
The Ultimate

 EbookNext.js

Table Of Contents

Chapter 1 Birth 01

Chapter 2 Introduction 07

Chapter 3 Roadmap 15

Chapter 4 How it works 40

Chapter 5 Create a Next.js Application 47

Chapter 6 Client Vs. Server 68

Chapter 7 Routing 87

Chapter 8 Rendering 115

Chapter 9 Data Fetching 126

Chapter 10 SEO and Metadata 141

Chapter 11 Backend 153

Chapter 12 Node vs Edge Runtime 166

Chapter 13 Server Actions 178

Chapter 14 Styling 192

Chapter 15 More of Next.js 199

Index 00

Chapter 1

Birth
In the first chapter, we explore the evolution of JavaScript and web

development frameworks. We discuss the significance of embracing

new technologies and compare code snippets in different frameworks

to highlight their benefits. We introduce Next.js as a framework built on

React.js, addressing limitations and incorporating new features.

The chapter concludes with the recommendation to shift focus to

Next.js for building modern web applications.

Birth

Not too long ago, in 2015, React.js entered the scene. However, even the

journey of JavaScript in the IT industry hasn't been exceptionally long.

Originally developed by Brenden Eich at Netscape in 1995, JavaScript

gained significant popularity during the 2000s.

This was largely due to Google's ingenious utilization of JavaScript to

introduce interactive and dynamic features for map exploration.

Subsequently, developers were introduced to frameworks and libraries,

including jQuery, Angular, Node.js, React.js, and, most recently, Next.js.

These technologies have revolutionized the web development

landscape, offering developers various capabilities and possibilities.

You might wonder why this information is relevant in the context. The

significance lies in the fact that it highlights the timeless truth that

"change is constant." As we continue to advance and evolve as a

society, our tools and technologies will naturally progress alongside us.

We have no other option but to embrace and adapt to these changes. It

serves as a reminder that our willingness to embrace new ideas and

technologies is essential for growth and success in the ever-changing

IT industry landscape.

These technologies and tools share a common purpose: to enhance

work efficiency and improve performance. In this era, we can still use

vanilla JavaScript or create websites using HTML and CSS without a

doubt.

Birth 01

However, when it comes to developing applications on a large scale,

the efficiency of using the latest technologies surpasses that of

traditional approaches. To showcase and experiment with this concept,

we have created a video on " "

on our YouTube channel. You can personally analyze the amount of

code and the level of efficiency demonstrated in the video.

How to create a website using HTML & CSS

To provide a brief glimpse of the evolution in JavaScript coding

practices, here is a well-known code snippet implemented in various

frameworks, starting from the core JavaScript language itself — The

Hello World:

Vanilla JavaScript

// HTML: <button id="btn">Click Me</button>

document ()

(

)

. ' '
 . ' ', () {

' ' ;

 } ;

getElementById
addEventListener
alert

btn
click

Hello, World!
function

 ()

jQuery

// HTML: <button id="btn">Click Me</button>

$ click
alert
() (

)

' ' . () {

' ' ;

} ;

#btn
Hello, World!

function
 ()

Birth 02

https://youtu.be/QRrPE9aj3wI

Angular

<!-- : < (click)="showMessage()">Click Me</button> -->

 { } ' ';

@Component({

 selector: ' ',

 template: `<button (click)="showMessage()">Click Me</button>`

})

 {

void {

(" ")
}

}

 Component

 ():
 ;

HTML button

alert

import from

export class ExampleComponent

@angular/core

app-example

Hello, World!
showMessage

React.js

import from ' ';

. {

() {

' ' ;

}

() {

return < ={this. }> </ >;

}

}

 React

showMessage Click Me

react

Hello, World!

class extends

onClick

ExampleComponent React Component
showMessage

 ()

render
 button button

alert

“Ah? From what I see, there's an increase in the amount of code being

written. It appears to be in complete opposition to what was mentioned

earlier” — Are you thinking the same?

If we look at it solely from this perspective, one would certainly feel that

the original language and framework require less code.

Birth 03

However, it's important to consider the bigger picture. And that's what

truly matters, doesn't it? In reality, we don't just build "Hello World"

projects. We undertake more substantial projects that demand the

utilization of various frameworks and tools to achieve the desired

functionality and scalability.

We could have talked about the “big picture” of using React or even

Angular over vanilla code, but that is not the primary focus of this

eBook. However, it is worth mentioning a few foundational reasons why

these new tools make development more efficient:

Architecture — React and Angular follow a Component-Based

Architecture, encouraging code reusability. For instance, if you create a

component like a Button, you can use it anywhere in the application as

often as needed. This reusability enhances the maintainability and

scalability of the application.

Virtual DOM — The Virtual DOM is a lightweight representation of the

actual DOM. It facilitates efficient and optimized updates to the user

interface, resulting in improved performance. Simply put, it tracks

changes within the application and performs a "diffing" process by

comparing the previous version of the virtual DOM with the new version.

It identifies the differences and updates the real DOM accordingly.

Ecosystem & Community — Modern libraries like React.js have vibrant

and active communities. This provides developers with abundant

resources, extensive documentation, reusable code packages, bug

fixes, and support.

Birth 04

… and many other libraries or framework-specific reasons that you can

explore. To truly appreciate the impact, I would once again recommend

visiting the YouTube videos we created, where you can experience

firsthand what it takes to build a simple landing page using two

different tools to measure the efficiency of these tools:

Build and Deploy a Sushi
Website using HTML & CSS

Watch and Code Now

Build and Deploy a Bank
Website using React.js

Watch and Code Now

But hey, where does Next.js come in the picture?

As mentioned earlier, as we continue to progress, technology also

advances. jQuery addressed the limitations of vanilla JavaScript, and

then React.js emerged to overcome the shortcomings and loopholes of

jQuery. However, even React.js has its own challenges, which have now

been addressed by another tool called Next.js.

It’s a big misconception that Next.js is a new language or library. No!

Birth 05

https://youtu.be/QRrPE9aj3wI
https://youtu.be/_oO4Qi5aVZs

Vercel, the team behind Next.js, embarked on a unique approach to
develop a framework encompassing client-side (frontend) and server-
side (backend) functionalities within a single application. Guillermo
Rauch, the original creator of Next.js and the mastermind behind
Socket.IO, began working on this idea in 2016.

Over the course of a year, they continuously added new features such
as file-based routing, automatic code splitting, hybrid rendering,
internationalization, image and font optimization, and many more.

The relentless dedication of the Vercel developers, coupled with their
ability to transform diverse ideas into reality, has caught the attention
of Meta (previously known as Facebook) — the creators of React.js. Meta
now explicitly recommends that developers use Next.js as their primary
tool instead of relying solely on React.js. It's an extraordinary
achievement!

And that’s how we developers now need to shift our focus to the latest
and greatest version, Next.js 15, to build highly capable and production-
ready applications. This exciting evolution opens up new possibilities
and opportunities for creating advanced web applications.

Onto the next chapter…

Birth 06

Chapter 2

Introduction
In this chapter, we'll dive into Next.js, a flexible React framework. We'll

explore its advantages over React.js, including simplified frontend

development, reduced tooling time, and an easy learning curve. We'll

also discuss how Next.js improves performance, enhances SEO, and

keeps advancing with new features.

By the end, you'll grasp the importance of mastering Next.js and be

prepared to embark on an exciting journey with this framework.

Introduction

Next.js — A flexible React Framework. But what does that mean?

In software development, a framework serves as a tool equipped with

predefined rules and conventions that offer a structured approach to

constructing an application. It provides an environment that outlines

the overall architecture, design patterns, and workflows, allowing

developers to focus on implementing specific application logic rather
than dealing with low-level design.

Simply put, a framework provides pre-built solutions for common

functionalities such as integrating databases, managing routing,

handling authentication, and more.

So what sets Next.js apart from React.js? — Next.js introduces plenty of

features and capabilities that we will dive into in the upcoming chapter

in detail.

But what you need to understand is Next.js is essentially an extension of

React.js, incorporating pre-built solutions, ready-to-use features, and

some additional functionalities. In other words, Next.js is built on top of

React, expanding its capabilities.

If you’re already a React.js developer, the Next.js journey will be silky

smooth. If you don’t know React.js, you should familiarize yourself with

some of the main foundations of React.js, i.e., How to create a

component, state management, code structure, etc.

Introduction 07

To help you learn faster, we have a crash course on React.js that covers

all the important things and includes a project for you to practice and

test your skills:

React.js Crash Course

Watch and Code Now

But Why should you use a React Framework — Next.js?

React is constantly evolving and revolutionizing the way websites are

built. It completely transforms your approach to designing and

developing applications.

It begins by encouraging you to think about components, breaking

down the user interface into small pieces of code. You describe states

to introduce interactivity and establish connections between these

various components, shaping the flow of your application.

Implementing the great React architecture requires deep integration

between all parts of your application, and this is where frameworks

come in:

Less tooling time

Every aspect of frontend development has seen innovation, from

compiling, bundling, minifying, formatting, etc., to deploying and more.

Introduction 08

https://youtu.be/b9eMGE7QtTk

With Next.js, we won’t have to worry about configuring these tools, thus

investing more time in writing React code.

We can focus more on business logic using open-source solutions for

routing, data fetching, rendering, authentication, and more.

Easy Learning Curve

If you are familiar with React.js, you will discover Next.js is considerably

simpler.

Next.js, built on the foundation of React.js, offers exceptional

documentation that provides comprehensive and detailed information

on the why and how of using Next.js. The " "

guide developed by the Vercel team is regarded as one of the best

resources for the learning experience.

Introduction | Learn Next.js

The constant updates and help from the community make the

development process even easier.

One of the key aspects of Next.js is that it is not just a Frontend React

Framework but a Full Stack React Framework enabling you to write

backend code alongside your frontend code.

How does it contribute to an "Easy Learning Curve"? Wouldn't it be

another thing to learn?

Absolutely not.

The backend aspect of the code you'll be working with is much simpler

than you might anticipate. There's no need to set up anything or

configure any routes as we have to do for any traditional backend app.

Introduction 09

https://nextjs.org/learn/foundations/about-nextjs

In fact, the Vice President of Vercel, Lee Robinson, expressed the
following viewpoint:

Moving from React + Express + Webpack to a framework
resulted in removing and

 – while improving HMR (Hot Module
Reloading) from .

20,000+ lines of code 30+
dependencies

1.3s to 131ms

If the backend and tooling aspects discussed here seem confusing,
there's no need to worry. In the upcoming chapters, we will dive into a
practical comparison of how things are done with React.js and
Express.js, as well as how both can be accomplished within Next.js.

Improved Performance

Next.js offers built-in features like server-side rendering, static site
generation, and automatic code splitting, which optimize application
performance by enabling faster initial page loads, improving SEO, and
enhancing the user experience.

However, it doesn't mean server-side capabilities are limited to Next.js
alone. React has introduced a new concept called React Server
Components, which allows rendering components on the server side.

So, why choose Next.js over using React alone?

The advantage lies in the convenience and productivity provided by
Next.js. By utilizing Next.js, you can leverage the existing features of
React without the need for extensive setup and configuration.

Introduction 10

https://vercel.com/blog/migrating-a-large-open-source-react-application-to-next-js-and-vercel

Next.js automates many aspects, allowing you to focus more on utilizing
the features rather than dealing with infrastructure & boilerplate code.

This approach follows the principle of "Convention over Configuration,"
streamlining the development process and reducing the amount of
code you need to write compared to implementing React Server
Components independently.

SEO - Search Engine Optimization

Perhaps the most ignored and must topic in an application’s life, and
the only drawback of React.js.

The key difference lies in the rendering approach between Next.js and
React.js.

Search engine crawlers are like busy visitors to websites. They come
and ask for the content of pages. They explore the links on those pages,
carefully examining and organizing them for ranking purposes. This is
what they do every day. To do their job well, they need to be able to
access the content of the website pages.

React.js renders everything on the client side, sending a minimal initial
HTML response from the server. The server sends a minimal HTML file
code and a JavaScript file that the browser executes to generate the
HTML. This poses a challenge for search engine crawlers to access and
understand the complete content of the page.

On the other hand, Next.js provides the option of Static Site Generation
(SSG) or Server Side Rendering (SSR).

Introduction 11

With SSG or SSR, the server sends the complete HTML file and minimal
JavaScript code to render only the content requiring client-side
interaction. This enables search engine crawlers to access easily and
index every page of the Next.js website accurately.

But, now you might wonder, "Why should I prioritize SEO?"

SEO is essential for making your website visible and highly ranked in
search engine (browser) results. When you focus on SEO, you get
several benefits, like more people visiting your website, better user
experience, increased trust and credibility, and an advantage over your
competitors because your website shows up higher in search results.

Giving priority to SEO can greatly impact how well your website does
and how many people find it online.

Always Advancing

Next.js, the ever-evolving framework, consistently introduces new
features to simplify developers' lives. With over 7+ versions released last
year, Next.js focuses on innovation and improvement for a better user
experience. This is precisely what frameworks like Next.js aim to achieve,
making development easier and more efficient.

On top of that, other technologies like Expo, used for building React
Native projects, are also adopting Next.js's groundbreaking features.

Inspired by Next.js's file-based routing system, Expo developers have
implemented a similar feature — Expo Router to improve the decade-
old routing system in React Native.

Introduction 11

https://expo.github.io/router/docs

Isn’t that great? Master one feature and effortlessly utilize it across
multiple platforms

However, the list of features provided by Next.js goes beyond what has
been mentioned so far.

It offers a wide range of capabilities, including seamless file-based
routing, efficient code splitting, image & font optimization, HMR(Hot
Module Replacement), API Routes(backend), built-in support for Sass,
CSS modules, data fetching choice (SSG, SSR, ISR), error handling,
Metadata API (For SEO), Internationalization(support for any spoken
language), etc.

It is best to try these features firsthand through practical
implementation to truly appreciate its potential. That's precisely what
we will do in the upcoming lessons – dive into the coding aspect!

"Hmm, alright. I'm willing to trust your insights on the new features of
Next.js and such. However, is it actually being used by people? Are
companies actively seeking professionals with Next.js expertise? Is
there a high demand for it in the industry?"

— Are you wondering the same?

Let the data speak for itself:

Introduction 12

In the past 30 days, Next.js has received significantly higher search

interest worldwide than React.js.

But hey, that’s just a Google trend. What about the industry? Are people

even creating websites using Next.js?

Sure, let’s take a look at “The Next.js Showcase” which shows different

companies using Next.js:

 Notio

 Hul

 Netflix Job

 Nik

 HBO Ma

 Audibl

 Typeform

 TE

 Auth

 Product Hun

 Hyunda

 Porsch

 repl.i

 Marvel

 Futuris

 Material-U

 Coco Col

 Ferrar

 Hashnod

 Verge

Introduction 13

https://nextjs.org/showcase

And many more renowned names. This demonstrates the genuine

excitement and widespread adoption of Next.js!

Considering the rapid rate at which companies embrace Next.js, it

would be no surprise to witness a huge surge in demand for Next.js jobs

in the coming months, if not years.

Now is the perfect time to seize the opportunity and prepare for the

future job market by mastering Next.js.

With this book and the courses we have done and will continue to do,
you can be the next Next.js developer.

So, grab a cup of coffee, and let's get started on this exciting journey!

Introduction 14

Chapter 3

Roadmap
The Roadmap is a concise guide to web development essentials. It

covers HTML for structuring web content, CSS for styling and layout, and

JavaScript for interactivity. Learners will grasp important concepts like

semantic tags, visual effects, variables, control flow, functions, and

manipulating the DOM.

This chapter equips beginners with the skills needed to create dynamic

and interactive web applications.

Roadmap
Before we start exploring Next.js, reviewing or relearning some basic
concepts is a good idea to make learning easier. It all begins with
building a solid foundation through fundamentals.

Think of this roadmap as a summary of what you should know as a
foundation for learning Next.js. It's alright if you're unfamiliar with
advanced topics like integrating databases or implementing
authentication.

These points help you understand the main concepts without focusing
on specific coding details.

In Next.js, there are various approaches to implementing these
concepts. You have options like utilizing (one of the coolest
features), exploring popular market solutions like , or even building
everything from scratch.

NextAuth
Clerk

Similarly, when it comes to databases, you can choose between
different options such as SQL databases like , NoSQL databases
like , or even consider using as an ORM (Object-
Relational Mapping) manager.

Postgres
MongoDB Prisma

Whether or not you have coding experience is not the most important
factor here. What truly matters is understanding the underlying
concepts. The roadmap is designed to introduce you to these concepts
and familiarize you with the beneficial knowledge when aspiring to
become a Next.js Developer.

Roadmap 15

https://next-auth.js.org/getting-started/introduction
https://clerk.com/
https://www.postgresql.org/
https://www.mongodb.com/
https://www.prisma.io/

Later in the next chapters, and with our branded courses, you’ll learn

how to do all the code stuff in Next.js. So don’t worry; you have our back!

Presenting the Roadmap,

These points help you understand the main concepts without focusing

on specific coding details.

1 Web Development Fundamentals

HTML - HyperText Markup Language

Basics

Understand the structure, elements, and attributes of HTML documents

 Structure

 Elements

<!DOCTYPE> <html> <head> <body>

 Heading <h1> to <h6>

 Paragraph <p>

 Lists

 Link <a>

 Image

 Input <input> <textarea>

 Button <button>

 Group Elements <div>

Roadmap 16

 Semantics

Use elements like

 Forms

Learn to create forms, handling user input, perform form validations by

using form element and onSubmit event listener

etc. to enhance document structure of accessibility.

<header> <nav> <main> <section> <aside> <footer>

CSS — Cascading Style Sheets

Fundamentals

Understand the structure, elements, and attributes of HTML documents

 Structure

 Box Model

 Selectors

Understand how elements are styled using

padding margin border

Learn about different types of selectors to target and style

specific HTML elements. For example,

Type Class Id Child Sibling

Roadmap 17

 Typography

 Colors and Backgrounds

Explore text-related properties like

font size weight alignment

Understand how to set different

colors gradients background images

Learn the various display values like

block inline inline-block

Explore how to position an element in different ways such as

relative absolute sticky fixed

Master the flexbox layout to create responsive website layouts

Dive into CSS grid layout for advanced two-dimensional layouts

Layout and Positioning

 Display

 Position

 Flexbox

 Grid

Roadmap 18

Learn to create smooth transitions using different CSS properties like

delay timing duration property timing-function

Explore 2D and 3D transformations like

scaling rotating translating elements

Learn how to create animations using keyframes

Explore with box shadows and linear or radial gradients

Effects

 Transitions

Advanced (Plus)

 Learn how to use CSS processors like sass or frameworks like
tailwindcss for more powerful and efficient styling

 Transformations

 Animations

 Shadows and Gradients

Roadmap 19

JavaScript

 Variables and Data Types

 Operators

 Control Flow

 Functions

 DOM Manipulation

Declaring variables and understanding different data types such

as string, number, boolean, null, undefined, object, array, etc.

Learn to use different operators such as arithmetic, comparison,

logical, and assignment to perform operations on data

Try & test conditional statements such as if else, switch and loops

such as for while to control program flow

Define and learn to create different functions, understand function

scope, and work with different parameters and return values

Knowing how to use JavaScript to change and interact with HTML

elements on a webpage is an important skill. It's like a building

block that we use in different ways with tools like React or Next.js in

the form of new APIs.

Remember when we showed you different "Hello World" examples

in vanilla JavaScript and React.js? The basic idea is the same, but

the code structure is a bit different in React.

Roadmap 20

If you're uncertain about how to learn & create a website using HTML,

CSS, and JavaScript, you can immediately build an attractive Sushi

Website by simply following the right free course:

Build and Deploy a Sushi
Website using HTML & CSS

Watch and Code Now

2 Modern JavaScript

 Arrow Functions

 Destructuring

In JavaScript, there are different kinds of functions. One type that

you'll often come across is called the Arrow function. Many prefer

using arrow functions because they are shorter & easier to write.

A helpful concept that will come in handy when we have to extract

values from arrays and objects

If you take the time to understand the syntax and how arrow

functions work, it will help you write shorter and more

straightforward functions. This can make your code look cleaner

and easier to read.

 ES6 Features

Roadmap 21

https://youtu.be/QRrPE9aj3wI

 Spread Syntax

 Template Literals

 Modules

Allows to expand elements of an array or object into individual
elements

One of the widely used. Using the back sticks , we can
interpolate strings with placeholders & expressions

``

Learn how to import export code between files to organize the
code

 Asynchronous Programming

 Promises

 Async/Await

Gain an understanding of the concept of promises and why they
are necessary. Learn about resolving and rejecting promises and
utilizing and for handling asynchronous operations.then catch

Explore the usage of to write asynchronous code in a
more synchronous way. This convention is widely adopted as an
alternative to using and for handling promises.

async/await

then catch

 Fetch API

Discover how to use the Fetch API in the browser to send HTTP
requests and handle the resulting responses.

Roadmap 22

 Axios (Plus)

Explore the popular third-party library, Axios, which simplifies the
process of making HTTP requests compared to the standard Fetch
API.

 Additional JavaScript Concepts

 Array Methods

 Error Handling

Familiarize yourself with different widely used array methods to
simplify the development process. For example,

One of the crucial part of web development is to catch and
display the errors properly. No user will like to see the complete
red screen with a text — “Error on line 35”. Not even us.

map

filter

reduce

slice

splice

forEach

includes

join

reverse

and few others

Therefore, it is essential for every developer to cultivate the skill of
error handling. Familiarize yourself with the try-catch-finally block,
which enables you to capture errors and present them on the user
interface using user-friendly and easily understandable language.

Roadmap 23

 Foundations

 Bundlers and Compilers

A javascript runtime environment that allows us to run JavaScript

code outside of the browser.

A tool that manages third party packages. Using it, you can

download different packages needed inside you project like Axios

Bundlers like webpack or Parcel help combine our JavaScript files

and other assets into a single bundle

It’s needed to work with React or Next.js. Make sure to download it

Before we proceed learning the libraries and frameworks like

React.js and Next.js, we’ll need some kind of config to setup these

projects:

3 The Ecosystem

Node.js

NPM — Node Package Manager

Webpack

Transpilers like Babel convert modern JavaScript code to a version

that works in all browsers

Babel

Roadmap 24

 Version Control (Plus)

Learning a version control system like Git is highly valuable for
anyone on the path to becoming a developer.

GitHub - a web based platform to manage git repositories
in the cloud

Git - version control system

From here, you’re efficiently learning Next.js. The same concepts
are as it is used in the Next.

4 React JS

 Components

Think in terms of components. Learn to break the code or the UI in
small manageable components for reusability & maintainability

There are two ways in which we can create a component i.e.,

 Class Componen
 Function Component — Widely used

 Fundamentals

Along with that, learn “What is JSX?” and the “Component
Lifecycle”.

Roadmap 25

 State and Props

 Events

 Conditional Rendering

State

Props

Learn how to create and manage state — A small store that holds
a particular data of the application

Learn how to handle user interactions, such as clicks and form
submissions, using event handlers.

Learn how to conditionally render components and render
dynamic list of data using the mapping techniques

Learn how to pass props (a piece of data) between components

JSX is syntax in React that allows you two write HTML
code. You won’t even feel like you’re using something
different. It looks like HTML but isn’t.

P.S., Don’t forget to learn about the special “Key” prop when rendering
the dynamic list with map method.

Roadmap 26

 Hooks

 Router

 State Management

After learning how to create functional component, the next

challenge will be to understand how to use hooks.

Learn how to do client side routing by understanding concepts like

Understand different state management options in React such as

built-in state management — Context API

Hooks are special functions that allows us to manage state,

handle side effects and improve the efficiency. Few famous hooks

are,

 Hooks & Router

useState useEffect useRef useContext useCallback useMemo

Context API Redux Toolkit Zustland

Routes Route parameters Nested routes

React Router DOM is an independent package used to
handle the routing in React application

Roadmap 27

 Style

 Forms

 HTTP Requests

Explore different approaches to styling React components,

including

CSS-in-JS libraries like

Learn to create form validation, handling form submission with or

without using third party libraries like,

Learn how to make requests using libraries like Axios or the built-in

Fetch API

Inline styles CSS modules Sass TailwindCSS Material UI

styled-components Emotion

Formik React Hook Form

 Forms & HTTP Requests

If you want to learn the fundamentals, styling and how to do HTTP

Requests in React, you can check out our FREE and highly popular Crash

Course on YouTube:

Roadmap 28

React JS Full Course 2023 |
Build an App and Master
React in 1 Hour - YouTube

Watch and Code Now

If you want to enhance your skills in state management using tools like

Redux Toolkit, you can explore our professional-level course:

Ultimate ReactJS Course
with Redux Toolkit & Framer
Motion jsmastery.pro

Watch and Code Now

Also, if you want to create websites with a modern and attractive

design that will impress clients or potential employers, we suggest you

check out this series. It teaches you how to build React websites using

different styling techniques like TailwindCSS, Sass, and even pure CSS.

Build and Deploy a Fully
Responsive Modern UI/UX
Site in React JS - YouTube

Watch and Code Now

Roadmap 29

https://youtu.be/b9eMGE7QtTk
https://www.jsmastery.pro/ultimate-react-course?discount=guide
https://youtu.be/LMagNcngvcU

Although it’s not a must to know how to do the backend to
become a Next.js developer, it’ll be nice to have the skill to
showcase the ability to do both and become a full-stack Next.js
developer.

You can use the following steps to learn backend development in
any technology stack you prefer. It can even be Python

5 Backend

 HTTP Protocol

 APIs and REST

Understand the HyperText Transfer Protocol and its fundamental
concepts

 Basics

APIs

REST

Learn what is Application Programming Interface (API)

Learn what is Representational State Transfer

 HTTP Methods

Explore methods, protocols and data formats that applications
can use to to exchange information

GET POST PUT DELETE PATCH

Roadmap 30

 Status Code

 HTTP Headers

 Request and Response

 Resource URI

200

201

404

500

C

R

U

D

— ok

— Creating data (POST)

— created

— Reading data (GET)

— Not Found

— Updating data (PUT/PATCH)

— Internal server error

— Deleting data (DELETE)

 Understand the concept of CRUD operations

 CRUD

 Authentication and Authorization

Understand the difference between Authentication and

Authorization

Roadmap 31

 User Sessions

 Relational Database

 NoSQL Database

 JWT — JSON Web Token

 Cookies

 Permissions and Roles

 Database

Familiarize yourself with databases in storing and managing

application data

 Production

 Development

 Staging

MySQL

MongoDB

PostgreSQL

Redis

 Environments

 Deployment

Roadmap 32

 Hosting Platforms

 Advanced (plus)

Vercel Netlify Firebase

AWS AmplifyHeroku

Render

Railway

 CI/CD — Continuous Integration/Continuous Deployment

 Docker

Building backend applications can be challenging, but you can acquire
the necessary skills with sufficient practice. If you're interested in in-
depth project tutorials that specifically teach backend development
using Express and MongoDB—a highly popular stack—feel free to
explore some of our free courses available on YouTube:

Full Stack MERN Project -
Build and Deploy an App |
YouTube

Watch and Code Now

Roadmap 33

https://youtu.be/ngc9gnGgUdA

Build and Deploy a Full
Stack MERN App With
CRUD, Auth, Charts - YT

Watch and Code Now

If you want to enhance your skills in state management using tools like
Redux Toolkit, you can explore our professional-level course:

Build & Deploy a Full Stack
MERN AI Image Generation
App | DALL-E Clone - YT

Watch and Code Now

And now, at last, we will dive into the Next.js roadmap. It may not be
necessary, as the content of this book is organized in a manner where
each chapter serves as a guiding milestone, and it’s the only resource
you need (alongside some Build and Deploy courses, of course) to
master Next.js!

But still, for you,

Roadmap 34

https://youtu.be/k4lHXIzCEkM
https://youtu.be/EyIvuigqDoA

6 The Next.js

 Learn why we should use Next.js and its benefits

 Master the basic fundamentals of web development & React.js

 Familiarize yourself with the ecosystem

 Setup a next.js application using create next app

 Fundamentals

 Architecture

 File Based Routing

State Prop Components Module

Simple route Nested Dynamic Parallel Intercepting

Node NPM/Yarn NPX

Client Server

Understand the architecture of a Next.js application including

different files and directories i.e., app directory vs pages directory.

Learn how to create different types of routes in Next.js

Next, dive into the backbone of Next.js functionality by exploring

two distinct rendering processes:

Roadmap 35

 Style

 Data Fetching

 SEO and Metadata

CSS modules Tailwind CSS Sass

SSG

SSR

ISR

CSR

— Static Site Generation

— Server Side Rendering

— Incremental Static Regeneration

— Client Side Rendering

Next.js has built-in support for CSS processors like Sass to CSS

modules. Try different types of styling with Next.js to find the one

that best fits your application:

You have the flexibility to choose between different types of

rendering and data fetching methods for your application. These

methods include:

It's important to understand each of these concepts in detail to

determine how and when to implement the most suitable

strategy for your application.

Learn how to use SEO strategies and leverage the use of Metadata

API of Next.js

Points to learn:

Static Metadata Dynamic Metadata File based Metadata

Roadmap 36

 Handling Errors, loading states and much more

 Authentication

 API routes

NextAuth Clerk

Static Route Handlers Dynamic Route Handlers

The latest Next.js 15 app directory introduces various file

conventions that facilitate effective error handling, loading state

management, displaying not found pages, and even organizing

layouts in a more structured manner.

Learn,

Implementing custom email/password or social authentication

becomes hassle-free with NextAuth in Next.js. Few auth libraries

you can use with Next.js to speed up the development process:

Explore how to create API routes — the backend:

Create custom request handlers

error.js file loading.js file not-found.js file layout.js file

 Route Handlers

 Middleware

 Supported HTTP Methods

 NextResponse

 CORS and Headers

Roadmap 37

 Database

MongoDB Postgres Prisma

Discover how to incorporate various types of databases into your
Next.js application by utilizing API routes.

If you're someone who prefers video content over reading, you'll find our
best and most up-to-date Crash Course on Next.js 15 on YouTube very
enjoyable. This course not only covers the fundamentals of Next.js but
also guides you in building a Full Stack project with authentication,
utilizing the latest features of Next.js 15:

If you have a keen interest in learning how to implement complex
filtering, pagination, and searching using server-side rendering (SSR)
with Next.js, then you should check out this resource:

Next.js 15 Full Course 2024 |
Build & Deploy a Full Stack
Application - YouTube

Watch and Code Now

Build and Deploy a Modern
Next.js App | TypeScript,
Tailwind CSS - YouTube

Watch and Code Now

Roadmap 38

https://youtu.be/Zq5fmkH0T78
https://youtu.be/pUNSHPyVryU

Keep in mind that real progress happens when you actively do coding.

So, grab coffee, find a quiet spot, and start coding to make things

happen.

Roadmap 39

Chapter 4

How it works
In this chapter, we lay the foundation by understanding how the web

works before diving into Next.js code. We explore the traditional

approach of HTML, CSS, and JavaScript websites, where the server

sends complete files to the client for each page request.

We also introduce the React way, where the server sends a minimal

HTML file and a bundled JavaScript file, and React manipulates the

virtual DOM for efficient rendering. Finally, we discuss the Next.js way.

How it works
You might be itching to start with Next.js code, right?

Although writing code is important, we must first build our foundations.
It’ll not just help you in clearing interviews but will also help in making
sound decisions in your application.

If your why isn’t clear, you’ll have no idea what you’re doing, and you’ll
blame it on Next.js by saying that it’s an overrated piece of technology.
That will only showcase your lack of knowledge. It's a foolproof recipe to
amaze everyone with your impressive ignorance.

So, perfect your why and your how will come naturally.

Let’s time-travel a bit to see how things were used to work with
different technologies.

The vanilla — HTML, CSS,
and JavaScript

Websites built using the web's fundamental elements, namely HTML,
CSS, and JavaScript, function differently compared to the latest
technologies.
When a user visits such a website, their browser (the client) sends a
request to the server (another computer where the site is hosted)
asking for the content to be displayed.

How it works 40

Request

Analyzing the HTML file

Applies the styles

Implements any user interaction

Traditionally, for each of these requests, the server responds by sending
three files i.e., the HTML, CSS, and JavaScript (only if any JavaScript code
is involved). The client's browser receives these files and begins by
analyzing the HTML file. Then, it applies the styles from the CSS file and
implements any user interaction, such as event handlers or dynamic
behavior, specified in the JavaScript file on the webpage.

The client will send additional requests to the server if the website has
multiple pages. In response, the server will send the three files
containing the respective content needed to render each page.

How it works 41

What’s the catch?

Processing

Most processing occurs on the client side, meaning the user's web

browser is responsible for rendering the HTML page and executing any

JavaScript code present.

However, if the website is complex and the user's device needs more

capabilities, it can strain the browser and create a burden for it to

handle.

Bandwidth

As the server sends complete files to the client for each page request, it

increases bandwidth usage. This becomes particularly significant when

dealing with complex websites containing numerous pages and video

and audio clips scattered throughout the site.

Load Time

The initial page load time may be longer when compared to the latest

technologies. This is due to the complete transfer of files for each

request. Only after the server has sent all the necessary files and the

browser has finished parsing everything will we be able to view the

website's content.

How it works 42

The React way
This is where React comes in. It improved the development lifecycle by

introducing components, virtual DOM concepts, and the client-server

mechanism.

When you access a React website, the client's browser sends a request

to the server for the webpage content. In response, the server sends a

minimal HTML file, which serves as the entry point for the entire

application, along with a bundled JavaScript file.

React initiates client-side rendering using this JavaScript file,

manipulating the virtual DOM. Instead of directly modifying the actual

DOM, React updates the virtual DOM and then applies only the

necessary changes to the real DOM, resulting in the desired page

display.

React utilizes its client-side routing library, React Router, to navigate to

different pages within the React application. This library enables

changing the route without a full server request, preventing page

refreshes.

React Router re-renders the relevant components based on the new

URL when a new route is triggered. If the new page requires fetching

data from the server, the corresponding components initiate requests

to retrieve the necessary data.

How it works 43

What’s the catch?

Complexity

Building a React application can present greater complexity than

traditional HTML, CSS, and JavaScript websites. It involves thinking in

components, managing state and props, and working with the virtual

DOM, which may require a learning curve for developers new to React.js.

Processing

Similar to the traditional approach, react primarily performs client-side

rendering. It heavily relies on JavaScript for initial rendering and

subsequent requests to update the user interface, which are all handled

on the client’s browser.

However, this reliance on client-side rendering can delay rendering and

interactivity, particularly on devices with slower processors and limited

resources.

SEO

Yes, if you recall, we previously touched upon a notable drawback of

React compared to Next.js in the Introduction chapter.

The issue is that search engine crawlers might need help fully

accessing the website's content since everything is handled through

JavaScript and only rendered on the client side. As a result, it impacts

the website’s visibility in search engine results

How it works 44

The Next.js Way - A blend of both
Knowing the benefits and limitations of both techniques, Vercel

developers allowed us to choose where to render the content, on the

client or server.

Typically, when a user visits a Next.js site, the client sends the request to

the server, which starts executing the React Components, generates

HTML, CSS, and JavaScript files, and sends back the fully rendered HTML

to the client as a response. This file includes initial content, fetched

data, and React component markup, making the client render it

immediately without waiting for JavaScript to download and execute.

But it doesn’t mean we don’t receive any JavaScript files. The server will

still send the JavaScript code as needed for the user interaction. From

here, Next.js takes over and performs client-side hydration

Have you ever encountered the issue of a hydration error where the

user interface doesn't match what was originally rendered on the

server?

Well, this is what it is about. Hydration is attaching JavaScript event

handlers and interactivity to the pre-rendered HTML. And when the

placeholders of React components i.e., div, form, span, don’t match

what’s being rendered on the client side, you see that error.

This is what it is — The hot topic of web development i.e., SSR.  
Server Side Rendering!

How it works 45

For subsequent requests, you have full control over where to render
your page content i.e., either on the server side (SSR) or the client side
(CSR).

In the following chapters, we’ll talk in-depth about different types of
server-side rendering along with client-side rendering and when and
where to render what.

How it works 46

Chapter 5

Create a Next.js
Application
In this chapter, you will learn how to create a Next.js application. You'll

start by setting up the necessary tools like Node.js and Visual Studio

Code. Then, you'll create a new Next.js project using the create-next-

app command.

You'll explore the project structure and understand the purpose of

important files and folders. Finally, you'll learn about the jsconfig.json

and package-lock.json files and their significance in managing

dependencies.

Create a Next.js Application
By now, you should fully understand how the websites load. Now it’s
time to learn how to create websites using Next.js.

Setting up a Next.js application can be done in various ways. However,
before we dive into that, there are a few things we need to have in place
to get started with Next.js. The first requirement is having Node.js 16.8 or
a more recent version. It's worth noting that there is a common
misconception that Node.js is a new programming language.

In reality, it’s a JavaScript runtime that enables the execution of
JavaScript code outside of a web browser.

If you haven't installed Node.js before, you can visit this link and start
downloading it. The website will give you two options based on your
operating system: LTS and Current. The LTS (Long Term Support) version
is the most stable, while the Current version is like a "Work in Progress"
that adds new features but may have some bugs.

So, did you download it?

To determine the version you're using and check if you've downloaded
Node.js, you can execute this command in your terminal or Command
Prompt to verify:

node - v

Create a Next.js Application 47

https://nodejs.org/en

node -v

18.16.1

Next, we require a Code Editor. Considering that Visual Studio Code
(VSCode) is an exceptional editor, we suggest using it. You can visit
link, and depending on your operating system (OS), you will find the
appropriate download link. The download process and installation
process is as straightforward as it gets.

this

Create a Next.js Application 48

https://code.visualstudio.com/

After downloading Node.js and VSCode, let's set up your first Next.js

application.

Go to the desired location where you want to create your project. It can

be any location, but it's advisable to maintain an organized structure.

Create a new folder inside that location and name it "NextEbook." If you

prefer a different name, feel free to choose one. This folder will hold all

the code we will cover in this ebook.

Now, let's proceed with the following steps to open the folder we just

created in our chosen code editor, which is VSCode:

 Launch VSCode

 Click on the "File" option in the top menu bar

 From the dropdown menu, choose "Open Folder.

 Browse to the location where you created the "NextEbook" folder

 Select the "NextEbook" folder

 Click on the "Open" button.

Create a Next.js Application 49

Following these steps, you can view your "NextEbook" folder in VSCode.

VSCode provides its own built-in terminal, eliminating the need for

developers to open the OS Terminal or Command Prompt separately.

With the inline terminal in VSCode, we can perform all necessary tasks

within the application.

To open the terminal, press ctrl + `(backtick) or click on the

"Terminal" option in the top menu bar. From the dropdown menu, select

"New Terminal." The terminal window will appear as follows:

For the final, let’s now create our Next.js application. There are two

options:

 Automatic Installatio

 Manual Installation

Create a Next.js Application 50

As the name implies, manual installation involves obtaining and
configuring packages individually and organizing the initial file and
folder structure along with some code. We’ll have to do everything on
our own.

On the other hand, the alternative approach aims to accelerate the
development process by allowing us to create the application with our
preferred choices. Depending on our preferences, such as using
TypeScript or not, incorporating styling libraries like Tailwind CSS, or
opting for other options, we can set up the complete project with just
one click.

Being widely used and an easy installation choice, we can create a
next.js project by running a Zero Dependency CLI (Command Line
Interface) tool — create-next-app. You can visit link if you want to
know about this in detail. Inside, you’ll see how the create-next-app has
been created with the templates, including with/without JavaScript,
Tailwind CSS, etc.

this

Don’t worry; you don’t need to download create-next-app as another
global package. Thanks to npx!

When you installed Node.js, you also got two other useful tools:

NPM NPX

NPM, which stands for Node Package Manager, allows us to manage
and download various packages (collections of code) that we need to
run our application. For example, packages like Axios for making HTTP
requests or Redux Toolkit for state management.

Create a Next.js Application 51

https://github.com/vercel/next.js/tree/canary/packages/create-next-app

On the other hand, NPX, short for Node Package eXecute, is a

command-line tool. It lets us execute packages without installing them

globally on our system. It's important to note that npx is used to run

command-line tools and execute commands from packages, but it

doesn't handle the installation of packages. That responsibility falls to

npm, which takes care of package installation.

Let's move on from the theoretical discussion and proceed with the

command that will automatically install the necessary packages for

running a Next.js application.

npx create-next-app@latest

As soon as you press enter, it will prompt you to confirm whether it can

download the required packages. Please select "yes" to proceed with

the installation.

During the installation process, we will encounter a series of prompts

individually. These prompts allow you to choose the specific features

and configurations we desire for our Next.js application.

√
√
√
√
√
√
√

 What is your project named?
 Would you like to use TypeScript with this project?
 Would you like to use ESLint with this project?
 Would you like to use Tailwind CSS with this project?
 Would you like to use src/ directory with this project?
 Use App Router (recommended)?
 Would you like to customize the default import alias?

introduction

No

No

No

No

Yes

No

Let's choose not to include TypeScript, ESLint, and Tailwind CSS. In the

upcoming chapters, we will explore these options in detail.

Create a Next.js Application 52

If you see the installation process carefully, you’ll see “Using npm.”
npx is used solely to execute commands from packages, while npm
handles the installation of those packages.

And there you have it! The Next.js application has been successfully
installed

Now, let's explore what's inside. Click on the "introduction" folder or the
name you chose for your project. Inside, you will find several files and
folders.

App

It’s the root of the application, where we'll create various client
(frontend) routes and potentially write backend code. Initially, you'll find
some starter files in this location, including:

Create a Next.js Application 53

favicon.ico

It represents the website's favicon displayed in the browser's tab. By

default, the favicon will be the Vercel icon. You can replace it with the

one you like.

globals.css

This file holds the CSS code for the application. It is a global file where

you can define CSS variables, import fonts, or perform other CSS

initialization tasks.

You can keep the file, rename it, or even move it to a different location. It

doesn't matter. However, if you make any changes to this file, you must

update any other parts of the application that rely on it.

Create a Next.js Application 54

global.css

: {

: ;

: ;

: , , , ' ',

' ',' ', ' ', ' ',
' ',' ', ' ', ;

: , , ;

: , , ;

: , , ;

: (

from at ,

,

,

,

,

);

: (

(, , ,),

(, , ,)

);............

root
--max-width
--border-radius
--font-mono

 monospace

--foreground-rgb
--background-start-rgb
--background-end-rgb

--primary-glow

16abff33
0885ff33
54d6ff33
0071ff33

transparent

--secondary-glow

1100px
12px

0 0 0
214 219 220

255 255 255

180deg 50% 50%
0deg
55deg
120deg
160deg

360deg

255 255 255 1
255 255 255 0

ui-monospace Menlo Monaco Cascadia Mono
Segoe UI Mono Roboto Mono Oxygen Mono Ubuntu Monospace
Source Code Pro Fira Mono Droid Sans Mono

conic-gradient

radial-gradient
rgba
rgba

layout.js

It’s the main entry point of the application. The root. The parent. The
layout. Whatever you prefer to call it.

If you write anything in there, it’ll appear on each & every client
(frontend) route. It’s universal.

If you need to import fonts, add metadata, wrap the application with
Redux, or show a Navbar, this is the place to do it. All these tasks can be
performed within this file.

Create a Next.js Application 55

page.js

It’s an alias of the home route i.e., “/”. It's important not to confuse this

file with layout.js. Whatever you write inside page.js will be displayed

only on the "/" route, while anything inside layout.js will appear across all

routes, including the home route i.e., “/”.

In short, layout.js is the parent of page.js, providing a common layout for

all pages.

page.module.css

This CSS file is specifically designed to style a particular page

component or module. The naming convention .module.css indicates

that the CSS rules in this file are scoped to a specific component. In this

case, it corresponds to the page.js component.

If you closely examine the code, you will notice the presence of the

following:

import from ' styles ./page.module.css`

inside the page.js file.

Node Modules

Well, it’s the backbone!

The node_modules directory is a storage location for all the

dependencies or packages required to run a project. Whenever we

install packages using npm, the corresponding code for those

packages is placed inside this directory.

Create a Next.js Application 56

For example, if we install Axios, a folder named axios will be created
within the node_modules folder. If you've been following closely, you
may have noticed that Next.js is built on top of React. Therefore, you can
explore the node_modules folder to find the react folder, which contains
the code for React itself.

In addition to React, you'll come across several other folders such as
next (which enables Next.js-specific features), react-dom, postcss,
styled-jsx, and more. Each of these folders contains numerous files
and lines of code essential for running our Next.js application.

No need to worry, though. You don't have to interact with or visit this
directory in the future (unless something terrible happens). npm
automatically manages the node_modules folder when we install or
uninstall node packages.

Public

It’s a special folder allowing us to include static assets like images or
files like fonts, videos, etc.

The content inside this folder is automatically optimized and available
throughout the application. Thus it’s advisable to put any PNGs, JPEGs,
or SVGs we need inside this folder.

.gitignore

The .gitignore is a special text file that tells Git, the version control
system, to exclude certain files and directories from being tracked.

One common entry in the .gitignore file is node_modules.

Create a Next.js Application 57

This is because the node_modules directory contains many files and

folders generated when installing dependencies for a Node.js project.

Including these files in version control would create unnecessary clutter

and increase the size of the repository.

As said by the Creator of Node.js — Ryan Dahl

We would certainly not want to track the “Heaviest Object” in the

universe!

jsconfig.json

Remember the prompt that appeared when we ran the Next.js CLI tool?

It asked us if we wanted to customize the default import alias, and we

chose "No".

Create a Next.js Application 58

√ Would you like to customize the default import alias? No

Well, the jsconfig.json file is related to that question. It act as a

configuration file where we can set various options and settings for our

project. One of the things we can configure is the import behavior.

By default, when we want to import code from one file into another, we

use relative paths like this:

import from ' ' something ../../components

This is the correct, but sometimes long and complex, relative path.

In larger projects or projects with complex directory structures,

manually specifying relative paths for each import can become tedious

and prone to errors.

However, by configuring the compilerOptions in the jsconfig.json

file, we can inform the compiler about a specific import path structure

that we want to use.

If we take a look at the content of the jsconfig.json file, we have:

{

 " " {

 " ": {

 " ": " "
 }

 }

}

compilerOptions

./*

:
paths
@/* []

Create a Next.js Application 59

In this configuration, we have defined path aliases using . This

means that now we can do the following:

@/*

import from ' ' something @/components

i.e., using @/* for any files and folders located in this location ./* i.e., the

root!

Feel free to customize the alias to your preference. You can change @/*

to @* or even #/* — the choice is yours!

package-lock.json

Have you ever think of this as an unwanted file?

Well, let me tell you, it's actually quite important. This file, called

package-lock.json, is automatically created when we install or make

changes to packages. It serves as a lock file, carefully keeping track of

the specific versions of all the installed packages and their

dependencies.

Let's imagine a scenario: You're working on a Next.js project. After

completing your work, you share the project code with your manager,

but you omit the package-lock.json file, thinking it's not essential.

Now, your manager starts downloading the packages listed in the

package.json file. The package manager, npm, installs the specified

packages and their dependencies (i.e., the folder and files we have

seen inside the node_modules folder).

Create a Next.js Application 60

However, if any dependencies release a new version, the package

manager will eagerly download it. And unfortunately, if this new version

may contain unresolved bugs or compatibility issues, it can cause your

application to misbehave.

As a result, your manager may become frustrated, saying, "It doesn't

work on my machine ," while you feel helpless, responding with a

disheartened "It works on my machine ."

Know the importance and always share your package-lock.json file

package.json

Think of this as an info card that tells about you — who you are, where

you are from, etc. but with more complete details.

Along with containing the information regarding the name of the

project, and its version, it tells us the dependencies and dev

dependencies required to run this project

dependencies

List of the packages that are necessary for the project to run the

production environment

devDependencies

List of packages that are only needed during the development process.

For example, linting packages like eslint.

Whenever we install a package, whether a dependency or a dev

dependency, npm automatically records the package name and its

corresponding version in the respective section of the package.json file.

Create a Next.js Application 61

This way, the package.json file records all the packages required for

the project, making it easier to manage and reproduce the

development and production environments accurately.

Other than that, we can see another part i.e., “scripts”. It contains

executable commands or scripts using npm. We can completely

customize it. Through these commands/scripts, we run tests, build a

project, start a development server, or deploy the application.

Last but not least,

README.md

It’s a like a manual or guidebook for your project — a markdown file

where we can write down important information about our project, such

as how to install it, what it does, and how others can contribute to it.

Having a good README helps people understand what our project is all

about and how they can use it or get involved. It's like giving them

directions or instructions on how to make the most of our project.

Now, let's finally run our application. We need to execute one of the

commands from the "scripts" section we just mentioned, specifically the

"dev" command.

Before proceeding, ensure the terminal's path is set to the correct

location. Since we created a subfolder called "introduction" inside the

"NextEbook" folder, we need to navigate into it. To do that, enter the

following command in the open terminal:

cd introduction

Create a Next.js Application 62

The "cd" command, which stands for "change directory," will navigate us

inside the "introduction" folder.

Now run,

npm run dev

This command will start a local machine's development server on port

3000. To see the application in action, open your preferred web browser

and type the URL: . If you have followed all the

previous steps correctly, you should be able to see the application

running as expected:

http://localhost:3000

Create Next App

http://localhost:3000

Phew, a lot of explaining just to cover the initial file and folder structure.

But it’s of no use if we don’t take any actions. Let’s change few things

from the repo to see how it works.

Create a Next.js Application 63

http://localhost:3000/

Open the page.js file and delete all the existing code. We'll start fresh

by creating the Home component.

export default () {

return
< >

< > </ >

</ >

}

 Hello World

function Home
 (

 main

p p
man

)

After making the changes, save the file and return to your browser. If

you visit the localhost again, you should see the updated content of

"Hello World " without manually refreshing the page. This is possible

because of the feature of Next.js, which automatically

reflects the changes in real time as we edit the code.

Fast Refresh

Now, open the layout.js file and add text inside the body tag:

import ' ';

import { } from ' ';

= { : ' ' } ;

export = {

: ' ',

: ' ',

};

export default ({ }) {

return
< =" ">

< ={ . }>

< > </ >

{ }

</ >

</ >

;

}

 Inter

 inter ([])

 metadata

 children

 inter className
 Hello, I'm Groot
 children

./globals.css
next/font/google

latin

Create Next App
Generated by create next app

en

subsets

title
description

 (

 html

body
p p

body
html

)

const

const

function

lang
className

Inter

RootLayout

Create a Next.js Application 64

https://nextjs.org/docs/architecture/fast-refresh

Take a moment to ponder: Where will this text appear? Will it be

displayed before the "Hello World " or after it? Or perhaps it won't be

displayed at all since we are on the home route, which is "/".

3, 2, 1... finished thinking?

To find the answer to your question, visit the browser. And you're right!

The text will be displayed before the "Hello World ".

Create Next App

http://localhost:3000

Why? Because layout.js is parent or root of the application.

But why before the “Hello World ”? Because we are rendering the

children components of layout.js after the text "Hello, I'm Groot ".

< ={ . }>

< > </ >

{ }

</ >

body
p p

body

className inter className
 Hello, I'm Groot
 children

Create a Next.js Application 65

Reverse the order, and see the magic, i.e.:

< ={ . }>

 { }

< > </ >

</ >

body

p p
body

className inter className
children

 Hello, I'm Groot

The children prop is passed by Next.js to the RootLayout component in

layout.js. It contains all the child components or route components of

the application, starting from the home route and extending to any

other routes that we may create.

// children is passed as a prop by Next.js

/* Contains the route components, i.e., home route */

export default ({ }) {

return

< =" ">

< ={ . }>

< > </ >

{ }

{ }

</ >

</ >

}

 children

 inter className
 Hello, I'm Groot

 children

function

lang
className

RootLayout
 (

 html

body
p p

body
html

)

en

Clear enough?

Amazing! Before you rush to start the next chapter, I have a few tasks for

you to complete:

Create a Next.js Application 66

Tasks
 Comment down the {children} inside the RootLayout and see if you

can still see the “Hello World ”

import ' '

import { } from ' '

= { : ' ' }

export = {

: ' ',

: ' ',

}

export default ({ }) {

return

< =" ">

< ={ . }>

< > </ >

{ }

{ }

</ >

</ >

}

 Inter

 inter ([])

 metadata

 children

 inter className
 Hello, I'm Groot

./globals.css
next/font/google

latin

Create Next App
Generated by create next app

en

subsets

title
description

 (

 html

body
p p

body
html

)

const

const

function

lang
className

Inter

RootLayout
// children is passed as a prop by Next.js

/* Contains the route components i.e., home route */
/* {children} */

Explain the purpose of Node.js in the context of Next.js and web
development.

Explain the purpose and usage of the create-next-app CLI tool
and why we use npx with it.

What is the role of the node_modules directory in a Next.js
project? Why is it recommended not to include it in version
control?

Create a Next.js Application 67

Chapter 6

Client Vs. Server
In this chapter, you'll dive into the concepts of client-side rendering
(CSR) and server-side rendering (SSR) in Next.js. You'll explore how
Next.js handles rendering on the client and server, understand the
benefits and trade-offs of each approach, and learn how to implement
CSR and SSR in your Next.js applications.

Client Vs. Server

So far, we understand that Next.js does a mix of server-side and client-

side rendering to get the best of both worlds. But we need to find out

which parts of the application are rendered on the server side. Can we

choose what to render in each environment?

And if so, how can we do that?

Before we answer these questions, let's go back and remind ourselves

what we mean by client and server. What do these terms actually

mean?

Client

The client refers to the device you are currently using, such as your

smartphone or computer. The device sends requests to the server and

displays the interface that we can interact with.

Server

The server is essentially just a computer device, but it is equipped with

strong configurations and remains operational continuously. It is where

all the code for our application is stored. When the client, our device,

sends a request, the server performs the necessary computations and

sends back the required outcome.

In previous versions of Next.js, specifically versions before 13, we faced a

limitation where server-side rendering was restricted to individual

pages. This meant that only the route pages like "/", "/about",  

"/projects", and so on could be rendered on the server side.

Client Vs. Server 68

This limitation led to challenges such as prop drilling and duplication of
API calls when passing data to lower-level components.

I recommend reading this article to gain a deeper understanding of the
differences between the pages directory and the app directory in Next.js
and how they address these limitations. It provides detailed insights
into the topic:

Less code, better UX:
Fetching data faster with
the Next.js App Router

Link to blog

And that, my friends, is where the app directory comes into action. It not
only introduced many features but also brought about a revolutionary
change, i.e., — Component level Server Side Rendering.

What does that mean?

It means that now we have the ability to choose where we want to
render specific components or a section of code.

For instance, let's consider a component called Navbar.jsx. With this
new capability, we can decide whether we want to render it on the
server side or the client side (in the user's browser).

And that's how we end up with two types of components: Client
Components and Server Components.

Client Vs. Server 69

https://vercel.com/blog/nextjs-app-router-data-fetching

What are these?

Simply put, both are React components, but the difference lies in where

they are rendered.

Client Component - A react component that runs/renders on the user’s

device, such as a web browser or mobile app.

Server Component - A react component that runs/renders on the

server, i.e., the infra or place where we’ll deploy our application

But why would we want to render such a small component on the
server side?

Well, think about it!

By strategically deciding to render certain components on the server

side, we save users' browsers from doing extra work with JavaScript to

show those components. Instead, we get the initial HTML code for those

components, which the browser can display immediately. This reduces

the size of the JavaScript bundle, making the initial page load faster.

And as discussed above, we’ll overcome our limitations with the pages

directory. Rather than fetching and passing data to components

separately, we can fetch the data directly within the component,

turning it into a server component.

Overall, we’ll have these benefits if we choose to do server-side

rendering:

Smaller JavaScript bundle size: The size of the JavaScript code that

needs to be downloaded by the browser is reduced.

Client Vs. Server 70

Enhanced SEO (Search Engine Optimization): Server-side rendering
helps improve search engine visibility and indexing of your website's
content. (remember?)

Faster initial page load for better accessibility and user experience:
Users can see the content more quickly, leading to a smoother
browsing experience.

Efficient utilization of server resources: By fetching data closer to the
server, the time required to retrieve data is reduced, resulting in
improved performance.

Okay, but when to decide what to render where?

As their name suggests, where to render each component depends on
what the component does.

If a component needs the user to interact with it, such as clicking
buttons, entering information in input fields, triggering events, or using
react hooks, then it should be a client component. These interactions
rely on the capabilities of the user's web browser, so they need to be
rendered on the client side.

On the other hand, if a component doesn't require any user interaction
or involves tasks like fetching data from a server, displaying static
content, or performing server-side computations, it can be a server
component. These components can be rendered on the server without
specific browser features.

Client Vs. Server 71

Ask yourself:

Does the component require user interactivity?

Yes — Client Component No — Server Component

To simplify things, the Next.js documentation provides a helpful table
that guides you on where to render each component.

What do you need to do? Server

Component

Client

Component

Fetch data.

Access backend resources (directly)

Keep sensitive information on the server (access
tokens, API keys, etc)

Keep large dependencies on the server / Reduce
client-side JavaScript

Add interactivity and event listeners (onClick(),
onChange(), etc)

Use State and Lifecycle Effects (useState(),
useReducer(), useEffect(), etc)

Use browser-only APIs

Use custom hooks that depend on state, effects, or
browser-only APIs

Use React Class components

Client Vs. Server 72

Impressive! You've just discovered one of the most significant features

of the modern era. Take a well-deserved break!

Ready for more?

Another groundbreaking aspect of Next.js 15's app directory is that all

components are automatically considered server components by

default. That's right; every component is treated as a server component

unless specified otherwise.

So how do we differentiate it from the client components?

Well, it's as simple as writing "use client" at the top of the component

file. It's a straightforward and slick way to indicate that the component

should be treated as a client component.

That's enough theory for now. Let's dive into coding

To get started, follow the steps outlined in the previous section to

quickly set up a new Next.js project within the same NextEbook folder.

Before proceeding, ensure that the terminal's path points to the

NextEbook folder and not the previously created introduction folder.

To navigate out of the introduction folder, you can run the following

command:

cd ..

Now, execute the create-next-app command. In this example, I'll be

using the name client-server for the new folder, but feel free to

choose any name you prefer.

Client Vs. Server 73

Once the installation is complete, use the cd command to navigate into

the client-server folder and start the application.

Now go to the app folder, then to the page.js file, and delete all other

content except for the main and h2 tags:

app/page.js

import from ' '

export default () {

. " "

return
< ={ . }>

< > </ >

</ >

}

 styles

console

styles main
 Welcome

./page.module.css

Where do I render?
function

className

Home
log ()

 (

 main

h2 h2
main

)

If you prefer, you can delete everything else from the page.module.css

file and keep the styles only for the main tag of HTML.

app/page.module.css

. {

: ;

: ;

: ;

: ;

: ;

}

main
 flex
 column
 center

display
flex-direction
align-items
padding
min-height

6rem
100vh

After adding a console log in our page.js file, let's open our web browser

to see if it appears there:

Client Vs. Server 74

Once the installation is complete, use the cd command to navigate into

the client-server folder and start the application.

Create Next App

http://localhost:3000

Hmm, “Where do I render?” is not there. How on Earth?

Indeed, you are correct. As previously discussed, all these components

will be Server Components by default!

So where do we see the console statements if not in the browser

console? You know that, right?

The terminal! Let's return to our terminal and check if the mentioned log

text is present there:

Client Vs. Server 75

Terminal

npm run dev
- next dev

- wait compiling /page (client and server)...

- event compiled client and server successfully in 390 ms (413 modules)

Where do I render?

And there we go, the log is there

Now let’s create two more components for each Client and Server.

Inside the root of the folder, i.e., outside of the app folder, create a new

folder and name it components. Create two new files inside it,

ExampleClient.jsx and ExampleServer.jsx.

components/ExampleClient.jsx

" ";

= () {

. " " ;

return
< >

< > </ >

</ >

;

};

export default ;

use client

I'm Client Component :)
const => ExampleClient

console

 This an example client component

 ExampleClient

 ()

 (

 div

p p
div

)

log

Client Vs. Server 76

And the small ExampleServer component as

components/ExampleServer.jsx

const => ExampleServer
console

 This is an example server component

 ExampleServer

= () {

. " " ;

return
< >

< > </ >

</ >

;

};

export default ;

 ()

 (

 div

p p
div

)

log I'm Server Component :)

Now, first import & use the ExampleClient component inside the app/

page.js file:

app/page.js

import from ' '

import from ' '

export default () {

. " "

return
< ={ . }>

< > </ >

< />

</ >

}

 styles
 ExampleClient

console

styles main
 Welcome

./page.module.css
@/components/ExampleClient

Where do I render?
function

className

Home
log ()

 (

 main

h2 h2

main
)

ExampleClient

Client Vs. Server 77

Perfect. Let’s check where we see which console log

First browser,

Create Next App

http://localhost:3000

Okay, that’s right, right? We explicitly said Next.js to render

ExampleClient.jsx as Client Component. Fair enough!

Going back to the Terminal, we see…

Terminal

npm run dev
- next dev

- wait compiling /page (client and server)...

- event compiled client and server successfully in 390 ms (418 modules)

Where do I render?

I'm Client Component :)

Client Vs. Server 78

Both of them, why?

This is because Next.js performs pre-rendering certain content before
sending it back to the client.

So basically, two things happen:

 Server Components are guaranteed to be only rendered on the
serve

 On the other hand, client components are primarily rendered on the
client side.

However, Next.js also pre-renders them on the server to ensure a
smooth user experience and improve search engine optimization (SEO).

Next.js, by default, performs static rendering, which means it pre-
renders the necessary content on the server before sending it to the
client. This pre-rendering process includes server and client
components that can be pre-rendered without compromising
functionality.

The server Component is the latest React.js Feature. Next.js has
simply used it over what they had, making the setup easy.

Let’s play around with these components a little more. Now, import the
ExampleServer component inside the app/page.js file

Client Vs. Server 79

app/page.js

import from ' '

import from ' '

import from ' '

export default () {

. " "

return
< ={ . }>

< > </ >

< />

< />

</ >

}

 styles
 ExampleClient
 ExampleServer

console

styles main
 Welcome

./page.module.css
@/components/ExampleClient
@/components/ExampleServer

Where do I render?
function

className

Home
log ()

 (

 main

h2 h2

main
)

ExampleClient
ExampleServer

And now, if we visit the browser, along with showing both client-server

component text on the website, it’ll only show the “I'm Client Component

:)” log inside the browser’s console:

Create Next App

http://localhost:3000

Client Vs. Server 80

Whereas the terminal will show all the three console logs

Terminal

npm run dev
- next dev

- wait compiling /page (client and server)...

- event compiled client and server successfully in 588 ms (548 modules)

Where do I render?

I'm Server Component :)

I'm Client Component :)

All good!

For the final play, let’s remove the ExampleServer from app/page.js

and add it inside the components/ExampleClient.js

app/page.js

import from ' '

import from ' '

export default () {

. " "

return
< ={ . }>

< > </ >

< />

</ >

}

 styles
 ExampleClient

console

styles main
 Welcome

./page.module.css
@/components/ExampleClient

Where do I render?
function

className

Home
log ()

 (

 main

h2 h2

main
)

ExampleClient

Client Vs. Server 81

And the ExampleClient will look like this:

components/ExampleClient.jsx

" ";

import from " ";

= () {

. " " ;

return
<>

< >

< > </ >

</ >

< />

</>

;

};

export default ;

use client

./ExampleServer

I'm Client Component :)

 ExampleServer

 ExampleClient
console

 This an example client component

 ExampleClient

const =>
 ()

 (

div
p p
div

)

log

ExampleServer

Hit save and see the result in both the Terminal and Browser console.

First, let’s see what the terminal shows:

Terminal

npm run dev
- next dev

- wait compiling /page (client and server)...

- event compiled client and server successfully in 429 ms (549 modules)

Where do I render?

I'm Client Component :)

I'm Server Component :)

Client Vs. Server 82

As expected, we see all three console logs due to the pre-rendering of

Next.js and the server feature.

But something doesn’t look good in the Browser console…

Create Next App

http://localhost:3000

Why is the server component log appearing here? Wasn’t it supposed

to be on the server side only?

Well, in Next.js, there is a pattern at play. When we use "use client" in a

file, all the other modules imported into that file, including child server

components, are treated as part of the client module.

Consider "use client" as a dividing line between the server and client

code. Once you set this boundary, everything inside it becomes client

code.

Understood? If not, there is no need to worry.

Client Vs. Server 83

Just remember: Do not include server components inside the client

components.

And in case you encounter such a scenario, we have a solution. We'll

discuss it in detail in its dedicated section, where we'll dive into the

rendering process of client and server components. Additionally, we will

share some valuable tips and tricks on creating different types of

components depending on real-world examples.

Before we dive into yet another feature of Next.js, take some time out to

work on the below tasks to solidify your learning so far:

Tasks
 Add “use client” inside the app/page.js file and see where the

console logs are appearing:

app/page.js

" "

import from ' '

import from ' '

export default () {

. " "

return
< ={ . }>

< > </ >

< />

</ >

}

use client

./page.module.css
@/components/ExampleClient

Where do I render?

 styles
 ExampleClient

console

styles main
 Welcome

function

className

Home
log ()

 (

 main

h2 h2

main
)

ExampleClient

Client Vs. Server 84

What are the different types of components in Next.js, and
explain their difference?

What are the benefits of server-side rendering?

What are the latest features of the app directory regarding the
client/server rendering?

Client Vs. Server 85

Chapter 7

Routing
In this chapter, you'll learn about routing in Next.js and how it simplifies

the process compared to React.js. Next.js uses a file-based router

system, where folders and files define routes and UI components,

respectively.

It covers creating a navigation bar component, organizing routes with

folders, handling nested and dynamic routes, and leveraging Next.js'

Fast Refresh feature. Overall, you'll gain a practical understanding of

Next.js routing and its advantages.

Routing
Now, let’s dive into routing!

One of Next.js’s cool features is its ability to handle routes out of the box.

But before we jump into that, let's first understand how routes are

created in React.js.

Here's an example of how a route can be created using react-router-

dom v6 in React.js:

App.js

import { as , , , } from '
';

= () {

return

< >

< >

< =" " ={< />} />

< =" " ={< />} />

< =" " ={< />} />

</ >

</ >

;

};

export default ;

 BrowserRouter Router Route Link Routes

 App

 App

 (

)

react-
router-dom

/
/about
/contact

const =>

path element
path element
path element

Router
Routes

Route Home
Route About
Route Contact

Routes
Router

And here's a possible example of a nested dynamic routing for a multi-

page website like an e-commerce site:

Routing 87

App.js

import , { } from ' ';

import { as , , } from ' ';

() {

return

< >

< >

< >

< =" " ={< />}>

< ={< />} />

< =" " ={< />} />

< =" " ={< />} />

< =" " ={< />} />

< =" " ={< />}>

< ={< />} />

< =" " ={< />} />

< =" " ={< />} />

< =" " ={< />} />

< =" " ={< />}>

< ={< />} />

< =" " ={< />} />

< =" " ={< />} />

</ >

</ >

</ >

</ >

</ >

</ >

;

}

export default ;

 React Fragment
 BrowserRouter Router Route Routes

 App

 (

)

react
react-router-dom

/

about
products
products/:id

seller

orders
reviews
products
products/:id

pricing
photos

function

path element
index element
path element
path element
path element

path element
index element
path element
path element
path element
path element

index element
path element
path element

App

Router
Fragment

Routes
Route Layout

Route Home
Route About
Route Products
Route ProductDetail

Route SellerLayout
Route Dashboard
Route Orders
Route Reviews
Route SellerProducts
Route SellerProductDetail

Route SellerProductInfo
Route SellerProductPricing
Route SellerProductPhotos

Route
Route

Route
Routes

Fragment
Router

Scary, isn’t it? Not only do we need to download and handle an external

package, but as our application gets bigger, the routing becomes more

complicated, making it harder to manage and understand!

Routing 88

Now, let's explore what Next.js brings to the table for routing

Next.js, aiming to simplify the process, uses a “file-based” router system.

Meaning,

 Folders are used to define route

 Files are used to create UI for that route segment

For instance, to convert the previous React.js routing example into

Next.js, we only need to create two folders named about and contact.

We'll create a special file associated with that route segment inside

each folder, such as page.js or page.jsx.

Let’s understand it while we code. Quickly create a new Next.js app

inside the NextEbook folder, like in the previous chapter.

I'll name the application routing. Before we begin, let's clean up the

existing code to make it more organized and easier to understand for

this use case:

 Remove page.module.css completel

 Add the CSS properties for the main tag inside the globals.css file.
Leave the remaining CSS code unchanged.

Routing 89

app/globals.css

main

 flex
 center
 center
 column

{

: ;

: ;

: ;

: ;

: ;

}

padding
display
justify-content
align-items
flex-direction

2rem

Remove the code inside app/page.js and keep only the main & h1 tag

app/page.js

export default () {

return

< >

< > </ >

</ >

}

 Home

function Home
 (

 main

h1 h1
main

)

Make sure everything is working correctly. Now, let's create a simple
navigation bar (Navbar) component to move between the different
pages we'll create easily.

Create a components folder inside the root of the application. Inside
create two files Navbar.jsx and navbar.module.css

Navbar.jsx — contains a simple navbar with few links. We’re using the
Link component of next/link to navigate between the different routes
of the application by providing the appropriate route path to the href.

Routing 90

components/Navbar.jsx

import from ' ';

import from ' ';

= () {

return

< >

< ={ . }>

< > </ >

< ={ . }>

< =" ">

< > </ >

</ >

< =" ">

< > </ >

</ >

< =" ">

< > </ >

</ >

</ >

</ >

</ >

;

};

export default ;

 Link
 styles

 Navbar

 styles nav
 Next.js

 styles links

 Home

 About

 Contact

 Navbar

next/link
./navbar.module.css

/

/about

/contact

const =>

className

className
href

href

href

 (

 header

nav
p p

ul

li li

li li

li li

ul
nav

header
)

Link

Link
Link

Link
Link

Link

And create the corresponding style modules for the same i.e.,

navbar.module.css

Routing 91

components/navbar.module.css

. {

: ;

: ;

: ;

: ;

: ;

: ;

: # ;

}

. {

: ;

: ;

: ;

: ;

: ;

: ;

}

. {

: ;

: ;

}

. : ,

. : {

: # ;

}

nav

links

links li

links li
links li

 flex
 center
 space-between
 wrap

 solid 2c2c2c

 none

 flex
 end
 center

 nowrap
 pointer

 0099ff

width
padding

display
align-items
justify-content
flex-wrap

border-bottom

flex
list-style

display
justify-content
align-items
gap

white-space
cursor

color

100%
1.5rem 2rem

1px

1

2rem

hover
active

Nothing too complex. To ensure that the navbar appears on all route

pages, we have two options:

Routing 92

 The first option is importing the navbar component in each route
page

 The second option is to import the navbar component in the parent
component of these routes, such as layout.js.

Importing it into the parent component will consistently display the

navbar across all route pages.

Wrong Method

app/page.js

import from ' '

export default () {

return
< >

< />

< > </ >

</ >

}

 Navbar

			
 Home

@/components/Navbar

function Home
 (

 main

h1 h1
main

)

Navbar

app/about/page.js

import from ' '

export default () {

return
< >

< />

< > </ >

</ >

}

 Navbar

			
 About

@/components/Navbar

function About
 (

 main

h1 h1
main

)

Navbar

Routing 93

Right Method

app/layout.js

import ' '

import { } from ' '

import from ' '

= { : ' ' }

export = {

: ' ',

: ' ',

}

export default ({ }) {

return

< =" ">

< ={ . }>

< />

{ }

</ >

</ >

}

 Inter

 Navbar

 inter ([])

 metadata

 children

 inter className

 children

./globals.css
next/font/google

@/components/Navbar

latin

Create Next App
Generated by create next app

en

subsets

title
description

 (

 html

body

body
html

)

const

const

function

lang
className

Inter

RootLayout

Navbar

By now, if you have followed all the steps properly, you should see this

inside your browser:

Routing 94

Create Next App

http://localhost:3000

Now is the routing time!

Note: Please follow the Kebab Case writing convention when writing
route names.

After creating the folder with the name about, create the special UI file

page.js inside it to show the UI for that route:

app/about/page.js

export default () {

return

< >

< > </ >

</ >

}

 Home

function page
 (

 main

h1 h1
main

)

Routing 95

https://www.theserverside.com/definition/Kebab-case

App

About

Contact

page.js

page.js

page.js

And what next?

Well, that’s it! Go to your browser and click the "About " link in the

Navbar. You will notice that the URL changes, and the text displayed on

the page switch from "Home" to "About"!

Routing 96

Create Next App

http://localhost:3000

How easy is that? Especially compared to the React.js code we

examined at the start!

Go ahead and create the route for “Contact ” in the same way, i.e.,

 Within the app directory, create a new folder called contact

 Inside the newly created contact folder, create a file named
page.js

 Add the necessary code to the page.js file to display the desired
text.

app/contact/page.js

export default () {

return
< >

< > </ >

</ >

}

 Contact

function Contact
 (

 main

h1 h1
main

)

Routing 97

http://localhost:3000/contact

After saving the changes, return to the browser. You will notice that the

modifications are immediately visible without reloading the page, all

thanks to Next.js' Fast Refresh feature.

Create Next App

http://localhost:3000

Routing 98

That was all about creating a simple route in Next.js. But what about
nested or dynamic routes? What do we have to do? Let’s explore

Nested Routes
It’s as simple as nesting one folder inside the other.

For instance, we wish to set up a route named projects/list. To achieve
this, we create two folders: projects and within it another folder called
list. Inside the list folder, we add the page.js file containing the user
interface (UI) for that specific route.

app/projects/list/page.js

export default () {

return

< >

< > </ >

</ >

}

 ProjectsList

function ProjectsList
 (

 main

p p
main

)

Routing 99

To simplify navigation to the Product List page, let's quickly include a

Link tag within the Home page:

app/projects/list/page.js

import from " ";

export default () {

return

< >

< > </ >

< =" ">

</ >

</ >

}

 Link

 Home

 See Projects

next/link

/projects/list

function

href

Home
 (

 main

h1 h1

main
)

Link

Link

Now visit the home page, and you’ll see See Projects; clicking on this

link will take you to the route we created, which is /projects/list.

Create Next App

http://localhost:3000

Routing 100

Simple nest folders within one another and create whatever route you
want. Moving forward, we have,

Dynamic Routes
Think of it as nested routes but with a slight difference. Unlike traditional
nested routes where we need to know the exact route name in advance,
dynamic routes allow for more flexibility.

The route is determined based on changing data in the application, so
we don't need to predict it beforehand.

For instance, if we need to show various project details, we can design a
single details page with a consistent layout for all projects. The only
difference will be some data that changes for each project. Instead of
making separate routes for every project detail page, we can use a
dynamic route of Next.js.

To create a dynamic route, we’ll have to wrap the folder's name in
square brackets, symbolizing that the content inside this square
bracket is variable, i.e., [folder-name].

Continuing our current application, let's add a feature for displaying
project details. Imagine we have three projects named jobit, carrent
and hipnode. We need three routes to showcase these projects:

/projects/jobit, /projects/carrent, and /projects/hipnode. Each
route represents a different project, allowing us to show its details.

We could create these as nested routes, but there are better ways.

Routing 101

Imagine the number of folders you'd have to create if you're a
professional developer with over 10 fantastic projects! And then, you'd
have to keep copy-pasting the similar project details code. That's
where dynamic routes come to the rescue! They provide a better
solution for handling such scenarios.

Within the existing projects folder, create a new folder with a name
enclosed in square brackets, i.e., app/project/[slug]. I referred to it as
slug to address the segment in general, but you can choose any name
you prefer, like id or name. Additionally, create the corresponding
special UI file, page.js, in the same location folder.

app/projects/[slug]/page.js

export default () {

return

< >

< > </ >

</ >

}

 Project Name

function ProjectDetails
 (

 main

h1 h1
main

)

Routing 102

To access this route, we will include links to our hypothetical projects on

the projects list page and give them a bit of styling.

app/projects/list/page.js

import from " ";

import from ' '

export default () {

return

< >

< > </ >

< ={ . }>

< >

< =' '>

</ >

</ >

< >

< =" ">

</ >

</ >

< >

< =" ">

</ >

</ >

</ >

</ >

}

 Link
 styles

 My Projects

 styles ul

 JobIt

 Car Rent

 hipnode

next/link
./projects.module.css

/projects/jobit

/projects/carrent

/projects/hipnode

function

className

href

href

href

ProjectsList
 (

 main

h1 h1

ul
li

li
li

li
li

li
ul

main
)

Link

Link

Link

Link

Link

Link

And corresponding relatively simple styles in the same folder:

Routing 103

app/projects/list/projects.module.css

. {

: ;

: ;

: ;

: ;

: ;

: ;

: ;

: ;

}

. {

: ;

: ;

: ;

: ;

: # ;

: ;

: ;

}

ul

ul li

 none
 flex
 center
 center
 column

 solid 2c2c2c
 center
 pointer

margin-top

list-style
display
justify-content
align-items
flex-direction

gap
width

padding
width
max-width
border-radius
border
text-align
cursor

2rem

1rem
100%

1rem
100%

300px
10px

1px

And corresponding relatively simple styles in the same folder:

Routing 104

Is there anything else? Nope, that's all there is to it. Simply click on these

project names and witness it in action!

Create Next App

http://localhost:3000

However, something doesn’t feel good. While the route for these

projects changes correctly, it would be great to see the actual project

name displayed on the respective route pages instead of the static

"Project Name." So, how to do that?

The [slug] part over here is our dynamic route segment. And Next.js

provides a way to access what value has been passed to it via the

params prop passed to page.js page.

To utilize the value of this dynamic segment, we need to do this:

Routing 105

app/projects/[slug]/page.js

export default ({ }) {

return

< >

< > { . }</ >

</ >

}

 params

 Project params slug

function ProjectDetails
 (

 main

h1 h1
main

)

If you choose to use [id] or [name] instead of [slug] as the folder
name, you will need to access it as params.id or params.name,
respectively. Whichever name you provide, it will be the same name to
access the value through the params object.

Amazing, isn’t it?

But that’s not the end of the routing in Next.js. Coming next are,

Route Groups
When working with a file-based system, having numerous folders within
the app folder may be better, especially in a more complex system. To
address this and offer better control over folder organization without
impacting the URL path structure, Next.js introduced a feature called
"Route Groups.”

Need help to make sense of?

Consider the existing structure: we already have three folders: about,
contact, and projects.

Routing 106

Now, if we need to add functionality like sign-in and sign-up, we

would have to create more folders within the app folder, causing it to

grow larger and larger.

What if we could limit the number of folders inside the app folder to a

maximum of 1-3 and include everything within these folders while

maintaining the same route path?

In this case, if we create these folders, i.e., auth and, let's say, dashboard,

right away and add the corresponding folders & pages inside them, it

will impact our routing. Why? Because, as we've learned, each folder

name serves as a route name.

app

auth

sign-in

page.js

page.js

sign-up

RoutingRouting 107

If we do it like the above, the route name for the sign-in page would be
/auth/sign-in, and similarly, for the sign-up page, it would be /auth/
sign-up.

We intended something else, right? Our desired route names are

/sign-in and /sign-up, but we still want to maintain proper file
organization. We don't want auth to be included in the URL, but we do
want it to be present in our code structure.

To meet this specific requirement, we have Route Groups. They help
organize routes into logical groups like auth, team, etc. We can create a
route group by enclosing the folder name in parentheses, like (auth).

In this case, if we create these folders, i.e., auth and, let's say, dashboard,
right away and add the corresponding folders & pages inside them, it
will impact our routing. Why? Because, as we've learned, each folder
name serves as a route name.

 (auth)

Create the (auth) folder inside the app folder and add routes for the
sign-in and sign-up pages. Additionally, create a page.js file within
each of these folders to display the respective UI:

 Sign I

 Sign Up

Routing 108

 Sign In

app/(auth)/sign-in/page.js

export default () {

return

< >

< > </ >

</ >

}

 Sign In

function SignIn
 (

 main

h1 h1
main

)

 Sign Up

app/(auth)/sign-up/page.js

export default () {

return

< >

< > </ >

</ >

}

 Sign Up

function SignUp
 (

 main

h1 h1
main

)

Here is how the structure should appear:

Routing 109

Next, let's transfer the remaining folders, namely about, contact, and
projects, into our (dashboard) route group.

 (dashboard)

Create a folder named (dashboard) within the (app) folder and simply
move the previously created folders (about, contact, and projects)
into it as they are.

app

(auth)

(dashboard)

about

page.js

page.js

page.js

page.js

contact

projects

[slug]

list

Your structure should now look like this:

Routing 110

All set. Now let's put our application to the test

How surreal! No code breaks, and everything works flawlessly — as if

nothing had happened. The URL, the linking — everything is functioning

perfectly, and all of this on the first try!

Create Next App

http://localhost:3000

Routing 111

Moreover, we can observe our newly created auth routes by modifying

the URL, such as:

Create Next App

http://localhost:3000

That, my friend, is the beauty of Next.js 15!

Is that the end? End of routing? Of course, not!

There are two more amazing client-side routing features, i.e., Parallel

Routes and Intercepting Routes. Not to forget, we also have API routes

We will discuss the Parallel & Intercepting Routes in the “Advanced

Routing” chapter with the suitable associated code example. But to

warm you up:

Routing 112

Parallel Routes

This feature allows us to display one or more pages simultaneously or

conditionally within the same layout.

Let's imagine we're developing an e-commerce dashboard. Depending

on the logged-in user, we need to render different UI components. For

instance, if an admin is viewing the dashboard, we want to display

complete sales data and the list of users and products. However, for

non-admin users, we should show sales and products specific to them

while hiding the list of users. All of this should be on the same route.

Rather than complicating the code within a single page with multiple

conditions, we can utilize parallel routes that render based on whether

the user is an admin or not.

Intercepting Routes

This feature is handy when displaying a new route while preserving the

current page's context. It allows us to intercept a new route without fully

transitioning from the current layout.

Now, let's consider a scenario where we're developing an e-commerce

website and want to implement a product preview feature. When we

click on the "Preview" button for a product, it should display limited

information about the product in a modal format, and the URL should

change to products/product-1. However, the modal should remain on

top of the current page, just like a typical modal.

This is where intercepting routes come in handy.

Routing 113

We can utilize this feature to display the content inside the modal on

top of the page from which it was triggered while also updating the URL

to reflect the product previewed.

We’ll fully dive into these two powerful features when creating an

application in the upcoming advanced routing chapter.

Tasks
 Create a complete routing structure for an e-commerce project

using different routes. Here are the expected routes:

 Home page: "/

 Product listing page: "/products

 Product detail page: "/products/{productId}

 Shopping cart page: "/cart

 Checkout page: "/checkout

 Order confirmation page: "/order/{orderId}

 User account page: "/account

 Login page: "/login

 Registration page: "/register

 Search results page: "/search?q={searchQuery}"

Explore routing of Next.js. How does it differ from routes in React.js?

What is the purpose of route groups, and how can they be created
in Next.js?

What is a dynamic route, and why should we create dynamic routes
in web applications?

Routing 114

Chapter 8

Rendering
In this chapter, you'll learn about rendering in Next.js and gain a deep

understanding of key concepts, strategies, and environments. You'll

discover how Next.js handles rendering, the different rendering

strategies it offers, and when to use each one.

Rendering

We have previously discussed terms like "rendering," "runtime, and

"environment," but what do they truly mean, and how does Next.js fit into

the picture?

You might be thinking, "Enough with the theory, show me the code!" Well,

we can definitely do that. In fact, we have already done some best-in-

class Next.js 15 project videos for you to dive right into.

Build and Deploy a Full Stack
MERN Next.js Threads App...

Watch and Code Now

Build and Deploy a Full Stack
Next.js Application | React...

Watch and Code Now

Build and Deploy a Modern Next.js
Application | React, Next JS, Typ...

Watch and Code Now

Next.js Full Course 2024 | Build
and Deploy a Full Stack App...

Watch and Code Now

However, it's important to note that simply watching these videos and

successfully deploying your application might not suffice.

Rendering 115

https://youtu.be/O5cmLDVTgAs
https://youtu.be/986hztrfaSQ
https://youtu.be/pUNSHPyVryU
https://youtu.be/Zq5fmkH0T78

When you eventually venture into your own projects, you might stumble
because you lack a deep understanding of the "why" behind your
decisions. You’ll find yourself struggling with the choice.

So always aim to clear your “Why” and sit back to watch yourself
perfecting the “How”!

In Next.js 15, there are different ways things are displayed (strategies),
the specific times they run (runtime/build time), and the specific places
where they work (environment).

Rendering
It’s a process of generating or creating the user interface from the code
we write. React 18 and Next.js 15 introduced different strategies to render
an application. Believe it or not, we can use multiple strategies within
the same application to render it differently — the god mode feature of
Next.js!

Although we did talk about it a bit,

Environments
There are two environments where we can render our application code,
i.e., the client (User’s browser) and server (Computer where we deploy
our code).

Rendering 116

Client Server

Happens on the server
before sending the page to
the client’s browser

Provides a fully rendered
HTML page to the client
resulting in faster initial page
load time

Fully rendered content
enhancing search engine
rankings and social media
sharing previews

Performs well on any slower
device as rendering is done
on the server

Consistent rendering across
any devices regardless of
the configuration reducing
the risk of compatibility
issues

Reduces the amount of
client-side JavaScript code
sent to user’s browser thus
enhancing security by
limiting potential
vulnerabilities

Rendering Process Occurs on the user’s browser

Provides a dynamic and
interactive user experience

Smoother transition between
the pages and real-time
data fetching

Reduced server load and
potentially lower hosting
costs as the client’s browser
is responsible for handling
the rendering.

Compatibility and
performance depend on the
user’s device configuration.

Potential risk of security
vulnerabilities such as
Cross-Site Scripting (XSS),
Code Injection, Data
Exposure, etc.

Interactivity &
Load Time

Fetching & SEO

Load &
Performance

Consistent
Rendering

Security

So which to use and when?

Rendering 117

If search engine optimization (SEO), security concerns, and user device
specifications are not a priority for you, and your focus is primarily on
delivering dynamic interactivity to the user, then client-side rendering
(CSR) with technologies like React.js can be a suitable choice.

A use case where this approach is applicable is in the business-to-
business (B2B) domain. In such cases, the target audience is specific
and known, eliminating the need to prioritize SEO since the product is
not intended for a wide public audience. This allows you to prioritize
developing interactive features and functionalities without dedicating
significant resources to SEO optimization.

And if you’re someone who cares about all these points, well, you know
what to choose

The time
Once the compilation process is complete, which involves converting
code from a higher-level programming language to a lower-level
representation (binary code), our application goes through two crucial
phases: Build Time and Run Time.

Build time

It’s a series of steps where we prepare our application code for
production involving the steps of code compilation, bundling,
optimization, etc.

In short, build time or compile time is the time period in which we, the
developer, is compiling the code.

Rendering 118

Remember the npm run dev script?

It’s that command that generated the build of our application

containing all the necessary static files, bundling, optimization,

dependency resolution, etc.

Run Time

It refers to the time period when the compiled or deployed application

is actively executing and running, involving the dynamic execution of

the application’s code and utilization of system resources.

In short, run time is the time period when a user is running our

application’s piece of code.

It’s about handling user interaction, such as user input, responding to

events, to data processing, such as manipulating/accessing data and

interacting with external services or APIs.

Run Time Environment

Don’t confuse this with the “Run Time” we talked about just before. That

was the time period of an application. Whereas RTE, run time

environment, is a specific environment in which a program or

application runs during its execution.

It provides a set of libraries, services, or runtime components that

support the execution of the program.

The Node.js — What is it?

Rendering 119

It’s a JavaScript Run Time Environment that allows us, developers, to run

JavaScript code outside of the web browser.

Similarly, Next.js provides two different run time environments to

execute our applications’ code.

The Node.js runtime

Default runtime that has access to all Node.js APIs and the ecosystem

The Edge runtime

A lightweight runtime based on Web APIs with support to a limited

subset of Node.js APIs.

Next.js offers the flexibility of choosing the runtime. You can do switch

swiftly by changing one word:

export = ' ' const runtime edge // 'nodejs' (default) | 'edge'

Isn't it amazing? Just with a simple word change, a whole new

ecosystem emerges. It's like the snap of Thanos's fingers, and suddenly,

a completely different world opens up!

Rendering 120

https://nextjs.org/docs/app/api-reference/edge

And for the final,

Rendering Strategies
Depending on the above-discussed factors, such as the rendering
environment, and the time period, i.e., build and run time, Next.js
provides three strategies for rendering on the server:

Static Site Generation
Remember the build time? Well, the famous SSG, static site generation,
happens at build time on the server.

During the build process, the content is generated and converted into
HTML, CSS, and JavaScript files. It doesn’t require server interaction
during runtime. The generated static files can be hosted on content
delivery network (CDN) and then served to the client as-is.

The result, the rendered content, is cached and reused on subsequent
requests leading to fast content delivery and less server load. This
minimal processing results in higher performance.

Although SSG handles dynamic data during the build process, it
requires a rebuild if you update anything, as it happens during the build
time!

An example use case would be any Documentation or Blog & News
websites. All the articles or content are static 90% of the time. It doesn’t
need any processing. Once built, we can ship it as it is. Whenever we
want to update the content, we can rebuild it!

Rendering 121

To address this limitation, Next.js introduced,

Incremental Static Generation

It allows us to update these static pages after we build them without

needing to rebuild the entire site.

The on-demand generation of ISR allows us to generate a specific page

on-demand or in response to a user’s request. Meaning, a certain part

of the websites or pages will be rendered at build time while other is

generated only when needed, i.e., at run time.

This reduces the build time and improves the overall performance of

the website by updating only requested pages for regeneration.

With this hybrid strategy, we now have the flexibility to manage content

updates. We can cache the static content as well as revalidate them if

needed.

An example use case would be the same where we can use SSG for the

article details page and use ISG for showing a list of articles

And last but not least,

Server Side Rendering

Dynamic rendering, in a nutshell, enables the generation of dynamic

content for each request, providing fresh and interactive experiences.

If we have SSG and ISG, why do we need SSR?

Rendering 122

Given the availability of Static Site Generation (SSG) and Incremental
Static Generation (ISG), one might wonder why Server Side Rendering
(SSR) is still needed. Both approaches offer valuable benefits, but their
suitability depends on specific use cases.

SSR excels in situations where a website heavily relies on client-side
interactivity and requires real-time updates. It is particularly well-suited
for authentication, real-time collaborative applications such as chat
platforms, editing tools, and video streaming services.

SSR involves heavy server-side processing, where the server executes
code for every individual request, generates the necessary HTML, and
delivers the response along with the required JavaScript code for
client-side interactivity.

Due to this dynamic nature, caching content responses becomes
challenging, resulting in increased server load when compared to SSG
or ISG. However, the benefits of real-time interactivity and up-to-date
content make SSR a valuable choice for specific application
requirements.

But hey, we have the freedom to choose any of these rendering
techniques for any part of your page code! Yes, you read that right. By
default, Next.js uses Static Site Generation rendering.

However, we can easily switch to Incremental Static Generation or
Server Side Rendering as per our specific requirements for different
parts of your application. The flexibility of Next.js allows us to pick the
most suitable rendering approach for each page of our website.

Rendering 123

Okay, okay, but when to use which method?

Will this page or content display the
same information for each request?

Does this page or content require frequent
information updates, potentially every second?

YesYes

Yes

No?No?

No

Static Site Generation
(SSG) is the suitable choice

Static Site Generation
(SSG) is the suitable choice

Server Side Rendering (SSR)
is the appropriate option.

Proceed to the next
question.

Proceed to the next
question.

Incremental Static
Generation (ISG) is the

recommended approach.

That wraps it up, my friend. By understanding what it is and when to
utilize it, we can make informed decisions that will impress our
managers and bosses.

The how of all this is following in the next chapter, so keep reading. But
before you go, as usual, pause and try to answer these questions:

Rendering 124

Tasks
What does rendering mean? Explain different rendering
strategies of Next.js

What is build time and run time? Explain the difference between
them in a Web application life

What are the benefits of rendering content in a Client vs Server
environment?

Imagine, you are developing a large-scale e-commerce
platform that requires a rendering strategy to handle a high
volume of product listings. The platform needs to display
product information, pricing, availability, and customer reviews.
Additionally, the platform aims to provide a fast and interactive
user experience.

Considering the complex requirements of the e-commerce
platform, discuss the trade-offs and factors you would consider
when choosing between Static Site Generation (SSG) and Server
Side Rendering (SSR) as the primary rendering strategy.

Rendering 125

Chapter 9

Data Fetching
This chapter explores data fetching strategies in Next.js. We'll compare
React's traditional hooks with Next.js' React Server Components (RSC)
for efficient API and database interactions. Learn about Next.js' caching
methods and rendering strategies like SSG, SSR, and ISR to enhance
performance and data reliability in your applications.

Data Fetching
Earlier, we explored various rendering environments and strategies,

enabling us to determine the optimal approach for maximizing our

app's performance in different scenarios.

But how do we actually use these strategies in code? It's easy. The hard

part was understanding how these different strategies work.

So, let’s begin.

Typically, if someone asks you to implement data fetching in an app,

this is likely what you'd do, right?

App.js

import , { , } from ' ';

() {

[,] = null ;

[,] = ;

[,] = null ;

() {

= () {

try {

= await ' ' ;

= await . ;

;

} catch {

;

} finally {

;

}

};

;

}, ;

 React useState useEffect

data setData
isLoading setIsLoading
error setError

fetchData

response
jsonData response

jsonData
error

error

 ()
 ()
 ()

 (

 ()
 ()
 ()
 ()
 ()

 ()

 ()
 [])

react

https://api.example.com/data

function
const
const
const

=>
const async =>

const
const

App
useState

useState
useState

useEffect

fetch
json

setData

setError

setIsLoading

fetchData

true

false

Data Fetching 126

 ()
 div div

 ()
 div div

 (

 div

h1 h1
pre pre
div

)

if {

return < > </ >;

}

if {

return < > { . }</ >;

}

return
< >

< > </ >

< >{ . , null, }</ >

</ >

;

}

export default ;

isLoading
Loading...

error
Error: error message

 Data from API:
 JSON (data)

 App

stringify 2

Yep, it's the usual fetch using useEffect, where we call the API when the

component mounts, retrieve the data, store it in the state, and then

display it.

But the same thing, with RSC — React Server Components in Next.js

would look like this,

import from ' ';

() {

= await ' ' ;

= await . ;

return
< >

< > </ >

< >{ . , null, }</ >

</ >

;

}

export default ;

 React

response
jsonData response

 Data from API:
 JSON (jsonData)

 App

react

https://api.example.com/data
async function
const
const

App
fetch

json

stringify

 ()
 ()

 (

 div

h1 h1
pre pre
div

)

2

Data Fetching 127

Isn’t it simple? Less code? And straight to the point?

With React Server Components, we directly do fetch or any operations

that we want to do without any need for hooks.

For example, if we want to make a call to our database and get a list of

items, we can do this in RSC,

import from ' ';

import from ' ';

() {

= await . . ;

return
< >

< > </ >

< >{ . , null, }</ >

</ >

;

}

export default ;

 React
 prisma

users prisma user

 Data from Prisma:
 JSON (users)

 App

react
./prisma

async function
const

App
findMany

stringify

 ()

 (

 div

h1 h1
pre pre

div
)

2

We know JavaScript follows sequential order. It starts from the top to

bottom and executes each line depending on whether it’s synchronous

or asynchronous in behavior.

Here’s a general overview of how JavaScript execution works:

 Parsing: The JavaScript engine parses the entire script to understand

its syntax. This involves breaking down the code into tokens and

creating an Abstract Syntax Tree (AST).

Data Fetching 128

 Execution Context Creation: Before executing any code, the engine
creates a global execution context. This context includes the global
object (window in browsers, global in Node.js), the this keyword
(which refers to the global object in the global context), and a
reference to the outer environment.

 Hoisting: Variable and function declarations are hoisted to the top of
their respective scopes. This means that they are processed before
the execution of the code starts.

 Execution Phase: The code is executed line by line, starting from the
top of the script. Each statement is executed in order unless it
involves asynchronous operations.

 Asynchronous Operations: When encountering asynchronous
operations like timers (setTimeout, setInterval), AJAX requests, or
event listeners, JavaScript doesn't wait for them to complete.
Instead, it continues executing the rest of the code. Once the
asynchronous operation is complete, a callback function is added to
the event queue.

 Event Loop and Callback Queue: JavaScript runtime maintains an
event loop that continuously checks the call stack and the callback
queue. If the call stack is empty, it takes the first callback from the
queue and pushes it onto the call stack for execution.

 Function Execution: When a function is called, a new execution
context is created for that function, which follows the same steps as
the global execution context.

Data Fetching 129

Function execution contexts are pushed onto the call stack, and
when a function returns, its context is popped off the stack.

 Scope Chain: During execution, JavaScript resolves variable and
function references by traversing the scope chain, which includes
the local scope, the outer (enclosing) function scopes, and finally the
global scope.

 Garbage Collection: As the code executes, the JavaScript engine
keeps track of objects and variables no longer in use. These are
marked for garbage collection to free up memory.

For the above code, JavaScript will do the same (of course, Next.js &
React.js will act first to execute code to turn this component into vanilla
JavaScript), but where? Any guess?

Of course, you know. On Server!!

By default, any kind of components you’ll write in Next.js are React
Server Components which are guaranteed to run only on Server.

Then how can we write components that run on a client in Next.js?

As easy, okay, I really need to stop doing that.

We do so by adding a flag at the top of that component file, like this,

Data Fetching 130

App.js

' ';

import , { , } from ' ';

() {

[,] = null ;

[,] = ;

[,] = null ;

() {

= () {

try {

= await ' ' ;

= await . ;

;

} catch {

;

} finally {

;

}

};

;

}, ;

if {

return < > </ >;

}

if {

return < > { . }</ >;

}

return
< >

< > </ >

< >{ . , null, }</ >

</ >

;

}

export default ;

use client

react

https://api.example.com/data

 React useState useEffect

data setData
isLoading setIsLoading
error setError

fetchData

response
jsonData response

jsonData
error

error

isLoading
Loading...

error
Error: error message

 Data from API:
 JSON (data)

 App

 ()
 ()
 ()

 (

 ()
 ()
 ()
 ()
 ()

 ()

 ()
 [])

 ()
 div div

 ()
 div div

 (

 div

h1 h1
pre pre

div
)

function
const
const
const

=>
const async =>

const
const

App
useState

useState
useState

useEffect

fetch
json

setData

setError

setIsLoading

fetchData

stringify

true

false

2

Data Fetching 131

Isn’t it too good? We can change the rendering execution environment
just by adding/removing a two-word flag for each component in Next.js.

I know, I know. But are you aware that what we've essentially done
above is implement one of the rendering strategies of Next.js?

Absolutely, it's SSG (Static Site Generation), the default rendering
strategy used by Next.js.

As we've previously covered, this strategy involves rendering the
component on the server side during build time. Subsequently,
whenever a user requests this specific component or page, the pre-
generated static content is served to the user. It's cached and doesn't
undergo re-rendering with each request, distinguishing it from other
approaches.

Alright, I see you understand now. But what if we need to refresh or
reprocess the component or content every time a user sends a
request? Yes, how do we implement the SSR strategy?

Server Side Rendering
Simple. Yes, I know I said it again, but it really is as simple as flipping a
light switch.

There are two ways to do this:

Data Fetching 132

1. On Demand

We can explicitly tell Next.js not to cache anything and thus render

content on each request to get fresh data

import from ' ';

() {

= await ' ', {

: ' ',

} ;

= await . ;

return
< >

< > </ >

< >{ . , null, }</ >

</ >

;

}

export default ;

 React

response

jsonData response

 Data from API:
 JSON (jsonData)

 App

react

https://api.example.com/data
no-store

async function
const

const

App
fetch

json

stringify

 (
 cache
)
 ()

 (

 div

h1 h1
pre pre

div
)

2

cache has two values,

 no-store: With "no-store," Next.js skips checking its cache memory

altogether. Instead, it goes straight to the main server every single

time you ask for something. Plus, it doesn't save anything it

downloads, so there's no chance of using cached data later on.

 force-cache: When setting the cache value to this, Next.js checks if it

already has the information we're asking for stored in its memory. If it

does and it's still up-to-date, it'll just give us that info without

bothering anyone else. But if it doesn't have what we need, or if what

it has is outdated, it'll go out and get the latest version from the main

server, then save that updated info as a cache for next time.

Data Fetching 133

There are additional methods, such as revalidatePath

or revalidateTag, for on-demand validation, but we'll

dive into those later in the "Server Actions" chapter.

2. Time based

The whole basis of these rendering strategies is to cache the data

depending on time.

We know that by default, Next.js uses SSG, which caches everything. So

what if we define this method at the time we want? Means, revalidate

the cache whenever we want to.

And how do we do that? As simple as… Yes, I know, another analogy. But

it’s really that simple.

We do it by adding this statement on the page,

export = | | ; revalidate numberconst false 0

or if we’re using fetch API, we do it so by,

fetch(number)` `, { : { : | | } } ;https://... next revalidate false 0

Data Fetching 134

Do keep in mind that the fetch we’re using here isn’t the actual
Web API Fetch. It has been extended by Next.js to automatically
cache requests. It’s an extension to the original fetch API.

So if you see someone using fetch in Next.js applications instead of
axios or other, then it’s there for some reason.

Did you read the above callout? Don’t skip it

Back to the revalidate, it accepts different values,

 false: Means, as you expected, the resource will be stored in the
cache for as long as possible, basically forever. It's like saying "keep
this forever" to Next.js.

But “forever” may not always work (like the real world). Although
Next.js will keep the cache, HTTP cache might decide to get rid of
older stuff eventually to make room for new things.

The HTTP cache is a mechanism used by web browsers and
servers to store previously accessed web resources, such as HTML
pages, images, CSS files, and JavaScript files.

When we visit a website, our browser may store copies of these
resources locally on our device to speed up future visits. This
caching helps reduce load times and bandwidth usage by
retrieving files from the local cache rather than downloading them
again from the web server.

One more thing, revalidate=false is the same as
revalidate=Infinity. Different ways of achieving the same thing.

Data Fetching 135

 0: It’s similar to setting revalidate to false. Same effect. It’ll tell Next.js
not to cache anything and render that specific page/route every
time the user makes a request/visit

 number: Choosing a certain number tells Next.js how long to keep a
page or route in its memory (cache) before refreshing it. For example,
if we set it to 5 minutes, Next.js will remember and show the same
page for 5 minutes. After that, it will get a fresh version, save it, and
repeat the loop. Understand? Does that remind you of something??
Think!!

Now moving to where we were actually, i.e., Server Side Rendering. So
can you now give me an example of how we can do SSR with time-
based validation?

Yes, we can implement SSR like this,

import from ' ';

() {

= await ' ', {

: { : },

} ;

= await . ;

return
< >

< > </ >

< >{ . , null, }</ >

</ >

;

}

export default ;

 React

response

jsonData response

 Data from API:
 JSON (jsonData)

 App

react

https://api.example.com/data
async function
const

const

App
fetch

json

stringify

 (
 next revalidate
)
 ()

 (

 div

h1 h1
pre pre

div
)

0

2

Data Fetching 136

And yes, that way too,

import from ' ';

export = ;

() {

= await ' ' ;

= await . ;

return
< >

< > </ >

< >{ . , null, }</ >

</ >

;

}

export default ;

 React

 revalidate

response
jsonData response

 Data from API:
 JSON (jsonData)

 App

react

https://api.example.com/data

const

async function
const
const

0

2

App
fetch

json

stringify

 ()
 ()

 (

 div

h1 h1
pre pre

div
)

Amazing, both answers are absolutely correct to render a page every

time a user makes a request!

Upcoming,

Incremental Static Regeneration

Do you remember what and how ISR works?? We actually learned about

it in SSR too. Take a pause, answer it to yourself, and then keep reading.

When we want to make the most of both SSG and SSR, we do ISR. For

example, for blogging applications. And a way to implement that in

Next.js is like this,

Data Fetching 137

import from ' ';

export = ;

() {

= await ' ' ;

= await . ;

return
< >

< > </ >

< >{ . , null, }</ >

</ >

;

}

export default ;

 React

 revalidate

response
jsonData response

 Data from API:
 JSON (jsonData)

 App

react

https://api.example.com/data

const

async function
const
const

5000

2

// (seconds)

App
fetch

json

stringify

 ()
 ()

 (

 div

h1 h1
pre pre
div

)

And if we just want to implement ISR only for a particular fetch, we do,

import from ' ';

() {

= await ' ', {

: { : },

} ;

= await . ;

return
< >

< > </ >

< >{ . , null, }</ >

</ >

;

}

export default ;

 React

response

jsonData response

 Data from API:
 JSON (jsonData)

 App

react

https://api.example.com/data
async function
const

const

App
fetch

json

stringify

 (
 next revalidate
)
 ()

 (

 div

h1 h1
pre pre

div
)

5000

2

Easy peasy, isn’t it??

Data Fetching 138

Time to revise what you learned in this chapter. Take a pause and

answer these questions.

Tasks
What are the methods for fetching data in Next.js?

Explain the implementation of SSG, ISR, and SSR in Next.js with
examples for each.

What is the process for data revalidation in Next.js?

Define the distinction between Time-Based and On-Demand
Validation

Explain the difference between these two examples and when we
should use which.

 Scenario 1

import from " ";

() {

= await " ",

{ : { : } }

;

= await . ;

= await
= await .

< >

< > </ >

< >{ . , null, }</ >

< > </ >

< >{ . , null, }</ >

</ >

 React

data

dataJSON data

users https
const usersJSON users

 Data from API:
 JSON (dataJSON)

 Users from API:
 JSON (usersJSON)

export default App

react

https://api.example.com/data
async function
const

const

const

App
fetch

json

fetch
json

return

stringify

stringify

 (

	 next revalidate
)
 ()

 (:
 ()

 (

 div

h1 h1
pre pre

h1 h1
pre pre

div
);

}

 ;

5000

2

2

//api.example.com/users")

Data Fetching 139

 Scenario 2

import from " ";

export =

() {

= await " " ;

= await . ;

= await
= await .

< >

< > </ >

< >{ . , null, }</ >

< > </ >

< >{ . , null, }</ >

</ >

 React

 revalidate

data
dataJSON data

users https
const usersJSON users

 Data from API:
 JSON (dataJSON)

 Users from API:
 JSON (usersJSON)

export default App

react

https://api.example.com/data

const

async function
const
const

const

5000

2

2

App
fetch

json

fetch
json

return

stringify

stringify

 ()
 ()

 (:
 ()

 (

 div

h1 h1
pre pre

h1 h1
pre pre

div
);

}

 ;

//api.example.com/users")

Data Fetching 140

Chapter 10

SEO and Metadata
This chapter explores SEO (Search Engine Optimization) in Next.js,
focusing on enhancing website visibility and attracting organic traffic.
Learn about implementing metadata for better search engine indexing,
distinguishing between static and dynamic metadata, and leveraging
Next.js features for optimized SEO strategies.

SEO and Metadata
We talked about lots of things so far, from how Next.js works to different
strategies, their implementation, and all. One of the highlighted parts of
Next.js we talked about how it’s useful when it comes to “SEO”

Using all these features we learned is amazing, but if we people don’t
see it, then there is no use for it, is it?

We build websites for people. So it’s also our responsibility to find a
solution in such a way that we’ll get lots of traffic on our website and it’s
noticeable by people on a seaful of websites internet.

There are many ways to do that via the “non-developer” way. Meaning,
your company or your team can create ads, funny memes, or create
lots of social content, stay active, and all those. But this is non-organic
traffic, meaning you have to pay some to get some traffic.

On the other hand, organic traffic is what we as developers can do
inside our code so web crawlers would be able to index them properly
on search engines aka SEO — Search Engine Optimization.

SEO is like trying to impress a picky cat with your website. Imagine your
cat is internet, and it only pays attention to the shiniest, most interesting
toys (websites). So, SEO is your way of making your website the coolest,
sparkliest cat toy in the room—using the right tricks (keywords),
arranging things neatly (site structure), and making sure your cat
enjoys playing with it (user experience).

SEO and Metadata 141

The better you do this, the more your cat (search engine) will show off
your awesome toy to others (users).

We can improve SEO by following these best practices on our website,

Best Practices to Improve SEO

Keywords

Keywords are like labels that tell web crawlers what your content is
about. When a user searches for something using these words, the
crawlers know to present your page as a potential match.

Content Quality

High-quality content is like a magnet for both users and crawlers. Users
stick around longer, and crawlers recognize that engagement,
interpreting it as a signal that your content is relevant.

Meta Tags

Think of meta tags as your page's ID card. It tells search engines and
users a quick summary of what to expect. A convincing ID card means
more clicks.

Website Structure

Imagine your website is a book. A well-organized structure is like
chapters and headings, making it easy for search engines to read and
understand what's inside.

SEO and Metadata 142

Site Speed

Faster websites are like express lanes. Search engines love it because
they can quickly check and list your pages. Users love it because they
don't have to wait.

And that’s what we learned so far throughout this ebook on how using
RSC and SSR combined in Next.js gives us the best website
performance.

Backlinks

Backlinks are recommendations. When other reputable sites link to
yours, it's like saying, "This site is trustworthy." Search engines notice and
boost your ranking.

Clear URLs

URLs are like street addresses. Clear ones make it easy for search
engines to find your pages. Confusing addresses may lead to lost
visitors.

… and a few more. But now let’s see how we can actually implement
some of these easily in Next.js.

There are two ways through which we can add metadata to our website
using Next.js’s Metadata API that decides the look & feel of our website
when sharing with others or on the Internet in general (for search
engines)

But before that, we need to address the difference between static and
dynamic metadata. Do you know the difference between them?

SEO and Metadata 143

Static Metadata
Simply put, it’s information that doesn't change very often, if at all.

This includes things like the page title, meta description, and meta
keywords. Once set, these elements remain the same unless
intentionally updated by a website owner or developer.

It's like writing your name on a label that's stuck on a box - it's there to
stay unless you physically change it.

Dynamic Metadata
As you can guess, it’s information that can change based on various
factors like user interactions, search queries, or other conditions.

This type of metadata is often generated automatically by a website's
content management system (CMS) or scripting languages.

For instance, the meta description might change depending on the
specific search term a user uses or based on the content of the page.

It's like a label that updates itself depending on what's inside the box or
who's looking at it.

Understood? Now in Next.js, we can implement both of these using two
different methods,

SEO and Metadata 144

1. Config Based
All we have to do is create a javascript object in any layout or page file

and export it. Next.js will automatically detect it and turn it into relevant

meta tags for those routes

layout.tsx | page.tsx

export = {

: ' ',

:

" ",

};

export default () {}

 metadata

const

function

title
description

JS Mastery

Gain Real-world Experience And Land That Dev Job You've Always Imagined

Page

The title key within this metadata object will be transformed into the

HTML <title /> tag, while the description will be converted into a

<meta /> tag within the <head /> section of the HTML document.

The result of the above code will be as follows,

Output

<! >

< =" ">

< >

< > </ >

< =" " ="

">

</ >

< >

</ >

</ >

DOCTYPE html

 JS Mastery

 <!-- Your page content goes here -->

html
head

title title
meta

head
body

body
html

lang

name content

en

description Gain Real-world Experience And Land 

 That Dev Job You've Always Imagined

SEO and Metadata 145

Next.js gives us many ways to make our website better for search

engines. It covers everything from setting up metadata for social media

to organizing bookmarks and categories. You can check the complete

metadata fields list here:

Metadata Object and
generateMetadata Options

Link to blog

This covered setting up static metadata using config-based approach,

but how can we apply the same configuration approach to generate

dynamic metadata, and when is it most appropriate to do so?

Dynamic Metadata

If there are dynamically generated pages, i.e., dynamic routes, that we

want search engines to index—which is a best practice—we can use the

generateMetadata function in Next.js to produce metadata specifically

tailored for these pages.

For example, to show you, I have implemented this strategy on my

 for Resources.

JS

Mastery website

Free Resources | JS Mastery
Free resources database containing
ebooks, guides and videos

https://www.jsmastery.pro/resources

SEO and Metadata 146

https://nextjs.org/docs/app/api-reference/functions/generate-metadata#metadata-fields
https://www.jsmastery.pro/resources
https://www.jsmastery.pro/resources
https://www.jsmastery.pro/resources

For the main Resource page, you’ll see different titles and descriptions

and if now you click on one of the resources, you’ll see a change in title

and description as well.

Free Resources | JS Mastery
Free resources database containing
ebooks, guides and videos

https://jsmastery.pro/resource/1e

Same for other resources. Each has its own title, description, and image,

which helps web crawlers index these pages as well.

Okay, but how can we achieve this in Next.js? Achieving this is super

easy, and it’s like this:

SEO and Metadata 147

layout.tsx | page.tsx

export ({ }) {

{ } = ;

= await { } ;

= . + ' ';

=

' ';

return {

,

: ,

: {

' ': ,

' ': ,

' ': . ,

' ': ,

' ': . ,

' ': ,

},

};

}

export default ({ , }) {}

 params
id params

resource id

title resource title
seoDescription

title
seoDescription

title
seoDescription

resource image
title
resource image

seoDescription

 params searchParams

async function
const
const

const
const

function

generateMetadata

getResourceById

Page

 ()

 description
 other
 og:title
 og:description
 og:image
 twitter:title
 twitter:image
 twitter:description

 | JS Mastery

Free resources database containing ebooks, guides and videos

The og: and twitter: fields in metadata are used for social media
optimization (SMO). They provide information to social media
platforms like Facebook and Twitter about how shared links from
your website should be displayed.

 og:: These are Open Graph meta tags, which are used by
Facebook and other platforms to understand and display shared

content. Examples include og:title, og:description, and

og:image. These tags help control how your content appears
when shared on social media platforms.

SEO and Metadata 148

 twitter:: These meta tags are specifically for Twitter cards,

which allow you to control how your content is displayed when

shared on Twitter. Examples include twitter:title,

twitter:description, and twitter:image.

Prior to defining the Page component, we gather metadata by fetching

data from a database, API, or any other source. We then use this data to

create the metadata object, and that's all.

Some of you who have taken our Next.js course may have a question:

What happens if we make a fetch or database call in the

generateMetadata function and another one in the main

component to display the result? Wouldn't this result in two fetch or

database calls for the same thing?

Excellent question, but the short answer is No, Nada, Nah.

But, What if we don’t use fetch?

As we covered in the previous lesson, fetch requests are

automatically memoized by default. This isn't the standard Web

Fetch; it's an extended version that caches requests across the

application. So, these fetch requests are automatically memoized for

the same data across generateMetadata, generateStaticParams,

Layouts, Pages, and Server Components.

We have alternative methods available, such as or

, to achieve a similar result as Next.js’s

fetch and avoid calling the database or API twice on the same page.

React’s Cache

Next.js’s unstable_cache

SEO and Metadata 149

https://nextjs.org/docs/app/building-your-application/caching#request-memoization
https://nextjs.org/docs/app/building-your-application/caching#request-memoization
https://nextjs.org/docs/app/api-reference/functions/unstable_cache

Does this make sense?

Before we learn about the next strategy to add metadata in Next.js, do

keep in mind that, “Both static and dynamic metadata

through generateMetadata are only supported in Server Components.”

Don’t try that in Client Component and expect it to work :D

So, the next way of handling metadata in Next.js is —

2. File Based Metadata
As the name suggests, we can put files like robot, sitemap, favicon,

open graph images, or other site icons directly inside the app folder, and

next.js will automatically detect and generate the corresponding meta

tags.

For example,

> ap

 favicon.ic

 icon.(ico|jpg|jpeg|png|svg

 apple-icon.(jpg|jpeg|png

 opengraph-image.(jpg|jpeg|png|gif

 twitter-image.(jpg|jpeg|png|gif

 opengraph-image.alt.tx

 twitter-image.alt.tx

 ...

SEO and Metadata 150

It’s just about adding files with these names (has to be the same name)
directly inside the app folder. It’ll work out the same as the config-based
approach. You can find the full list of all files that can be created to
define metadata here:

File Conventions: Metadata
Files | Next.js

Link to blog

One thing worth noting here is, file based metadata has the higher
priority and will override any config-based metadata. So if you set
metadata in a file, it will be used instead of the same metadata field
you set in the configuration.

So, can you now create proper SEOized applications using Nextjs?
Before we dive into another interesting topic, take your time to
complete these,

Tasks
 Explain the concept of search engine optimization (SEO) and its 

 importance in web development.

How can we implement SEO in Next.js applications?

How does metadata impact search engine rankings and visibility of
web pages?

SEO and Metadata 151

https://nextjs.org/docs/app/api-reference/file-conventions/metadata

What are different strategies to define metadata in Next.js?

Imagine you're hired by an online retailer that uses Next.js for their
website. The company wants to improve its product pages' visibility
in search engine results to drive more organic traffic and increase
sales. How would you approach optimizing the product pages for
SEO, considering factors such as product descriptions, images, and
reviews?

SEO and Metadata 152

Chapter 11

Backend
In this chapter, we dive into backend development using Next.js,

exploring its modern approach to server-side operations and API

handling. You’ll discover how Next.js simplifies backend tasks

traditionally managed with frameworks like Express.js.

Learn about setting up APIs with minimal configuration, implementing

middleware for request processing, and leveraging Next.js features like

dynamic routes and caching.

Backend
Having reached this point, perhaps some of you may have thought, 'Ah,
I've had my fill of Frontend!'

Using all these features we learned is amazing, but if we people don’t
see it, then there is no use for it, is it?

I don't need to say how important it is to know about developing
websites that look good if you can make
using the newest Next.js, even if you're half asleep. Then even Devin can
do better than you!

awesome sites like these

Let's get back to what's important. Frontend is necessary, but so is the
backend. Neither is better than the other (although I personally prefer
frontend). They work together closely.

In this chapter, we’ll learn how we can do “back” stuff in the latest
Next.js.

We noticed a lot of changes in how things work on the front of our
websites because of the new Next.js. The same kind of big changes
have also happened for the behind-the-scenes part of Next.js. With new
and better features, along with standard ways of doing things, the
backend development has seen some really significant changes
because of Next.js.

If you've ever tried some backend work, even creating a simple "Hello
World from Server" message requires a fair bit of setup. It involves,

Backend 153

https://www.awwwards.com/websites/

 Setting up a projec

 Installing necessary packages like Express (for Node.js

 Writing server code

const
const
const

=>

=>

 express ()
 app ()
 port

app (req res
res

)

app (port
console port

)

= ' ' ;

= ;

= ;

. ' ', (,) {

. { : ' ' } ;

} ;

. , () {

. ` ${ }` ;

} ;

require
express

get
json

listen
log

express

/
Hello, World!

Server is running on http://localhost:

3000

 (message)

 ()

 Running i

 And then deploying it using some free/paid services so we could use
it on frontend

It might not seem like a big deal when you're just reading or looking at
the above code (for first time), but things start getting complicated
when you have to write various routes, middleware, and so on.

In the newest version of Next.js, it's much like what we did on the
frontend — just create a special file within a folder for the specific route,
and you're all set. No need to set up, manage, or monitor an active
server separately.

If we want to write the same code mentioned above in Next.js, we
simply need to create a folder with any name we like and then create a
special file named route.js/ts inside it. From there, we can
immediately begin writing the 'server' code.

Backend 154

app/hello-world/route.js

export () {

return . { : ' ' }

}

Response

async function GET
json		 (message)
Hello, World!

That's all there is to it. Your folder name serves as your API route name,
with your business logic neatly encapsulated within this special route
file.

This might not seem like a big deal if you've never built an API before. In
our masterclass, we often share worksheets demonstrating various
methods for creating backends and explaining the differences between
them. This is to help people understand why we choose Next.js over
Express or when Express might be the better option.

That wasn't meant to be a promotional pitch to encourage you to join
us (though I'd be delighted if you did). Instead, it's to share one of our
workshop Github repositories with you, so you can better understand
how backend development varies across different technologies. Feel
free to check it out here and experiment with it.

Worksheet Backend
Link to worksheet

Moving ahead,

Backend 155

https://github.com/JSM-Masterclass-Experience/Worksheet_Backend

Nested Routes
As you're aware, your folder name essentially represents a route name.
If you want a route with multiple names (such as a long one), which is
known as a nested route, you can create additional nested folders.

Example,

app

api

users

route.js

This will result in the /api/users API URL.

Dynamic Routes
Expanding on the nested routes mentioned earlier, and similar to
frontend dynamic routes, we can create dynamic routes like this,

app

api

users

[userId]

posts

route.js

route.js

Backend 156

This will lead to the API /api/users/1243/posts. The [userId] part

holds a dynamic value, any string value, depending on your userId.

And how do we access it?

By accessing the request parameters, as we typically do in Express.js

using req.params.

export (, { }) {

= . ;

}

 request params
userId params userId

async function
const

GET

Keep in mind that whatever you put inside when defining a
dynamic segment will be the same name you use to access its
value from the URL.

[]

For example, if you write [userId], you can access it using
params.userId. If it's [slug], you can access it with params.slug. It
works the same for other scenarios. Any name will do!

When discussing dynamic route segments, there's another concept

that often gets confused with it, and that's none other than URL search/

query parameters

Understanding API Parameters

1. Query Parameters

 Location: Situated after the in the URL

 Usage: Used for optional data like filtering, sorting, or pagination

 Flexibility: They can be added or removed without impacting the
endpoint's core functionality.

?

Backend 157

 Example: /api/products?category=electronics

2. Route Parameters

 Location: Embedded directly within the URL path itself
 Usage: Essential for specifying the resource being accessed
 Structure: Integral part of the endpoint's structure, typically

required
 Example: /api/users/{userId}

When discussing dynamic route segments, there's another concept

that often gets confused with it, and that's none other than URL search/

query parameters

URL Query Parameters
We define URL query parameters in Next.js by using the router or the Link

component to include specific query parameters.

1. Using Next.js Router

We define URL query parameters in Next.js by using the router or the Link

component to include specific query parameters.

router (

)

. {

: ' ',

: { : ' ', : },

} ;

push
pathname
query category page

/products
electronics 1

2. Using Next.js Link

<

 ={{ : ' ', : { : ' ', : } }}

> </ >;

Link

Link

href
Show Electronics Products

pathname query category page/products electronics 1

Backend 158

3. String Interpolation

Both of the above can then be used with String Interpolation to achieve

similar results of adding Query parameters to the URL

const
const

href

 category
 page

router (category page)
category page

 Show Electronics Products

= ' ';

= ;

. ` ${ } ${ }` ;

< ={` ${ } ${ }`}>

</ >;

electronics

/products?category= &page=
/products?category= &page=

1

push
Link

Link

That's about how we can include query parameters, which occur on the

frontend side of the application.

But, How do we access them on the backend side, through API routes?

Short Answer — Through Request

export () {

= . . ;

= . ' ' ;

}

 request
searchParams request nextUrl searchParams
query searchParams

function
const
const

GET

get

 ()query

This isn't a new feature that Next.js introduces for backend

development. In Express, for instance, we access these values through

req.query. It's essentially the same process, just with a different

method of retrieval.

The next interesting bit is,

Backend 159

Middleware
In Next.js, middleware works similarly to how it does in other frameworks
(Express.js), though it's a bit different because Next.js is both a server-
side and client-side rendering framework for React.

Middleware in Next.js sits between the incoming request and the route
handler. It's like a series of checkpoints that the request has to pass
through before reaching its final destination (the route handler or the
page).

Here's a simple breakdown of how middleware works in Next.js,

 Request Comes In: When a user visits a page in your Next.js
application, a request is sent to the server.

 Middleware Execution: Before the request reaches the actual route
handler or page, it passes through one or more middleware
functions.

 Middleware Operations: Each middleware function can perform
operations on the request, like logging, authentication, modifying
request headers, etc.

 Passing Control or Short-Circuiting: Depending on what the
middleware does, it can either pass control to the next middleware in
line or short-circuit the process and send a response back to the
client without reaching the route handler.

 Finally Reaching Route Handler/Page: If the request successfully
passes through all the middleware functions, it finally reaches the
route handler or page component where the appropriate response is
generated.

Backend 160

Right now, while writing this ebook, we’re limited to one middleware per

project. And the way we can create it is by creating a middleware.js/

ts file at the root of the project.

middleware.js/ts

import { } from ' '

export () {

. ' '

}

 NextResponse

 request
console

	 ()

next/server

do your stuff
function middleware

log

Even though we're limited to one main middleware file, we can still

organize your middleware logic into separate files. This means we can

break down our middleware functionalities into smaller, more

manageable pieces, each in its own file.

For example,

 Auth Middleware

lib/authMiddleware.js

import { } from ' '

export () {

. ' '

}

 NextResponse

 request
console

 ()

next/server

Authentication middleware
function authenticate

log

Backend 161

 Logging Middleware

lib/logMiddleware.js

import { } from ' '

export () {

. ' '

}

 NextResponse

 request
console

 ()

next/server

Logging middleware
function logRequest

log

And then our main middleware will be,

middleware.js

import { } from ' '

import { } from ' '

import { } from ' '

export default () {

, () {

}
}

 NextResponse

 logRequest
 authenticate

 request
request

request

 (
 ()

)

next/server

./logMiddleware
./authMiddleware

function
=>

middleware
authenticate

logRequest

Does that make sense?

This approach has its own benefits (which I do like),

 Cleaner Management: Breaking out middleware into separate files

makes it easier to manage and understand your codebase.

 Prevents Conflicts: By having a single main middleware file, you

reduce the chance of conflicts between different middleware

functions.

Backend 162

 Optimized Performance: Avoiding multiple layers of middleware can
improve performance, as there are fewer steps for each request to
go through.

Even though implementing advanced features such as socket
implementation isn't supported directly in the app folder for API routes,
Next.js offers everything necessary for developing APIs. This includes
support for various HTTP methods

(GET, POST, PUT, PATCH, DELETE, HEAD, and OPTIONS), handling
native and with and ,

, , , and even .
Request Response NextRequest NextResponse

headers redirects cookies streaming

New Next.js has got you all covered!

 Surprise

Now moving ahead, another thing that I would love to highlight is —
.Cache

Yes, yet again!

Cache
By default, Next.js caches GET routes. So, if you keep seeing the same
results even after adding new data through the API, don't worry, and
don't blame Next.js. That's just how it operates.

If you would like to disable that feature, you can add,

export = ' '

export () {}

 dynamic

const

async function

force-dynamic

GET

Backend 163

https://developer.mozilla.org/docs/Web/API/Request
https://developer.mozilla.org/docs/Web/API/Response
https://nextjs.org/docs/app/api-reference/functions/next-request
https://nextjs.org/docs/app/api-reference/functions/next-response
https://nextjs.org/docs/app/building-your-application/routing/route-handlers#headers
https://nextjs.org/docs/app/building-your-application/routing/route-handlers#redirects
https://nextjs.org/docs/app/api-reference/functions/cookies
https://nextjs.org/docs/app/building-your-application/routing/route-handlers#streaming

Revalidation

You can also utilize the revalidate option for time-based validation to

determine when you want to revalidate an API route.

export =

export () {}

 revalidate

const

async function

false

GET

Different Runtimes

Another interesting configuration available in Next.js is choosing the

runtime environment. By default, Next.js operates on the Node.js

runtime. However, we can switch to the edge runtime at the route level

like this,

export = " "

export () {}

 runtime

const

async function

edge

GET

In the following chapter, you’ll learn the difference between these two

run times and when to use each of them.

For now, let’s do the usual,

Tasks
 Develop a CRUD API application using Next.js’s app directory.

 Explain the concept of middleware chaining in Next.js and provide
strategies for effective management

Backend 164

 How would you implement nested dynamic routes with multiple
dynamic segments in Next.js?

 What are the main differences between traditional backend
development using Express.js and backend development with Next.js?
Briefly outline the distinctions in architecture, routing, middleware
usage, and API endpoint handling between the two frameworks

 Consider a scenario where you're tasked with developing a backend
for a large-scale e-commerce platform. Given the choice between
using Next.js and traditional Express.js for the backend development,
which would you choose and why?

Backend 165

Chapter 12

Node vs Edge Runtime
In this chapter, we explore the differences between Node.js and Edge

runtimes within the context of Next.js applications.

You'll gain insights into their distinct features, use cases, limitations,  

and how to leverage them effectively for optimizing application

performance and user experience.

Node vs Edge Runtime

Now it’s time to talk about something interesting, i.e., edge vs. node

runtime.

By far, we learned different rendering strategies and environments in

which we can render our application.

A quick map of that would be something like this

Rendering

Server Client

Strategy Environment

Node Edge

Static Dynamic

But now, with the introduction of runtime configuration, our

server has two additional options available. We can now choose

the runtime environment in which our server should operate.

Node vs Edge Runtime 166

Edge Runtime

Edge runtime is like having a mini-computer close to where you are or

where your devices are. Instead of doing everything on a faraway big

computer, it does some tasks nearby.

This makes things faster, especially for stuff like websites, smart devices,

or anything that needs quick responses. It's like having a helper right

next to you instead of calling someone far away for every little thing.

So, how does edge compare with node.js runtime?

Edge Runtime Node Runtime

Typically runs on servers,
cloud, or local machines

General-purpose runtime for
executing JavaScript code.

Uses the Node.js
environment, which is widely
used for server-side
scripting and development.

Versatile for a wide range of
applications, from web
servers to command-line
tools, and server-side
JavaScript applications.

Location Runs at the edge of the
network, closer to users.

Specialized for quick and
efficient execution of code in
distributed locations.

For example, Vercel's Edge
Runtime, (is) built on the
high-performance V8
JavaScript and
WebAssembly engine.

Geared towards low-latency
scenarios, content delivery,
and quick processing of
tasks near users.

Purpose

Implementation

Use Cases

While there are specific use cases for both, as usual, both have some

limitations.

Node vs Edge Runtime 167

Limitations of Edge Runtime

 Constrained Environment - Edge Runtimes are often more

constrained compared to full server environments, limiting certain

capabilities.

 Reduced Flexibility - The specialized nature of Edge Runtime may

limit the range of applications compared to more general-purpose

runtimes.

 Dependency on Network - Since Edge Runtimes are distributed

globally, they depend on network conditions, and issues may arise in

case of network disruptions.

Limitations of Node Runtime

 Potential Cold Starts: Serverless implementations of Node.js may

have cold start times, causing a slight delay when a function is

invoked for the first time.

 Resource Consumption: While Node.js is lightweight, resource

consumption can still be a consideration, especially in scenarios with

limited resources.

 Less Ideal for Ultra-Low Latency: In situations where ultra-low

latency is critical, the centralized nature of Node.js runtime may

introduce some latency compared to Edge Runtimes.

Both have their advantages and disadvantages. And if I have to

suggest something, then I would suggest, doing things depending on

your needs.

Node vs Edge Runtime 168

Vercel, who has built its own edge runtime, shares a nice difference
between all these and which features do edge and node support in
Next.js applications:

Rendering: Edge and
Node.js Runtimes

Link to docs

Moving on, let’s understand what edge and serverless functions are and
when to use them.

Edge Function
An edge function is a piece of code that runs on servers at the edge of a
network, closer to the user. It is a smart and quick responder. It does its
job near you, making things faster, especially for applications that need
immediate actions, like handling website requests or managing data
from nearby devices.

Let’s see a quick difference between edge vs serverless functions

Edge Functions Serverless Functions

Typically run in a centralized
cloud server.

Use cloud providers'
serverless computing
services (e.g., AWS Lambda,
Azure Functions, Vercel).

Location Run closer to the user, at the
edge of the network

Use specialized runtimes like
Vercel's Edge Runtime

Execution

Node vs Edge Runtime 169

https://nextjs.org/docs/app/building-your-application/rendering/edge-and-nodejs-runtimes#runtime-differences

Edge Functions Serverless Functions

Might have some cold boot
delays as the environment is
set up. (If you don’t use them
for long, they’ll go to their
default inactive set)

Deployed on cloud servers
managed by the service
provider

Versatile, suitable for various
applications, especially
those not requiring ultra-low
latency.

Startup Faster startup times,
eliminating cold boot delays

Deployed across a global
network of data centers

Ideal for low-latency
scenarios, delivering
dynamic content quickly.

Deployment

Use Cases

In Next.js, we can decide the runtime of our choice in any layout, page,
or even route. Switching between runtime is as easy as changing TV
channels with a remote control. Too dreamy, isn’t it?

But that’s 100% true. You get the power of whatever you want to do and
wherever you want to do with Next.js and Vercel powers. You just have
to be a good developer writing better code.

So how can we change runtime in Next.js?

By default, Next.js uses node runtime. To switch to edge, all we have to
do is specify this

export const runtime = ' 'edge // 'nodejs' (default) | 'edge'

In any layout, page, or route. Isn’t that super easy?

Node vs Edge Runtime 170

Demo
Now let’s try it out inside code and see how it goes. We’ll create two

simple API routes with and without edge having the same content.

Node Route

app/api/node/route.ts

import { } from ' ';

export () {

await new () , ;

return .
{ : ' ' },

{ : },

;

}

 NextResponse

resolve resolve

NextResponse

 (())

 (

 name
 status
)

next/server

Hello from Node Runtime

async function

=>

GET

setTimeout

json

// purposefully delay the response by 1 second

Promise 1000

200

Edge Route

app/api/edge/route.ts

import { } from ' ';

export = ' ';

export () {

await new () , ;

return .
{ : ' ' },

{ : },

;

}

 NextResponse

 runtime

resolve resolve

NextResponse

 (())

 (

 name
 status
)

next/server

edge

Hello from Edge Runtime

const

async function

=>

GET

setTimeout

json

// purposefully delay the response by 1 second

Promise 1000

200

That’s it. Let’s deploy the application on Vercel to see what happens.

Node vs Edge Runtime 171

If we go to the deployments and open the deployment summary, we’ll

see /api/edge highlighted as an edge function there.

Perfect. Now let’s test the speed or performance of both routes.

Make a request to /api/node, and we get the results and executing

time for it is .2.76s

Node vs Edge Runtime 172

Doing the same for /api/edge gives us results in .1857ms

This is because Edge runtime is located on a server that’s near to me.

On the other hand, node runtime is located in a server used by Vercel at

deployment. It could be far away from me as compared to edge

runtime

That’s good. So, should we use edge over node runtime?

Not at all. Edge has its limitations. And these include,

 Quick, But Not Infinite: Edge Functions need to respond within 25

seconds initially. So, they're like speedy helpers, but they can't take

forever to do their job.

 Watch the Size: These functions can handle up to 4 MB of data,

including all the code. It's like having a small backpack—fit what you

need, but not everything.

Node vs Edge Runtime 173

 Mind the Distance: If your data source is far from where the Edge

Function works, it might take a bit longer. It's like asking a friend to do

something, but they need to travel a bit first. You can tweak settings

to reduce this travel time.

 Not All Tricks Allowed: Some cool tricks that regular JavaScript

knows, Edge Functions might not. It's like having a special toolbox;

not all tools are there. You can check a list to see which APIs work for

Edge here

Rendering: Edge Runtime

Link to docs

Okay, that’s clear, but then when should we consider using edge over

node runtime?

Here is a small mindmap that I use for myself. Ask yourself —

Node vs Edge Runtime 174

https://nextjs.org/docs/app/api-reference/edge

Here is a small mindmap that I use for myself. Ask yourself —

What’s the nature of your feature?

Latency-Sensitive Task?

Is it crossing Edge Limitations?

YesNo

Yes

No?Yes

No

Use Node.js Runtime or
Serverless Functions

Use Node.js Runtime or
Serverless Functions

Use Edge Runtime or Edge
functions

Always remember to check specific use case requirements and

constraints to make an informed dev decision.

Node vs Edge Runtime 175

Use Case

Few use case examples of Edge Runtime

Notifications

Edge functions can be used to push real-time notifications to users

based on their location or actions, providing instant updates without

relying on a centralized server.

Authentication and Authorization

Handling user authentication and authorization at the edge can reduce

latency for login processes, enhancing the user login experience.

Geolocation Services

Implement location-based services, such as geolocation tracking or

local recommendations, by processing location data at the edge.

… and similar other specific use case. Edge functions are also often used

in CDNs to deliver web content like images, videos, and scripts from

servers closer to users. This reduces loading times for websites,

improving the overall user experience. We learned that, don’t we?

That’s it about Edge vs. Node Runtime, Edge vs. Serverless functions,

when to use them, how to use them, and everything else.

Node vs Edge Runtime 176

Tasks
What are the fundamental differences between edge runtime and
node.js runtime?

Explain the limitations associated with edge runtime as outlined in
the text. How might these limitations impact development
decisions?

In what scenarios might developers prefer node.js runtime over
edge runtime, considering their respective advantages and
limitations?

How can we switch between edge and node.js runtimes in Next.js
applications? What implications does this flexibility offer in terms of
application development?

You are a developer tasked with optimizing the performance of a
real-time notification system for a social media platform.

The current system experiences delays in delivering notifications to
users, particularly those in regions with high network latency.

Your goal is to improve the delivery speed of notifications to
enhance user experience. How would you do that?

Onto the next now!

Data Fetching 177

Chapter 13

Server Actions
In this chapter, we dive into the concept of Server Actions in Next.js,

exploring their purpose, implementation, advantages, limitations, and

practical use cases.

By the end, you'll have a comprehensive understanding of how Server

Actions can streamline backend operations within your Next.js apps.

Server Actions

Maybe one of the hot topics of the recent tech world

Have you ever seen this before "use server" in any kind of Next.js

application?

You might had a gut feeling that this is to symbolize whatever is written

inside that file is treated as server things. And you’re absolutely right!

Normally they’re known as React Actions or React Server Actions. These

are simple asynchronous functions that run on the server. That’s it!

But why do we need server actions?

Although I wouldn’t say it as a replacement but instead as an option to

do mutations over the traditional route handlers.

We can use these server actions in both server and client components

which makes them a handy feature to use. While Vercel might be

inclined to showcase the use of this feature for form submissions or

mutations, we can use them to query as well.

Aren’t convinced yet? Let’s see a demo, and we’ll see how useful and

handy they are while building an application.

We can create and use server actions in two ways,

Server Actions 178

Server Components

We add a “use server” directive of React inside any function, make it

async, and turn it into a server action

Server Component

function

async function

 Home

Home

create

() {

() {

' '

}

return

}

export default

// Server Action

// ...

// ...

 (

)

use server

Client Components

The way of using server actions inside client components is a little

different.

Instead of what we did in the server component, we now have to create

a new file, declare everything inside it as “use server” and import

those functions inside the client component

Server Actions 179

Client Components

' ';

export () {

}

export () {

}

use server

async function

async function

create

remove

// ...

/// ...

And then call them wherever we want it to be. Be that be a client

component or server component

import , { } from ' ';

import { } from ' '

= () {

[,] = {

: '',

: '',

} ;

= () {

{

... ,

. . : . . ,

} ;

};

= () {

. ;

		
await
};

 React useState
 create

 MyForm
formData setFormData

handleChange e

formData
e target name e target value

handleSubmit e
e

formData

 (
 name
 email
)

 (

 []
)

 ()
		

		 ()

react
./action

const =>
const

const =>

const =>

useState

setFormData

preventDefault

create
// call server action

Server Actions 180

 (

 form

label

input

label
br
label

input

label
br
button button

form
)

return
< ={ }>

< >

<
 =" "

 =" "

 ={ . }

 ={ }

 />

</ >

< />

< >

<
 =" "

 =" "

 ={ . }

 ={ }

 />

</ >

< />

< =" "> </ >

</ >

;

};

export default ;

onSubmit

type
name
value
onChange

type
name
value
onChange

type

handleSubmit

 Name:

formData name
handleChange

 Email:

formData email
handleChange

 Submit

 MyForm

text
name

email
email

submit

And as you might be wondering — Yes, we don’t need to create any API

to perform any normal CRUD. Server Actions have you covered. Next.js

has made things that simple to do.

But now you might think — How do they work? How are we able to call a

server function right inside a client component?

Think! How is it possible?

Server Actions 181

No rocket science here. Server actions we use in client components are

basically turned into POST requests by Next.js for us. For everything.

Any kind of server actions, be that for getting some information, adding

some data to the database, updating or deleting it, Next.js calls our

server through POST request only. But that is for server actions inside

client components only

For server components, everything is on the server, i.e., component and

server function, so they are executed right there, and we get HTML as a

streamed response.

Now let’s create a small application to see server actions in action.

Demo

We’ll create a completely interactive, server-side form using the HTML

form element that works even if javascript is disabled

function
async function

const

className
className
action className

event

data
event
event

console data

 Server Form
 handleSubmit

Home
handleSubmit

get
get

log

() {

(:) {

' ';

= {

: . ' ' ,

: . ' ' ,

};

. ;

}

return
< =" ">

< =" "> </ >

< ={ } =" ">

 name ()
 email ()

 ()

 (

 main

h1 h1
form

FormData
use server

name
email

max-w-5xl p-24 flex flex-col mx-auto gap-10
font-bold text-2xl

flex flex-col gap-5

Server Actions 182

 Submit

 Home

<
 =" "

 =" "

 =" "

 =" "

 />

<
 =" "

 =" "

 =" "

 =" "

 />

< =" " ="
">

</ >

</ >

</ >

;

}

export default ;

input

input

button

button
form

main
)

type
name
className
placeholder

type
name
className
placeholder

type className

text
name

p-2 text-zinc-800
Your name

email
email

p-2 text-zinc-800
Your email

submit bg-teal-400 p-2 outline-
teal-800

For showing, if a form is submission process or not letting the user keep

clicking on the form button while it’s processing, we can show the form

status and disable the button while a request is being made.

To do that, let’s create another page inside this same application and

see how we can show the form status

We’ll use the same code as we did on the home page, but now we have

to separate the button component from the main form as we’ll have to

turn it into a client component in order to use a specific form hook that

React provides us.

Server Actions 183

It’s called useFormStatus hook. It gives us status information on the last

form submission.

useFormStatus - React

Link to docs

import from " ";

() {

(:) {

" ";

= {

: . " " ,

: . " " ,

};

await new () , ;

. ;

}

return
< =" ">

< =" "> </
>

< ={ } =" ">

 Button

formData

data
formData

formData

resolve resolve

console data

 Interactive Server Form

 handleSubmit

./button

use server

name
email

max-w-5xl p-24 flex flex-col mx-auto gap-10
font-bold text-2xl

flex flex-col gap-5

// a demo to show how to do loading and error handling with server
actions in a form

// wait for a few milliseconds to simulate a slow server

function
async function

const

=>

className
className

action className

Interactive
handleSubmit

get
get

setTimeout

log

 name ()
 email ()

 (())

 ()

 (

 main

h1
h1

form

FormData

Promise 2000

Server Actions 184

https://react.dev/reference/react-dom/hooks/useFormStatus

 Interactive

<
 =" "

 =" "

 =" "

 =" "

 />

<
 =" "

 =" "

 =" "

 =" "

 />

< />

</ >

</ >

;

}

export default ;

input

input

form
main

)

type
name
className
placeholder

type
name
className
placeholder

text
name

p-2 text-zinc-800
Your name

email
email

p-2 text-zinc-800
Your email

Button

We can use that hook in our custom Button component like this

' ';

import { } from ' ';

() {

{ } = ;

return
<

 =" "

 =" "

 ={ }

 >

{ ? ' ' : ' '}

</ >

;

}

export default ;

use client

react-dom

submit
bg-teal-400 p-2 outline-teal-800

Submitting... Submit

 useFormStatus

pending

pending

 pending

 Button

 ()

 (

 button

button
)

function
const

type
className
disabled

Button
useFormStatus

Server Actions 185

Similarly, we can also do error management using another special hook

from React called useFormState. It allows us to update the state based

on the result of a form action. You can learn more about it here

useFormState - React

Link to docs

Or see the example in action here

Example
Link to example

Now you might be wondering, can we not use server actions in a client

form? The way we typically build forms using state and everything? Of

course, we can

Let’s try that too!

But now, remember, we’re making the whole form as a client

component, so, in order to use server action, we have to create a

separate file and export it from there. And then, we’ll import it into the

client component form

Server Actions 186

https://react.dev/reference/react/useActionState
https://github.com/vercel/next.js/blob/canary/examples/next-forms/app/add-form.tsx

" ";

import { } from " ";

import { } from " ";

() {

[,] = ;

[,] = null ;

(:
. < >) {

. ;

try {

;

null ;

= new . ;

= {

: . " " ,

: . " " ,

};

await ;

} catch (:) {

;

} finally {

;

}

}

return
< =" ">

< =" "> </ >

< ={ } =" ">

<
 =" "

 =" "

 =" "

 =" "

 />

use client

react
./action

name
email

max-w-5xl p-24 flex flex-col mx-auto gap-10
font-bold text-2xl

flex flex-col gap-5

text
name

p-2 text-zinc-800
Your name

 useState
 submitForm

loading setLoading
error setError

event

event

formData event currentTarget
data

formData
formData

data
error

error

 Normal Form
 handleSubmit

 ()
 ()

 ()

 ()
 ()

 ()

 name ()
 email ()

 ()

 ()

 ()

 (

 main

h1 h1
form

input

function
const
const

async function

const
const

className
className

onSubmit className

type
name
className
placeholder

Page
useState

useState

handleSubmit

preventDefault

setLoading
setError

FormData

get
get

submitForm

setError

setLoading

false

true

false

React FormEvent HTMLFormElement

any

Server Actions 187

loading

 loading

 error (

 error message

)

 Page

<
 =" "

 =" "

 =" "

 =" "

 />

<
 =" "

 ={ }

 =" "

 >

{ ? " " : " "}

</ >

</ >

{ &&
< =" ">

{ . }

</ >

}

</ >

;

}

export default ;

input

button

button
form

div

div

main
)

type
name
className
placeholder

type
disabled
className

className

email
email

p-2 text-zinc-800
Your email

submit

bg-teal-400 p-2 outline-teal-800

Submitting... Submit

bg-red-500 text-white p-2 rounded-md

and form action like this

' ';

export (: {

: | ;

: | ;

}) {

await new () , ;

. ;

}

use server

 data

resolve resolve

console data

async function

=>

submitForm

setTimeout

log

name
email

 (())

 ()

FormDataEntryValue null
FormDataEntryValue null

Promise
// wait for few milliseconds to simulate a slow server

2000

Server Actions 188

That’s it above server actions. While we may have used small examples

to showcase such a powerful feature, you’re absolutely free to do any

kind of complex scenarios using server actions.

To show you what I mean, let me show you the repository of my Next.js

course. In this course, we cover all the querying and complex mutations.

We dive into tasks like fetching recommendations or conducting a

global search, and we handle all of this through server actions.

Next.js Course Repository
Link to repository

There had been some concerns all over the internet when Next.js made

a statement that server actions are stable from Next.js 14 and onwards.

And the issue was security.

This meme from the presentation was all over Twitter.

Server Actions 189

https://github.com/adrianhajdin/stack_overflow_nextjs14

People got a bit confused, thinking SQL is now directly inside JSX. Some

even remembered their PHP days and started making fun of it.

As I mentioned earlier, it's not actual code inside the component. Even if

it looks like it, Next.js will turn it into a POST request behind the scenes.

And when it comes to security, you can use anything inside a server

action to check the input first before making the actual DB operations.

Here's an example:

const

async function

const

const

 schema z (
 z () ()
 z () ()

)

 data

session user

session

validatedFields schema data

validatedFields success

validatedFields error fieldErrors

error
error

= . {

: . . ,

: . . ,

} ;

export ({ }) {

try {

= await . ;

if ! {

throw new ' ' ;

}

= . ;

if ! . {

throw {

: . . . ,

};

}

} catch {

throw ;
}

}

object
string nonempty

string email

create

getSession

Error

safeParse

flatten

name
email

 ()

 ()
 ()

 ()

 ()

 errors ()

 ()

// check session

// Return early if the form data is invalid

// Your logic here

// Re-throw the caught error for further handling

Not authenticated

Server Actions 190

You can add as many security measures as you want to make it safe.

It's in your hands!

Limitations

While server actions might seem cool to try—and they are—there are

some drawbacks too:

 You can't use server actions for cross-platform development where

you need the same backend or API on different ecosystems like

mobile or desktop. Server action endpoints can't be exposed as of

now

 Server actions can't be used for scenarios like webhooks or sockets.

In these cases, you need a server always listening for event updates,

which server actions don't support since they're an integral part of

the server and not exposed

 Testing might feel challenging with server actions because you can't

use tools like Postman. Testing has to be done directly. On the

positive side, it enhances security since your API isn't exposed

 For some, using POST requests for events like updates or deletes may

not align with the best practices of HTTP protocols.

But overall, it's best to use if you want to build and ship applications

faster. That's where they shine—in improving the developer experience.

Server Actions 191

Chapter 14

Styling
In this chapter, we'll explore various styling strategies available for

Next.js applications. From traditional CSS approaches to utility-first

frameworks like TailwindCSS, Next.js provides flexibility in choosing how

you style your components.

Styling
So far we learned some cool core concepts of Next.js. Now coming back
to the frontend again to see how we can make it better using different
styling strategies.

We can absolutely use anything we want to style Next.js applications. Be
that be plain CSS, SCSS, CSS module, tailwindcss, or even CSS in JS. It’s
compatible with everything.

Let’s take a look at each of these one by one,

Plain CSS

It's straightforward. You write your CSS rules in separate files just like you
normally would and refer those class/id names in components/
elements

It's straightforward. You write your CSS rules in separate files just like you
normally would and refer those class/id names in components/
elements

styles.css

. {

: ;

: ;

}

. {

: ;

: # ;

}

container

title

 auto

 333

max-width
margin

font-size
color

960px
0

24px

Styling 192

page.js

import ' ';

= () {

return

< =" ">

< =" "> </ >

</ >

;

};

export default ;

 Component

 Hello, World!

 Component

./styles.css

container
title

const =>

className
className

 (

 div

h1 h1
div

)

Sass (Syntactically Awesome Style Sheets)

For using CSS with superpowers, i.e., Sass, we’ll have to install the
dedicated package for it,

It's straightforward. You write your CSS rules in separate files just like you
normally would and refer those class/id names in components/
elements

npm install --save-dev sass

And then, we can go ahead and start styling with Sass

Styling 193

styles.scss

$: 007bff;

 auto

 $primary-color

primary-color

container

title

#

. {

: ;

: ;

}

. {

: ;

: ;

}

max-width
margin

font-size
color

960px
0

24px

page.js

import ' ';

= () {

return

< =" ">

< =" "> </ >

</ >

;

};

export default ;

 Component

 Hello, World!

 Component

./styles.scss

container
title

const =>

className
className

 (

 div

h1 h1
div

)

Learn more about it .here

Styling 194

https://nextjs.org/docs/app/building-your-application/styling/sass

CSS Modules

CSS Modules provide local scoping for styles, which helps prevent style

conflicts between components

page.module.css

. {

: ;

: ;

}

. {

: ;

: # ;

}

container

title

 auto

 333

max-width
margin

font-size
color

960px
0

24px

page.js

import ' ';

= () {

return

< =" ">

< =" "> </ >

</ >

;

};

export default ;

 from

 Component

 Hello, World!

 Component

styles ./page.module.css

container
title

const =>

className
className

 (

 div

h1 h1
div

)

While it’s cool, you need to import styles for each component, which can

be tedious and may clutter your codebase. Additionally, there's a

learning curve for developers unfamiliar with this approach.

Styling 195

TailwindCSS

I can’t recommend this enough. If you want my suggestion for styling, I'd

pick Tailwind CSS every single time. Any day!

While I'd love to outline the steps for setting up Tailwind CSS, it's

evolving. The anticipated v4 of Tailwind CSS is on its way, and it will

bring changes to the setup process we currently use. You can find more

information about it .here

However, just to mention it here, you can refer to resource to learn

how to set up Tailwind CSS in Next.js.

this

If you want to learn more about how Tailwind CSS works and why it's

advantageous compared to other options, I highly recommend

watching crash course.this

Tailwind CSS Full Course
2023 | Build and Deploy a
Nike Website

Watch Now

But you might think — Which is the best option for styling?

The choice between Plain CSS, Sass, CSS Modules, and TailwindCSS for

styling depends on various factors such as project requirements, team

preferences, scalability, and maintainability. Each option has its

advantages and disadvantages:

Styling 196

https://tailwindcss.com/blog/tailwindcss-v4-alpha
https://tailwindcss.com/docs/guides/nextjs
https://www.youtube.com/watch?v=tS7upsfuxmo
https://youtu.be/tS7upsfuxmo?si=lQydSXPqbENRepG7

Each option has its advantages and disadvantages:

Plain CSS
 Simple and easy to understand

 Suitable for small projects or when you don't need complex styling

 Might become hard to maintain in larger projects as the codebase
grows.

Sass (Syntactically Awesome Style Sheets)
 Adds features like variables, mixins, and nesting to CSS

 Helps in organizing and maintaining stylesheets

 Offers better code reusability and maintainability compared to plain
CSS

 Requires a compilation step to convert Sass code into regular CSS.

CSS Modules
 Localizes CSS styles to specific components, reducing the chances of

naming collisions

 Encourages modular and reusable code

 Automatically generates unique class names for each component,
improving encapsulation

 Works well with Next.js out of the box.

Styling 197

TailwindCSS

 Utility-first CSS framework that provides a set of pre-defined utility
classes

 Allows for rapid development by composing styles using utility
classes

 Promotes consistency across projects and reduces the need to write
custom CSS

 Might have a steeper learning curve for developers not familiar with
utility-first approaches.

In the end, as I have always said, It’s on you and your needs!

Styling 198

Chapter 15

More of Next.js
In this chapter, we'll explore additional advanced topics and resources

related to Next.js, broadening our understanding and capabilities with

this powerful framework.

More of Next.js

Up to this point, we've covered the fundamental concepts of Next.js,

including its functionality, usage, and the new architecture it brings to

both the frontend and backend. Now, let's dive into some additional

topics.

Intercepting Routes

Intercepting routes is like redirecting a path in your application. Let's say

you have different pages in your app, like a feed and a photo viewer.

Normally, when you click on something in your feed to see a photo, the

whole page might change to show the photo.

But intercepting routes means you can load just that part of the app

without changing the whole page.

Meaning, instead of taking you to a separate page just for that photo, it

pops up right there in the feed. That's intercepting routes in action. It's

like the app catches that request to see the photo and shows it to you

in a special way, without making you leave the feed.

Here is an that’ll help you understand intercepting

routes even better. Also, check by Vercel itself for you

to try out.

animated demo

this example

You can check out the convention next.js suggests for creating

Intercepting routes .here

More of Next.js 199

https://x.com/lydiahallie/status/1657073384046329886
https://nextjs-app-route-interception.vercel.app/
https://nextjs.org/docs/app/building-your-application/routing/intercepting-routes#convention

Parallel Routes

Imagine you're building an app with different sections, like a dashboard

with team info and analytics. Parallel routes let you show these sections

at the same time or based on certain conditions, without changing the

layout of the page.

Parallel routes work like that, showing multiple pages simultaneously or

conditionally within your app.

Here is an showcasing how parallel routes work and

how you can do the same

animated demo

Database

Again, it depends on your needs. What you want to do and how well you

want to d-. Several factors come into play, including the specific

requirements of your project, your team's familiarity with different

databases, performance considerations, scalability needs, and budget

constraints.

Here is a nice article covering popular databases to use with Next.js,

with links on how to use them in Next.js. Do try all!

More of Next.js 200

https://x.com/asidorenko_/status/1755517536081236070
https://upstash.com/blog/best-database-for-nextjs

Resources

Recently, I was invited to conduct a session on Next.js for GitNation,

where I dive into the complexities of Next.js and its functionality within

the context of RSC. I provided deeper insights into how Next.js operates.

For a more comprehensive understanding, feel free to check it out.

Parallel routes work like that, showing multiple pages simultaneously or

conditionally within your app.

Next.js for React.js
Developers - GitNation

Watch Now

… that may/may not be the end of the list. But for now, it is! Finally

We talked about a lot of stuff regarding Next.js and how it can improve

our application in different aspects. I hope this helps you become a

better Next.js Developer

Happy coding!

More of Next.js 201

https://portal.gitnation.org/contents/nextjs-for-reactjs-developers

