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UNIT-I 

CONTROL SYSTEMMODELING 

Basicelementsofcontrolsystem 

In recent years, control systems have gained an increasingly importance in the 

development and advancement of the modern civilization and technology. Figure shows thebasic 

components of a control system. Disregard the complexity of the system; it consists of an input 

(objective), the control system and its output (result). Practically our day-to-day activities are 

affected by some type of control systems. There are two main branches of control systems: 

1) Open-loopsystemsand 

2) Closed-loopsystems. 
 

BasicComponentsofControlSystem 

 

Open-loopsystems: 

The open-loop system is also called the non-feedback system. This is the simpler of the 

two systems. A simple example is illustrated by the speed control of an automobile as shown in 

Figure 1-2. In this open-loop system, there is no way to ensure the actual speed is close to the 

desired speed automatically. The actual speed might be way off the desired speed because of the 

wind speed and/or road conditions, such as uphill or downhill etc. 
 

 

 

BasicOpenLoopSystem 

 

Closed-loopsystems: 

The closed-loop system is also called the feedback system. A simple closed-system is 

shown in Figure 1-3. It has a mechanism to ensure the actual speed is close to the desired speed 

automatically. 
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Transfer Function 

A simpler system or element maybe governed by first order or second order differential 

equation. When several elements are connected in sequence, say “n” elements, each one withfirst 

order, the total order of the system will be nth order 

In general, a collection of components or system shall be represented by nth order 

differential equation. 
 

In control systems, transfer function characterizes the input output relationship of 

components or systems that can be described by Liner Time Invariant Differential Equation 

In the earlier period, the input output relationship of a device was representedgraphically. 

In a system having two or more components in sequence, it is very difficult to find 

graphical relation between the input of the first element and the output of the last element. This 

problem is solved by transfer function 

 

DefinitionofTransferFunction: 

Transfer function of a LTIV system is defined as the ratio of the Laplace Transform ofthe 

output variable to the Laplace Transform of the input variable assuming all the initial condition 

as zero. 

PropertiesofTransferFunction: 

Thetransferfunctionofasystemisthemathematicalmodelexpressingthedifferential equation 

that relates the output to input of the system. 

Thetransferfunctionisthepropertyofasystemindependentofmagnitudeandthenature of the 
input. 

Thetransferfunctionincludesthetransferfunctionsoftheindividualelements.Butatthe same 

time, it does not provide any information regarding physical structure of the system. 

Thetransfer functions ofmanyphysicallydifferentsystems shall beidentical. 

Ifthetransferfunctionofthesystemisknown,theoutputresponsecanbestudiedfor various 

types of inputs to understand the nature of the system. 

Ifthetransferfunctionisunknown,itmaybefound outexperimentallybyapplying known 

inputs to the device and studying the output of the system. 

 

Howyoucanobtainthetransferfunction(T. F.): 

Writethedifferential equationofthe system. 

TaketheL.T.ofthedifferentialequation,assumingallinitialconditiontobezero. Take the 

ratio of the output to the input. This ratio is the T. F. 

MathematicalModelofcontrol systems 

A control system is a collection of physical object connected together to serve an objective. The 

mathematical model of a control system constitutes a set of differential equation. 
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1. MechanicalTranslationalsystems 

The model of mechanical translational systems can obtain by using three basic elements 

mass, spring and dashpot. When a force is applied to a translational mechanical system, it is 

opposed by opposing forces due to mass, friction and elasticity of the system. The force actingon 

a mechanical body is governed by Newton‘s second law of motion. For translational systems it 

states that the sum of forces acting on a body is zero. 

 

Forcebalanceequationsof idealizedelements: 

Consider an ideal mass element shown in fig. which has negligible friction and elasticity. 

Let a force be applied on it. The mass will offer an opposing force which is proportional to 

acceleration of a body. 
 

Letf=appliedforce 

fm=opposingforceduetomass Here 

fm α M d2 x / dt2 

ByNewton‘ssecond law, f=f m= M d2x/ dt2 

 

Consider an ideal frictional element dash-pot shown in fig. which has negligible mass and 

elasticity.Letaforcebeappliedonit.Thedashpotwillbeofferanopposingforcewhichis proportional to 

velocity of the body. 

 

 

 

 

 

 

 

Letf=appliedforce 

fb=opposingforceduetofriction Here, f 

b α B dx / dt 

 

ByNewton‘ssecond law, f=fb=M d x/ dt 

Consideranidealelastic elementspringisshowninfig.Thishasnegligible massand friction. 



CONTROLSYSTEMENGINEERING 
 

 

 

 
Letf=appliedforce 

fk=opposingforceduetoelasticity Here, 

f k α x 

ByNewton‘ssecond law, f=fk =x 

 

MechanicalRotational Systems: 

The model of rotational mechanical systems can be obtained by using three elements, 

moment of inertia [J] of mass, dash pot with rotational frictional coefficient [B] and torsional 

spring with stiffness[k]. 

When a torque is applied to a rotational mechanical system, it is opposed by opposing 

torques due to moment of inertia, friction and elasticity of the system. The torque acting on 

rotational mechanical bodies is governed by Newton‘s second law of motion for rotational 

systems. 

 

Torquebalanceequationsofidealized elements 

Consideranidealmasselementshowninfig.whichhasnegligible frictionandelasticity. 
Theopposingtorquedue to momentofinertiais proportionalto theangularacceleration. 

 
LetT =appliedtorque 

Tj=opposingtorqueduetomomentofinertiaofthebody Here 

Tj= α J d2 θ / dt2 

By Newton‘s law 

T=Tj=Jd2θ/dt2 

Consider an ideal frictional element dash pot shown in fig. which has negligible moment of 

inertia and elasticity. Let a torque be applied on it. The dash pot will offer an opposing torque is 

proportional to angular velocity of the body. 

 
LetT =appliedtorque 

Tb=opposingtorqueduetofriction Here 

Tb = α B d / dt (θ1- θ2) 

ByNewton‘s law 

T=Tb = Bd / dt (θ1-θ2) 
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.Consideranidealelasticelement,torsionalspringasshowninfig.whichhasnegligible moment 

of inertia and friction. Let a torque be applied on it. The torsional spring will offer an opposing 

torque which is proportional to angular displacement of the body 

LetT =appliedtorque 

Tk=opposingtorqueduetofriction Here 

Tk α K (θ1- θ2) 

By Newton‘s 

lawT=Tk=K(θ1-θ2) 

Modelingofelectrical system 

Electricalcircuitsinvolvingresistors,capacitorsandinductorsareconsidered.The behaviour 

of such systems is governed by Ohm‘s law and Kirchhoff‘s laws 

Resistor: Consider a resistance of‘R‘ Ω carrying current‘i‘ Amps as shown in Fig (a),then 

the voltage drop across it is v = R I 
 

Inductor: Consider an inductor ―L‘ H carrying current ‗i‘ Amps as shown in Fig 

(a),then the voltage drop across it can be written as v = L di/dt 
 

 

 

Capacitor:Consideracapacitor‘C‘Fcarryingcurrent‘i‘AmpsasshowninFig(a), then the 

voltage drop across it can be written as v = (1/C)∫ i dt 
 

 

 

Stepsformodelingofelectricalsystem 

ApplyKirchhoff‘svoltagelaworKirchhoff‘scurrentlawtoformthedifferential equations 

describing electrical circuits comprising of resistors, capacitors, and inductors. 

FormTransferFunctionsfromthedescribingdifferentialequations. Then 

simulate the model. 
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Example  

 
R1i(t)+R2i(t)+1/C∫i(t)dt=V1(t) R2 i(t) 

+ 1/ C ∫ i(t) dt = V2(t) 

Electricalsystems 

LRCcircuit.ApplyingKirchhoff‘svoltagelawtothesystemshown.Weobtainthe following 

equation; 

Resistancecircuit 

 
L(di/dt) +Ri+ 1/ C∫i(t)dt =ei .............................................. (1) 

1/ C ∫i(t) dt =e0.................................................................... (2) 

Equation(1)&(2)giveamathematicalmodelofthecircuit.TakingtheL.T.ofequations (1)&(2), 

assuming zero initial conditions, we obtain 
 

Armature-Controlleddc motors 
The dc motors have separately excited fields. They are either armature-controlled with 

fixed field or field-controlled with fixed armature current. For example, dc motors used in 

instruments employ a fixed permanent-magnet field, and the controlled signal is applied to the 

armature terminals. 

Considerthearmature-controlled dcmotorshownin thefollowingfigure. 
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Ra = armature-winding resistance, ohms 

La=armature-windinginductance,henrys ia 

= armature-winding current, amperes 

if=fieldcurrent, a-pares 

ea=appliedarmaturevoltage,volt eb 

= back emf, volts 

θ=angulardisplacementofthemotorshaft,radians T = 

torque delivered by the motor, Newton*meter 

J=equivalent momentofinertiaof themotorand loadreferred tothemotor shaft kg.m2 

f=equivalentviscous-frictioncoefficientofthemotorandloadreferredtothemotorshaft. Newton*m/rad/s 

T=k1iaψwhereψistheairgap flux,ψ=kfif,k1isconstant For the 

constant flux 

 
WhereKb is aback emfconstant ---------------- (1) 

Thedifferentialequationforthearmaturecircuit 

 
Thearmaturecurrentproducesthetorquewhichisappliedtotheinertiaandfriction; hence 

 

Assumingthatallinitialconditionsareconditionarezero/andtakingtheL.T.ofequations(1), 

(2)& (3), weobtain 

Kps θ (s)=Eb(s) 

(Las+Ra)Ia(s)+Eb(s)=Ea(s)(Js2+fs) θ (s)= 

T(s) = K Ia(s) 

TheT.F can beobtainedis 

 

Analogous Systems 

Letusconsideramechanical(bothtranslationalandrotational)and electricalsystemasshownin the fig. 
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Fromthefig(a) 

Weget Md2x/dt2+D dx/ dt+Kx=f 

 

Fromthefig(b) 

WegetMd2θ/dt2+Ddθ/dt+Kθ=T From the fig (c) 

WegetLd2q / dt2+Rd q /dt +(1/C) q =V(t) 

Whereq =∫i dt 

They are two methods to get analogous system. These are (i) force- voltage (f-v) analogy 

and (ii) force-current (f-c) analogy 

 

Force–VoltageAnalogy 

Force–CurrentAnalog 
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Problem 

1.Findthesystemequationforsystemshowninthefig.Andalsodeterminef-vandf-i analogies 
 

Forfreebodydiagram M1 

 
Forfreebodydiagram M2 

 

 

Force–voltageanalogy From 

eq (1) we get 

 

 

Fromeq(2)we get 

 

Fromeq(3)and(4)we candraw f-v analogy 

(2)  

 

 

 

 

 

 

 

 

 

 

 

 

 

…..(4) 
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Force–currentanalogy 

From eq (1) we get 

 

 

Fromeq(2)we get 

 

Fromeq(5)and(6)we candraw force-currentanalogy 

 

 

 

 

 

 

 

 

 

Thesystemcanberepresentedintwoforms: Block 

diagram representation 

Signalflow graph 

……..(5) 

 

 

 

 

…………(6) 

 

Block diagram 

A pictorial representation of the functions performed by each component and of the flow 

of signals. 

Basicelementsofablockdiagram 

Blocks 

Transferfunctionsofelementsinsidetheblocks 

Summing points 

Takeoffpoints 

Arrow 

Block diagram 

A control system may consist of a number of components. A block diagram of a systemis 

a pictorial representation of the functions performed by each component and of the flow of 

signals. 

Theelements ofablock diagram areblock, branchpoint andsummingpoint. 
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UNIT-II  
CONTROLSYSTEMENGINEERING 

Block 

Inablockdiagramallsystemvariablesarelinkedtoeachotherthroughfunctional 
blocks. The functional block or simply block is a symbol for the mathematical operation on the 

input signal to the block that produces the output. 
 

Summing point 

Although blocks are used to identify many types of mathematical operations, operations 

of addition and subtraction are represented by a circle, called a summing point. As shown in 

Figure a summing point may have one or several inputs. Each input has its own appropriate plus 

or minus sign. 

Asummingpoint has onlyoneoutput and isequalto thealgebraicsum of theinputs. 
 

Atakeoffpointisusedto allowasignaltobeusedbymorethanoneblockorsummingpoint. The transfer 

function is given inside the block 

• TheinputinthiscaseisE(s) 

• TheoutputinthiscaseisC(s) 

C(s) = G(s) E(s) 

 

Functionalblock –eachelementofthepracticalsystemrepresentedbyblockwithits T.F. 

Branches–linesshowingthe connectionbetweentheblocks 

Arrow –associatedwitheachbranchtoindicatethedirectionofflowof signal 

Closedloopsystem 

Summingpoint–comparingthedifferentsignals 
Takeoffpoint–pointfromwhichsignalistakenforfeed back 
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Advantagesof Block Diagram Representation 

Verysimpletoconstructblockdiagramforacomplicatedsystem Function 

of individual element can be visualized 

Individual & Overall performance can be studied 

Overalltransferfunctioncanbecalculatedeasily. 

 

Disadvantages of Block Diagram Representation 

Noinformationaboutthephysicalconstruction 

Source of energy is not shown 

SimpleorCanonical formofclosed loopsystem 

 
R(s) – Laplace of reference input r(t) 

C(s)–Laplaceofcontrolledoutputc(t) 

E(s) – Laplace of error signal e(t) 

B(s) – Laplace of feed back signal b(t) 

G(s) – Forward path transfer function 

H(s)–Feedbackpathtransferfunction 

Blockdiagramreduction technique 

Because of their simplicity and versatility, block diagrams are often used by control 

engineers to describe all types of systems. A block diagram can be used simply to represent the 

composition and interconnection of a system. Also, it can be used, together with transfer 

functions, to represent the cause-and-effect relationships throughout the system. Transfer 

Function is defined as the relationship between an input signal and an output signal to a device. 
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Block diagramrules 

Cascadedblocks 
 

Movingasummerbeyond theblock 

 

 

Movingasummer aheadofblock 
 

 

Movingapick-offaheadof block 
 

Movingapick-off behind a block 

 

Eliminatingafeedbackloop 
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CascadedSubsystems 

 

 

ParallelSubsystems 

 

FeedbackControlSystem 

 

ProceduretosolveBlockDiagramReductionProblems 

Step 1: Reduce the blocks connected in series 

Step2:Reducetheblocksconnectedinparallel 

Step 3: Reduce the minor feedback loops 

Step4:TrytoshifttakeoffpointstowardsrightandSummingpointtowardsleft Step 5: 

Repeat steps 1 to 4 till simple form is obtained 

Step6:ObtaintheTransferFunctionofOverall System 
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Problem1 

 

ObtaintheTransferfunctionof thegivenblockdiagram 

 

CombineG1, G2whicharein series 

CombineG3, G4whicharein Parallel 

 
ReduceminorfeedbackloopofG1,G2and H1 
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Transfer function 

 
 

 

 

2. Obtainthe transferfunction forthesystemshownin thefig 

 
Solution 

 
 

3. Obtainthetransferfunction C/Rfortheblockdiagramshownin thefig 
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Solution 

Thetake-offpointis shifted aftertheblock G2 

 

Reducingthe cascadeblockandparallelblock 

Replacingtheinternalfeedbackloop 

 
Equivalentblock diagram 

 
Transfer function 
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SignalFlow GraphRepresentation 

Signal Flow Graph Representation ofasystem obtained from the equations, which shows 

the flow of the signal 

 

Signalflowgraph 

A signal flow graph is a diagram that represents a set of simultaneous linear algebraic 

equations. Bytaking Laplacetransfer,thetimedomain differential equations governing a control 

systemcanbetransferredtoasetofalgebraicequationins-domain.Asignal-flowgraphconsists of a 

network in which nodes are connected by directed branches. It depicts the flow of signals from 

one point of a system to another and gives the relationships among the signals. 

 

BasicElementsofaSignalflowgraph 

Node-apoint representingasignal or variable. 
Branch–unidirectionallinesegmentjoiningtwonodes. 

Path–abranchoracontinuoussequenceofbranchesthatcanbetraversedfromonenodeto another node. 

Loop – aclosedpath that originates and terminates on thesame node and alongthe path no node is 

met twice. 

Nontouchingloops –two loops aresaid to be nontouchingif theydo not have acommonnode. 

 

Mason’sgainformula 

The relationship between an input variable and an output variable of signal flow graph is 

given by the net gain between the input and the output nodes is known as overall gain of the 

system. Mason‘s gain rule for the determination of the overall system gain is given below. 

 
WhereM=gainbetweenXinandXout 

Xout =output node variable 

Xin=input nodevariable 

N = total number of forward paths 

Pk=pathgainofthekthforwardpath 

∆=1-(sum of loop gains of all individual loop) + (sum of gain product of all possible 

combinations of two nontouching loops) – (sum of gain products of all possible combination of 

three nontouching loops) 
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Problem 
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TIMERESPONSE ANALYSIS 

 

Introduction 

After deriving a mathematical model of a system, the system performance analysis can be done in 

various methods. 

In analyzing and designing control systems, a basis of comparison of performance of various 

control systems should be made. This basis may be set up by specifying particular test input 

signals and by comparing the responses of various systems to these signals. 

The system stability, system accuracy and complete evaluation are always based on the time 
response analysis and the corresponding results. 

Nextimportantstepafteramathematicalmodelofasystemisobtained. To 

analyze the system‘s performance. 

Normallyusethestandardinputsignalstoidentifythecharacteristicsofsystem‘sresponse Step 

function 

Ramp function 

Impulse function 

Parabolic function 

Sinusoidal function 

Timeresponseanalysis 

It is an equation or a plot that describes the behavior of a system and contains much 

information about it with respect to time response specification as overshooting, settling time, 

peaktime,risetimeand steadystateerror.Timeresponseisformed bythetransientresponseand the 

steady state response. 

Timeresponse=Transientresponse+Steadystate response 

Transient time response (Natural response) describes the behavior of the system in its firstshort 

time until arrives the steady state value and this response will be our study focus. If the input is 

step function then the output or the response is called step time response and if the input is ramp, 

the response is called ramp time response ... etc. 

 

ClassificationofTimeResponse 

Transient response 

Steadystateresponse 

y(t)= yt(t)+yss(t) 

 

TransientResponse 

Thetransient responseis defined as thepartofthe timeresponsethat goes to zeroas time 

becomes very large. Thus yt(t) has the property 

Limyt(t)=0 t 

-->∞ 

The time required to achieve the final value is called transient period. The transient 

response may be exponential or oscillatory in nature. Output response consists of the sum of 

forced response (form the input) and natural response (from the nature of the system).The 

transientresponseisthechangeinoutputresponsefromthebeginningoftheresponsetothe 
 



 

 

EC-6405 

SCE 
Page26of116 

finalstateoftheresponseandthesteadystateresponseistheoutputresponseastimeisapproaching 

infinity (or no more changes at the output). 

 

SteadyState Response 

The steady state response is the part of the total response that remains after the transient 

has died out. For a position control system, the steady state response when compared to with the 

desired reference position gives an indication of the final accuracy of the system. If the steady 

state response of the output does not agree with the desired reference exactly, the system is said 

to have steady state error. 

 

TypicalInputSignals 

Impulse Signal 

Step Signal 

Ramp Signal 

ParabolicSignal 
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TimeResponseAnalysis&Design 

Twotypesofinputscanbeappliedtoacontrolsystem. 
CommandInputorReferenceInputyr(t). 

DisturbanceInputw(t)(Externaldisturbancesw(t)aretypically uncontrolledvariationsinthe load on a 

control system). 

Insystems controllingmechanical motions,load disturbancesmayrepresent forces. 

Involtageregulatingsystems,variationsinelectricalloadareamajorsourceof disturbances. 

 

TestSignals 

 

Input r(t) R(s) 

StepInput A A/s 

RampInput At A/s2 

ParabolicInput At2 / 2 A/s3 

ImpulseInput δ(t) 1 
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Transfer Function 

Oneof thetypes of Modelinga system 

Usingfirstprinciple, differentialequationis obtained 

Laplace Transformis appliedtotheequationassumingzeroinitial conditions 

RatioofLT(output)toLT(input)isexpressedasaratioofpolynomialin sinthetransfer function. 

 

Orderofa system 

TheOrderofasystemisgivenbytheorderofthedifferentialequationgoverningthe system 

Alternatively,ordercanbeobtainedfromthetransferfunction 

In the transfer function, the maximum power of s in the denominator polynomialgivesthe 

order of the system. 

 

DynamicOrderof Systems 

Orderofthesystemistheorderofthedifferentialequationthatgovernsthedynamic behaviour 

Workinginterpretation:Numberofthedynamicelements/capacitancesorholdup elements 
between a 

manipulatedvariableand acontrolledvariable 

Higherordersystemresponsesareusuallyverydifficulttoresolvefromoneanother The 

response generally becomes sluggish as the order increases. 

SystemResponse 

First-ordersystemtime response 



 -state 

Second-ordersystemtime response 

 Transient 

 -state 

FirstOrder System 

Ys/ R(s)=K /(1+K+sT)=K /(1+sT) 

 

StepResponseofFirst OrderSystem 

Evolution of the transient response is determined by the pole of the transfer functionats=-

1/t where t is the time constant 

Also,thestep response can befound: 

 

Impulseresponse K / (1+sT) Exponential 

Step response (K/S)– (K/ (S+(1/T))) Step, exponential 

Rampresponse (K/S2)-(KT/S)-(KT/ (S+1/T)) Ramp,step, exponential 
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Second-ordersystems 

LTIsecond-ordersystem 

 

Second-OrderSystems 
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Secondordersystem responses 

Overdampedresponse: 
Poles:Tworealat 

-σ1 --σ2 

Naturalresponse:Twoexponentialswithtimeconstantsequaltothereciprocalofthepole location 

C(t)=k1e
-σ1+k2e

-σ2 

Poles:Twocomplexat 

 

Underdampedresponse: 

-σ1±jWd 
 

Natural response: Damped sinusoid with an exponential envelope whose time constant is equal 

to the reciprocal of the pole‘s radian frequency of the sinusoid, the damped frequency of 

oscillation, is equal to the imaginary part of the poles 

 

UndampedResponse: 

Poles:Twoimaginaryat 

±jW1 

Natural response: Undamped sinusoid with radian frequency equal to the imaginary part of the 

poles 
C(t)=Acos(w1t-φ) 

 

Criticallydampedresponses: 

Poles:Tworealat 

Natural response: One term is an exponential whose time constant is equal to the reciprocal of 

the pole location. Another term product of time and an exponential with time constant equal to 

the reciprocal of the pole location. 

 

Secondordersystemresponsesdampingcases 
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Second-orderstepresponse 

Complexpoles 

 
 

SteadyState Error 

Consider a unity feedback system 

Transferfunctionbetweene(t)andr(t) 

 
 

 

OutputFeedbackControlSystems 

 
Feedback onlythe outputsignal 

– Easyaccess 

– Obtainablein practice 

PIDControllers 

Proportionalcontrollers 

– puregainor attenuation 
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Integralcontrollers 

– integrate error 

 

Derivativecontrollers 

– differentiate error 

ProportionalController 

U = Kp e 

Controllerinputiserror(referenceoutput) Controller 

output is control signal 

Pcontrollerinvolvesonlyaproportionalgain(orattenuation) 

IntegralController 

Integraloferrorwithaconstantgain 

Increase system type by 1 

Infinitysteady-stategain 

Eliminatesteady-stateerrorforaunit step input 

IntegralController 
 

DerivativeControl 
 

Differentiationoferrorwithaconstantgain 

Reduce overshoot and oscillation 

Donotaffectsteady-stateresponse 

Sensitive to noise 
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ControllerStructure 

Single controller 

Pcontroller,Icontroller,Dcontroller 

Combination of controllers 

PIcontroller,PDcontroller 

PID controller 

Controller Performance 

P controller 

PI controller 

PDController 

PIDController 

 

DesignofPIDControllers 

Basedontheknowledge ofP,Iand D 

– trialanderror 

– manual tuning 

– simulation 

 

DesignofPIDControllers 

Timeresponse measurements areparticularlysimple. 

A step input to a system is simplya suddenly applied input - often just a constant voltage 
applied through a switch. 

The system output is usually a voltage, or a voltage output from a transducer measuring the 

output. 

A voltage output can usually be captured in a file using a C program or a Visual Basic 
program. 

Youcanuseresponsesinthetimedomaintohelpyoudeterminethetransferfunctionofa system. 

First we will examine a simple situation. Here is the step response of a system. This is an 

exampleofreally"clean" data,betterthan you might havefrommeasurements. Theinput to 

the system is a step of height 0.4. The goal is to determine the transfer function of the 
system. 

 

ImpulseResponseofAFirstOrder System 

The impulse response of a system is an important response. The impulse response is the 
response to a unit impulse. 

The unit impulse has a Laplace transform of unity (1).That gives the unit impulse aunique 

stature. If a system has a unit impulse input, the output transform is G(s), where G(s) is 

the transfer function of the system. The unit impulse response is therefore the 

inversetransformofG(s),i.e.g(t),thetimefunctionyougetbyinversetransforming 

G(s). If you haven't begun to study Laplace transforms yet, you can just file these last 

statements away until you begin to learn about Laplace transforms. Still there is an 

important fact buried in all of this. 
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Knowing that the impulse response is the inverse transform of the transfer function of a 

system can be useful in identifying systems (getting system parameters from measured 
responses). 

In this section we will examine the shapes/forms of several impulse responses. We will start 

with simple first order systems, and give you links to modules that discuss other, higher order 

responses. 

Ageneralfirstordersystemsatisfiesadifferentialequationwiththisgeneral form 

 

If the input, u(t), is a unit impulse, then for a short instant around t = 0 the input isinfinite. 

Let us assume that the state, x(t), is initially zero, i.e. x(0) = 0. We will integrate both sides of the 

differential equation from a small time,, before t = 0, to a small time, after t = 0. We are just 

taking advantage of one of the properties of the unit impulse. 

 

The right hand side of the equation is just Gdc since the impulse is assumed to be a unit 

impulse - one with unit area. Thus, we have: 

 

We can also note that x(0) = 0, so the second integral on the right hand side is zero. In 

other words, what the impulse does is it produces a calculable change in the state, x(t), and this 

change occurs in a negligibly short time (the duration of theimpulse) after t = 0 That leads us toa 

simple strategy for getting the impulse response. Calculate the new initial condition after the 

impulse passes. Solve the differential equation - with zero input - starting from the newly 

calculated initial condition. 
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UNIT-III 
 

 

CONTROLSYSTEMENGINEERING 

 
STABILITYANALYSIS 

 

Stability 

Asystemisstableif anyboundedinputproduces aboundedoutput for all boundedinitial 

conditions. 

 
Basicconceptofstability 

 

Stabilityofthesystemandrootsofcharacteristic equations 

 
CharacteristicEquation 

Consider an nth-order system whose the characteristic equation (which is also the 

denominatorof the transfer function) is 

a(S) =Sn+a1S
n-1+ a2S

n-2+……+an-1S
1+ a0S

0 

 

 

 

Routh Hurwitz Criterion 

Goal: Determining whetherthe system is stableorunstable from a characteristicequation in 

polynomial form without actually solving for the roots Routh’s stability criterion is useful for 

determining the ranges of coefficients of polynomials for stability, especially when the 

coefficients are in symbolic (non numerical) form. 

Tofind Kmar &ω 

Anecessarycondition forRouth’s Stability 
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Anecessaryconditionforstabilityofthesystemisthatallofthe rootsofitscharacteristic equation 

have negative real parts, which in turn requires that all the coefficients be positive. 

A necessary (but not sufficient) condition for stability is that all the coefficients of the 
polynomial characteristic equation are positive & none of the co-efficient vanishes. 

Routh’s formulation requires the computation of a triangular array that is a function ofthe 
coefficients of the polynomial characteristic equation. 

A system is stable if and onlyif all the elements ofthe first column of the Routh arrayare 

positive 

MethodfordeterminingtheRoutharray 

Considerthecharacteristic equation 
a(S) =1X Sn+a1S

n-1+a2S
n-2+……+ an-1S

1+ a0S
0 

Routharraymethod 

Thenadd subsequentrows tocomplete theRouth array 

Computeelementsforthe3rd row: 

 

Giventhecharacteristic equation, 

 
Isthesystemdescribedbythischaracteristic equation stable? 

Answer: 

Allthecoefficients arepositiveand nonzero 

Therefore,thesystem satisfiesthe necessaryconditionfor stability 

WeshoulddeterminewhetheranyofthecoefficientsofthefirstcolumnoftheRouth array are 
negative. 
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S6: 1 3 1 4 

S5: 4 2 4 0 

S4: 5/2 0 4  

S3: 2 -12/5 0  

S2: 3 4   

S1: -76/15 0   

S0: 4    

Theelements ofthe 1stcolumn arenotall positive.Then thesystem is unstable 

 

SpecialcasesofRouth’scriteria: 

Case1: Allthe elementsofarow inaRA arezero 

Form Auxiliary equation by using the co-efficient of the row which is just above the row 

of zeros. 

FindderivativeoftheA.E. 

Replacetherowofzerosbytheco-efficientofdA(s)/ds 

Complete the array in terms of these coefficients. 

analyze for any sign change, if so, unstable 

no sign change, find the nature of roots of AE 

non-repeatedimaginaryroots-marginallystable 

repeated imaginary roots – unstable 
 

Case2: 

 

 

Firstelement ofanyof therows ofRA is 

Zero and the same remaining row contains atleast one non-zero element 

Substituteasmallpositiveno.‗ε‘inplaceofzeroandcompletethearray. Examine the 

sign change by taking Lt ε = 0 

RootLocus Technique 

Introduced byW. R. Evans in1948 

Graphical method, in which movement of poles in the s-plane is sketched when some 

parameter is varied The path taken by the roots of the characteristic equation when open 

loop gain K is varied from 0 to ∞ are called root loci 

Direct Root Locus = 0 < k < ∞ 

InverseRootLocus=-∞ <k<0 

RootLocus Analysis: 

Therootsoftheclosed-loopcharacteristicequationdefinethesystemcharacteristicresponses 

Their location in the complex s-plane lead to prediction of the characteristics of the time 
domain responses in terms of: 

damping ratio ζ, 

naturalfrequency,wn 

dampingconstantσ, first-ordermodes 

Considerhowtheserootschangeastheloopgainisvariedfrom0to∞ 
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Basics ofRoot Locus: 

Symmetricalaboutrealaxis 

RLbranchstartsfromOLpolesandterminatesatOLzeroes No. of 

RL branches = No. of poles of OLTF 

Centroid is common intersection point of all the asymptotes on the real axis 

AsymptotesarestraightlineswhichareparalleltoRLgoingto∞andmeettheRLat∞ No. of 

asymptotes = No. of branches going to ∞ 

AtBreakAwaypoint,theRLbreaksfromrealaxistoenterintothecomplex plane At BI 

point, the RL enters the real axis from the complex plane 

ConstructingRootLocus: 

LocatetheOLpoles&zerosintheplot Find 

the branches on the real axis 

Findangleofasymptotes&centroid Φa= 

±180º(2q+1) / (n-m) 

ζa=(Σpoles-Σzeroes)/(n-m) Find 

BA and BI points 

FindAngleOfdeparture(AOD)andAngleOfArrival(AOA) 

AOD=180º-(sumofanglesofvectorstothecomplexpolefromallotherpoles)+(Sum of angles 

of vectors to the complex pole from all zero) 

AOA=180º-(sumofanglesofvectorstothecomplexzerofromallotherzeros)+(sum of angles of 
vectors to the complex zero from poles) 

Find the point of intersection of RL with the imaginary axis. 

Applicationof theRootLocusProcedure 

Step1:Writethecharacteristicequation as 
1+F(s)=0 

Step2:Rewriteprecedingequationintotheformofpolesandzerosas follows 
 

 

Step 3: 

 
 

Step 4: 

 

Step 5: 

 
Step 6: 

 

 

Locate the poles and zeros with specific symbols, the root locus begins at the open-loop 

poles and ends at the open loop zeros as K increases from 0 to infinity 

Ifopen-loopsystemhas n-mzerosatinfinity,therewillben-mbranchesoftherootlocus 

approaching the n-m zeros at infinity 

 

Therootlocusontherealaxisliesinasectionoftherealaxistotheleftofanodd number of real poles 

and zeros 

 

Thenumberof separate loci is equal to the number ofopen-loop poles 

 

Therootlocimustbecontinuousandsymmetricalwithrespecttothehorizontalrealaxis 
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Step 7: 

 
 

 

 

 

 

 

 

Step 8: 

 

Step 9: 

 

 

Thelociproceedtozerosatinfinityalongasymptotescenteredatcentroidandwith angles 
 

 
Theactualpointatwhichtherootlocuscrossestheimaginaryaxisisreadilyevaluatedby using 

Routh‘s criterion 

 

Determinethebreakawaypointd (usuallyon the real axis) 

Step 10: 

Plot the root locus that satisfy the phase criterion 
 

Step 11: 

Determinetheparameter value K1ata specificrootusingthemagnitudecriterion 
 

 

NyquistStability Criteria: 

The Routh-Hurwitz criterion is a method for determining whether a linear system isstable 

or not by examining the locations of the roots of the characteristic equation of the system. In fact, 

the method determines onlyif there are roots that lie outside oftheleft half plane; it does not 

actually compute the roots. Consider the characteristic equation. 

Todeterminewhetherthissystemis stableornot,checkthe following conditions 

 
1. Twonecessarybut notsufficient conditionsthat alltheroots havenegativerealparts are 

a) Allthepolynomialcoefficientsmusthavethesamesign. 

b) Allthepolynomialcoefficientsmustbenonzero. 

2. Ifcondition(1)issatisfied,then computetheRouth-Hurwitz arrayas follows 
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Wheretheai’Sarethepolynomialcoefficients,andthecoefficientsin therestofthetableare computed 

using the following pattern 

 
3. Thenecessaryconditionthatallrootshavenegativerealpartsisthatalltheelementsofthe first 

column of the array have the same sign. The number of changes of sign equals the 

number of roots with positive real parts. 

4. Special Case 1: The first element of a row is zero, but some other elements in that row are 

nonzero.Inthiscase,simplyreplacethezeroelementsby"",completethetabledevelopment, and then 

interpret the results assuming that "" is a small number of the same sign as the 
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elementaboveit. The resultsmust beinterpretedin thelimitasεto 0. 

5. SpecialCase2:Alltheelementsofaparticularrowarezero.Inthiscase,someoftherootsof 

thepolynomialarelocatedsymmetricallyabout theoriginofthe s-plane, e.g., apairofpurely 

imaginaryroots. Thezero rows will always occurin a row associated with an odd power of s. 

Therowjustabovethezerorowsholdsthecoefficientsoftheauxiliarypolynomial. Theroots of the 

auxiliary polynomial are the symmetrically placed roots. Be careful to remember that the 

coefficients in the array skip powers of s from one coefficient to the next. 

LetP= no.of polesofq(s)-planelyingonRightHalfofs-planeandencircledbys-plane contour. 

LetZ=no.ofzerosofq(s)-planelyingonRightHalfofs-planeandencircledbys-plane contour. 

Forthe CLsystemtobe stable,theno.ofzerosof q(s)whicharethe CLpolesthatlieinthe right half of s-

plane should be zero. That is Z = 0, which gives N = -P. 

Therefore,for a stable systemthe no.of ACWencirclementsof the origininthe q(s)-plane by the 

contour Cq must be equal to P. 

 

Nyquistmodifiedstability criteria 

Weknowthatq(s)=1+G(s)H(s) 
Therefore G(s)H(s) = [1+G(s)H(s)] – 1 

The contour Cq, which has obtained due to mapping of Nyquist contour from s-plane to 
q(s)-plane (ie)[1+G(s)H(s)] -plane, will encircle about the origin. 

The contour CGH, which has obtained due to mapping of Nyquist contour from s-planeto 
G(s)H(s) -plane, will encircle about the point (-1+j0). 

Thereforeencirclingtheoriginintheq(s)-planeis equivalenttoencirclingthepoint -1+j0 in the 
G(s)H(s)-plane. 
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Problem 

Sketch the Nyquist stabilityplot for a feedback system with the following open-loop transfer 

function 

 
 

Sectiondemaps asthe compleximageof thepolar plotas before 
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Relativestability 

The main disadvantage of a Bode plot is that we have to draw and consider two different 

curvesatatime,namely,magnitudeplotandphaseplot.Informationcontainedinthesetwo plots can be 

combined into one named polar plot. The polar plot is for a frequency range of 0<w<α . while 

the Nyquist plot is in the frequency range of - α<w<α. The information on the negative 

frequency is redundant because the magnitude and real part of G( jw) an are even functions. In 

this section. We consider how to evaluate the system performance in terms of relative stability 

using a Nyquist plot. The open-loop system represented by this plot will become unstablebeyond 

a certain value. As shown in the Nyquist plot of Fig. the intercept of magnitude 'a on the 

negativereal axis corresponds lost phaseshift of - 180° and -1 represents theamount ofincrease 

ingainthatcanbetoleratedbeforeclosed-loopsystemtendstowardinstability.As'a'approaches (-1+ j0) 

point the relative stability is reduced; the gain and phase margins are represented as follows in 

the Nyquist plot. 

 

Gainmargin 

As system gain is increased by a factor 1/a, the open loopmagnitude of G ( jw)H( jw)will 

increase by a factor a( 1/a) = 1 and the system would be driven to instability. Thus, the gain 

margin is the reciprocal of the gain at the frequency at which the phase angle of the Nyquist plot 

is - 1800. The gain rnargin, usually measured in dB, is a positive quantity given by 

GM =-20logadB 

 
PhaseMarginфm 

Importance of the phase margin has already in the content of Bode. Phase margin is 

defined as the change in open-loop phase shift required al unity gain to make a closed loop 

system unstable. A closed-loop system will be unstable if the Nyquist plot encircles -1 +j0 point. 

Therefore, the angle required to make this system marginally stable in a closed loop is the phase 
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margin .In order to measure this angle, we draw a circle with a radius of 1, and find the point of 

intersection of the Nyquist plot with this circle, and measure the phase shift needed for this point 

to be at an angle of 1800. If may be appreciated that the system having plot of Fig with largerPM 

is more stable than the one with plot of Fig. 
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FREQUENCYRESPONSE ANALYSIS 

 

FrequencyResponse 

The frequency response of a system is a frequency dependent function which expresses 

how a sinusoidal signal of a given frequency on the system input is transferred through the 

system. Time-varying signals at least periodical signals —which excite systems, as the reference 

(set point) signal or a disturbance in a control system or measurement signals which are inputs 

signals to signal filters, can be regarded as consisting of a sum of frequency components. Each 

frequency component is a sinusoidal signal having certain amplitude and a certain frequency. 

(The Fourier series expansion or the Fourier transform can be used to express these frequency 

components quantitatively.) The frequency response expresses how each of these frequency 

components is transferred through the system. Some components may be amplified, others may 

be attenuated, and there will be some phase lag through the system. 

The frequency response is an important tool for analysis and design of signal filters (as 

low pass filters and high pass filters), and for analysis, and to some extent, design, of control 

systems.Both signalfilteringand controlsystemsapplicationsaredescribed(briefly)laterinthis 

chapter. The definition of the frequency response — which will be given in the next section — 

applies onlyto linearmodels, but thislinearmodel mayverywell bethe local linearmodel about 

someoperatingpoint ofanon-linearmodel. Thefrequencyresponsecan found experimentallyor from 

a transfer function model. It can be presented graphically or as a mathematical function. 
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Bodeplot 

• Plotsofthemagnitudeandphasecharacteristicsareusedtofullydescribethefrequency response 

• ABodeplotisa(semilog)plotofthetransferfunctionmagnitudeandphaseangleasa function of 

frequency. 

Thegain magnitudeis manytimesexpressed in terms ofdecibels (dB) 

db =20 log10 A 

 

BODEPLOTPROCEDURE: 

Thereare4basic formsin anopen-loop transfer function G(jω)H(jω) 

GainFactorK 

(jω)±pfactor:poleandzeroatorigin (1+jωT)±q 

factor 

Quadraticfactor 

1+j2ζ(W / Wn)-(W
2 / W2) 

 

GainmarginandPhasemargin 

Gain margin: 

ThegainmarginisthenumberofdBthatisbelow0dBatthephasecrossoverfrequency (ø=-

180º). It can also be increased before the closed loop system becomes unstable 

Term Corner Frequency Slopedb /dec Changein slope 

20/jW ----- -20  

1/ (1+4jW) WC1=1/4= 0.25 -20 -20-20=-40 

1/(1+j3w) wc2=1/3=0.33 -20 -40-20=-60 

 

Phase margin: 

Thephasemarginisthenumberofdegreesthephaseofthatisabove-180ºatthegain crossover 

frequency 

 

GainmarginandPhasemargin 
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BodePlot–Example 

ForthefollowingT.FdrawtheBodeplotandobtainGaincrossoverfrequency(wgc), Phase cross 

over frequency , Gain Margin and Phase Margin. 

G(s)= 20 /[s(1+3s) (1+4s)] 

Solution: 

ThesinusoidalT.FofG(s)isobtainedbyreplacingsbyjwinthegivenT.F G(jw) = 20 / 

[jw (1+j3w) (1+j4w)] 

Cornerfrequencies: 

wc1=1/4=0.25rad/sec; 

wc2 = 1/3 = 0.33 rad /sec 

ChoosealowercornerfrequencyandahigherCornerfrequency wl= 

0.025 rad/sec ; 

wh=3.3rad / sec 

CalculationofGain(A)(MAGNITUDEPLOT) A 

@ wl ; A= 20 log [ 20 / 0.025 ] = 58 .06 dB 

A@wc1; A=[Slopefrom wlto wc1xlog(wc1/wl ] +Gain (A)@wl 

=-20 log[0.25 / 0.025 ] +58.06 

=38.06 dB 

A@wc2; A =[Slope from wc1to wc2 xlog(wc2 /wc1 ]+Gain (A)@wc1 

=-40 log[0.33 / 0.25 ]+ 38 

=33 dB 

A@wh ; A=[Slope from wc2to wh xlog(wh /wc2 ] +Gain (A) @wc2 

=-60 log[3.3 / 0.33 ]+33 

=-27dB 

CalculationofPhaseanglefordifferentvaluesoffrequencies[PHASEPLOT] Ø = -

90O- tan -1 3w – tan -1 4w 

When 

Frequencyinrad/sec PhaseanglesinDegree 

w=0 Ø=-90 0 

w=0.025 Ø=-990 

w=0.25 Ø=-1720 

w=0.33 Ø=-1880 

w=3.3 Ø=-2590 

w=∞ Ø=-2700 
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ThefrequencyatwhichthedBmagnitudeisZero wgc = 

1.1 rad / sec 

 

Calculations of Phase cross over 
frequencyThefrequencyatwhichthePhaseofthesystemis -

180o wpc = 0.3 rad / sec 

Gain Margin 

The gain margin in dB is given by the negative of dB magnitude of G(jw) at phase cross 

over frequency 

GM=-{ 20 log[G(jwpc)]= - { 32 } =-32dB 

 

Phase Margin 

Ґ=1800+Øgc=1800+(-2400o) =-600 

 

Conclusion 

For this system GM and PM are negative in values. Therefore the system is unstable 

innature. 

CalculationsofGain crossover frequency 
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Polarplot 

TosketchthepolarplotofG(jω)fortheentirerangeoffrequencyω,i.e.,from0to infinity, there 

are four key points that usually need to be known: 

(1) thestart of plotwhere ω= 0, 

(2) theendofplotwhere ω= ∞, 

(3) wherethe plotcrosses thereal axis,i.e.,Im(G(jω))=0, and 

(4) wherethe plot crosses the imaginaryaxis, i.e., Re(G(jω))= 0. 

 

BASICSOFPOLAR PLOT: 

The polar plot of a sinusoidal transfer function G(jω) is a plot of the magnitude of G(jω) 

Vs the phase of G(jω) on polar co-ordinates as ω is varied from 0 to ∞. 

(ie)|G(jω)|Vs angleG(jω)asω→0to∞. 

Polargraphsheethasconcentriccirclesandradiallines. 

Concentric circles represents the magnitude. 

Radiallinesrepresentsthephaseangles. In 

polar sheet 

+vephase angleismeasuredinACW from 00 
-vephase angleismeasuredinCW from 00 

 

PROCEDURE 

ExpressthegivenexpressionofOLTFin(1+sT)form. 

Substitutes=jωintheexpressionforG(s)H(s)andgetG(jω)H(jω). Get the 

expressions for | G(jω)H(jω)| & angle G(jω)H(jω). 

Tabulate various values of magnitude and phase angles for different values of ω ranging 

from 0 to ∞. 

Usuallythechoiceoffrequencieswillbethecornerfrequencyandaroundcorner frequencies. 

Chooseproperscaleforthemagnitudecircles. 

Fixallthepointsinthepolargraphsheetandjointhepointsbyasmoothcurve. Write the 

frequency corresponding to each of the point of the plot. 

MINIMUMPHASESYSTEMS: 

Systemswithallpoles&zerosintheLefthalfofthes-plane–MinimumPhase Systems. 

ForMinimum PhaseSystems withonlypoles 

TypeNo.determinesatwhatquadrantthepolarplotstarts. Order 

determines at what quadrant the polar plot ends. 

TypeNo.→No.ofpoles lyingatthe origin 

Order→Maxpowerof‘s’inthedenominatorpolynomialofthetransfer function. 

GAINMARGIN 

Gain Margin is defined as “the factor by which the system gain can be increased to drive 

the system to the verge of instability”. 

Forstablesystems, 

ωgc<ωpc 
MagnitudeofG(j)H(j )at ω=ωpc<1 
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GM =in positive dB 

Morepositivethe GM, morestable is thesystem. 

Formarginallystable systems, 

magnitudeofG(j)H(j)atω=ωpc=1 GM 

= 0 dB 

ForUnstablesystems, 

 

magnitudeofG(j)H(j)atω=ωpc>1 GM 

= in negative dB 

ωgc=ωpc 
 

 

 

ωgc>ωpc 

Gainisto bereduced tomakethesystem stable 
 

Note: 

 
 

 

 

 

If the gain is high, the GM is low and the system’s step response shows high overshoots 

and long settling time. 

On the contrary, verylow gains give high GM and PM, butalso causes higher ess, higher 

values of rise time and settling time and in general give sluggish response. 

Thusweshouldkeepthegainashighaspossibletoreduceessandobtainacceptable response speed 

and yet maintain adequate GM & PM. 

An adequate GM of 2 i.e. (6 dB) and a PM of 30 is generally considered good enough asa 

thumb rule. 

Atw=wpc,angle ofG(jw)H(jw) = -1800 

LetmagnitudeofG(jw)H(jw ) at w=wpc betakenaB 

Ifthe gainofthesystemisincreasedbyfactor1/B,thenthemagnitudeofG(jw)H(jw)at w = wpc 

becomes B(1/B) = 1 and hence the G(jw)H(jw) locus pass through -1+j0 point driving the 

system to the verge of instability. 

GM is defined as the reciprocal of the magnitude of the OLTF evaluated at the phasecross 
over frequency. 

GMindB=20log(1/B)=-20logB 

PHASE MARGIN 

PhaseMarginisdefinedas“ theadditional phaselag thatcanbe introducedbefore the system 

becomes unstable”. 

‘A’bethepoint ofintersectionofG(j )H(j)plot andaunitcircle centeredattheorigin. 

Drawalineconnecting thepoints‘O’& ‘A’andmeasurethephaseanglebetweenthe line OA 

and 

+verealaxis. 

Thisangleisthephaseangleofthesystemat the gaincrossoverfrequency. 

AngleofG(jwgc)H(jwgc)=φ gc 

If an additional phase lag of φ PM is introduced at this frequency, then the phase angle 

G(jwgc)H(jw gc) will become 180 and the point ‘A‘ coincides with (-1+j0) drivingthe system to 

the verge of instability. 

ThisadditionalphaselagisknownasthePhaseMargin. γ= 

1800 + angle of G(jwgc)H(jw gc) 

γ=1800+φgc 

[SinceφgcismeasuredinCWdirection,itistakenasnegative] For a 

stable system, the phase margin is positive. 

APhasemarginclosetozero corresponds tohighlyoscillatorysystem. 
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Apolarplotmaybeconstructedfromexperimentaldataorfromasystem transfer function 

Ifthevaluesofwaremarkedalongthecontour,apolarplothasthesameinformationas a bode plot. 

Usually,the shapeofapolarplot is of most interest. 

 

NyquistPlot: 

TheNyquist plot is a polarplot of the function 
 

 

The Nyquist stability criterion relates the location of the roots of the characteristic 

equation to the open-loop frequency response of the system. In this, the computation of closed- 

loop poles is not necessary to determine the stability of the system and the stability study can be 

carried out graphically from the open-loop frequency response. Therefore experimentally 

determined open-loop frequency response can be used directly for the study of stability. When 

the feedback path is closed. The Nyquist criterion has the following features that make it an 

alternative method that is attractive for the analysis and design of control systems. 1. In addition 

to providing information on absolute and relative. 

NyquistPlotExample 

Considerthefollowingtransfer function 
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Changeitfrom“s”domainto“jw”domain: 

Findthemagnitudeandphaseangle equations: 

 
Evaluatemagnitudeandphaseangle atω=0+andω= +∞ 

 

Drawthenyquistplot: 

Frequencydomain specifications 

Theresonant peak Mr isthe maximum valueof jM(jw)j. 

Theresonantfrequency!r is the frequencyat which the peak resonanceMroccurs. 

ThebandwidthBWisthefrequencyatwhich(jw)dropsto70:7%(3dB)ofitszero- frequency 

value. 
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Mr indicates therelativestabilityof astableclosed loopsystem. 

AlargeMrcorrespondstolargermaximumovershootofthestepresponse. Desirable 

value: 1.1 to 1.5 

BW gives anindicationofthetransientresponsepropertiesofacontrol system. 

Alargebandwidthcorrespondstoafasterrisetime.BWandrisetimetrare inversely 

proportional. 

BWalsoindicatesthenoise-filteringcharacteristicsandrobustnessofthesystem. 

Increasing wn increases BW. 

BWandMrareproportionaltoeachother. 

Constant Mand N circles 

Consideracandidatedesign ofaloop transfer functionL(jω) shown on the RHS. 
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EvaluateT(jω) from L(jω) inthemanner offrequencypoint byfrequency point. 

Alternatively,theBodeplotofL(jω)canalsobeshowonthecomplexplanetoformitsNyquist plot. 
 

Mcircles(constantmagnitudeof T) 

Inordertopreciselyevaluate|T(jω)|fromtheNyquistplotofL(jω),atoolcalledMcircleis developed as 

followed. 

LetL(jω)=X+jY, whereXis thereal and Ytheimaginarypart . Then 

Rearranging the above equations, it gives 

X2(1-M2)-2M2X-M2+(1-M2)Y2=0 

That is, all (X, Y) pair corresponding to a constant value of M for a circle on the complex plane. 

Therefore, we have the following (constant) M circles on the complex plane as shown below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ncircles(constantphase ofT) 
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Similarly,itcanbeshownthatthephaseofT(jω)be 

Itcan be shown that all(X, Y) pair which corresponds to the sameconstant phase of T(i.e., 

constant N) forms a circle on the complex plane as shown below. 

 
Example 

NyquistplotofL(jω),andM-N circlesofT(jω) 
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NicholsChart 

TheNyquistplotofL(jω)canalsoberepresentedbyitspolarformusingdBas magnitude and 

degree as phase. 
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And ll L( jω) which corresponds to a constant α( jω) can be draw as a locus of M 

circleon this plane as shown below. 

CombiningtheabovetwographsofMcirclesandNcircles,wehavetheNicholaschart 

below. 
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TYPESOFCOMPENSATION 

Series Compensation or Cascade Compensation 

This is the most commonly used system where the controller is placed in series with the 

controlled process. 

Figureshowstheseriescompensation 

 
FeedbackcompensationorParallel compensation 

Thisisthesystemwherethecontrollerisplacedinthesensorfeedbackpathasshownin 
fig. 

 

 

StateFeedbackCompensation 

This is a system which generates the control signal by feeding back the state variables 

through constant real gains. The scheme is termed state feedback. It is shown in Fig. 

 

The compensation schemes shown in Figs above have one degree of freedom, since there 

is only one controller in each system. The demerit with one degree of freedom controllers is that 

the performance criteria that can be realized are limited. 

Thatis whytherearecompensation schemes which havetwo degreefreedoms, suchas: 

(a) Series-feedback compensation 

(b) Feedforwardcompensation 
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Series-FeedbackCompensation 

Series-feedback compensation is the scheme for which a series controller and a feedback 

controller are used. Figure 9.6 shows the series-feedback compensation scheme. 

 

 

FeedforwardCompensation 

The feed forward controller is placed in series with the closed-loop system which has a 

controller in the forward path Orig. 9.71. In Fig. 9.8, Feed forward the is placed in parallel with 

the controller in the forward path. The commonly used controllers in the above-mentioned 

compensation schemes are now described in the section below. 
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LeadCompensator 

Ithasazeroandapolewithzeroclosertotheorigin.Thegeneralformofthetransfer function of the 

load compensator is 
 

 

Subsisting 

 
Transfer function 

 
 

Lag Compensator 

It has a zero and a pole with the zero situated on the left of the pole on the negative real 

axis. The general form of the transfer function of the lag compensator is 
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Therefore,the frequencyresponseofthe above transferfunctionwill be 

 
Nowcomparingwith 
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Therefore 

 
Lag-Lead Compensator 

The lag-lead compensator is the combination of a lag compensator and a lead 

compensator. The lag-section is provided with one real pole and one real zero, the pole being to 

the right of zero, whereas the lead section has one real pole and one real came with the zerobeing 

to the right of the pole. 

Thetransferfunctionofthelag-leadcompensator willbe 

 
Thefigureshows laglead compensator 
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Theabovetransfer functions arecomparingwith 

 
Then 

 



CONTROLSYSTEMENGINEERING 
 

 

EC-6405 

SCE 
Page55of116 

 

 
Therefore 
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STATEVARIABLEANALYSIS 

 

StatespacerepresentationofContinuousTime systems 

The state variables may be totally independent of each other, leading to diagonal or 

normal form or they could be derived as the derivatives of the output. If them is no direct 

relationship between various states. We could use a suitable transformation to obtain the 

representation in diagonal form. 

 

PhaseVariableRepresentation 

It is often convenient to consider the output of the system as one of the state variable and 

remaining state variable as derivatives of this state variable. The state variables thus obtained 

from one of the system variables and its (n-1) derivatives, are known as n-dimensional phase 

variables. 

Inathird-ordermechanicalsystem,theoutputmaybedisplacementx1,x1=x2=vandx2 

= x3 = a in the case of motion of translation or angular displacement θ 1 = x1, x1= x2= wand 

x2 = x3 = α if the motion is rotational, Where v v,w,a, α respectively, are velocity, angular 

velocity acceleration, angular acceleration. 

ConsideraSISOsystemdescribedbynth-orderdifferential equation. 

 
Where 

 
uis,ingeneral,afunctionoftime. 

Thenthordertransfer functionofthissystem is 

 
Withthestates(eachbeingfunctionoftime)bedefinedas 

Equation becomes 

 

 

UsingaboveEqsstate equationsin phasesatiable loan canheobtained as 

 

Where 
 

 

6 
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PhysicalVariable Representation 

In this representation the state variables are real physical variables, which can be 

measured and used for manipulation or for control purposes. The approach generally adopted is 

to break the block diagram of the transfer function into subsystems in such a way that the 

physical variables can he identified. The governing equations for the subsystems can he used to 

identify the physical variables. To illustrate the approach consider the block diagram of Fig. 

 
Onemayrepresent thetransfer function ofthis system as 

 
TakingH(s)=1,theblockdiagramofcanberedrawnasinFig.physicalvariablescanbe 

speculated as x1=y, output, x2 =w= θ the angular velocity x3=Ia the armature current in a 

position-control system. 

 
Where 

 
Thestatespacerepresentationcan beobtained by 

 
And 

 

SolutionofStateequations 

Considerthestateequationn oflineartimeinvariantsystem as, 

ThematricesAandBareconstantmatrices.Thisstateequationcan beoftwo types, 

1. Homogeneousand 

2. Non homogeneous 
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characterizedbythe mode bytheequation. 

Homogeneous Equation 

If Aisaconstantmatrixandinputcontrolforcesarezerothenthe equationtakesthe form, 
 

Such an equation is called homogeneous equation. The obvious equation is if input is zero, In 

such systems, the driving force is provided by the initial conditions of the system to produce the 

output. For example, consider a series RC circuit in which capacitor is initially charged to V 

volts. The current is the output. Now there is no input control force i.e. external voltage appliedto 

the system. But the initial voltage on the capacitor drives the current through the system and 

capacitor starts discharging through the resistance R. Such a system which works on the initial 

conditions without any input applied to it is called homogeneous system. 

NonhomogeneousEquation 

If A is a constant matrix and matrix U(t) is non-zero vector i.e. the input control forcesare 

applied to the system then the equation takes normal form as, 
 

Such an equation is called non homogeneous equation. Most of the practical systems 

require inputs to dive them. Such systems arc non homogeneous linear systems. The solution of 

the state equation is obtained by considering basic method of finding the solution of 

homogeneous equation. 

Controllabilityand Observability 

More specially, for system of Eq.(1), there exists a similar transformation that will 

diagonalize the system. In other words, There is a transformation matrix Q such that 
 

 

 

Notice that by doing the diagonalizing transformation, the resulting transfer function between 

u(s) and y(s) will not be altered. 

LookingatEq.(3),if isuncontrollablebytheinputu(t),since,xk(t)is 
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TransferfunctionfromStateVariableRepresentation 

A simple example of system has an input and output as shown in Figure 1. This class of 

system has general form of model given in Eq.(1). 
 

where, (y1,u1)and(y2,u2)eachsatisfiesEq,(1). 

Model of the form of Eq.(1) is known as linear time invariant (abbr. LTI) system. 

Assume the system is at rest prior to the time t0=0, and, the input u(t) (0 t <∞) produces the 

output y(t) (0 t < ∞), the model of Eq.(1) can be represented by a transfer function in term of 

Laplace transform variables, i.e.: 
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Statespacerepresentationfordiscretetime systems 

The dynamics of a linear time (shift)) invariant discrete-time system may be expressed in terms 

state (plant) equation and output (observation or measurement) equation as follows 

 
Where x(k) an n dimensional slate rector at time t =kT. an r-dimensional control (input) 

vector y(k). an m-dimensional output vector ,respectively, are represented as 
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The parameters (elements) of A, an nX n (plant parameter) matrix. B an nX r control 

(input)matrix, and C An m Xr output parameter, Dan m Xr parametricmatrix areconstants for the 

LTI system. Similar to above equation state variable representation of SISO (single output and 

singleoutput)discrete-rimesystem (with direct couplingofoutput with input)can bewritten as 

Wherethe input u, outputyandd.arescalars,andb andcaren-dimensional vectors. 

The concepts of controllability and observability for discrete time system are similar to the 

continuous-time system. A discrete time system is said to be controllable if there exists a finite 

integernandinputmu(k);k[0,n1]thatwilltransferanystate(0)x0=bx(0)tothestatexnatk 

=nn. 

 

SampledData System 

When the signal or information at any or some points in a system is in the form 

ofdiscretepulses.Thenthesystemiscalleddiscretedatasystem.Incontrolengineeringthediscrete data 

system is popularly known as sampled data systems. 

 
SamplingTheorem 

A band limited continuous time signal with highest frequency fm hertz can be uniquely 

recovered from its samples provided that the sampling rate Fs is greater than or equal to 2fm 

samples per seconds. 

Sample&Hold 

 
The Signal given to the digital controller is a sampled data signal and in turn the 

controller gives the controller output in digital form. But the system to be controlled needs an 

analog control signal as input. Therefore the digital output of controllers must be converters into 

analog form. 

This can be achieved by means of various types of hold circuits. The simplest hold 

circuits are the zero order hold (ZOH). In ZOH, the reconstructed analog signal acquires thesame 

values as the last received sample for the entire sampling period. 
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The high frequency noises present in the reconstructed signal are automatically filtered 

out bythecontrolsystem component which behaves likelow pass filters. Inafirst orderhold the last 

two signals for the current sampling period. Similarly higher order hold circuit can be devised. 

First or higher order hold circuits offer no particular advantage over thezero order hold. 
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