

ZIMBABWE SCHOOL EXAMINATIONS COUNCIL

General Certificate of Education Ordinary Level

MATHEMATICS

4004/1

PAPER 1

JUNE 2019 SESSION

2 hours 30 minutes

Additional materials:

Candidates answer on question paper

Geometrical instruments

Allow candidates 5 minutes to count pages before the examination.

TIME 2 hours 30 minutes

This booklet should not be punched or stapled, and pages should not be removed.

INSTRUCTIONS TO CANDIDATES

Write your name, Centre number and candidate number in the spaces at the top of this page. Write your centre number and candidate number in the box on the top right corner of every page of this paper.

Check that all the pages are in the booklet and ask the invigilator for a replacement if there are duplicate or missing pages.

Answer all questions.

Write your answers in the spaces provided on the question paper using black or blue pens.

If working is needed for any question, it must be shown in the space below that question.

Omission of essential working will result in loss of marks.

Decimal answers which are not exact should be given correct to three significant figures unless stated otherwise.

Answers in degrees should be given correct to one decimal place.

Mathematical tables or electronic calculators should not be brought in the examination room.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets [] at the end of each question or part question.

Copyright: Zimbabwe School Examinations Council, N2018.

© ZIMSEC

Answer all questions.

NEITHER MATHEMATICAL TABLES NOR SLIDE RULES NOR CALCULATORS MAY BE USED IN THIS PAPER.

1.	Expi	ress	
	a)	$\frac{12}{25}$ as a decimal fraction,	Answer(a) [1]
	b)	$\frac{2}{5}$ as a percentage,	Answer(b) [1]
	c)	0,0375 as a fraction in its lowest terms.	Answer(c) [1]
2.	Writ	e down the next term in each of the follow	wing sequences.
	a)	1;4;9;16;25;36;	Answer(a) [1]
	b)	$\sqrt{2}$; $\sqrt{3}$; $\sqrt{5}$; $\sqrt{7}$; $\sqrt{11}$;	Answer(b) [1]
	c)	16;8;4;2;1;	Answer(c) [1]

3.		ee girls aged 12 years, 13 years and 15 years share \$100,00 in the ratio of rages.
	Calc	culate the amount of money that each girl receives.
		Answer
		[3]
		[2]
4. a)	Con	vert
	i)	434_5 to base ten,
		Answer (a)(i) [1]
	ii)	75_{10} to base two.
		Answer (a)(ii) [1]
b) Ev	aluat	e $377_8 + 411_8$ leaving the answer in base 8.
		Answer(b) [1]

In the diagram, ABCD is a cyclic quadrilateral in which AB = AD and BC = DC. AC is the diameter of the circle and $AD^B = 10^\circ$

a) State the special name given to the cyclic quadrilateral ABCD.

		Answer(a)	[1]
b)	Find		
	i) AĈD	Answer (b)(i)	[1]
	ii) $A_{\widehat{D}}^{C}$	Answer (b)(ii)	[1]

The Venn diagram shows the universal set ξ and subsets P, Q and R. In the Venn diagram shade the set $(P' \cap R) \cup (R' \cap Q)$.

Answer in the diagram [3]

7. a) Convert 647 cents to dollars.

[1]

b) The exchange rate for converting United States dollars to South African rand is US\$1:R13,80.

Calculate the equivalent of US\$75,90 in Rands.

Answer(b) [2]

Solve the simultaneous equations: $5x - 2y = 26$ 3x + 4y = 0
Answer [3]
The sides of a parallelogram are of lengths 10cm and 8cm. One of the interior angles of the parallelogram is 150°. Calculate the area of the parallelogram. Use as much of the information given below as is necessary.
$[\tan 30 = 0,577;\cos 30 = 0,866;\sin 30 = 0,5]$

A bo	ox contains 20 sweets which are identical in shape and size except for colour.
Eigh	ht of the sweets are yellow and twelve are green.
C	alculate the probability of picking a yellow sweet.
	Answer(a) [1]
b)	Two sweets are picked at random from the box.
	Calculate the probability that the sweets are of the same colour.
	Answer(b) [2]
	Eigl

In the diagram, all the circles are of equal radii.

~		
	tota	tho
	tate	LIIC

a) total number of	circles,
--------------------	----------

Answer(a) [1]

b) number of lines of symmetry,

Answer(b) [1]

c) order of rotational symmetry.

Answer(c) [1]

12. It is given that $\log 6 = 0.7781$ and $\log 5 = 0.6990$

Calculate

a) log 30,

Answer(a) [2]

		Answer(b)	[2]
13	a)	Calculate the size of one exterior angle of an 18-sided regular polygon.	***
		Answer(a)	[2]
	b)	Calculate the sum of the interior angles of a heptagon (7-sided polygon).	
		Answer(b)	[2]

b) log1200000.

14.	The number of people, N, who favour a certain type of energy drink varies directly as the population size S. In a population of 1000 people, only 40 people were reported to favour that type of energy drink.				
	a)	Form an equation connecting N and S .			
	b)	Answer(a)[2] Find the population size, \Box from which 180 people favour that type of energy drink.			
15.		Answer(b) [2] rectangle ABCD, AB = 12 cm and BC = 5 cm.			
	Exp	ress as a common fraction,			
	a) b)	tan AĈD, Answer(a)[1] cos DÂC,			
		Answer(b) [2]			

			Answer(c) [1	1]
16.		masses of 6 bags of mealie- meal on the sg; 5 kg; 10 kg; 10 kg; 10 kg; 20 kg.	shelf of a shop were as follows:	
	Find	the		
	a)	modal mass,		
			Answer(a) [1	1]
	b)	median mass,		
			Answer(b) [1	1]
	c)	mean mass.		
			Answer(c) [2	2]

c) $\sin B\hat{D}C$,

17.	a)	Factorise completely
		i) $p^2 - 4$
		Answer (a)(i) [1]
		ii) $2p^2 + 7p + 6$
		Answer (a)(ii)[2]
	b)	Hence or otherwise find the Highest Common Factor (H.C.F.) of p^2 - 4 and $2p^2 + 7p + 6$
		Answer(b) [1]
18.		the circular cone has a base diameter of 24 cm and a slant height of 15 cm. culate the
	a)	vertical height of the cone,
		Answer(a)[2]

[volume of cone = $\frac{1}{3}\pi r^2 h$]	
	Answer(b) [2]
19. It is given that $f(x) = 3x^2 - 2x - 8$ Find	
a) $f(-4)$,	
	Answer(a) [1]
b) the values of x for which $f(x) = 0$.	
	Answer(b)
	[3]

b) volume of the cone in terms of π .

20.	Solve	the	equations:
	001.0		equations.

a)
$$x^{\frac{2}{3}} = 4$$

Answer(a)	
	[2]

$$\frac{2}{x-2} = \frac{3}{x+2}$$

The diagram shows a linear programming region which can best be described using three inequalities.

One of the inequalities is $y \ge 0$.

a) Find the other two inequalities shown in the graph.

Answer(a)	
	[2]

	b)	Find the maximum value of $x + y$, given that x and y are integers that satisfy the three inequalities.
		Answer(b) [2]
22.	a)	Express in standard form
		i) 618 000, Answer (a)(i) [1]
		ii) 0,000 423. Answer (a)(ii) [1]
	b)	Evaluate $(8, 76 \times 10^{-2}) + (7, 89 \times 10^{-2})$ leaving the answer in standard form.
		Answer(b) [2]

The diagram shows two intersecting straight lines AOB and XOY.

$$OA = p$$
 and $OX = q$

$$\frac{AO}{OB} = \frac{XO}{OY} = \frac{1}{3}$$

- a) express in terms of p and/ or q
 - i) AX

Answer (a)(i) [1]

ii) BY

Answer (a)(ii) _____ [1]

	State any two relationships between the lines AX and YB.
	Answer (b)
	[2]
	oyo village is 5 km away from Dube village on a bearing of 020°.
No	cube village is 6 km away from Dube village on a bearing of 060°.
a)	Find the bearing of Dube village from Moyo village.
	Answer(a) [1]
b)	Find the distance from Moyo village to Ncube village, leaving the answer in surd form.
	Use as much of the information given below as is necessary.
	$[\cos 40^\circ = 0.77 \sin 40^\circ = 0.64 \tan 40^\circ = 0.84]$
	Answer(b)

4004/1 J2019

Two	similar bottles are of heights 8 cm and 16 cm.
a)	The bases of the similar bottles are also similar. The surface area of the base of the smaller bottle is 1,44 cm ² . Find the surface area of the base of the bigger bottle.
	Answer(a) [2]
b)	Find the volume of the smaller bottle if the volume of the bigger bottle is 16 cm ³ .
	Answer(b) [2]

The diagram shows two quadrilaterals ABCD and A₁B₁C₁D₁ on the Cartesian plane.

a)	Describe fully the single transformation which maps ABCD onto $A_1B_1C_1D_1$. Answer(a)
	[3]
	[5]

b) Point $A_2(1; -2)$ is the image of A under a translation.

Find the translation vector.

Answer(b) [2]

The diagram is the velocity – time graph of an object which decelerates uniformly from a velocity of 90 m/s to a velocity of 60 m/s in 10 seconds. It then decelerates uniformly to rest in a further 5 seconds.

Calculate the

a) total distance covered by the object during the 15 seconds,

Answer(a)	[2]

b)	average velocity of the object during the 15 seconds,
	Answer(b) [2]
c)	deceleration of the object during the last five seconds.
	Answer(c) [2]

ZIMBABWE SCHOOL EXAMINATIONS COUNCIL

General Certificate of Education Ordinary Level

MATHEMATICS

4004/2

PAPER 2

JUNE 2019 SESSION

2 hours 30 minutes

Candidates answer on the question paper

Additional materials: Mathematical tables Electronic Calculator Geometrical Instruments Graph paper (if needed)

Allow candidates 5 minutes to count pages before the examination.

This booklet should not be punched or stapled and pages should not be removed.

Time 2 hours 30 minutes

INSTRUCTIONS TO CANDIDATES

Write your name, Centre number and candidate number in the spaces at the top of this page.

Write your centre and candidate number in the box on the top right corner of every page of this paper.

Check that all the pages are in the booklet and ask the invigilator for a replacement if there are duplicate or missing pages.

Answer all questions in Section A and any four from Section B.

Write your answers in the spaces provided on the question paper using black or blue pens.

If working is needed for any question, it must be shown in the space below that question.

Omission of essential working will result in loss of marks.

Decimal answers which are not exact should be given correct to three significant figures unless stated otherwise.

Answers in degrees should be given correct to one decimal place.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets [] at the end of each question or part question. Mathematical tables and calculators may be used to evaluate explicit numerical expressions.

Copyright: Zimbabwe School Examinations Council, J2019.

SECTION A (52 Marks)

Answer all questions in this section

a)	Write down the next term in the sequence below.	
	$\frac{1}{3}$; $\frac{2}{4}$; $\frac{3}{5}$; $\frac{4}{6}$;	
	Answer(a) [1	l]
b)	Express 10 as a sum of two different prime numbers.	
		$\frac{1}{3}$; $\frac{2}{4}$; $\frac{3}{5}$; $\frac{4}{6}$; Answer(a)[1]

c) i) Increase \$105 by 12%.

Answer (c)(i) [2]

Answer(b) [1]

			Answer (c)(ii)	[3]
2.	a)	Sin $\theta = \cos 40^{\circ}$. Find the 2 possible values of θ if $0^{\circ} < \theta < 0$: 180°.	
		4004/2 J2019	Answer(a)	 [2]

Tendai and Chipo share \$105,00 in the ratio 4:3 in that order.

Find Tendai's share and Chipo's share.

ii)

b)

In the diagram, **ABC** is a triangle in which **AP** is perpendicular to **BC**. $\mathbf{AB} = 9.4 \text{ cm}$, $A\hat{B}C = 37^{\circ}$ and $P\hat{A}C = 42^{\circ}$.

i) Calculate the length of AP.

Answer (b)(i) [2]

ii) Calculate the length of AC.

Answer (b)(ii) _____ [2]

In the diagram above A, B and C are points on the circumference of a circle centre O. $A\hat{O}C = 3y$ and $A\hat{B}C = 4y + 4$.

i) Write down an expression, in terms of y for reflex $A\hat{O}C$.

Answer (c)(i) [1]

ii) Find the value of y.

Answer (c)(ii) [3]

3.	a)	Tari	ro bought US \$7,00 for 91,70 Pula from a bank.
		i)	Find the exchange rate in the form US $$1: m$ Pula.
			Answer (a)(i) [1]
		ii)	The bank charged 1% commission for the transaction. Calculate the amount of money Tariro received.
			Answer (a)(ii) [2]
	b)		sale, the original price of a suit is reduced by 16% to \$210. culate the original price of the suit before the sale.
			Answer(b)[3]

c)	William invested \$P, at a rate of 3% per annum simple interest. After 5 years he got \$2010 simple interest. Calculate the value of \$P.	
	Answer(c)	[2]
d)	John invested \$600 for 3 years at 4% per annum compound interest. Calculate the total amount he received after 3 years.	
	Answer(d)	[3]

4. a) Express $3 - \frac{x+2}{x-1}$ as a single fraction in its simplest form.

Answer(a) [3]

- b) It is given that the functions $f(x) = x^2 + 3x 8$, g(x) = 3x + 1 and $h(x) = 2^x$. Find the
 - i) values of x for which f(x) = g(x).

Answer (b)(i) [3]

	ii)	value o	of x giv	en tha	t h(x)	= 0,25	5.				
							J	Answer (b)((ii)	 	[3]
c)	Giver	that \bigvee_{css} in	$\sqrt{ax + terms of }$	$\overline{b} = a$	d^{\prime} b and b	d .					

Answer(c) [3]

5. Answer the whole of this question on the plain space below.

User ruler and compasses only for all constructions and show clearly all construction lines and arcs. All constructions should be done on a single diagram.

	Cons	truct on the blank space on page 10 th	ne	
	i)	triangle ABC,	Answer (a)(i) on the diagram	[3]
	ii)	bisector of \widehat{ABC} ,	Answer (a)(ii) on the diagram	[2]
	iii)	perpendicular bisector of side BC.	Answer (a)(iii) on the diagram	[<mark>2</mark>]
b)	Point 45°.	D is on the same side of AB as C and	I is such that AD = 7 cm and	$B\hat{A}D =$
	i)	Construct BÂD.		
			Answer (b)(i) on the diagram	[2]
	ii)	Mark and label point D.	Answer (b)(ii) on the diagram	[1]
iii)		e the region inside the triangle, on the a contains the points which are nearer		
		A	nswer (b)(iii)on the diagram	[2]

Triangle ABC is such that AB=BC=7 cm and $\widehat{ABC} = 120^{\circ}$.

SECTION B (48 Marks)

Answer any four questions from this section.

Each question carries 12 marks.

6.	a)	The universal set ξ , has subsets P and Q such that $n(\xi) = 59$, $n(P) = 15$, $n(Q) = 35$ and $n(P \cup Q)' = 9$						
		Write down						
		i) $n(P \cap Q)$,						
		Answer (a)(i)[1]						
		ii) $n(P \cup Q)$.						
		Answer (a)(ii) [1]						
	b)	In a test the probability that a learner gets the first question correct is $\frac{3}{5}$						
		If the learner gets it correct the probability of getting the second one correct becomes $\frac{4}{5}$.						
		If the learner fails the first question, the probability of getting the second one correct becomes $\frac{1}{5}$.						

i) Complete the probability tree diagram.

Answer (b)(i) on the diagram [3]

ii) Hence or otherwise find the probability that the learner who answers two questions, gets both questions correct.

iii)	Hence or otherwise find the probability that the learner, who answers two questions, gets none of the two questions correct.
iv)	Answer (b)(iii)[2] Hence or otherwise find the probability that the learner, who answers two questions, gets only one of the questions correct.
	Answer (b)(iv) [3]

7.	a)	i)	Solve the following inequalities givin $a \le x < b$ where a and b are constant $5x - 13 \le x - 6 < 9 + 4x$	
				Answer (a)(i) [3]
		ii)	Illustrate the solution on a number line	е.
				Answer (a)(ii) [1]
		iii)	Write down the smallest integer value	of x that satisfies the inequalities.
				Answer (a)(iii) [1]
	b)		angle ABC is such that, $A\hat{B}C = 90^{\circ}$, A = (x + 2)cm and $AC = (2x + 3)$ cm.	
		i)	Write down an expression in terms of	x , for Sin $A\hat{C}B$.
				Answer (b)(i) [1]

ii)	Given that $sinA\hat{C}B = \frac{9}{16}$ form an eq	\mathbf{u} uation in \mathbf{x} .	
iii)	Solve the equation in (b)(ii).	Answer (b)(ii)	 [1]
iv)	Hence find the length of side AC.	Answer (b)(iii)	[2]
		Answer (b)(iv)	 [1]

					Ar	swer(b)(v)	
The fol	lowing is	an incomp	lete tab	le of v	alues for th	e function	$y = x^2$
$\frac{x}{y}$	- 2 12	-1 5	0	1 p	2 -4	3 - 3	4 5 0 q
	ind the val $$	lues of					
					Ar	swer (a)(i)	············
	q.						

v) Hence, calculate the length of side BC.

Answer parts (b) and (c) of the question on the grid.

b) i) Draw the graph of $y = x^2 - 4x$ on the grid provided using a scale of 2 cm to 1 unit on the x axis and 2 cm to 2 units on the y axis.

Answer (b)(i) on the graph [4]

ii) On the same grid draw the graph of y = 3 - x.

Answer (b)(ii) on the graph [2]

i)	solve the equation $x^2 - 4x = 3 - x$,
	Answer (c)(i)
ii)	find the equation of the line of symmetry of the curve $y=x^2-4$

c) Use the graph to

In the diagram, ABCD is a quadrilateral in which BD is a diagonal. AB = 26cm, BD = 24cm, $A\widehat{B}D = C\widehat{B}D = 40^{\circ}$ and $C\widehat{D}B = 30^{\circ}$.

Calculate the

a) area of triangle ABD,

Answer(a) [2]

b) length of AD,

c)	length of BC,		
d)	shortest distance from C to BD.	Answer(c)	[4]
		Answer(d)	[2]

10. The table shows information about the heights of a group of 42 learners.

Height (h) cm	$150 < h \le 160$	160 < h ≤ 165	165 < h ≤ 180	180 < h ≤ 190
Frequency	5	9	18	10
Frequency Density	0,5	1,8	1,2	1

Frequency	5	9	18	10
Frequency Density	0,5	1,8	1,2	1
State the				
i) moda	al class,			
ii) class	that contains the	median height,	Answer (a)(i)	[1]
2) 01435		,eu.ae.g,		
iii) class	that contains the	lower quartile.	Answer (a)(ii)	[1]
			Angwar (a)(iii)	[11]
) Calculate a	n estimate of the	mean height of	Answer (a)(iii) the learners.	[1]

Answer(b) [3]

c)	Two learners are chosen at random from the group.								
	Find the probability that both have heights that are more than 160 cm but less than or equal to 180 cm.								
	A manuan(a) [21]								
	Answer(c) [3]								

Answer this publication Answer this publication of the Using a scale of the Answer this publication of the Answer this publi	ACTION OF THE PARTY OF THE PART	A CONTRACTOR OF THE PROPERTY O		The state of the s	and 2 cr	n to 0,5 i	inits
Frequency De							
		11111111	Н			IIII	ПП

Answer (d) On the graph [3]

The diagram shows the cross-section of a garden shed. The cross-section ABCDE is made up of a rectangle measuring 2m by 2,2m and an isosceles triangle with a perpendicular height of 0,6m and a base of 2m.

a) Calculate the area of the cross-section.

7 8 8	222
Answer(a)	[3]
The state of the s	modern become and the second of

b)	If the shed is $3m$ long, calculate the volume of the shed.
	Answer(b) [2]
c)	It is given that $23m^2$ of the surface area of the shed need to be painted and that one tin of paint covers an area of $4.5m^2$.
	Calculate the number of tins of paint that have to be bought to cover the $23m^2$.
	Answer(c) [2]

d)	i)	Calculate the length of the edge DE.
		Answer (d)(i)[2]
	ii)	The sloping roof is to be covered by roofing material which costs \$6,40 per square metre.
		Calculate the cost of roofing material needed to cover the sloping roof.
		Answer (d)(ii)[3]

- 12. a) It is given that $\mathbf{u} = \begin{pmatrix} 3 \\ 9 \end{pmatrix}$ and $\mathbf{v} = \begin{pmatrix} -3 \\ 1 \end{pmatrix}$
 - i) Simplify $\mathbf{u} 3\mathbf{v}$.

Answer (a)(i) [2]

ii) Evaluate $|\mathbf{u} - 3\mathbf{v}|$.

Answer (a)(ii) [1]

b)

In the diagram, OA = p, AB = q and M is the midpoint of AB.

OB is produced to C such that OB = BC.

Express the following in terms of p and/ or q,

		Answer (b)(i) [1]
ii)	OM,	
		Answer (b)(ii) [1]
iii)	AC.	
		Answer (b)(iii) [1]
iv)	OM is produced to a point T (not in twhere k is a constant. Express OT in terms of k , p and q .	he diagram) such that $OT = k OM$,
	2. press of interns of n, p and q.	
		Answer (b)(iv) [1]
v)	If point T is on AC and is such that A expression for OT in terms of h , p and	
	4004/2 J2019	Answer(b)(v) [1]

i) OC,

vi)	Using your answers in (iv), and (v) k .	, find the value of h and the value of
vii)	Hence, find the ratio of MT : OT.	Answer (b)(vi)[3]
		Answer (b)(vii) [1]

ZIMBABWE SCHOOL EXAMINATIONS COUNCIL

General Certificate of Education Ordinary Level

MATHEMATICS

4004/1

PAPER 1

NOVEMBER 2019 SESSION

2 hours 30 minutes

Candidates answer on the question paper

Additional materials: Mathematical Instruments

Allow candidates 5 minutes to count pages before the examination.

This booklet should not be punched or stapled and pages should not be removed.

Time 2 hours 30 minutes

INSTRUCTIONS TO CANDIDATES

Write your Name, Centre number and Candidate number in the spaces at the top of this page.

Write your centre and candidate number in the box on the top right corner of every page of this paper.

Check that all the pages are in the booklet and ask the invigilator for a replacement if there are duplicate or missing pages.

Answer all questions.

Write your answers in the spaces provided on the question paper using **black** or **blue** pens. If working is needed for any question, it must be shown in the space below that question.

Omission of essential working will result in loss of marks.

Decimal answers which are not exact should be given to three significant figures unless stated otherwise.

Mathematical tables, slide rules and calculators should not be brought into the examination room

INFORMATION FOR CANDIDATES

The number of marks is given in brackets [] at the end of each question or part question.

Copyright: Zimbabwe School Examinations Council, N2019.

Answer all questions NEITHER MATHEMATICAL TABLES NOR SLIDE RULES NOR CALCULATORS MAY BE USED IN THIS PAPER

1.	Exp	ress		
	a)	2460 cm ³ in litres,		
	b)	1 hectare as a percentage of 0,25 km ² .	Answer(a)	 [1]
2.	a)	Evaluate $(-8)^{\frac{2}{3}}$.	Answer(b)	 [2]
			Answer(a)	 [1]

b)	Simplify $\sqrt{147} + \sqrt{108}$. Leave the where m and n are integers.	answer in the form $m\sqrt{n}$	
		Answer(b)	[2]
3.	Solve the simultaneous equations: $3x - y = 2$ $5x - 2y = 0$		

Answer [3]

	is given that $q = -6$, $r = -1$ and $t = 2$.	
a)	$\frac{q r}{t}$,	
b)	q t - r,	Answer(a) [1]
c)	$(q+r)^t$.	Answer(b) [1]
		Answer(c) [1]

5.	a)	State the order of rotational symmetry of a rhombus.	
		Answer(a) [1	J
	b)	Four of the interior angles of a 12 sided polygon are each x° .	
		The other angles are $2x^{\circ}$ each.	
		Calculate the value of x .	
		Answer(b) [2]

6.	a)	Calculate $\frac{2}{3}$ of 54 km.	
		Answer(a)	[1]
	b)	Kin, Munashe and Chipo shared sweets in the ratio 5: 3:7. Calculate the total number of sweets shared if Chipo got 35 sweets.	
		Calculate the total number of sweets shared it Chipo got 33 sweets.	
		Answer(b)	[2]

7. a)

The Venn diagram consists of the universal set ξ , and subsets \mathbf{P} and \mathbf{Q} with their respective elements.

i) List the element of $P' \cap Q$.

Answer (a)(i) [1]

ii) Find $n(P \cup Q)'$.

Answer (a)(ii).....[1]

b)

The Venn diagram consists of the universal ξ , and subset **K** and **L**. Describe the shaded region in set notation.

Answer(b) [1]

8. Factorise completely

$$x^2 - \frac{1}{4}$$

Answer(a) [1]

b)
$$x(x-2)-2xy+4y$$
.

Answer(b) [2]

	b)	Find n given that $101_n = 37_{10}$.	Answer(a)	[1]
			Answer(b)	[2]
10.	a)	P is a 2×3 matrix, Q is a 3×1 ma State the order of matrix H .	trix and $PQ = H$.	
			Answer(a)	[1]
	b)	Matrix A = $\begin{pmatrix} 2 & 1 \\ 3 & -3 \end{pmatrix}$		
		Find A ² .		
			Answer(b)	[2]

9. a) Express 2214_s in powers of 5.

In the diagram, points A, B, C and D are on the circumference of a circle centre O. AOC is a straight line, OD is parallel to BC and DÂO = 30°.

Calculate

- 4		
a)	OD	B

		Answer(a)	[1]
b)	$A\hat{B}D^{*}$		
		Answer(b)	[1]
c)	\hat{ACB}		

Answer(c) [1]

The diagram shows triangle **AOC** and a circle with centre **O**, **OC** = 4cm and line, I, is the perpendicular bisector of **AO**.

 a) Describe fully the locus represented on the diagram by 	a)	Describe fully	the locus re	presented on	the c	liagram	Dy	Ine
---	----	----------------	--------------	--------------	-------	---------	----	-----

i)	circle,	
	Answer (a)(i)	
		[1]
ii)	line l.	
	Answer (a)(ii)	

b) P is both inside the circle and inside triangle AOC but nearer to A than O.

Show by shading in the diagram the region in which P must lie.

Answer (b) On the diagram [1]

13.	a)	Convert US \$5,40 to South African Rands. Use an exchange rate of US \$1 to 12 Rands,	
		Answer(a)	[1]
	b)	A farmer borrowed \$2000 at a simple interest rate of 20% per annum. Calculate the total amount payable after 2 years.	
		Answer(b)	[3]

In the diagram **A**, **B** and **C** are points on level ground. Point **B** is 4km due east of **A**. $B\hat{A}C = 10^{\circ}$ and $A\hat{B}C = 120^{\circ}$

- State the bearing of B from C.

 Answer(a)

 [1]
- b) Using as much of the information given below as is necessary to calculate BC. [$\sin 10^\circ = 0.2$] $\cos 10^\circ = 1.0$ $\tan 10^\circ = 0.2$] [$\sin 50^\circ = 0.8$ $\cos 50^\circ = 0.6$ $\tan 50^\circ = 1.2$]

15.	a)	Evaluate	lan 1
		Evaluate	1093 24

Answer(a) [2]

b) Solve the equation $\text{Log}_3 81 = (2x - 1)$.

Answer(b) [2]

16. h 1 2 3 ... q

V 3 24 81 ... 648

The table shows some corresponding values of h and V such that $V \propto h^3$. Find the

a) equation connecting V and h,

Answer(a) [2]

	b)	value (of q.		
				Answer(b)	[2]
17.	Poir	nt A (4; 2	2) is mapped onto A_1 $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$, by a transformation represented by	
	a)	Calcula	ate the coordinates of	f point A_1 .	
				Answer(a)	[1]
	b)	Describ	be fully the transform	nation represented by the matrix	
		(1 (-3	0)		
		Answ	er(b)		
				water share	

a)	Solve the inequality
	$3x - 6 \le 2x - 3 < 4x + 1.$
	0.0 0.2 20 0.0 10 12
	Answer(a) [3]
b)	Illustrate the solution in (a) on a number line.
300	
	Answer(b) [1]
	[1]

19. It is given that $g = \sqrt{\frac{h-4}{5+h}}$.

a) Find g when h = 20.

Answer(a) [2]

b) Express h in terms of g.

Answer(b) [3]

20.	It is	given that $OA = {\binom{-2}{3}}$ and $OB = {\binom{4}{1}}$ position vectors of A and B relative to an) origin O.	
	a)	Express AB in column form.		
			Answer(a)	[2]
	b)	P is a point such that BP = OA + 2OB. Find the coordinates of point P.		
			Answer(b)	[3]

The diagram shows the straight line 3x + 4y = 12 which cuts the x-axis at P and y-axis at Q.

- a) State the coordinates of point
 - i) P,

Answer (a)(i) [1]

ii) Q.

Answer (a)(ii) [1]

			Answer	r (b)(i)	n
			Allswei	(0)(1)	
ii) le	ength of line P() .			
			Answer	r (b)(ii)	[2
Height (h cm)	20< h≤30	30< h≤ 40	Answer 40< h≤ 50	(b)(ii) 50< <i>h</i> ≤60	
	20< h≤30 4	30< h≤40 6		100-00	60 <h≤70< td=""></h≤70<>
(h cm) Number of plants	100	6	40< h≤50	50< <i>h</i> ≤60	60 <h≤70< td=""></h≤70<>

	ii)	Estimate the mean height of the plants.
		Answer (a)(ii) [3]
b)		lant is chosen at random from the garden.
	Fine	I the probability that its height is more than 40cm but less or equal to 60cm.
		Answer(b) [1]

The diagram shows triangle ABC in which point **D** and **E** are on **BA** and **BC** respectively **AC** = 3,5cm, **BE** = 4, 2cm, **DE** = 2,1cm and $B\hat{A}C = B\hat{E}D$.

- Name the triangle which is similar to triangle ABC.
 Answer(a) [1]
- b) Calculate
 - i) AB,

Answer (b)(i) [2]

ii)	the area of triangle ABC, given that the area of triangle BDE is 22.5cm^2 .
	Answer (b)(ii) [3]

The diagram shows the velocity-time graph of a moving object which accelerates uniformly from 36 m/s to a velocity of 54 m/s in 6 seconds. It then retards uniformly to rest in a further 9 seconds.

Calculate the

a) acceleration during the first 6 seconds,

Answer(a) [2]

b) velocity after 10 seconds,

c)	average speed of the object for the 15 seconds.
	Answer(c) [3
	Answer(c) [3

[In this question take π to be $\frac{22}{7}$]

Two identical circular and 2 semi-circular discs of radii 3,5 cm were cut off from a rectangular sheet of metal as shown in the diagram.

AE = 14cm and ED = 10,5cm. Calculate the

a) circumference of one of the circular discs,

Answer(a) [2]

b)	perimeter of ABCDE,		
		Answer(b)	[2]
c)	area of the shaded part.		
		Answer(c)	[3]

ZIMBABWE SCHOOL EXAMINATIONS COUNCIL

General Certificate of Education Ordinary Level

MATHEMATICS

4004/2

PAPER 2

NOVEMBER 2019 SESSION

2 hours 30 minutes

Candidates answer on the question paper

Additional materials:

Mathematical instruments

Mathematical tables

Electronic Calculator

Graph paper (if needed)

Allow candidates 5 minutes to count pages before the examination.

This booklet should not be punched or stapled and pages should not be removed.

Time 2 hours 30 minutes

INSTRUCTIONS TO CANDIDATES

Write your Name, Centre number and Candidate number in the spaces at the top of this page.

Write your Centre and Candidate number in the box on the top right corner of every page of this paper. Check that all the pages are in the booklet and ask the invigilator for a replacement if there are duplicate or missing pages.

Answer all questions in Section A and any four questions from Section B.

Write your answers in the spaces provided on the question paper using black or blue pens.

If working is needed in any question, it must be shown in the space below that question.

Omission of essential working will result in loss of marks.

Decimal answers which are not exact should be given correct to three significant figures unless stated otherwise.

Decimal answers in degrees should be given correct to one decimal place.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets [] at the end of each question or part question.

Mathematical tables and Electronic calculators may be used to evaluate explicit numerical expressions

SECTION A (52 Marks)

Answer all questions in this section

$$4 - \left(1\frac{3}{4} + 1\frac{2}{3}\right)$$

Answer(a) [2]

- b) y = 5, 3 and z = 4, 2, to 1 decimal place.
 - Find the minimum possible value of .

Give the answer correct to 2 decimal places.

Answer(b) [2]

A he	otel has Executive and General rooms in the ratio 3:5 respectively.
AG	eneral room costs \$19,00 per day.
	a certain day, all the 2928 rooms were occupied by both Executive and eral customers.
The	total takings from the rooms was \$66 612,00.
i)	Find the number of General rooms in the hotel.
	Answer (c)(i) [2]
257	
11)	Calculate the cost per day of an Executive room.
	Answer (c)(ii) [3]
	A G On a Gen The

2. a) Matrix A = $\begin{pmatrix} x + 2 & 4 \\ 3 & 3 \end{pmatrix}$.

The determinant of matrix A is less than 7.

i) Find the largest integer value of .

Answer (a)(i) [3]

What is the inverse of matrix A using the value of x above.

Answer (a)(ii) [2]

b)

In the diagram $\overrightarrow{PQ} = 3x$ and $\overrightarrow{QW} = y$.

N is a point on PR to make PN = 2NR. QW is produced to R to make QW: WR = 1:5.

Express in terms of x and y.

i) \overrightarrow{QR} ,

Answer (b)(i) [1]

ii) \overrightarrow{PR} .

iii) \overrightarrow{PN} ,

Answer(b)(iii) [1]

iv) \overline{QN}

Answer (b)(iv) [2]

3. a)

In the diagram above, P, Q, R and S are points on the circumference of a circle centre O.

POQ is a diameter of the circle.

Arcs PS and SR are equal.

$$QPS = 57^{\circ}$$

- i) Name the angle which is equal to \hat{SQR} . Answer (a)(i) [1]
- II) Find $P\hat{Q}S$.

Answer (a)(ii) [1]

iii) Find $Q\hat{R}S$.

Answer (a)(iii) [1]

iv) Find \hat{QSR} .

Answer (a)(iv) [2]

b)

In the diagram above , triangle PQS is right-angled at Q. SRQ is a straight line.

 $PQ = 3.7 \text{ cm}, PR = 5.2 \text{ cm} \text{ and } P\hat{S}R = 22.3^{\circ}.$

i) Calculate PS.

Answer (b)(i) [2]

ii)	Calculate $Q\hat{P}R$ ·	
		Answer (b)(ii) [2]
iii)	Calculate \hat{SPR}	
		Answer (b)(iii) [2]

4.	a)	A st	weet shop sells cylindrical sweets each of diameter 3,8 cm and length 4,9			
		In this question take π to be $3\frac{1}{7}$				
		i)	Calculate the volume of one sweet.			
			Answer (a)(i) [2]			
		ii)	The mass of 1 cm ³ of the sweet is 0,63g, Calculate the mass of one sweet. Give the answer to the nearest gramme.			
			Answer (a)(ii) [2]			

b)

The diagram above is an arrow for a signpost. The arrow is cut from a rectangular sheet of metal with dimensions 30 cm by 20 cm.

i) Calculate the area of the arrow.

ii)	Calculate the perimeter of the arrow.
	Answer (b)(ii) [4]

5. Answer the whole of this question on the space below
Use ruler and compasses only for all constructions and
show all construction lines and arcs
All constructions should be done in a single diagram

ABCD is a trapezium in which AB = 6, 5 cm, AD= 5, 2 cm and $\angle ABC = 120^{\circ}$. AD is perpendicular to AB. DC is parallel to AB.

i) Construct the trapezium ABCD.

On	161
diagram	[6]

4004/2 N2019

	ii)	Construct the bisector of \hat{ABC} .	
		On	
		diagram	[2]
b)	Des	scribe the locus of points that the bisector of \hat{ABC} represents.	
	Ar	nswer(b)	[2]
c)	Mea	easure and write down the length of BC.	
		Answer(c)	[1]

SECTION B (48 Marks)

Answer any four questions from this section Each question carries 12 marks

6.	a)		the equation below $\frac{81^2 \times 3^5}{3^{11}}$
	b)	i)	Factorise completely $6y^2 - 10y + 4$
		II)	Answer (b)(i)[2] Factorise completely $ax + b + a + bx$.

		ale, all prices were reduced by 15%.			
	A jacket th	at was bought for \$55.			
	Calculate t	he original price of the jacket.			
		Ancura	r(a)		
		Allswe			
b)	An extract below	from MS Neto's bank statement for the			
b)	below	from MS Neto's bank statement for the	ne month of	May i	is shown
b)	DATE	from MS Neto's bank statement for the			is shown
b)	below	from MS Neto's bank statement for the	ne month of	May i	BALANC \$10-00
b)	DATE 01.05.17	from MS Neto's bank statement for the Details Balance Brought Forward	CR \$402-	May i	is shown

	ii)	Calculate the value of Y ,							
	iii)	Calculate the value of Z .	Answer (b)(ii)	[1]					
			Answer (b)(iii)	[1]					
c)	Omega decides to invest her pension of \$600. OPTION A: She can invest it in a bank that offers 4% per year Simple Interest								
		TION B: She can invest it in mpound Interest.	a money market fund that o	offers 4% per year					
	i)	Calculate Omega's interest	under Option A at the end o	of 3 years,					
			Answer (c)(i)	[2]					

Answer (c)(ii)	3]
iii) Calculate the difference between the amounts of interest from the two options.	
options.	
Answer (c)(iii)	1]

8. a)
$$A = \frac{h(12+b)}{2}$$
.

i) Find the value of A when b = 1.5 and h = 0.8.

Answer (a)(i) [2]

ii) Express h in terms of A.

Answer (a)(ii) [2]

b)

In the diagram above ABC is a triangle.

$$AB = 4$$
 cm, $AC = 2x$ cm, $BC = x$ cm and $A\hat{B}C = 120^{\circ}$.

i) Form an equation in . Show that it reduces to $3x^2-4x-16=0$. Answer (b)(i)

[3]

ii) Solve the equation $3x^2 - 4x + 16 = 0$. Leave the answers correct to 3 significant figures.

Answer (b)(ii) [5]

a) Find the value of x,

Answer(a)	[1]

b) The following table below shows the information contained in the pie chart.

time (t hours)	0 < t ≤ 2	2 < t ≤ 4	4 < t≤ 6	6 < t ≤ 8
Frequency	80	p	q	r

i) Find the value of P.

Answer (b)(i)		[1]

	ii)	Find the value	of q.		
				Answer (b)(ii)	[1]
	iii)	Find the value	e of r.		
				Answer (b)(iii)	[1]
c)	Cak	culate an estimat	te of the mean t	ime spent on charity work.	
				Answer(c)	[3]

d) Draw a frequency polygon to show the information on the grid on page 24. Use a scale of 2 cm to 2 units on the x axis and 2 cm to 10 units on the y axis

Answer (d) On the diagram [3]

e)	Two people chosen at random from the whole group.											
	Fin	d the pr	robability	y that	they b	oth s	pent mor	e than	4 hours o	loing o	charity w	ork
							An	swer(e	·)		· · · · · · · · · · · · · · · · · · ·	[2
The	table	below	shows	value	s for th	e fur	nction f(v) = 2	3 - 4 x 2	+ 4.		
Q*		-1	-0,5	0	0,5	1	1,5	2	2,5	3	3.25	1 4
f(x_{j}	-1	2.9	4	3.1	1	-1.6	-4	-5,4	p	-2,1	4
							An	swer(a)			11
							7411	3116110	·			1.
b)	Dra	w the g	eraph of	f(x)	= x 1	43	c2 + 4 on	the gr	id below	on pag	ze 26.	
			e of 2 cm									
							An	swer (b) on grap	oh		[4
c)	i)	Use	the graph	to f	ind the	coor			n <mark>i</mark> nimum t			
		graph	h,					Answe	er (c)(i)			L
		ii) l	Use the g	graph	to solv	e the	e equation	n x ³ .	- 4x ² +	4 =	0	
			Use the glines x =				area bou	nd by t	the graph,	_X -axi	is, and th	e
								Ansv	ver (c)(iii)		[2]
						4004	/2 N2019					

Answer (c)(iv)	[1]

4004/2 N2019

iv) Use the graph to find the range of values of x for which f(x) < -4.

			<u> </u>
			• • • • • • • • • • • • • • • • • • •
			
			• · · · · · · · · · · · • • · · · · · ·
			
			• • • • • • • • • • • • • • • • • • •
			• · · · · · · · · · · · · • • • · · · ·
 			<u> </u>
			
			<u> </u>
			\$

11.	a)	A school's agriculture department plants beans and peas in its 5 hectare field	d.
		x is the area in hectares required for beans and y is the area in hectares und peas.	ler
		Write down an inequality in x and y which satisfies this condition.	
		Answer(a)	[1]
	b)	Beans require 2 bags of fertiliser per hectare and peas require 4 bags of fertilisers per hectare.	
		The department has 16 bags of fertiliser for the plants.	
		Write down another inequality in x and y .	
		Show that it reduces to $x + 2y \le 8$.	
		Answer (b)	
			[2]

c)	i)	The department plants at least one hectare of beans. Write down an inequality, in χ that satisfies this condition.							
		Answer (c)(i) [1]							
	ii)	The department plants at least one hectare of peas.							
		Write down an inequality in y , that satisfies this condition.							
		Answer (c)(ii) [1]							
d)		wer this part of the question on the grid on page 29 a scale of 2 cm to 2 units on both axes.							
	The point $(x; y)$ represents x hectares and y hectares under beans and peas in that order								
	Show by drawing the inequalities in (a), (b), (c) and show by shading the unwanted regions, the region in which $(x; y)$ must lie.								
		Answer (d) On diagram [4]							

	 		 	 		-
[E-1-1-1-1-1-1-1-1-1	 PROFITE PROFITE	 		
	 	E		 	B-1	
211-111-111-1	 		 	 11 10 1 1 1 1 1 1 1		E
	 	*	B-0-0-1-1-0-0-1-1-0-1	 	•	
					#++++++++++	

						111111
						111111
	 					111111

e)	i)	The profit is \$30,00 per hectare for beans and \$40,00 per hectare for peas. Find the area of each crop to be planted for maximum profit to be realised.
		Answer (e)(i) [2]
	ii)	Find the expected maximum profit that may be realised.
		Answer (e)(ii) [1]

		4444		
11111111				
400000				
1111111111				
1 11 11 11 11				

a scale of 2 cm to 2 units on both axes to draw the x and and y axes.

a)	i)	Triangle A has vertices at $(-5; 2)$, $(-2; 2)$ and $(-2; 4)$.	
		Draw and label triangle A. Answer (a)(i) on the graph [1]	I
	ii)	Triangle B has vertices at (2; 3), (2; 0) and (4; 0).	
		Draw and label triangle B. Answer (a)(ii) on the graph	I
b)		angle C is the image of triangle B under an enlargement with centre (2; -1) enlargement factor of -1.5.)
	Dra	w and label triangle C.	
		Answer (b) on the graph [3	1
c)		nt $(-2; 2)$ is translated onto $(6; -2)$.	
	rine	d the translation vector.	
		Answer(c) [1	ı

d)	Triangle D is the image of triangle A under a transformation represented by the matrix $\begin{pmatrix} 1 & 0 \\ -2 & 1 \end{pmatrix}$. Find the coordinates of the vertices of triangle D.						
	Answer(d)						
e)	Describe fully the single transformation that maps triangle A onto triangle B.						
	Answer						
	(c)						
	[3]						