Surname	Forename(s)	Centre Number	Candidate Numb
	DCMicroSystems		
	*		
	Far Performance Measure	ment	•
ZIMBAI	BWE SCHOOL EXA General Certificate of Educ		COUNCIL
MATHE	MATICS		4030/2
PAPER 2			
	JUNE 2017	SESSION 2 hour	rs 30 minutes
Candidates answ Additional mater	ver on the question paper. rials: Geometrical instruments Mathematical tables/ Non-progr Graph/plain paper	ammable electronic calculat	or
Allow candid	lates 5 minutes to count pages be	efore the examination.	
This health the	uld not be numbed on stanlad a	-d seems should not h	e nom en el
	ould not be punched or stapled a	ind pages should not b	e removeu.
	rs 30 minutes		
Write your Name	NS TO CANDIDATES e, Centre number and Candidate n number and Candidate number on		
Check that all the duplicate or miss	e pages are in the booklet and ask sing pages.	the invigilator for a repl	lacement if there are
Answer all quest	ions in Section A and any three f	rom Section B.	
If working is nee Omission of esse	ers in the spaces provided on the orded for any question, it must be shorted working will result in loss of	nown in the space below marks.	v that question.
	which are not exact should be giverwise. Answers in degrees should	•	0
The number of m	N FOR CANDIDATES narks is given in brackets [] at the es or Non-programmable electronic ions.		
	This question paper consists	s of 30 printed pages.	
	Copyright: Zimbabwe School Exa	minations Council, J2017.	
©71MSEC 12017			Turn over

Section A [64 marks]

Answer all questions in this section.

1 (a) Simplify $2 - \frac{1}{2} \times \frac{4}{5}$, giving the answer as a mixed number.

Answer: (a) [2]

(b) Find the Highest Common Factor (H.C.F) of

 $2^{3} \times 3^{2} \times 5 \times 7^{4},$ $2^{3} \times 3^{3} \times 5^{2} \times 7^{2},$ $2^{4} \times 3 \times 5 \times 7^{3},$

leaving the answer in index form.

Answer (b) [2]

.

Centre Number	Candidate Number

1 (c) Find the Lowest Common Multiple (L.C.M) of $3x^2y$, $5x^3y^2$ and $8xy^3$.

Answer: (c) [2]

- (d) (i) Express 248 as a product of its prime factors.
 - (ii) Find the number by which 248 must be multiplied to make it a perfect square.

Answer: (d) (i) _____ [2] (ii) _____ [1]

Centre Number	Candidate Number

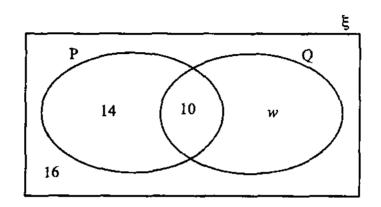
2 (a) Two similar square-based pyramids have base areas of 9 cm^2 and 25 cm^2 .

Find the ratio of their volumes, in the form a : b, where a and b are integers such that a < b.

Answer: (a) [2]

- (b) Anesu changed 500 South African rands into United States dollars when the bank exchange rate was US\$1 = R12,50. The bank charged 3% of the amount that had been changed as commission.
 - (i) Calculate the bank's commission in US\$.

Answer: (b) (i) US\$ [3]

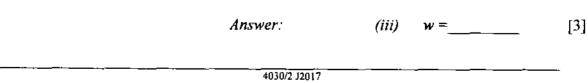

(ii) Calculate the amount in United States dollars that Anesu received.

Answer: (b) (ii) US\$ _____ [2]

Centre_Number	Candidate Number

The Venn diagram shows the universal set, ξ , and subsets P and Q. The number of elements in each region is as shown.

Find


(i) n(P),

Answer: (c) (i) n(P) =[1]

(ii) $n(Q^1)$, where Q^1 is the compliment of set Q.

Answer: (ii)
$$n(Q^{1}) =$$
 [1]

(iii) the value of w if the number of elements in the universal set, ξ , is twice the number of elements in Q.

Centre Number	Candidate Number

3 (a) It is given that
$$244_n + 32_n = 331_n$$
.

Find the value of n.

Answer: (a)
$$n =$$
 [2]

(b) Simplify
$$\frac{m^2 - m - 12}{m^3 - 9m}$$

Centre Number	Candidate Number

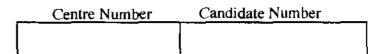
- 3 (c) The length of each side of an equilateral triangle is 8 cm.
 - (i) Calculate the area of the triangle.

Answer: (c) (i) $__{\rm cm}^2$ [2]

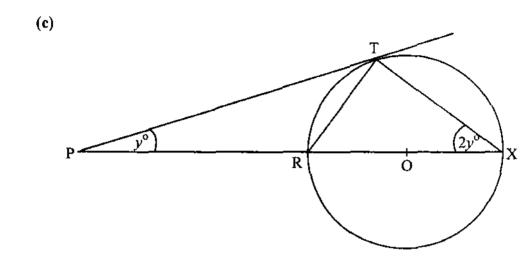
(ii) Express the area of the triangle in square metres.

m² (ii) Answer: [2]

Centre Number	Candidate Number	


Answer: (a) (i) H = [1]

(ii) value of Q when H = 81.


Answer: (a) (ii) Q = [2]

(b) Make *m* the subject of the formula
$$T = 2\pi \sqrt{\frac{em}{g}}$$
.

Answer: (b) m = [3]

In the diagram, the points R, T and X are on the circumference of a circle centre O. The diameter XR is produced to P and PT is a tangent to the circle at T. $RPT = y^\circ$ and $RXT = 2y^\circ$.

Find

4

(i) $R\hat{T}P$ in terms of y,

			Answer:	(c)	<i>(i)</i>	RŤP	=	[1]
	(ii)	the value of	у.					
			Answer:		(ii)	<i>y</i> =		_ [3]
· · · · ·			4030/2 J20)17				

_ Centre Number	Candidate Number

10

5 (a) The radius of a circle is 32 cm measured to the nearest centimetre.

(i) Write down the least possible value of the radius.

Answer: (a) (i)
$$___$$
 cm [1]

(ii) Take
$$\pi$$
 to be $\frac{22}{7}$.

Calculate the least possible value of the circumference of the circle.

Answer:	(a) (ii)	cm	[2]

Centre Number	Candidate Number

5 (b) (i) State the order of the matrix $\begin{pmatrix} 3 & 1 \end{pmatrix}$.

(ii) Evaluate
$$\begin{pmatrix} 3 & i \end{pmatrix} \begin{pmatrix} 4 \\ 3 \end{pmatrix}$$
. [1]

	Answer:	(ii)	 [1]
(c)	Matrix $\mathbf{G} = \begin{pmatrix} -2 & 5 \\ 0 & 6 \end{pmatrix}$.		
	Find G^{-1} , the inverse of matrix G^{-1}	G.	
	Answer: (c)		 [2]

4030/2 J2017

Centre Number C	Candidate Number

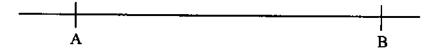
5 (d) Solve the equation $3x^2 - 4x - 11 = 0$, giving the answers correct to 2 significant figures.

Answer: (d) x =____or___[5]

6 Answer the whole of this question on a sheet of plain paper on page 14.

Use ruler and compasses only for all constructions and show clearly all construction lines and arcs.

All constructions should be on a single diagram.


(a) Construct

	(i)	triangle ABC in which AB = 8 cm, AC = 6,5 cm and BAC [Line AB has been drawn on page 14]	: - 60° [3]
	(ii)	the locus of points equidistant from AB and BC,	[2]
	(iii)	the perpendicular bisector of BC.	[2]
(b)	(i)	Shade the region, inside the triangle, containing the set of points which are nearer to BC than AB and also nearer to	
		C than B.	[2]
	(ii)	Measure and write down the length of BC.	[1]
(c)		ribe the locus represented by the perpendicular bisector of	
	BCI	n (a)(iii) .	[2]

DO NOT WRITE IN THIS SPACE

Centre Number	Candidate Number

6 Answer the whole of question 6 on this page.

Section B [36 marks]

Answer any three questions in this section.

Each question carries 12 marks.

7 A luxury bus has 100 units of seating area. There are two types of seats, Ordinary and First Class.

Let the number of Ordinary seats be x and First Class seats be y.

(a) Ordinary seats take up 1 unit of seating area and First Class seats take up 1.5 units of seating area.

Form an inequality which satisfies this condition and show that it reduces to $2x + 3y \le 200$.

Answer: (a) [2]

(b) There must be at least 10 First Class seats.
 Write down an inequality which satisfies this condition.

Answer: (b) [1]

(c) There must also be at least twice as many Ordinary seats as First Class seats. Write down an inequality which satisfies this condition.

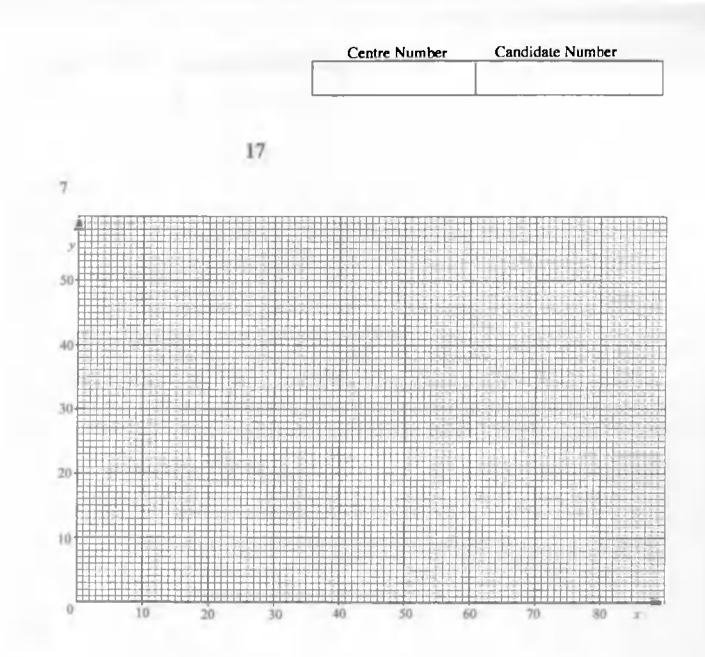
	Answer:	(c)		[{]
●>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>		4038/2 12013	f X'na ray o	

[3]

16

Answer d, e and f of question 7 on the grid on page 17.

The point (x; y) represents x Ordinary seats and y First Class seats. (d)

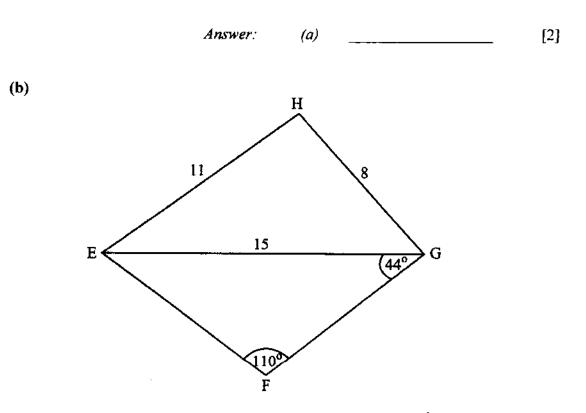

Draw the graphs of the inequalities in

7

	(i)	(a),	[1]
	(ii)	(b),	[1]
	(iii)	(c).	[1]
(e)	Show lie.	, by shading the unwanted regions, the region in which $(x; v)$ must	[2]
(f)	A luxury bus company which uses this type of luxury bus charges \$15 for each Ordinary seat and \$25 for each First Class seat for a certain trip.		

Use the graph to find the greatest possible amount of money that the company would receive from this trip.

DO NOT WRITE IN THIS SPACE



Answer:	(d)	(i) on graph	[1]
		(ii) on graph	[1]
		<i>(iii)</i> on graph	[1]
	(e)	on graph	[2]
	Ю	\$	[3]

4030/2 J2017

Centre Number	Candidate Number

8 (a) Evaluate
$$log_7 7^{-2} - log_5 \frac{1}{5}$$
.

In the diagram, EH = 11 cm, HG = 8 cm, EG = 15 cm, $E\hat{G}F = 44^{\circ}$ and $E\hat{F}G = 110^{\circ}$.

(i) Calculate

EF,

Answer: (i) $EF = _ cm$ [3]

4030/2 J2017

Centre Number	Candidate Number

- 8 (b) Calculate
 - (ii) EHG, giving the answer to the nearest degree,

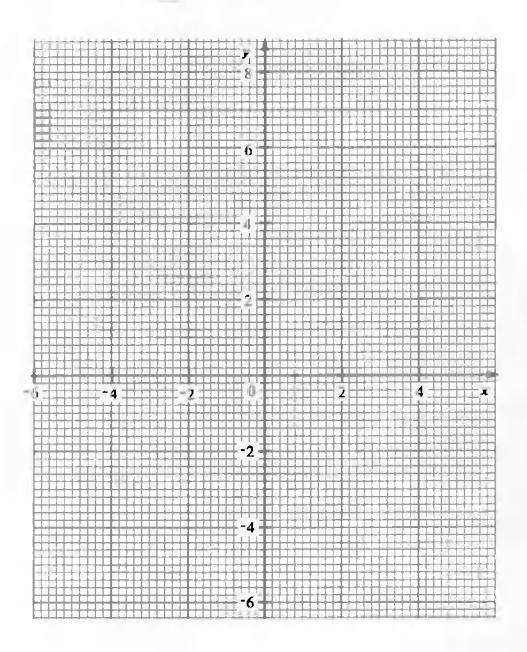
Answer: (ii) $E\hat{H}G =$ [3]

(iii) the shortest distance from E to GF produced,

Answer: (b) (iii) _____ cm [2]

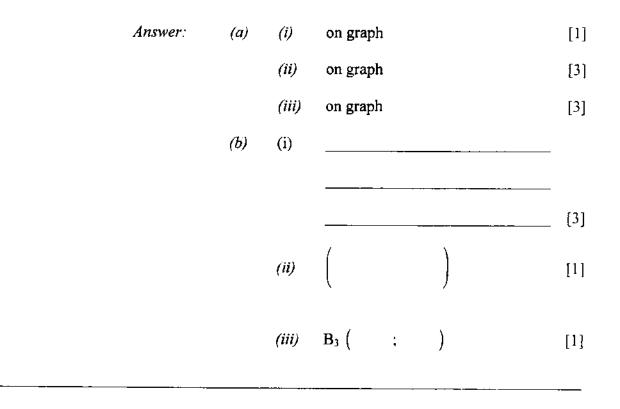
(iv) the bearing of F from G, given that E is due west of G and E, F, G and H are on level ground.

Answer:	(iv)	· <u>·</u>	[2]
 <u> </u>	·		


Ansv	ver the	whole of this question on the grid provided on page 21.	
Trian	ngle AB	BC has vertices at A(1; 1), B(3; 1) and C(2; 3).	
(a)	(i)	Draw and label triangle ABC.	[1]
	(ii)	Triangle ABC is mapped onto triangle $A_1B_1C_1$ by a transformation represented by the matrix $\begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}$.	n
		Draw and label triangle $A_1B_1C_1$.	[3]
	(iii)	An enlargement of factor $-1\frac{1}{2}$, centre (0; 0) maps triangle ABC of triangle A ₂ B ₂ C ₂ .	nto
		Draw and label triangle $A_2B_2C_2$.	[3]
(b)	(i)	Describe completely the transformation represented by matrix $\begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}$ in (a)(ii).	[3]
	(ii)	Write down the matrix that represents the enlargement in (a)(iii).	[1]
(c)	A tra	nslation $\begin{pmatrix} 3 \\ -4 \end{pmatrix}$ maps point B onto point B ₃ .	
		Write down the coordinates of point B ₃ .	[1]
	Triar (a) (b)	Triangle AE (a) (i) (ii) ((ii) (b) (i)	 (ii) Triangle ABC is mapped onto triangle A1B1C1 by a transformation represented by the matrix \$\begin{pmatrix}{1 & 0 \\ 2 & 1}\$\end{pmatrix}\$. Draw and label triangle A1B1C1. (iii) An enlargement of factor \$-1\frac{1}{2}\$, centre (0; 0) maps triangle ABC of triangle A2B2C2. Draw and label triangle A2B2C2. (b) (i) Describe completely the transformation represented by matrix \$\begin{pmatrix}{1 & 0 \\ 2 & 1}\$\end{pmatrix}\$ in (a)(ii). (ii) Write down the matrix that represents the enlargement in (a)(iii). (c) A translation \$\begin{pmatrix}{3 \\ -4\$}\$ maps point B onto point B3.

DO NOT WRITE IN THIS SPACE

Centre Number


21

9

4030/2 J2017

Centre Number	Candidate Number

10 The following is an incomplete table of values for the function $y = \frac{1}{5}(3-2x-x^2)$.

x	-4	-3	-2	-1	0	1	2	3
У	-1	0	0,6	0,8	0,6	0	-1	p

(a) Calculate the value of p.

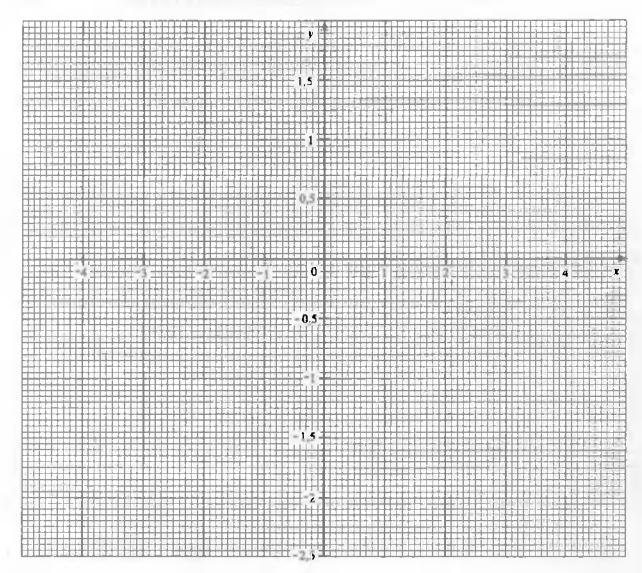
Answer: (a)
$$p = [1]$$

Answer the following questions on the grid on page 24.

(b) Draw the graph of
$$y = \frac{1}{5}(3-2x-x^2)$$
. [4]

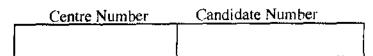
(c) By drawing a suitable tangent, estimate the gradient of the curve at x = 0. [2]

(d) Use the graph to

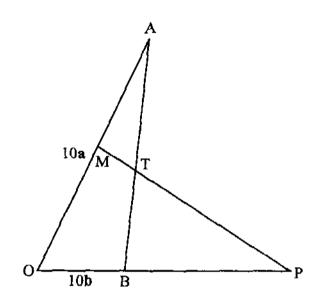

- (i) solve the equation $\frac{1}{5}(3-2x-x^2) = -0.5$, [3]
- (ii) find an estimate of the area bounded by the x-axis and the curve. [2]

4030/2 J2017

Centre Number


24

10


Answer:	<i>(b)</i>	on graph	[4]
	(c)		[2]
	(d)	(i) x = or	[3]
		(ii)	[2]

4030/2 J2017

In the diagram $\overrightarrow{OA} = 10a$ and $\overrightarrow{OB} = 10b$. M is the mid-point of OA. T is a point on AB such that $\frac{AT}{AB} = \frac{3}{5}$.

MTP and OBP are straight lines.

ĀŦ,

(ii)

- (a) Express, in terms of a and/or b,
 - (i) \overrightarrow{AB} ,

Answer: (a) (i) $\overrightarrow{AB} =$ [1]

Answer: (ii) $\overrightarrow{AT} =$ [1]

4030/2 12017

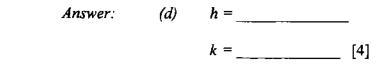
				Cen	tre Numbe	er	Candidate N	umber	
					26				
11	(a)	(iii)	MT						
				Answer:	(a)	(iii)	₩Î =		[2]

(b) It is given that $\overrightarrow{OP} = k\overrightarrow{OB}$. Express \overrightarrow{OP} in terms of **b** and k.

Answer: (b) $\overrightarrow{OP} =$ [1]

(c) It is also given that $\overrightarrow{OP} = \overrightarrow{OM} + \overrightarrow{hMT}$.

Show that $\overrightarrow{OP} = (5 - h)a + 6hb$


. .

Answer: (c) [2]

4030/2 J2017

Centre Number	Candidate Number

11 (d) Use the results from (b) and (c) to find the value of h and the value of k.

(e) Hence express \overrightarrow{OP} in terms of **b**.

Answer: (e) $\overrightarrow{OP} =$ [1]

Centre Number	Candidate Number

12 The heights of 60 children were recorded. Below is an incomplete frequency and frequency density table of the results.

Height (h cm)	110 <h≤120< th=""><th>120<h≤125< th=""><th>125<h≤130< th=""><th>130<h≤145< th=""><th>145<h≤150< th=""></h≤150<></th></h≤145<></th></h≤130<></th></h≤125<></th></h≤120<>	120 <h≤125< th=""><th>125<h≤130< th=""><th>130<h≤145< th=""><th>145<h≤150< th=""></h≤150<></th></h≤145<></th></h≤130<></th></h≤125<>	125 <h≤130< th=""><th>130<h≤145< th=""><th>145<h≤150< th=""></h≤150<></th></h≤145<></th></h≤130<>	130 <h≤145< th=""><th>145<h≤150< th=""></h≤150<></th></h≤145<>	145 <h≤150< th=""></h≤150<>
Frequency	12	18	8	12	10
Frequency density	1,2	3,6	m	0,8	2

(a) State the modal class.

Answer: (a) [1]

(b) Find the value of m.

Answer: (b) [1]

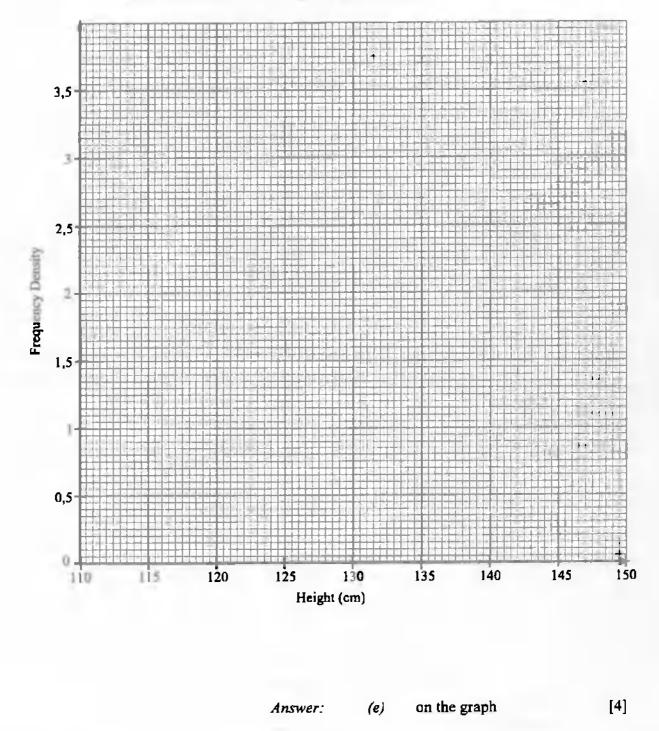
Centre Number	Candidate Number

12 (c) Calculate an estimate of the mean height.

Answer: (c) _____ cm [3]

(d) If two children were chosen at random, calculate the probability that one had a height of not more than 120 cm and the other had a height greater than 145 cm.

Answer: (d)


[3]

Centre Number

30

12 (e) Answer this part of question 12 on the grid below.

Draw a histogram which represents this information.

