

(a)	$7^2 + 4^0$,
(b)	$3\sqrt{2^6} \ge 27$

The diagram above shows points P(4, 8), Q(9, 3) and S(12, 10).

- (a) Write down PQ in column vector form.
- (b) Mark and label on the diagram
 - (i) the point R such that PQRS is parallelogram,
 - (ii) the point T, the image of S, under a clockwise rotation of 90° about P.

Answer	(a) $PQ = ()$	[1]
	()	
	(b) (i) on diagram	[1]
	(ii) on diagram	[1]

- 19. (a) Measured correct to the nearest centimeter, the sides of a kite are 15 cm and 12 cm. Find the smallest possible perimeter of the kite.
 - (b) Estimate, correct to one significant figure, the value of 94.6 0,0627.

Answer	(a)	cm
	(b)	

20. There are 500 pupils at a school.

Given that one in every form pupils rides to school, calculate

- (a) the number of pupils who ride to school,
- (b) the probability that
 - (i) a pupil chosen at random does not ride to school,
 - (ii) two pupils chosen at random ride to school.

Answer	(a)	[1]
(and a set	(b) (i)	[1]
	(ii)	[1]

21. Two of the

- (a) Calculate the sizes of the two angles.
- (b) Given that the remaining three angles are in the ratio of 3: 4: 5, calculate the size of the largest of those angles.

Answer	(a)	23318	[1]
		a la mandalante	[1]
	(b)		[2]

22. (a) Given that 2 = 5. express x in terms of p and q.

(b) Express $\frac{5m}{8} - \frac{2m+3}{4}$ as a single fraction in its simplest form.

In the diagram $DBC = 90^{\circ}$, ADB = BDC, AD = 15 cm, DB = 8 cm and DC = 10 cm.

- (a) Calculate BC,
- (b) Find cos BDC,
- (c) Calculate AB^2

15. (a)

Find the value of x.

(b) The matrix $(y^2 \ 2)$ is singular. (18 1)

Calculate the two possible values of y.

- 25. A bus left Bulawayo for Kwekwe with 60 passengers. It passes through Gweru (it stop) where it picked up 27 passengers and dropped off n passengers.
 - (a) Write down, in terms of n, the number of passengers in the bus as it left Gweru
 - (b) Given that it arrived in Kwekwe with 2n passengers, form an equation in n and n find the value of n.
 - (c) Did the bus gain or lose passengers in Gweru? Explain your answer.

Answer	(a)	
	(b)	Equation
		n =
	(c)	
Explanatio	n:	CS PERMIS
Trade 1 St	1	State State
	1	State of the state

- A cyclist starts a 30 km journey at 09 00. she maintains an average speed of 20 km/h for the first three – quarters of an hour and their rests. Subsequently she continues her journey at an average speed of 25 km/h arriving at her destination at 11 00.
 - Calculate the distance covered in the first three-quarters of an (a) hour.
 - Calculate, in hours, the time taken to cover the last part of the (b) journey.
 - Calculate, in minutes, the duration of her rest. (c)
 - The graph shown in the answer space is an incomplete distance (d) time graph for the cyclist. Complete the graph.

26.

- 27. It is given that $log_{10}50 = 1,69897$ correct to five decimal places.
 - (a) Write down $\log_{10}50$ correct to 4 decimal places.
 - (b) Evaluate, giving each answer correct to 4 decimal places,
 - (i) $\log_{10}5$,
 - (ii) $\log_{10}25$.
 - (c) Evaluate, giving the answer correct to 3 decimal places, $log_{10}2$

Answer	(a)
	(b) (i)
	(ii)
	(c)

In this question take π to be 3,14.

The diagram shows the right angled triangle ABC The sector AQRS is drawn inside it such that BRC is a tangent to the sector at R

Given that AB = 15 cm, AC = 20 cm and BC = 25 cm, calculate

- (a) the area of the triangle ABC,
- (b) the radius, AR, of the sector AQRS,
- (c) the area of the shaded region.

