Draft Model Curriculum for UG Degree in Bachelor in Computer Applications BCA/BCA(Honours)/BCA(Honours with Research)

2024

ALL INDIA COUNCIL FOR TECHNICAL EDUCATION

Nelson Mandela Marg, Vasant Kunj, New Delhi 110070

www.aicte-india.org

Model Curriculum for UG Degree in Bachelor in Computer Application (BCA), Bachelor in Computer Application (Honours) & Bachelor in Computer Application (Honours with Research)

ALL INDIA COUNCIL FOR TECHNICAL EDUCATION

NELSON MANDELA MARG, VASANT KUNJ, NEW DELHI – 110070

www.aicte-india.org

S.	Course	Course Title	L	Т	Ρ	Credit
No.	Code					
1	CC103	Mathematics Foundations to Computer Science - II	3	0	0	3
2	CC104	Data Structures	3	0	4	5
3	CC105	Operating Systems	3	0	2	4
4	SEC102	Object Oriented Programming using Java	3	0	4	5
5	SEC103	Web Technologies	1	0	2	2
6	VAC102	Indian Constitution	2	0	0	2
7	AEC103	Additional Course - Indian or Foreign Language Other than Mother Tongue and English (1-1- 0)) [optional course]*	1	1	0	0*
TOTAL				21		

SEMESTER II

*Indian Languages: Sanskrit/Hindi/All Regional languages Foreign Languages: (not limited to) Spanish/German/French/Korean/Mandarin etc.

Model curriculum for UG Degree in BCA

SEMESTER –II

SEMESTER -II

Mathematics Foundation to Computer Science - II				
CC103	Mathematics Foundation to Computer Science - II	3L:0T:0P	3 Credits	

Course Objectives

- CO1: This course helps the students to understand correct lines of arguments and proofs.
- CO2: This course introduces mathematical techniques that are foundations for understanding advanced computational methods, including numerical methods and optimization.
- CO3: This course helps the students to understand various problem-solving strategies and methods to tackle both theoretical and practical challenges in computer science.

Course Content:

UNIT I:

Logic and Methods of Proofs:

Propositions, logical operations (basic connectives), compound statements, construction of truth table, quantifiers, conditional statements, tautology, contradiction, contingency, logical equivalence. Conjunctive Normal Forms (CNF) and Disjunctive Normal Forms (DNF). Methods of proofs: Rules of inference for propositional logic, modus ponens, modus tollens, syllogism, proof by contradiction, Mathematical Induction.

UNIT II:

Algebraic Structures:

Semi-group, Monoid, Group, Subgroup, Cyclic group.

UNIT III:

Numerical Methods:

Concept and importance of errors in numerical methods.

Solution of algebraic and transcendental equations: Bisection method and Newton-Raphson methods.

Numerical Interpolation: Newton's Forward and Newton's Backward interpolation formula and Lagrange's formula.

Numerical Integration: Trapezoidal rule and Simpson's 1/3 rule

Only formula and problem solving for all the topics mentioned above.

UNIT IV:

Optimization Techniques:

Linear programming: Introduction, LP formulation, Graphical method for solving LPs with two variables, Special cases in graphical methods, Simplex method, Duality.

Transportation problem: Definition, Linear form, North-west corner method, Least cost method, Vogel's approximation method for finding feasible solution, MODI method for finding optimum solution.

Text Books

- 1. Kolman B., Busby R. and Ross S., Discrete Mathematical Structures, 6th Edition, Pearson Education, 2015.
- 2. Sastry S. S., Introductory Methods of Numerical Analysis, Fifth Edition, PHL, 2022.

Model curriculum for UG Degree in BCA

- 3. Taha Hamdy A., Operations Research: An Introduction, Eighth Edition, Pearson Prentice Hall, 2003.
- 4. S.B. Singh, Discrete Structures, Khanna Book Publishing, 2023 (AICTE Recommended Textbook)

Reference Books

- 1. Rosen Kenneth H. and Krithivasan Kamala, Discrete Mathematics and its Applications, McGraw Hill, India, 2019.
- 2. Chakravorty J. G. and Ghosh P. R., Linear Programming and Game Theory, Moulik Library, 2017.
- 3. Sharma J. K., Operations Research: Theory and Applications, Fourth Edition, Macmillan Publishers, 2007.

Web Resources

- 1. <u>https://nptel.ac.in/courses/111107127</u>
- 2. https://www.math.iitb.ac.in/~siva/si50716/SI507lecturenotes.pdf

Data Structures

CC104	Data Structures	3L:0T:4P	5 Credits

Course Objectives

- CO1: Understand the fundamental concepts of Data Structures and their applications.
- CO2: Develop problem-solving skills using Data Structures.
- CO3: Implement Data Structures using C programming language.

Prerequisite:

- 1. **Programming Fundamentals:** Understanding the basic syntax and semantics of C programming language.
- 2. **Problem-Solving Skills:** Ability to break down a problem into smaller steps and devise a step-by-step solution and familiarity with simple algorithms.

Course Content:

UNIT I:

Introduction and Overview: Definition, Classification and Operations of Data Structures. Algorithms: Complexity, Time-Space Tradeoff.

Arrays: Definition and Classification of Arrays, Representation of Linear Arrays in Memory, Operations on Linear Arrays: Traversing, Inserting, Deleting, Searching, Sorting and Merging. Searching: Linear Search and Binary Search, Comparison of Methods. Sorting: Bubble Sort, Selection Sort, and Insertion Sort. Two-Dimensional Arrays, Representation of Two-Dimensional Arrays in Memory, Matrices and Sparse Matrices, Multi-Dimensional Arrays.

UNIT II:

Linked Lists: Definition, Comparison with Arrays, Representation, Types of Linked lists, Traversing, Inserting, Deleting and Searching in Singly Linked List, Doubly Linked List and Circular Linked List. Applications of Linked Lists: Addition of Polynomials.

Hashing and Collision: Hashing, Hash Tables, Types of Hash Functions, Collision, Collision Resolution with Open Addressing and Chaining.

UNIT III:

Stacks: Definition, Representation of Stacks using Arrays and Linked List, Operations on Stacks using Arrays and Linked List, Application of Stacks: Arithmetic Expressions, Polish Notation, Conversion of Infix Expression to Postfix Expression, Evaluation of Postfix Expression.

Recursion: Definition, Recursive Notation, Runtime Stack, Applications of Recursion: Factorial of Number, GCD, Fibonacci Series and Towers of Hanoi.

Queues: Definition, Representation of Queues using Array and Linked List, Types of Queue: Simple Queue, Circular Queue, Double-Ended queue, Priority Queue, Operations on Simple Queues and Circular Queues using Array and Linked List, Applications of Queues.

UNIT IV:

Graphs: Definition, Terminology, Representation, Traversal.

Trees: Definition, Terminology, Binary Trees, Traversal of Binary Tree, Binary Search Tree, Inserting, Deleting and Searching in Binary Search Tree, Height Balanced Trees: AVL Trees, Insertion and Deletion in AVL Tree.

Text Books

- 1. R.B. Patel, "Expert Data Structures with C", Khanna Book Publishing Company, 2023 (AICTE Recommended Textbook)
- 2. Seymour Lipschutz, "Data Structures with C", Schaum's Outlines, Tata McGraw-Hill, 2011.
- 3. Yashavant Kanetkar, "Data Structures Through C", 4th Edition, BPB Publications, 2022.

Reference Books

- 1. Reema Thareja, "Data Structures Using C", Second Edition, Oxford University Press, 2014.
- 2. Ellis Horowitz, Sartaj Sahni, and Susan Anderson-Freed, "Fundamentals of Data Structures in C", Second Edition, Universities Press, 2007.

Web Resources

- 1. GeeksforGeeks Data Structures Tutorial
- 2. Khan Academy <u>Algorithms Course</u>

Lab Programs:

- 1. Write a program for insertion and deletion operations in an array.
- 2. Write a program to search for an element in an array using Linear Search and Binary Search.
- 3. Write a program to sort an array using Bubble Sort, Selection Sort and Insertion Sort.

Model curriculum for UG Degree in BCA

- 4. Write a program to merge two arrays.
 - 5. Write a program to add and subtract two matrices.
 - 6. Write a program to multiply two matrices.
 - 7. Write a program to insert an element into a Singly Linked List:
 - (a) At the beginning
 - (b) At the end
 - (c) At a specified position
 - 8. Write a program to delete an element from a Singly Linked List:
 - (a) At the beginning
 - (b) At the end
 - (c) A specified element
 - 9. Write a program to perform the following operations in a Doubly Linked List:
 - (a) Create
 - (b) Search for an element
 - 10. Write a program to perform the following operations in a Circular Linked List:
 - (a) Create
 - (b) Delete an element from the end
 - 11. Write a program to implement stack operations using an array.
 - 12. Write a program to implement stack operations using a linked list.
 - 13. Write a program to add two polynomials using a linked lists.
 - 14. Write a program to evaluate a postfix expression using a stack.
 - 15. Write a program to perform the following using recursion:
 - (a) Find the factorial of a number
 - (b) Find the GCD of two numbers
 - (c) Solve Towers of Hanoi problem
 - 16. Write a program to implement simple queue operations using an array.
 - 17. Write a program to implement circular queue operations using an array.
 - 18. Write a program to implement circular queue operations using a linked list.
 - 19. Write a program to perform the following operations on a binary search tree.
 - (a) Preorder Traversal
 - (b) Inorder Traversal
 - (c) Postorder Traversal
 - 20. Write a program to perform insertion operation in a binary search tree.

Operating Systems

CC105	Operating Systems	3L:0T:2P	4 Credits

Course Content:

UNIT I:

Operating Systems Overview: Definition, Evaluation of O.S, Components & Services of OS, Structure, Architecture, types of Operating Systems, Batch Systems, Concepts of Multiprogramming and Time Sharing, Parallel, Distributed and real time Systems.

Operating Systems Structures: Operating system services and systems calls, system programs, operating system structure, operating systems generations.

UNIT II:

Process Management: Process Definition, Process states, Process State transitions, Process Scheduling, Process Control Block, Threads, Concept of multithreads, Benefits of threads, Types of threads.

Process Scheduling: Definition, Scheduling objectives, Scheduling algorithms, CPU scheduling Preemptive and Non-preemptive Scheduling algorithms (FCFS, SJF and RR), Performance evaluation of the scheduling Algorithms

UNIT III:

Process Synchronization: Introduction, Inter-process Communication, Race Conditions, Critical Section Problem, Mutual Exclusion, Semaphores, Monitors.

Deadlocks: System model, deadlock characterization, deadlock prevention, avoidance, Banker's algorithm, Deadlock detection, and recovery from deadlocks.

UNIT IV:

Memory Management: Logical and Physical address map, Swapping, Memory allocation, MFT, MVT, Internal and External fragmentation and Compaction, Paging, Segmentation. **Virtual Memory:** Demand paging, Page Replacement algorithms, Allocation of frames, thrashing.

I/O Management: Principles of I/O Hardware: Disk structure, Disk scheduling algorithms.

Text Books:

- 1. Ekta Walia, Operating Systems Concepts, Khanna Publishing House, 2022 (AICTE Recommended Textbook)
- 2. Abraham Silberschatz, Peter Baer Galvin, Greg Gagne (2006), Operating System Principles, 7th edition OR Later edition, Wiley India Private Limited, New Delhi.
- 3. Stallings (2006), Operating Systems, Internals and Design Principles, 5th edition, Pearson Education, India.

Reference Books:

1. Andrew S Tanenbaum, Modern Operating Systems, Third Edition, Prentice Hall India.

2. Sumitabha Das, UNIX Concepts and Applications, 4th Edition, Tata McGraw-Hill.

Course Outcomes (COs):

At the end of the course, students will be able to:

- CO1: Explain the fundamentals of the operating system.
- CO2: Comprehend multithreaded programming, CPU scheduling, process management, process synchronization, memory, deadlocks, and storage management.
- CO3: Compare the performance of CPU scheduling algorithms
- CO4: Identify the features of I/O and File handling methods.

Operating Systems LAB

List of experiments

- 1. Write C program to simulate the FCFS CPU Scheduling algorithm.
- 2. Write C program to simulate the SJF CPU Scheduling algorithm.
- 3. Write C program to simulate the Round Robin CPU Scheduling algorithm.
- 4. Write a C program to simulate Bankers Algorithm for Deadlock Avoidance.
- 5. Write a C program to implement the Producer Consumer problem using semaphores.
- 6. Write a C program to illustrate the IPC mechanism using Pipes.
- 7. Write a C program to illustrate the IPC mechanism using FIFOs.
- 8. Write a C program to simulate Paging memory management technique.
- 9. Write a C program to simulate Segmentation memory management technique.
- 10. Write a C program to simulate the Best Fit contiguous memory allocation technique.
- 11. Write a C program to simulate the First Fit contiguous memory allocation technique.
- 12. Write a C program to simulate the concept of Dining-Philosophers problem.
- 13. Write a C program to simulate the MVT algorithm.
- 14. Write a C program to implement FIFO page replacement technique.
- 15. Write a C program to write a C program for implementing sequential file allocation method.

Course Outcomes (COs):

- CO1: To implement scheduling of algorithms.
- CO2: Understanding the concept of critical section problems.
- CO3: Concepts of file allocation of frames.
- CO4: Concept of Page replacement algorithms.

Object Oriented Programming using Java

SEC102	Object Oriented Programming	3L:0T:4P	5 Credits
	using Java		

Course Objectives

CO1: To introduce the object oriented programming system concepts

CO2: To introduce syntax and semantics of Java programming language

CO3: To develop modular programs using Java

CO4: To setup JDK environment to create, debug and run Java programs

Prerequisite: Knowledge of Problem Solving Techniques using C programminglanguage

Course Content:

UNIT I:

Fundamentals of Object Oriented Programming: Basic Concepts of Object Oriented Programming (OOP), Benefits and Applications of OOP.

Java Evolution: Java Features, Difference between Java, C and C++, Javaand Internet, Java Environment.

Overview of Java Language: Introduction to Simple Java Program, Use ofComments and Math function, Application of two classes, Java Program Structure, Java Tokens and statements, Implementing Java programAnd JVM, Command Line Arguments. Text Book 1: Chapters 1, 2 and 3.

UNIT II:

Constants, Variables and Data Types: Constants, Variables, Data Types, Declaration of Variables, Giving values to Variables, Symbolic Constants, Typecasting.

Operators & Expressions: Arithmetic operators, Relational operators, Logical operators, Assignment operators, Increment & Decrement operators, conditional operators, Bitwise operators, Arithmetic Expressions, Evaluation of Expressions, Type Conversions in Expressions, Operator Precedence & Associativity.

Decision Making, Branching & Looping: Decision Making with ControlStatements, Looping statements, Jump in loops, Labelled loops.

Text Book 1: Chapters 4, 5, 6, and 7.

UNIT III:

Classes, Objects and Methods: Defining Class, Methods Declaration, Constructors, Methods Overloading, Overriding Methods, Inheritance

Arrays, Strings and Vectors: 1D arrays, Creating an Array, 2D arrays, Strings, Vectors, Wrapper Classes, Enumerated Types

Inheritance: Defining, extending classes, and Implementing Interfaces. Multipleinheritance and polymorphism.

Text Book 1: Chapters 8, 9, and 10.

UNIT IV:

Packages: Basics of packages, System packages, Creating and accessingpackages, Creating

user defined packages, Adding class to a package.

Exception Handling: Using the main keywords of exception handling: try, catch,throw, throws and finally; Nested try, Multiple catch statements, Creating user defined exceptions Text Book 1: Chapters 11 & 13.

Text Books

- 1. Balaguruswamy E. (2023). Programming with JAVA: A Primer. 7th edition. India: McGraw Hill Education
- 2. Schildt, H. (2022). Java: The Complete Reference. 12th edition.McGraw-Hill Education.

Reference Books

- 1. Arunesh Goyal, The Essentials of JAVA, Khanna Book Publishing Company Private Limited, 2012.
- 2. Tanweer Alam, Core JAVA, Khanna Book Publishing Company Private Limited, 2015.
- 3. Y. Daniel Liang, Introduction to Java Programming, 7th Edition, Pearson, 2008.
- 4. S. Malhotra and S. Choudhary, Programming in Java, 2nd Edition, OxfordUniversity Press, 2014.

Web Resources

- 1. https://www.w3schools.com/java/.
- 2. <u>http://www.java2s.com/</u>.
- 3. https://onlinecourses.nptel.ac.in/noc22_cs47/preview

List of Practical:

- 1. Write a program to read two numbers from user and print their product.
- 2. Write a program to print the square of a number passed through commandline arguments.
- 3. Write a program to send the name and surname of a student through command line arguments and print a welcome message for the student.
- 4. Write a java program to find the largest number out of n natural numbers.
- 5. Write a java program to find the Fibonacci series & Factorial of a numberusing recursive and non recursive functions.
- 6. Write a java program to multiply two given matrices.
- 7. Write a Java program for sorting a given list of names in ascending order.
- 8. Write a Java program that checks whether a given string is a palindrome ornot . Ex:MADAM is a palindrome.
- 9. Write a java program to read n number of values in an array and display it inreverse order.
- 10. Write a Java program to perform mathematical operations. Create a class called AddSub with methods to add and subtract. Create another class calledMulDiv that extends from AddSub class to use the member data of the superclass. MulDiv should have methods to multiply and divide A main function should access the methods and perform the mathematical operations.
- 11. Create a JAVA class called Student with the following details as variables within it.
 - a. USN, NAME, BRANCH, PHONE, PERCENTAGE
 - b. Write a JAVA program to create n Student objects and print the USN, Name, Branch, Phone, and percentage of these objects with suitable headings.
- 12. Write a Java program that displays the number of characters, lines and wordsin a text.
- 13. Write a Java program to create a class called Shape with methods called getPerimeter() and getArea(). Create a subclass called Circle that overrides the getPerimeter() and getArea()

methods to calculate the area and perimeterof a circle.

- 14. Write a Java program to create a class Employee with a method called calculateSalary(). Create two subclasses Manager and Programmer. In eachsubclass, override the calculateSalary() method to calculate and return the salary based on their specific roles.
- 15. Write a Java program using an interface called 'Bank' having function 'rate_of_interest()'. Implement this interface to create two separate bank classes 'SBI' and 'PNB' to print different rates of interest. Include additionalmember variables, constructors also in classes 'SBI' and 'PNB'.
- 16. Write a Java package program for the class book and then import the datafrom the package and display the result.
- 17. Write a Java program for finding the cube of a number using a package for various data types and then import it in another class and display the results.
- 18. Write a Java program for demonstrating the divide by zero exceptionhandling.
- 19. Write a Java program that reads a list of integers from the user and throws an exception if any numbers are duplicates.
- 20. Create an exception subclass UnderAge, which prints "Under Age" along with the age value when an object of UnderAge class is printed in the catch statement. Write a class exceptionDemo in which the method test() throws UnderAge exception if the variable age passed to it as argument is less than 18. Write main() method also to show working of the program.

Web Technologies

SEC103	Web Technologies	1L:0T:2P	2 Credits

Course Objectives

- CO1: To understand the concepts and architecture of the World Wide Web,
 - Markup languages along with Cascading Style Sheets.
- CO2: To understand the concepts of event handling and data validation mechanisms.
- CO3: To understand the concepts of embedded dynamic scripting on client and server side Internet Programming and basic full stack web development.
- CO4: To develop modern interactive web applications

Prerequisite:

- 1. Proficiency in at least one programming language, such as Python, Java, or C++. Understanding of programming concepts such as loops, conditionals, functions, and data structures like arrays, lists.
- 2. Familiarity with object-oriented programming (OOP) principles, including classes, objects, inheritance, and polymorphism.

Course Content:

Unit I:

Introduction to HTML, history of HTML, Objective, basic Structures of HTML, Header Tags, body tags, Paragraph Tags.

Tags for FORM Creation, TABLE, FORM, TEXTAREA, SELECT, IMG, IFRAME FIELDSET, ANCHOR.

Lists in HTML, Introduction to DIV tag, NAVBAR Design.

Introduction to CSS, types, Selectors, and Responsiveness of a web page.

Introduction to Bootstrap, downloads/linking, using classes of Bootstrap, understanding the Grid System in Bootstrap.

Introduction to www, Protocols and Programs, Applications and development tools, web browsers, DNS, Web hosting Provider, Setting up of Windows/Linux/Unix web servers, Web hosting in cloud, Types of Web Hosting.

Unit II:

Introduction to JavaScript: Functions and Events, Document Object model traversing using JavaScript. Output System in JavaScript i.e. Alert, throughput, Input box, Console. Variables and Arrays in JavaScript.Date and String handling in JavaScript.

Manipulating CSS through JavaScript: Form Validation like Required validator, length validator, Pattern validator. Advanced JavaScript, Combining HTML, CSS and JavaScript events and buttons, controlling your browser.Introduction to AJAX, Purpose, advantages and disadvantages, AJAX based Web applications and alternatives of AJAX.

Introduction to XML: uses, Key concepts, DTD 8 schemas, XSL, XSLT, and XSL Elements and transforming with XSLT. Introduction to XHTML.

JSON: Introduction to JSON, Keys and Values, Types of Values, Arrays, Objects

Text Books

- 1. Laura Lemay, Mastering HTML, CSS & Java Script Web Publishing, BPB Publications, 2016
- 2. Thomas A. Powell, The Complete Reference HTML & CSS, Fifth Edition, 2017

Reference Books

- 1. Silvio Moreto, Bootstrap 4 By Example, ebook, 2016.
- 2. Tanweer Alam, Web Technologies, Khanna Book Publishing, 2011.

Web Resources

- 1. www.javatpoint.com
- 2. www.w3schools.com
- 3. https://www.geeksforgeeks.org/web-technology/

Practical list of Programs:

PART-A

- 1. Create your class time table using table tag.
- 2. Design a Webpage for your college containing description of courses, department, faculties, library etc. using list tags, href tags, and anchor tags.
- 3. Create web page using Frame with rows and columns where we will have header frame, left frame, right frame, and status bar frame. On clicking in the left frame, information should be displayed in right frame.
- 4. Create Your Resume using HTML, use text, link, size, color and lists.
- 5. Create a Web Page of a super market using (internal CSS)
- 6. Use Inline CSS to format your resume that you have created.
- 7. Use External CSS to format your time table created.
- 8. Use all the CSS (inline, internal and external) to format college web page that you have created.
- 9. Write a HTML Program to create your college website using for mobile device.

<u>PART – B</u>

- 1) Write an HTML/JavaScript page to create login page with validations.
- 2) Develop a Simple calculator for addiction, subtraction, multiplication and division operation using JavaScript.
- 3) Use Regular Expressions for validations in Login Page using JavaScript.
- 4) Write a Program to retrieve date from a text file and displaying it using AJAX.
- 5) Create XML file to store Student Information like Register Number, Name, Mobile Number, DOB, and Email-Id.
- 6) Create a DTD for (0).
- 7) Create XML scheme for (0).
- 8) Create XSL file to convert XML file to XHTML file.
- 9) Write a JavaScript program using Switch case.
- 10) Write a JavaScript program using any 5 events.
- 11) Write a JavaScript program using built in JavaScript objects.
- 12) Write program for populating values from JSON text.
- 13) Write a program to transform JSON text to a JavaScript object.

Indian Constitution

VAC102	Indian Constitution	2L:0T:0P	2 Credits

Course Content:

Unit 1: The Constitution - Introduction

- The History of the Making of the Indian Constitution
- Preamble and the Basic Structure, and its interpretation
- Fundamental Rights and Duties and their interpretation
- State Policy Principles

Unit 2: Union Government

- Structure of the Indian Union
- President Role and Power
- Prime Minister and Council of Ministers
- Lok Sabha and Rajya Sabha

Unit 3: State Government

- Governor Role and Power
- Chief Minister and Council of Ministers
- State Secretariat

Unit 4: Local Administration

- District Administration
- Municipal Corporation
- Zila Panchayat

Unit 5: Election Commission

- a. Role and Functioning
- b. Chief Election Commissioner
- c. State Election Commission

Suggested Learning Resources:

- 1. Ethics and Politics of the Indian Constitution by Rajeev Bhargava, Oxford University Press, New Delhi, 2008
- 2. The Constitution of India by B.L. Fadia Sahitya Bhawan; New edition (2017)
- 3. Introduction to the Constitution of India by DD Basu Lexis Nexis; Twenty-Third, 2018 edition

Suggested Software/Learning Websites:

- a. https://www.constitution.org/cons/india/const.html
- b. http://www.legislative.gov.in/constitution-of-india
- c. https://www.sci.gov.in/constitution
- d. https://www.toppr.com/guides/civics/the-indian-constitution/the-constitution-of-india/

Cases

- Rustom Cavasjee Cooper v. Union of India, (1970) 1 SCC 248
- State of Rajasthan v. Mohan Lal Vyas, AIR 1971 SC 2068 (confirmation of a private monopoly, not a violation of fundamental right)
- Mithilesh Garg v. Union of India, (1992) 1 SCC 168 : AIR 1992 SC 221 (Right to carry on business, not breached when it is liberalised)
- Chintamanrao v. The State of Madhya Pradesh, AIR 1951 SC 118 (scope of reasonable restrictions in relation to trade and occupation)
- Cooverjee B. Bharucha v. Excise Commissioner, Ajmer, AIR 1954 SC 220 (the reasonableness of the restriction imposed may depend upon the nature of the business and prevailing conditions including public health and morality)
- T. B. Ibrahim v. Regional Transport Authority. Tanjore, AIR 1953 SC 79
- Harman Singh v. RTA, Calcutta, AIR 1954 SC 190
- Dwarka Prasad Laxmi Narain v. State of U.P., AIR 1954 SC 224
- State of Bombay v. R.M.D. Chamarbaugwala, AIR 1957 SC 699
- Parbhani Transport Coop. Society Ltd. v. Regional Transport Authority, Aurangabad, AIR 1960 SC 801
- State of Bombay v. R. M. D. Chamarbaugwala, (1957) S.C.R. 874,
- G.K.Krishnan vs State of Tamil Nadu, 1975 SCC (1) 375
- Automobile Transport (Rajasthan) Ltd. Vs State of Rajasthan, AIR 1962 SC 1406

Course Outcome(s):

Upon completion of this course, students will be able to:

- 1. Constitutional Framework: Analyze the Indian Constitution's history, Preamble, Fundamental Rights, and basic structure.
- 2. Union Government Structure: Describe the roles of the President, Prime Minister, and the legislative bodies (Lok Sabha and Rajya Sabha).
- 3. State Government Mechanisms: Examine the powers of the Governor, Chief Minister, and the State Secretariat.
- 4. Local Administration: Assess the functioning of local government bodies like District Administration, Municipal Corporations, and Zila Panchayats.
- 5. Electoral Processes: Analyze the role of the Election Commission in conducting free and fair elections.
- 6. Application of Knowledge: Apply constitutional principles to contemporary political issues and evaluate governance effectiveness.

ALL INDIA COUNCIL FOR TECHNICAL EDUCATION NELSON MANDELA MARG, Vasant Kunj, New Delhi – 110070 <u>www.aicte-india.org</u>