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BASIC CONCEPT OF CONTROL SYSTEM ENGINEERING

INTRODUCTION

A Control systems play a vital role in our day to day life. The automatic control systems play an
important role in the advancement and improvement of Engineering skills. The control systems
is implementations from a Traffic signals, automatic washing machines, automatic electric Iron
and also in the working of Satellites, Guided Missiles, etc.

BASIC CONCEPT OF CONTROL SYSTEM

System:A system is a group of physical components arranged in such a way that it gives the
proper output to the given input. The proper output may or may not be the desired output.

Pl system O
Proper
Qutput
o !
Physical

Component
Example: A fan without blades is not a system. Because no proper output. But a fan without
regulator that is system cum air flow (Proper output)

Control:The action to command, direct or regulate a system.

Plant or process: The part or component of a system that is required to be controlled.
Input:It is the signal or excitation supplied to a control system.

Output:It is the actual response obtained from the control system.

Controller: The part or component of a system that controls the plant.

Disturbances: The signal that has adverse effect on the performance of a control system.

Control System:A control system is a group of physical components arranged in such a way that
it gives the desired output by means of control or regulation.

L'P CONTOL O/FP
SYSTEM Desired
O Output
Physical
Component

Example:A fan with regulator that is control system(Desired output)

Automation: The control of a process by automatic means

Actuator: It is the device that causes the process to provide the output. It is the device that
provides the motive power to the process.

Design: The process of conceiving or inventing the forms, parts, and details of system to achieve
a specified purpose.
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Simulation: A model of a system that is used to investigate the behavior of a system by utilizing
actual input signals.
Optimization:The adjustment of the parameters to achieve the most favorable design.
Feedback Signal: A measure of the output of the system used for feedback to control the system.
Negative feedback: The output signal is feedback so that it subtracts from the input signal.
Block diagrams: Unidirectional, operational blocks that represent the transfer functions of the
elements of the system.
Signal Flow Graph (SFG): A diagram that consists of nodes connected by several directed
branches and that is a graphical representation of a set of linear relations.
Specifications: Statements that explicitly state what the device or product is to be and to do. It is
also defined as a set of prescribed performance criteria.
Open-loop control system:A system that utilizes a device to control the process without using
feedback. Thus the output has no effect upon the signal to the process.
Closed-loop feedback control system: A system that uses a measurement of the output and
compares it with the desired output.
Regulator: The control system where the desired values of the controlled outputs are more or
less fixed and the main problem is to reject disturbance effects.
Servo system: The control system where the outputs are mechanical quantities like acceleration,
velocity or position.
Stability:It is a notion that describes whether the system will be able to follow the input
command. In a non-rigorous sense, a system is said to be unstable if its output is out of control or
increases without bound.
Multivariable Control System: A system with more than one input variable or more than one
output variable.
Trade-off:The result of making a judgment about how much compromise must be made between
conflicting criteria.
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CHAPTER - 1
FUNDAMENTAL OF CONTROL SYSTEM

1.1 CLASSIFICATION OF CONTROL SYSTEM:
1.1.1 Natural control system and Man-made control system:
Natural control system: It is a control systemthat is created by nature.

i.e. solar system, digestive system of any animal, etc.
Man-made control system: It is a control system that is created by humans, i.e. automobile,
power plants etc.
1.1.2 Automatic control system and Combinational control system:
Automatic control system: It is a control system that is made by using basic theories from
mathematics and engineering.This system mainly has sensors, actuators and responders.
Combinational control system: It is a control system that is a combination of natural and man
made control systems, i.e. driving a car etc.
1.1.3 Time-variant control system and Time-invariant control system:
Time-variant control system: It is a control system where any one or more parameters of the
control system vary with time i.e. driving a vehicle.
Time-invariant control system: It is a control system where none of its parameters vary with
time i.e. control system made up of inductors, capacitors and resistors only.
1.1.4 Linear control system and Non-linear control system:
Linear control system: It is a control system that satisfies properties of homogeneity and
Superposition.

+ Homogeneous property: f(x+y) = f(x)+f(y)

+ Superposition properties: f(ax) = a.f(x)
Non-linear control system: It is a control system that does not satisfy properties of homogeneity
and Superposition.i.e. f(x) = x3
1.1.5 Continuous-Time control system and Discrete-Time control system:
Continuous-Time control system: It is a control system where performances of all of its
parameters are function of time, i.e. armature type speed control of motor.
Discrete -Time control system: It is a control system where performances of all of its
parameters are function of discrete time i.e. microprocessor type speed control of motor.
1.1.6 Deterministic control system and Stochastic control system:
Deterministic control system: It is a control system where its output is predictable or repetitive
for certain input signal or disturbance signal.
Stochastic control system:It is a control system where its output is unpredictableor non-
repetitive for certain input signal or disturbance signal.
1.1.7 Lumped-parameter control system and Distributed-parameter control system:
Lumped-parameter control system: It is a control system where its mathematical model is
represented by ordinary differential equations.
Distributed-parameter control system:It is a control system where its mathematical model is
represented by an electrical network that is a combination of resistors, inductors and capacitors.
1.1.8 Single-input-single-output (SISO) and Multi-input-multi-output (MIMO) control system:
SISO control system: It is a control system that has only one input and one output.
MIMO control system:lt is a control system that has only more than one input and more than
one output.
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1.2 OPEN-LOOP CONTROL SYSTEM AND CLOSED LOOP CONTROL SYSTEM:

The control systems are classified in to two ways based on controlling action.
(1) Open-loop control system (2) Closed-loop
control system

1.2.1 Open-loop control system: It is a control system where its control action only depends on
input signal and does not depend on its output response. A system with manual operation is
open-loop control system.Ex.-Manual Iron Box

Open-loop control system:

It is a control system where its control action only depends on input signal and does not depend
on its output response as shown in Fig.1.2.1

contrel signal

Input S u(t) Outout

Fig.1.2.1 An open-loop system
Examples 1.2.1: Traffic signal, Automatic Washing machine, Bread toaster, etc.

Advantages Disadvantages
+ Simple design and easy to construct + Not accurate and reliable when input
+ Economical or system parameters are variable in
+ Easy for maintenance nature
+ Highly stable operation + Recalibration of the parameters are
required time to time

1.2.2 Closed-loop control system:It is a control system where its control action depends

on both of its input signal and output response. A system with automatic is closed-loop control
system.Ex.- Automatic Iron Box.

Closed-loop control system:

It is a control system where its control action depends on both of its input signal and output
response as shown in Fig.1.2.2

Errer signal control signal
Input. | +~ il »1 Controller u® »{ Plant >Odmt
rt) g i oft)
V4 -
Comparator
Feedback signal, b(t)
Feedback }e

Fig.1.2.2A closed-loop system

Examples 1.2.2: Automatic electric iron, Missile launcher, VVoltage Stabilizer, etc.
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Advantages:
%+ More accurate operation than that of open-loop control system
» Can operate efficiently when input or system parameters are variable in nature
Less nonlinearity effect of these systems on output response
High bandwidth of operation
There is facility of automation
Time to time recalibration of the parameters are not required
is-advantages:
» Complex design and difficult to construct
» Expensive than that of open-loop control system
Complicate for maintenance
» Less stable operation than that of open-loop control system
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1.2.3 COMPARISON BETWEEN OPEN-LOOP AND CLOSED-LOOP CONTROL SYSTEMS

It is a control system where its control action depends on both of its input signal and output

response.
Open Loop Control System Closed Loop Control System
1. These are not reliable 1. These are reliable.
2. If calibration is good, they perform 2.1t has got the ability toperform accurately
accurately. because of the feed back.
3. It is easier to build. 3. Itis difficult to build.
4. It is more stable. 4. Less Stable Comparatively.
5. If non- linearity’s are present; the 5. Even under the presence of non-linearity’s
system operation is not good. the system operates better than open loop
6. Feed back is absent. system.
Example: 6. Feed back is present.
() Traffic Control System. Example:
(if) Control of furnace for coal heating. (i) Pressure Control System.
(ii)) An Electric Washing Machine. (if) Speed Control System.
(iif) Robot Control System.
(iv) Temperature Control System

1.3 EFFECTS OF FEED BACK:
1.3.1 Feed Back:

Normally, the feed back signal has opposite polarity to the input signal. This is called
negative feed back. The advantage is the resultant signal obtained from the comparator being

difference of the two signals is of smaller magnitude.

It can be handled easily by the control system. The resulting signal is called Actuating Signal
[E(S)]. This signal has zero value when the desired output is obtained. In that condition,

control system will not operate.
1.3.2 Effects of Feed Back:

Let the system has open loop gain [G(S)], feed back loop gain [H(S)], Output signal [C(S)]

& Input signal [R(S)].Fig.1.3.2
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Then the feed back signal [B(S)] is
B(S) = H(S).C(S)

=C(S = - E(s) C
G(S) E%& E(S) =R(S) - B(S) R(s)——®—s-> G(s) Cl(s)
Hence, B(s)

C(S) = G(S).E(S) e

=G(S) [R(S) - B(S)] _

= G(S) [R(S) - H(S).C(S) Fig.1.3.2
- (D
R(S) 1+G(S)H(S)

This eq.(1), we can write the effects of feed back as follows:

(a) Overall Gain:Eqg. (1) shows that the gain of the open loop system is reduced by a factor
[1+G(S).H(S)] in a feed back system.

Here the feed back signal is negative. If the feed back gain has positive value, the overall gain
will be reduced. If the feed back gain has negative value, the overall gain may increase.

(b) Stability: If a system is able to follow the input command signal, the system is said to be
Stable.A system is said to be Unstable, if its output is out of control. In eq.(1), if GH = - 1 the
output of the system is infinite for any finite input. The stable system may become unstable for
certain value of a feed back gain. Therefore if the feed back is not properly used, the system can
be harmful.

(c) Sensitivity: This depends on the system parameters. For a good control system, it is desirable
that the system should be insensitive to its parameter changes.

Sensitivity, Se =1
1+GH

This function of the system can be reduced by increasing the value of GH.
This can be done by selecting proper feed back.

(d) Noise: Examples are brush & commutation noise in electrical machines, Vibrations in
moving system etc.The effect of feed back on these noise signals will be greatly influenced by
the point at which these signals are introduced in the system. It is possible to reduce the effect of
noise by proper design of feed back system.

1.4 STANDARD TEST SIGNALS:
1.4.1 Step Signal:A step signal u(t) is mathematically defined as follows.

120 1<) =
ul(t)=
Wi K ISP ) Nt e
Laplace transform of step signal is X
LT( S ) =
s -

Step signal

t
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1.4.2 Ramp Signal: A step signal r(t) is mathematically defined as follows.

0 :t<0]
rit)= ’
Kt :t=0]
” nt)
Laplace transform ramp signal is R(s)= i\
o

Ramp Signal

1.4.3 Parabolic Signal: A step signal a(t) is mathematically defined as follows.
am 4

0 )
<0 »

(7({)=Kr3 :tZOi, o
2 ] .
Parabolic Signal
Laplace transform of parabolic signal is
A(s)= %
S
1.4.4 Impulse _ Signal:An impulse signal 5(t) is
mathematically 5(4) undefined :t=0| defined as
) = r
follows. ol 0 t £ O‘
Laplace transform of impulse signal is 6(s) = 1

&t) 4

Impulse Signal

Prepared By: Er. Prakash Chandra Das
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1.5 SERVOMECHANISM:

It is the feedback unit used in a control system. In this system, the control variable is a
mechanical signal such as position, velocity or acceleration. Here, the output signal is directly
fed to the comparator as the feedback signal, b(t) of the closed-loop control system. This type of
system is used where both the command and output signals are mechanical in nature. A position
control system as shown in Fig.1.5(a) is a simple example of this type mechanism. The block
diagram of the servomechanism of an automatic steering system is shown in Fig.1.5 (b).

+ 5
Field

e Load ’

o. Acual
“ position

Reference o
position

Output
Input potentiometer

potentiometer

Fig.1.5(a) Schematic diagram of a servomechanism

Reference . T Conral o Crive ki Cutput
Selobabd g —W e 2 77 7311710 T —— < | [— VWheels p—
position valve linkage at)

Fig.1.5(b) Block diagram of a servomechanism
Examples:
+ Missile launcher
+ Machine tool position control
+ Power steering for an automobile
+ Roll stabilization in ships, etc.

Prepared By: Er. Prakash Chandra Das
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1.6 REGULATORS:

It is also a feedback unit used in a control system like servomechanism. But, the output is kept
constant at its desired value. The schematic diagram of a regulating system is shown in Fig.1.6(a)
Its corresponding simplified block diagram model is shown in Fig.1.6(b)

Tap Servo Cortrolied signal
| g+— oo

Shaft motor
N A

Input

Stabiizing votage

Amplifier

)

Feedback

| Controller

Isolation Reference

Fig.1.6(a) Schematic diagram of a regulating system

+ ~Emor
Refergnoe Controller s 'S:::: > Tap =~ o::ﬁm
position h
Load voltage
sensing

Fig.1.6(b) Block diagram of a regulating system
Examples:

+ Temperature regulator
+ Speed governor
+ Frequency regulators, etc.

Prepared By: Er. Prakash Chandra Das
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CHAPTER - 2
TRANSFER FUNCTION

2.1.1 DEFINITION OF TRANSFER FUNCTION:

It is the ratio of Laplace transform of output signal to Laplace transform of inputsignal assuming
all the initial conditions to be zero, i.e.

Let, there is a given system with input r(t) and output c(t) as shown in Fig. (i), then its

Laplace domain is shown in Fig. (ii). Here, input and output are R(s) and C(s) respectively.

M(t) omm— g — (D) R(s) e b—= ce
(i)
Q)
XE) o G(D) y(®)
v Fig. (i) A
system in time domain, (ii) A system in frequency domainand (iii) transfer

function with differential operator.

G(s) is the transfer function of the system. It can be mathematically represented as follows.

. C(s)
G(s)=——
R(s)

zero initial condition

An equation describing the physical system has integrals & differentials, the step involved in
obtaining the transfer function are;

(1) Write the differential equation of the system.

(2) Replace the terms as,

air by S’ & [ dt by 1/5.
(3) Eliminate all the variables except the desired variables.

2.1.2 IMPULSE RESPONSE:

In a control system, when there is a single i/p of unit impulse function, then there will be some
response of the Linear System.

——>> G ——>
R(S) c(s)
e ELS)
SO =R

R(S) = L{s(D}= 1
The Laplace Transform of the i/p will be R(S) =1
C(S) = G(S).R(S) =G(5).1
= C(S) = G(S)
i.e., the Laplace Transform of the system o/p will be simply the ‘Transfer function’ of the

system. Taking L™

c(t) = G(t)
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Here G(t) will be impulse response of the Linear System. This is called Weighing Function.
Hence LT of the impulse response is the Transfer function of the system itself.

2.2 PROPERTIES,ADVANTAGES & DISADVANTAGES OF TRANSFER FUNCTION
2.2.1 Properties:

+ Zero initial condition

+ It is same as Laplace transform of its impulse response

+ Replacing ‘s’ by %

in the transfer function, the differential equation can be obtained

+ Poles and zeros can be obtained from the transfer function

+ Stability can be known

+ Can be applicable to linear system only
2.2.2 Advantages of transfer function:

+ It is a mathematical model and gain of the system

+ Replacing ‘s’ by i

in the transfer function, the differential equation can be obtained

+ Poles and zeros can be obtained from the transfer function

+ Stability can be known

+ Impulse response can be found
2.2.3 Disadvantages of transfer function:

+ Applicable only to linear system

+ Not applicable if initial condition cannot be neglected

+ It gives no information about the actual structure of a physical system

2.3 POLES & ZEROES OF TRANSFER FUNCTION:

ik KA S—Z NS =25 -2 8—=257) —];II‘S—:,.)
TR AT [I(s-z)

Where, Z1, Z2... Zmare called zeros.
P1, P2....Pn are called poles.
Number of poles n will always be greater than the number of zeros m

Example 2.4.1:0btain the pole-zero map of the following transfer function.
(s=2)s+2+j4)s+2—-j4)

G(s)= :
(s=3)s—4(s-5)s+1+ jS)(s+1-j5)

Solution:
The following equation in Laplacetransform is expandedwith
its partial fractions as follows Zeros Poles

S=2 S=3

S=-2-j4 |S=4

S=-2+j4 |S=5

Prepared By: Er. Prakash Chandra Das
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Whereas, Pole is denoted by ‘X’
and Zero is denoted by‘0’

S=-195 X
S=1gp
s-plane
2 0 S} X X: X
O

2%

! 1 1 1 J
0 1 2 a3 4 5

Pole-Zero Map
OR

POLES AND ZEROS OF TRANSFER FUNCTION
Generally a function can be represented to its polynomial form. For example,

F(s) = fos" + fis" '+ fas" 2 4 fas" P 4o +fn-18" + f
Now similarly transfer function of a control system can also be represented as
G(s) = C(s) _ CoS™C1S™ 14C8™ 2+ ... +Cn-1S+Cnm
R(s) RoS™+R1S" 14+R,8"2+.......4+Ry—1S+Ry
Ks—z Ws==z3) .. (s—=3)
G( s)= \ 1 2 2

(= S—=D5) -S=D)

Where, K is known as gain factor of the transfer function. Now in the above function if s = z1 or
= 73 Or S = z3,...S = zZm, the value of transfer function becomes zero. These z1,zz, z3, ....zmare

roots of the numerator polynomial. As for these roots the numerator polynomial, the transfer

function becomes zero, these roots are called zeros of the transfer function. Now, if s = p; or s =

p2 Or S = p3,...S = pn the value of transfer function becomes infinite. Thus the roots of

denominator are called the poles of the function.

Now let us rewrite the transfer function in its polynomial form.

G(s)=K (s=Z1)(5=Z2)(5=Z3) ........ (s=Zm)

(s=PP(=P(=P3) wovvvr(S=Dy)
Now, let us consider s approaches to infinity as the roots are all finite humber, they can be
ignored compared to the infinite s. Therefore

Prepared By: Er. Prakash Chandra Das
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G(s) = Ks_ = Kgm—™
sn
Hence, when s — o and m > n, the function will have also value of infinity, that means the
transfer function has poles at infinite s, and the multiplicity or order of such pole is m - n.

Again, when s — o and m < n, the transfer function will have value of zero that means the
transfer function has zeros at infinite s, and the multiplicity or order of such zeros is n - m.

EXAMPLE 2.4.2:
The transfer function of the system, G(s) = I(s)/V/(s), the ratio of output to input.
1) Let us explain the concept of poles and zeros of transfer function through an example.

(s+1)(s+2)
(s +3)(s+4)(s+5)(s+2—4j)(s+ 2+ 4j)
SOLUTION:
The zeros of the function are, -1, -2 and the poles of the functions are -3, -4, -5, -2 + 4], -2 - 4j.

Herem=2and n=5,asm<nand n-m = 3, the function will have 3 zeros at s — oo. The poles
and zeros are plotted in the figure below

GI:H] =

A +jLL5
-2+4]
=(F e ::-+U
5-4-3 -2-1
2.4
4 _j.:_._:

EXAMPLE 2.4.3:
The transfer function of control system is

I:.*\' — 3] |:.‘1' — 3] |:.‘1' — 8]

Gl:ﬂ]: - — — — - — - —
s(s+1)(s+6)(s+9)(s+1—33)(s+1+43)

SOLUTION:
In the above transfer function, if the value of numerator is zero, then

(s —2)(s+d)(s+8)=0
= s5=2 —h, —8
s(s+1)(s+6)(s+9)(s+1—43)(s+1+343)=0
= s=0, -1, -6, =9, —1+j3, -1 — 33

These are the location of poles of the function.

Prepared By: Er. Prakash Chandra Das
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+J(_|J
F 3
X
codm @ -1+4j3
g e ——e e > +g
9-8 6-5 110 2
X
143
Y

As the number of zeros should be equal to number of poles, the remaining three zeros are located
at s —oo.

2.5 CONCEPT OF TRANSFER FUNCTION

The transfer function is generally expressed in Laplace Transform and it is nothing but the
relation between input and output of a system. Let us consider a system consists of a series
connected resistance (R) and inductance (L) across a voltage source (V;).

A A A A AN
| e N A Y AV ATAYAY
LA T A A
-~ - __ -HI
Vi —_
| ( ;=L Vo
\"‘-\-.._ L -._—...-_‘:"
— )
—

input output

In this circuit, the current 'i' is the response due to applied voltage(V;) as cause. Hence the
voltage and current of the circuit can be considered as input and output of the system
respectively. From the circuit, we get,

Apply KVL in mesh (1)

di
Vi=R + L_t
Apply KVL in mesh (2)
V=L

Now applying Laplace Transform, we get,
Vi(s) = RI(s) + sLI(s)

Vo(s) = sLI(s)

Calculation of Transfer function

Vo(s) — sLI(s)

Vi(s) (R+sL)I(s)

Vo(s) sl

V.s) R+sL

Prepared By: Er. Prakash Chandra Das
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2.5 SIMPLE PROBLEMS OF TRANSFER FUNCTION OF NETWORK

Problem 2.5.1:Determine the TF of the given circuit.

Applying KVL in i/p loop, we get
V(t) = iR+ [idt

V(S) = I(S)CR FL g )
t cC S
Applying KVL in o/p loop, we get
Vo =1 [ idt
=1
VO(S) = L I(S) v 2)
i.e. Vp(S) = = 1(S) & Vi(S) = I1(S) [R +
= CS.V,(S) = I(S)
CS.¥ (8) = —82 (S)l
R+ 73]
. W) 1
TF = = Where, T = RC

Vi(s) ~ 1+ 1§

Problem 2.5.2:Determine the transfer function of the system

—W—
R L

Vi(t) . Vo(t)

A system in time domain

Prepared By: Er. Prakash Chandra Das
17




Control Systems & Component [TH-2]
Solution:
—AAN—YYY
R Ls
Vi(s) |(.$~)\ L 1Cs == Vo(S)
<"’ ;
A system in frequency domain
Applying KVL to loop-1 v
Gk | 1
Applying KVL to loop-2
I.;(S>=|:%T;I(s) ,

I(s]:I;(s)f]:é":CsI'o(s)
Now, using equation (2) in equation (1)

Then transfer function of the given system is G(s)=

7(s)=( R L5 |sti (5)

Vals) _ 1 1

— = = >
Vi(s) fR+Ls—L:C's LCs™ +RCs+1
\ Cs)

1
LCs® +RCs+1

Prepared By: Er. Prakash Chandra Das
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CHAPTER - 3
CONTROL SYSTEM COMPONENTS & MATHEMETICAL MODELLING OF PHYSICAL SYSTEM

A physical system is a collection of physical objects connected together to serve an objective. An
idealized physical system is called a Physical model. Once a physical model is obtained, the next
step is to obtain Mathematical model. When a mathematical model is solved for various i/p
conditions, the result represents the dynamic behavior of the system.

3.1 COMPONENTS OF CONTROL SYSTEM:
The components of automatic control systems are
+ Error detector
+ Amplifier & Controller
+ Actuator
+ Plant
+ Sensor of feedback system

Error Detector

Ref 1/P Amplifier .| Actuator .| Plant Output

L

h
h

Sensor

F

3.2 POTENTIOMETER, SYNCHRONOUS, DIODE MODULATOR & DEMODULATOR:
3.2.1 POTENTIOMETER:

+ It is the device converts a linear or angular displacement in to a voltage.

+ It is an example of error detector.

+ It is avariable resistance whose value varies according to angular position or linear
displacement of the wiper contact.

+ The resistance element of the potentiometer is constructed by winding resistance wire on
a conducting material on a plastic base. The wiper is attached to the i/p shaft of the
potentiometer.

+ On application of the displacement to i/p shaft, the shaft moves & hence the wiper
contact slides over the resistance material. The excitation of the potentiometer is done by

either DC or AC voltage source and the o/p is measured at the wiper contact w.r.t
reference.

Consider the fig.3.2.1 (a)given below

Let Ei= input voltage

Eo= output voltage

xi = displacement from zero position

x+= total length of translational potentiometer
R = total resistance of potentiometer

Prepared By: Er. Prakash Chandra Das
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Linear relationship ofthe displacement potentiometer
Under ideal condition the o/p voltage Eois given by

Eo-%X-E;i

Xt

Fig. (a) shows a linear relationship shown in fig. (b)

E,‘ xl :.
T 1 :
X; E,
L 4 l if x/x, —>
Fig. 3.2.1 (a) fig. 3.2.1 (b)
Similarly, for rotational motion, the o/p voltage Eois given by Eo :giTEi

Where 6i= input angular displacement

6:= total travel of wiper

The fig. (i) shows an arrangement of error sensing transducer.

The two potentiometer are connected in parallel and o/p voltage taken across the variable
terminals of the two potentiometer.

& J
' L 8, A,
E —g—- K | Ey
8,
3.2.1 Fig. (i) 3.2.1Fig. (ii)
The o/p voltage Eois given by
Eo= K(61 -62)

The block diagram is shown in fig. (ii)

Where K = Constant and sensitivity of the potentiometer
Unit = volt/degree

Ei= applied input voltage

f1and 62= angular displacement of the wiper

CHARACTERISTICS OF POTENTIOMETER:
+ The linear variation of resistance is the ideal characteristics of the potentiometer.
+ The impedance of the device is used to measure the o/p voltage of the potentiometer
must be high, so that the loading error can be avoided.

3.2.2 SYNCHRONOUS:
It is a self-synchronizing device widely used in servomechanisms as a position indicator.
Important synchro systems are,
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+ Synchro system with transmitter and control transformer
+ Synchro system with synchro transmitter and motor
+ Synchro system with transmitter, differential and motor

GENERAL CONSTRUCTIONAL FEATURES OF SYNCHRO:
+ The construction of synchro transmitter, motor and transformer are almost same.

+ Stator laminated silicon steel, slotted to house distributed 3-¢,Y-connectedwindings with
axes 1200 apart.

+ Stator not directly connected to supply

4+ Rotor is 2-pole (dumb-bell shaped for synchro transmitter and cylindrical shape
forcontrol transformer) with single winding connected to AC source. The magneticfield
in excited rotor induces voltages in stator coils. The magnitude of voltageinduced in any
stator coil depends on the angular position of coil’s axis with respectto rotor axis.

+ Synchro control transformer has cylindrical shape rotor so that air gap flux isuniformly
distributed around the rotor.

CONSTRUCTIONAL FEATURES:
Synchro (a.k.a "Selsyn”) Resolver

3™

AC voltage | ;
source
/SN
rotor “three-phase @/ 7
winding stator winding rotor two-phase
winding stator winding
stator rotor stator rotor
connections connections connections connections
madern schematic symbal

(a)Constructional features
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AO
RESOLVER 7
TRANSMITTER 0
\
R2 { E ) s2
R4 \é/ s4
53 53 E(S3-S1)=E(R2-R4)SINA
E(S2-S4)=E(R2-R4)COS A
RESOLVER B O
CONTROL

TRANSFORMER

82
S4

S3 St

E (R2-R4) = E (S2-54) COS B

+E(S3-5S1)SINB . _
(b)Electrical Circuit
RESOLVER
w A ('_“\:‘- «ﬂ:
50 Vi 3 14 A { SINE
? h | N~ =7 T—
s
TIME
P N S, e
a0 /\ '/_\ '/ COSINE
T & =
4  —

TIME
(c)Schematic Symbol
(Fig. Synchro Transmitter)

SYNCHRO TRANSMITTER:

It is not a three phase machine. It is a single phase machine. Here, input is angular position of
its rotor shaft.Output is a set of three stator coil-to-coil voltages. Common connection

between the stator coils is not accessible.

SYNCHRO SYSTEM WITH TRANSMITTER AND CONTROL TRANSFORMER:

1. Asynchro error detector system may consist of synchro transmitter and synchro control

transformer.

2. It compares two angular displacements and the output voltage is approximately linear
with angular difference or misalignment between shafts of transmitter & Control

transformer.
3. Usedas error detector in feedback systems.
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SYNCHRO SYSTEM WITH SYNCHRO TRANSMITTER AND SYNCHRO MOTOR:

The rotors of both the synchro devices are connected to same AC source. Figure (b) shows a
circuit configuration, using two synchros, for maintaining synchronism between two shafts.
When rotor windings are excited, emfs are induced by transformer action in the stator windings
of transmitter and motor. If the two shafts are in similar positions (relative to that of the stator
windings), then there are two emfs of equal value are induced in the two stator windings.Also

no circulating current exists and hence no torque is produced. If the two shaft positions do not
match, the emfs are unequal and result circulating current to flow. The circulating current in
conjunction with air gap magnetic field produce torque which tend to align the shafts.

SYNCHRO SYSTEM WITH TRANSMITTER, DIFFERENTIAL AND MOTOR:
The function of this system is to permit the rotation of a shaft to be a function of sum or
difference of the rotations of two other shafts. The differential has 3-phase distributed windings
on both stator and rotor. The voltages impressed on its stator windings induce corresponding
voltages in its rotor windings.
“r =Displacement of receiver shaft
a=Displacement of transmmitter shaft

a~=Displacement of differential shaft
Then, o, =a, —ay,t

If the phase sequence of stator and rotor windings of differential are reversed then
o, =0, +ogl

3.2.3_DIODE MODULATOR & DEMODULATOR:

4.6.2 Diode Modulator

Figure 4.17 shows a diode modulation in which two diodes have been used. A sinusoidal supply of fre-
quency ®_was used here to excite the primary of the centre-tapped transformer. The centre point of the

o) o)
+ —_— -
®
A A / + e
Output E Output
voltage 5 o voltage
+ B B
Direct = Direct 4
voltage = voltage ‘ ©
| " [
Of

(b)
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‘o
= e [
A

Output — ®  Output

voltage o voltage
+ = B
Direct Direct .

voltage + voltage
_ +
o

/HI_JHI_J l‘l_lr—ll_J[_|

(a) Output voltage for positive
Direct voltage

(b) Output voltage for negative
Direct voltage

Fig. 4.16 Polarity of output voltages

secondary winding of the transformer is grounded.and hence the phase shift of the emfs included in the
two halves of secondary will be 180°.

The end s, is positive while the end s, is negative during the positive half cycle of the supply [volt-
- age, which leads the diode D, and D, to be forward biased. Hence, a current circulates in the secondary
of transformer. The voltage between point B and ground becomes zero when the moving contgct of

A B
Ao MW\ 5
Alternating output

voltage l ‘ I |

I v Potentiometer I

Direct voltage

Sinusoidal excitation voltage
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potentiometer is located exactly at the midpoint. This is valid strictly under the assumption that the
diodes are identical and the resistances in series with the diode are identical. Therefore, the outpyt
voltage becomes zero.

The end s, becomes negative while the end s, becomes positive during the negative half cycle of
the supply voltage. The diodes D, and D, become reverse biased. The point B is disconnected from the
transformer and it is at the same potential of 4. Therefore, the output voltage is equal to the DC voltage
applied between point 4 and ground.

The output voltage is shown in Fig. 4.17, which oscillates between two voltage levels-ground poten-
tial and direct voltage and hence it becomes a square wave having frequency same as that of excitatign
voltage and an amplitude proportional to direct voltage applied at the input.

4.6.3 Diode Bridge Modulator

Figure 4.18 shows a bridge modulator, which consists of four diodes. These diodes are connected
such that a bridge is formed. The circuit of bridge modulator consists of two centre-tapped trans
formers T, and T,. The primary of the centre-tapped transformer T, is excited by the sinusoidgl
voltage having frequency _. This voltage is known as reference voltage. The direct voltage, whid
needs to be modulated, is applied between the centre point of secondary of the transformer (7)) an
ground. On the other hand, the primary of the transformer (T,) is centre tapped and the output
available from secondary side of T,

The polarity of emf induced in the secondary of 7, during one half cycle is such that it forward bias¢
the diodes D, and D,. The diodes D, and D, are reverse biased. The point 4 becomes at the potential,
which is equal to that of DC voltage. The DC voltage is available across the upper half of the trans

former T, and hence the current flows from P, to ground in the primary of T,, which induces an emf in

the secondary of 7,
Reference
voltage j
Ty

A

v A B 1

7]

Input direct voltage

s

Alternating
output

Fig. 4.18 Diode bridge modulator
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The polarity of the emf induced in the secondary of T during the next hal'f cycle of reference yoltage
is such that it forward biases the diodes D, and D, and reverse biases the diodes .D‘ and D,. T}ys leafis
to the case that the point B is at the potential same that of direct voltage. The direct voltage is ayail-
able across the lower half primary winding of 7. This causes a current to flow from P, to gropnd in the
primary of T,,. The direction of flow current in this case is opposite to the prev1ou§ cycle. This leads to
induce an emf in the secondary of T, and the polarity of the induced emf is opposite to that of the lemf
induced during previous cycle.

From above discussion, it is clear that an alternating voltage is developed across the secondary ¢f T,
due to the circulation of current in the upper and lower halves of primary winding of 7, in the alternate
half cycles of reference voltage. This circulation of current is due to the direct input voltage. The djrec-
tion of flow of currents is reversed in the alternate half cycles. The magnitude and polarity of alternating
output voltage are totally dependent on the magnitude and polarity of DC output voltage, respectiyely.
The frequency of alternating output voltage is same as that of reference voltage.

4.6.4 Synchronous Vibrator as a Demodulator

The reverse process of modulation is known as demodulation. If the modulated alternating yolt-
age is used as input to the transformer, any synchronous vibration will function as demodulator.
Figure 4.19 shows a synchronous vibration, which works as a demodulator. The driving coil of this
synchronous vibration shown in Fig. 4.19 is excited by an AC signal having frequency same as| that
of the supply frequency. The secondary winding of the transformer is centre tapped and the DC
output is obtained between the vibrator and the centre-tapped transformer, which has been shown
in Fig. 4.19. '

The vibrator, which is designed to operate in the range of 50400 Hz, vibrates in synchronism
with excitation voltage and the choice of excitation frequency is dependent on the signal frequgncy.
The vibration comes in contact with fixed contact A during the first half cycle of AC input because
during this time, the point 5, of the secondary is positive. The point ‘C’ of the output voltage
becomes positive.

During the next half cycle, the point s, of secondary is positive and the vibration comes in coptact
with the fixed contact B and the point C becomes positive. The output voltage during the both hplves
becomes positive i.c., the same polarity where the magnitude of the output DC voltage is dependent on
the magnitude of AC input voltage and the polarity of the DC output voltage is also dependent op the

AC input voltage.
Fixed contacts
T lg Vibrating reed
S¢ A
AC B i C
input % |
voltage
. == L DC
S = &) —— Output
L ~ voltage

Driving coil

D

Fig. 4.19 Synchronous vibrator as a demodulator
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4.6.5 Diode Demodulator

Figure 4.20 shows a diode modulator in which the excitation voltage is alternating having frequency
same as that of input signal. The input signal has been applied to the primary of the transforms (7).

T sl
T + + 7 + f
Alternating - + -
input ‘ 1000J

voltage

i = - Excitation

Direct
output
voltage

voltage l
1 =
N =

D,

Fig. 4.20 Diode demodulator

The input voltage is assumed to be in phase with the excitation voltage. During positive half cycle,
the diodes D, and D, will conduct due to the nature of the polarities of the induced emfs in the secondary
of T, as shown in Fig. 4.20. The available voltage across D, is more than that of D, because there exists
an additive secondary voltage in the closed path of D, and subtractive voltage in the closed path of D,.
Hence, the diode D, conducts more current than D, resulting in greater charge storage in C, compared
to that of C,. The resulting polarity has been shown in Fig. 4.20.

During the negative half cycle, the diodes D, and D, will be reverse biased because the polarity of
the secondary emfs is exactly opposite to the polarity shown in Fig. 4.20. The capacitors C, and (, in
this will function as filter and hence the direct output voltage will be maintained constant. The excitation
voltage in the secondary of T, must be greater than the voltage induced in one half of secondary qf T,
to make the operation successful.

The diode D, conducts more current than the diode D, if the alternating voltage applied at the input|is in
phase opposition with the excitation voltage. In this case, the polarity of direct output voltage is opposite to
the polarity shown in Fig. 4.20. The capacitors maintain the same direct voltage levels during the rea£
half cycles.

tive
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3.3 DC MOTOR

Comparison of Armature control & Field control Excitation:

Armature Control Field Control

4 Large current is required as the source + Requirement of current is small.

has to meet the full power requirement + Time constant will be more.

of the motor. 4+ Damping is provided by motor &
+ Time constant is less. load.
+ Damping is provide by back e.m.f. + Efficiency is low.
+ Efficiency is very high. + Itis difficult to provide constant field
+ It is easy to provide constant field current.

current. + Speed of response to change in current
+ Speed of response of the motor to is low.

change in current is fast.

FUTURE DEVELOPMENTS OF DC MOTOR:

(i) Development of rare earth magnet results in DC motor high torque to volume ratio.
(i) Advances in brush commutator technology make trouble free maintenance.

(iif) Development of brushless DC motors

MERITS OF DC MOTOR: DEMERITS OF DC MOTOR:
() Linear characteristics, (i) Lower torque to volume and
(if) Used for large power applications, (i) Lower torque to inertia ratio
(i) Easier control

MATHEMATICAL MODEL OF ARMATURE CONTROLLED DC MOTOR:

The armature control type speed control system of a DC motor is shown in Fig. The following
components are used in this system.
Ra=resistance of armature
La=inductance of armature winding T

la=armature current Ea D b
I=field current l -
Ea=applied armature voltage

Eb=back emf -
Tm=torque developed by motor

©=angular displacement of motor shaft

J=equivalent moment of inertia and load referred to motor shaft

f=equivalent viscous friction coefficient of motor and load referred to motor shaft
A Schematic diagram of armature control type speed control system of a DC motor

The air-gap flux @is proportional of the field current i.e.
BB (1)

The torque Tm developed by the motor is proportional to the product of armature current and air
gap flux i.e.

-+ La

If
{constant)

Voc

Tm o kl Kf Ifia
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In armature-controlled D.C. motor,the field current is kept constant,so that equation can be
written as follows.

The differential equation of the armature circuit is

La 1 ('lia

= |+ R,i, + By = E,
Bt T T T L e, (5)
The torque equation is

B2 =1,

(d?e “1+ de
E l dr ,_ m

7

dr® )

Taking the Laplace transforms of equations (4), (5) and (6), assuming zero initial conditions, we
get
E,(s)=sK,0(s)

(sL,+R, )I, (s)=E,(s)—E,(s)

(*T+NOO =T, () =K Zo (7,8,9)

From eq. (7) to (9) the transfer function of the system is obtained as,

G(s)=—C) . = 2
D OE(s) s[(Ry+sL,)(sT+ 1)+ KK, ]

can be rewrntten as

K,
60 | RarsL)(5T+S) h
Eq(s) 1+ KKy
(R, +sL )(sJ+f)

G(s)
5

The block diagram that is constructed from equations is shown in Fig.

1 1 S0

. é(s)
sL +R ‘ T+ f

E.s)

Gy | -

©

Ko

Block diagram of armature control type speed control system of a DC motor

The armature circuit inductance La is usually negligible. Therefore, equation (11) can
besimplifiedas follows.
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2 b K

o) 2 J+51' f+

E(s)

EK )

(. KK ).

The term | f+ |indicates that the back emf of the motor effectively increases the
"._ V

viscous friction of the system. Let.

KK,
D

a

Where 7' be the effective viscous friction coefficient. The transfer function given by eq 13

may be written in the following form.
f(s) K

m

MATHEMATICAL MODEL OF FIELD CON'F‘F%&)‘LL‘]’:"ﬁ D& MOTOR:
The fIEId COntroﬂi@fgeﬁpeedgeomrﬁéyéxt%ﬁf@ogsgammg{d's Shd\,\m H]CF& @ﬁl@‘@oﬂ;@%ﬂﬂw&@&e the motpr
components are used In thigsystem.

Ri=Field windingpsistafiCBack emf constant K,. K, are mterrelated.
L=inductance of field winding

I=field current

er=field control voltage

Tm=torque developed by motor

O©=angular displacement of motor shaft

J=equivalent moment of inertia and load referred to motor shaft

f=equivalent viscous friction coefficient of motor and load referred to motor shaft

N————

la

l‘ Ry (constant)

Block diagram of field control type speed control system of a DC motor
In field control motor the armature current is fed froma constant current source.The air-gap
flux @ is proportional of the field current i.e.

e (1)

The torque Tm developed by the motor is proportional to the product of armature current and
air gap flux i.e.
Ln=hKplpla=Kd, )

The equation for the field circuit is
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L% R, —E
—_ —
i s TR
dt ) (3)
The torque equation IS
.::Ir g

f =T, =K1,
-ﬂ’f‘ ..................... (4)
Taking the Laplace transforms of equations (3) and (4) assuming zero initial conditions,
we get the following equations.
(Lys+R, ), (s)=E,(s)

and (Js* + f5)8(s) =T, (s) =K1, (s)

....................................... (5,6)
From eq(5) and (6) the transfer function of the system is obtained as,
a( K
G(s)=mE) __ 2
Er(s) s(Re+sL)(Js+f) Q)
The transfer function given by eq. (7) may be written in the following form.
f(s) K _ K,
E,(s) s(Lys+R,)(Js+f) s(sT+1)(sT'+1) ®)
g I
Here fx —f_ motor gain constant, and 7 —R—f = time constant of field circwt and ' =
f f

= mechanical time constant. For small size motors field control is advantageous. The block
diagram that is constructed from equation (8) is shown in Fig. below.

X 1 K
EA(s) | 5L, +R, s(sT+f) >S(s)

Block diagram of field control type speed control system of a DC motor

3.3 AC SERVOMOTORS

A two phase servomotor (Induction Motor) (A few watts to hundred watts) is commonly usedin
feedback control systems. In servo applications, an induction motor is required to produce
rapid accelerations from standstill.

Schematic Diagram

Error

Detector
Reference Servo- C
I onfrolled
It mator Device

Feedback Loop
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Control winding
Voltage

from
servoamplifier

main winding or
a.c. reference winding
supply
CONSTRUCTIONAL FEATURES:

+ Squirrel Cage rotor with Cu or Al conductor

+ High Rotor resistance

4+ Small diameter to length ratio to minimize inertia

4+ Two stator windings in space quadrature(One called reference winding and the other
Controlwinding)

4+ The two voltages to stator windings must derived from same source

S 777777/

Stator

LUK

PO LU

PRINCIPLE OF OPERATION:

() The two applied AC voltage to stators with a phase difference produce a rotating flux.

(ii) As this moving flux sweeps over the rotor conductors, small emf is induced in rotor. Rotor
being short circuited, currents will flow and this current interacts with rotating flux to produce a
torque in the rotor. This torque causes the rotor to turn so that it chases the rotating magnetic
flux.

Ti

ES 1 ,0 rl',‘ ) wm
7 (§§> . =3, - Kn / B sl -

Ky |=

TORQUE-SPEED CHARACTERISTICS OF AC SERVOMOTOR:

For induction motor in high power applications, rotor resistance is low in order to obtain
maximum torque. Positive slope part of the characteristics is not suitable to control applications
as this results instability.
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In AC servomotor high resistance rotor results in negative torque-speed characteristics. This
characteristic is needed for positive damping and good stability. The rotor has a small diameter—
to-length ratio to minimize the moment of inertia and to give a good accelerating characteristic.
However, more rotor resistance results more loss and less efficiency.

= Winding A
o Winding B

N
‘(‘ \
/S

A

\
“'\__/"-. . - '

L One Rotation J
TRANSFER FUNCTION:

The torque developed is a function of shaft angular position (©) and control voltage Ec

kK, K, K

) Jsl+Ds s(Js+D) s(T,s+1)

K . J .
Where, K =—*=motor gain constant, T, =— = motor time constant

Merits of AC Servomotors Demerits of AC Servomotors

+ Lower cost

+ Less weight and inertia

+ Higher efficiency

+ Fewer maintenance requirements
(since no commutator or brush)

+ Nonlinear characteristics

+ Used for low power applications (e.g.
Instrument Servo)

+ Difficult for speed control and
positioning

COMPARISON BETWEEN A.C. AND D.C. SERVOMOTOR:

A.C. Servomotor

D.C. Servomotor

Low power output

Efficiency is less

No brushes and slip rings hence
maintenance free

No radio frequency noise
Smooth operation

AN

AN

High power output

High efficiency

Frequent maintenance required
Brushes produce radio frequency
noise

Noisy operation

ANENENRN

\

APPLICATION OF SERVOMOTORS:
+ Radars
4+ Electromechanical actuators
+ Computers
4+ Machine tools
+ Tracking and guided system
4 Process controllers
+ Robots
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3.4 MODELLING OF AN ELECTRICAL SYSTEMS (R,L,C, ANALOGOUS SYSTEMS)
3.4.1 ANALOGOUS SYSTEM:
It is very useful in practice. Since one type of system may be easier to handle experimentally
than another. A given electrical system consisting of resistance, inductance & capacitances may
be analogous to the mechanical system consisting of suitable combination of Dash pot, Mass &
Spring. The advantages of electrical systems are,
1. Many circuit theorems, impedance concepts can be applicable.
2. An Electrical engineer familiar with electrical systems can easily analyze the system under

study & can predict the behavior of the system.
3. The electrical analog system is easy to handle experimentally
3.4.2 COMPONENTS OF AN ELECTRICAL SYSTEM:
There are three basic elements in an electrical system,
i.e. (a) resistor (R), (b) inductor(L) and (c) capacitor (C). Electrical systems are of two types,
i.e. (i) voltage source electrical system and (ii) current source electrical system.
VOLTAGE SOURCE ELECTRICAL SYSTEM:
If i’ is the current through a resistor and v is the voltage drop in it, then v = Ri .
If ‘1’ is the current through an inductor and v is the voltage developed in it,

Thenv = Ldl

If i’ is the current through a capacitor and v is the voltage developed in it,
Thenv =1 [ idt
C

R L . c
>—>IJ\/\/\/-—- o-—o,—' L3R 6 62 I I
— Y — — )y — — y —

Current and voltage shown in resistor, inductor and capacitor
CURRENT SOURCE ELECTRICAL SYSTEM:
If i” is the current through a resistor and v is the voltage drop in it, then i = ‘;_1

If 'i” is the current through an inductor and v is the voltage developed in it, theni = 1 [ vdt.
L

If i’ is the current through a capacitor and v is the voltage developed in it, theni = C ‘:il
t

3.4.3 FORCE-VOLTAGE ANALOGY:

The characteristics of an electrical system is identical to that of a mechanical system, then the
electrical system is said to, be analogous to the mechanical system.

Mathematically,f(t) = d + B % kx

dt2 dt
Consider a serles RLC circuit as shown in fig. below R L ¢
v(t) = R|+L + f idt..ccceiaee, (1) 75 i L |
But, i = d 1 ]
() = LT RID g G ) V(o)
a2 dt [§
Equation(1) with Equation (2) we can written as
Note: The mathematical similarity with respect to the following

analogous parameters. .
f(t) & v()x < q Fig. 3.3.3

dt
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ke _;B<—R
¢ dx dx
M e L; — i .. = velocity
dt dt

The Electrical systems are
v = Voltage, i = Current, L = Inductance, R = Resistance, q = Charge,
% = Reciprocal of Capacitance.

The mass is analogous to inductance, viscous friction is analogous to resistance, spring constant
is analogous to reciprocal of capacitance, velocity is analogous to current & displacement is
analogous to charge. The force is analogous to voltage is known as force-voltage analogy.

3.4.4 FORCE-CURRENT ANALOGY:

Let the parallel RLC circuit as shown fig. below by using KCL we can write the eq. for total
current in the circuit as follow;

i)=C”+"+ " fvdt

13 R
I R (1)
d%ﬁtz Rdt L L
hU= rate of change of flux. i) (D R S
t 2x X v
We using differential eq. by f(t) = Md_2 + B d_kx T
dt dt
Put comparing the differential eq. with eq. (1) we can written
fe—i(t)
M C Fig.3.3.4
X @
Be - C
R dt
\Y%
ke— !

L
The above analogy is called Force-Current analogy. The Electrical Systems are
v = Voltage, i = Current, ¢ = Flux, C = capacitance,

1 = Conductance, — = Reciprocal of inductance.
R L

Problem 3.4.1:
Find system T.F. between function between the inductance current
to the source current in the following RL circuit as shown in Fig. 3.3.1

Solution:
-
e
Q) T :
Fig.3.3.1
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20

Voltage across the Resistance, e(f) =i;R = i; =

Voltage across the Inductance. e(f) =L % =i, = % [e(l)dt
r v

Total current, i, =i, +i, =——+— | e(t)dr
a R L R L’f ()
Laplace transform of the current source.

Pt 39 E
I(s)=E(s)| —+— |and I, (s)=—
()= E(s)| =+ [and [,() =—

Transfer function between the inductance current to the source current.
I, (s) 1 1
Problem3.4.2:7 (0" 541
Find system transfer furﬁﬁd“nlbetweenfunction between the capacitance voltageto the source

voltage in the followingRLC circuit as shown in Fig
wherer = E 1s the time-constant

RESISTANCE I'NDUCTANCEL CCAPACITANCE
R Il
o el SRR e ]
" T e® =il e e |

e(t) 6.5

Solution:
Voltage across the Resistance, e;(f) =iR

d
Voltage across the Inductance, ¢, (1) =L FI
I
Voltage across thecapacitance. e,(f) = -El— | idt
, di . 1¢.
Total voltage, e(t)=iR+L—+—|idt
dt C-

Laplace transform of the voltage source, E(s) = l(s): R+ILs+ CL ;
s

Transfer function between capacitance voltage and source voltage
E.(s) 1 (')f
E(s) 1) (s8*+200s5+0
) os| ReLs+—| (5 +H@sT)
Cs

R

1
where @, = and { =
~JiE ™

[ 5]
AT
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CHAPTER - 4
BLOCK DIAGRAM& SIGNAL FLOW GRAPHS(SFG)

4.1 DEFINITION OF BASIC ELEMENTS OF BLOCK DIAGRAM :

Block diagram: It is the pictorial representation of each system & it makes easier to understand
the system. The short hand pictorial representation the cause-and-response/effect
relationshipbetween input and output of a physical system is known as block diagram.

[NOUL ommmp]  BIOCK [ OuitpUL RiS) ommmp]  Gis) e Cis)

() A block representation of a system (ii) A block representation with gain of a system

Output: The value of input multiplied by the gain of the system.
Gain, G(s)=¢&)

R(S)
~Output C(s) = G(S)R(s)

Summing point: It is apoint at which addition or subtraction of two or more signals.In Fig.
below, inputs R(s) and B(s) have been given to a summing point and its output signal is E(S).
Here, E(S) = R(S) — B(S)

Forward path g

Take-off point

m,ee

Gish s = Cis)

Summing Bis)
point

His)

e - cedback path

A block diagram representation of a systemshowing its different components

Take-off- point: It is the component of a block diagram model at which a signal can be taken
directly and supplied to one or more points as shown in Fig. below

R(S) E(5)
/ R(S)
Take- of - point

Forward path: It is the direction of signal flow from input towards output.

e ofp
—| GafS) —= GulSl —= Galsl —=

P

Forward Path
Feedback path: It is the direction of signal flow from output towards input.

4.2. CANONICAL FORM OF CLOSED LOOP SYSTEM:
It consists of block forward path feedback path summing point & take-off-point.

E(s)

R(s G(s) C(s)

B(s)

H(s)
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1%(%: Closed loop Transfer function =control ratio

E®) = Error ratio

R(S)

B®) = Primary feedback ratio
R(S)

4.3 RULES FOR REDUCTION OF BLOCK DIAGRAM MODEL:

[TH-2]

SL
No.

Rule
No.

Configuration

Equivalent

Name

1

Rule 1

R{5k—

Gals)

Gafs)

—=C(s)

R(g)——1G1(5)GAs)

—=C(5)

Cascade

Rule 2

R{S} —

Gy(s)

L

A
X—cs
1l

Rsh— Gq{+GE2{5h —=Cis)

Parallel

Rule 3

R(sh—!

Gis)

1:G(s)H(s)

—C(s)

Loop

Rule 4

R{s}—%—%—C{S}

Xi(s)

XoAs)

R{s}—(?)—%)—'-cis}

X(s)

X4(s)

Associative
Law

Rule 5

R(s)

X(spe—

G(s)

Cis)

R(s)

X(s)

G(s)

1/G(s)

Cls)

Move take-
off point
after a block

Rule 6

RI:S}-—I--

1s)

X(5)+—

C(s)

Ris|

X(s]

Gls)

—=C{s)

Gis)

Move take-
off point
before a

block

Rule 7

Ris)

G(s)

—C{(5)

X(s)

R(s)

G(s)

Move
SUMITng-
point point
after a block

Rule 8

R{g.} —

&s)

C(s)

K(s)

Move
sumnung-
point point
before a
block

28

Prepared By: Er. Prakash Chandra Das




Control Systems & Component

[TH-2]

4.3 RULES FOR REDUCTION OF BLOCK DIAGRAM MODEL:

9 | Ruleo X1(S et
XAs)

R(s) > C(s)

R(s) —— —C(s)
X2(5) off point

X1($) summing-

Move take-

after a

point

10 | Rule 10
XAS) Xi(s)

R(s) C(s)

R(s)

C(S) Move take-
off point
before a
summing-

Xa(s) XiS) a

4.4 PROCEDURE FOR REDUCTION OF BLOCK DIAGRAM MODEL:

Step 1: Reduce the cascade blocks.
Step 2: Reduce the parallel blocks.
Step 3: Reduce the internal feedback loops.

Step 4: It is ad visibleShift take-off points towards right and summing points towards left.
Step 5: Repeat step 1 to step 4 until the simple form is obtained.

Step 6: Find transfer function of whole system as €.

R(S)

PROCEDURE FOR FINDING OUTPUT OF BLOCK DIAGRAM MODEL WITH MULTIPLE INPUTS:
Step 1: Consider one input taking rest of the inputs zero, find output using the procedure

described in section.

Step 2: Follow step 1 for each inputs of the given Block Diagram model and find their

corresponding outputs.

Step 3: Find the resultant output by adding all individual outputs.

PROBLEMS 4.5.1:

1. Reduce the Block Diagrams shown below:

-
R(SY % >» () =— G, > C(S)
H, e
H
Solution: By eliminating the feed-back paths, we get
- Gy Gy
R(S 1tGH [ > 1+6Hm | T ¢®

Combining the blocks in series, we get

Hs
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+ 6.6, .
R(S) A+ G H) (A + GoHa) > C(S)
Hs
Eliminating the feed back path, we get
6,6,
TT6H,)G TGl
s T I G )
R T AT YA R
G,Gs
RS T =6,1,)Q + Golh) + G 6ol >C(S)
2 TF = c(S) GG,

R(S) (A +6G,H)A +6.H,) + Gy6,H,

4.6 BASIC DEFINITIONS IN SFG &PROPERTIES :
4.6.1 BASIC DEFINITIONS IN SFG:
It is a pictorial representation of a system that graphically displays the signal transmission in it.
4.6.2 PROPERTIES OF SFG
+ It is applicable to linear time-invariant systems.
+ The signal flow is only along the direction of arrows.
+ The value of variable at each node is equal to the algebraic sum of all signals
entering at that node.
+ It is given by Mason’s gain formula.
+ It is not be the unique property of the system.

4.7 MASON’S GAIN FORMULA
Transfer function of a system:

Where,

N= total number of forward paths

P«= path gain of ki forward path

A=1 - (Zloop gains of all individual loops) + (Zgain product of loop gains of all possible
two non-touching loops) - (Xgain product of loop gains of all possible three non-touching
loops) + ..........

Ax= value of A after eliminating all loops that touches ki forward path
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4.8 STEPS FOR SOLVING SIGNAL FLOW GRAPH

Example of a fig.4.8.1 SFG model

Input or source node:It is a node that has only outgoing branches i.e. node ‘r’ in Fig.4.5.1
Output or sink node:lt is a node that has only incoming branches i.e. node ‘¢’ in Fig.4.5.1

Chain node: It is a node that has both incoming and outgoing branches i.e. nodes “X:’,

X22,¢ X%, Xa?, Xs’and <Xs’in Fig.4.5.l

Gain or transmittance:|It is the relationship between variables denoted by two nodes or

value of a branch. In Fig.4.5.1, transmittances are<t:’, <>tz <t “{sand “Is.

Forward path: It is a path from input node to output node without repeating any of the nodes
in between them. In Fig., there are two forward paths, i.e. path-1:<-Xi-Xz-Xs-Xs-Xs-Xs-C* and

path-2:<-Xi-Xs-Xa-Xs-Xs-C’.

Feedback path: It is a path from output node or a node near output node to a node near input
node without repeating any of the nodes in between them.
Loop: Itis a closed path that starts from one node and reaches the same node after trading

through other nodes. In Fig.4.5.1, there are four loops, i.e. loop-1:X2-Xz-Xa-X1*, l00p-2:Xs-Xe-
Xs’,

loop-3:Xi-Xo-X3-Xa-Xs-Xe-X1’and  10op-4:< Xi-Xz-Xa-Xs-Xe-Xo’.

Self Loop: It is a loop that starts from one node and reaches the same node without trading

through other nodes i.e. loop in node ‘xs” with transmittance “tss’ in Fig.4.5.1
Path gain: It is the product of gains or transmittances of all branches of a forward path. In

Fig., the path gains areP: = t:t:L:tits(for path-1) and P2 = tststats(for path-2).

Loop gain: It is the product of gains or transmittances of all branches of a loop In Fig.4.5.1
there are four Ioops, i.elLi= -tztsts, L.= -t5t7, Ls :'t1t2t3t4t5t8, and L4 :'t9t3t4t5t8.

Dummy node: If the first node is not an input node and/or the last node is not an output node
than a node is connected before the existing first node and a node is connected after the
existing last node with unity transmittances. These nodes are called dummy nodes. In Fig.4.5.1
‘I’ and ‘C’ are the dummy nodes.

Non-touching Loops: Two or more loops are non-touching loops if they don’t have any
common nodes between them. In Fig.,L:andL:are non-touching loops.
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PROBLEM 4.9.1:
Find the overall transfer function of the system given in Fig. using Mason’s gainformula.

ro

Solution:

No. of forward paths: N =2
Path gain of forward paths:P: =lilotststs and P2 =tct:tits
Loop gain of individual loops:L1 = -{zlls, Lo = -Tst7, Ls = -lilotstutste and La = -totstatets

No. of two non-touching loops = 2 i.e. Liand L

No. of more than two non-touching loops = 0
A=1-(L,+L,+L,+L,)+(LL)-0=1-L,—L,—L,—L,+LL,
A;=1-0=1landA,=1-0=1

BA, + P A,
G{S]: 1 1 2 A
A
o iyttt ) (1) + (15850415 )(1)
:P(_T[,‘j‘_:l: {12343.{. L6340 s )
[ fotaf gl + Felal 4l
:‘>G[$)— 1"273°4%5 6'3°4%5

4.6.2 CONVERSION OF BLOCK DIAGRAMS IN TO SEG:

Follow the steps for converting a block diagram in to its equivalent SFG.
+ All the signals, variables summing point and take-off points of block diagram as nodes in
SFG.
+ The blocks of block diagram as branches in SFG.
4+ The Transfer function inside the blocks of block diagram as gains of the branches in SFG.
+ Connects the node as per the block diagram.
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EXAMPLE 4.9.2:

Let us convert the following block diagram in to its equivalent SFG.

R(s) ik, + V2 Yo
> Gs |-
= Y(s)

Represent the input signal R(s) and output signal C(s) of block diagram as input node R(s) and
output node C(s) of SFG. Just for reference, the remaining nodes (y: to ys) are labelled in the
block diagram. There are nine nodes other than input and output nodes. That is 4 nodes for 4
summing points, 4 nodes for 4 take-off points and 1 node for the variable between blocks G: and
Gz. The following fig. given below.

H,

With the help of Mason’s gain formula, we can calculate the transfer function of this SFG. It is
advantage of SFGs. Here we no need to simplify(reduce) the SFGs for calculating the transfer
function.
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CHAPTER -5
TIME DOMAIN ANALYSIS OF CONTROL SYSTEMS

Time domain is the analysis of mathematical functions, physical signals with respect to time. In
the time domain, the signal or function's value is known for all real numbers, for the case of
continuous time, or at various separate instants in the case of discrete time.

5.1. DEFINITION OF TIME, STABILITY, STEADY-STATE RESPONSE, ACCURACY, TRANSIENT
ACCURACY, IN-SENSITIVITY AND ROBUSTNESS

DEFINATION OF TIME
Time is the indefinite continued progress of existence and events that occur in an

apparently irreversible succession from the past, through the present, into the
future.

DEFINATION OF STABILITY
The property of a body that causes it when disturbed from a condition of

equilibrium or steady motion to develop forces or moments that restore the original
condition.

OR
STABILITY

A system is said to be stable, if its output is under control. Otherwise, it is said to be unstable.
A stable system produces a bounded output for a given bounded input.

The following figure shows the response of a stable system.

c(t)
A

>
0 t

This is the response of first order control system for unit step input. This response has the
values between 0 and 1. So, it is bounded output. We know that the unit step signal has the
value of one for all positive values of tincluding zero. So, it is bounded input. Therefore, the
first order control system is stable since both the input and the output are bounded.
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Types ofSystems based on StabilityWe can classify the systems based on stability as follows:

+ Absolutely stable system
+ Marginally stable system
+ Absolutely Stable System

DEFINATION OF STEADY STATE RESPONSE

The part of the time response that remains even after the transient response has
zero value for large values of ‘t” is known as steady state response. This means,
the transient response will be zero even during the steady state.

OR
5.1.3 STEADY STATE RESPONSE:
Definition: The part of response that remains even after the transients have died the out is said to
be steady state response.
From steady state response we get the following information about the system.
(a) The time that the o/p takes to reach the steady state value.
(b) Existence of any error.
(c) Whether the existing error is constant zero or infinite.

DEFINATION OF ACCURACY

In a set of measurements, accuracy is closeness of the measurements to a specific
value, while precision is the closeness of the measurements to each other.
DEFINATION OF TRANSIENT ACCURACY

Transient analysis calculates a circuit's response over a period of time defined by
the user. The accuracy of the transient analysis is dependent on the size of
internal time steps, which together make up the complete simulation time known
as the Run to time or Stop time.

ROBUSTNESS

Robustness is the property of being strong and healthy in constitution. When it is
transposed into a system, it refers to the ability of tolerating perturbations that
might affect the system’s functional body.

5.2 SYSTEM TIME RESPONSE:

Time response c(t)is the variation of output with respect to time. The part of time response that
goes to zero after large interval of time is called transient response ctr(t). The part of time
response that remains after transient response is called steady-state response css(t).
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C(t)

14

l'(t) A /\ T ———— _—

Transient state | Steady state .
Cis (1) Css (t)
Time response of a system

C(t)

t

System Time Response
OR

5.2. SYSTEM TIME RESPONSE
If the output of control system for an input varies with respect to time, then it is called the

time response of the control system. The time response consists of two parts.
@ Transient response

Steady state response

The response of control system in time domain is shown in the following figure.

0 < >« > ¢

Transient Steady
State state
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Here, both the transient and the steady states are indicated in the figure. The responses
corresponding to these states are known as transient and steady state responses.
Mathematically, we can write the time response c(t) as

C(t)=Cur(t)+Css(t)
Where,
L Ctr(t) is the transient response

L Css(t) is the steady state response

TRANSIENT RESPONSE

After applying input to the control system, output takes certain time to reach
steady state. So, the output will be in transient state till it goes to a steady state.
Therefore, the response of the control system during the transient state is known
as transient response.

The transient response will be zero for large values of ‘t’. Ideally, this value of ‘t’ is
infinity and practically, it is five times constant.

OR
5.1.5 TRANSIENT RESPONSE:

Definition: The part of the time response which goes to zero after a long interval of time is
known as transient response. i.e. lim c(t)=0

From transient response use have the following information.
+ The time interval after which the system responses taking the instant of application of
excitation as reference.
+ The total time it takes to achieve the o/p for the 1% time.
+ Whether or not the o/p oscillates about it’s final value.
+ The time that it takes to settle to the final value.

STEADY STATE RESPONSE

The part of the time response that remains even after the transient response has
zero value for large values of ‘t’ is known as steady state response. This means,
the transient response will be zero even during the steady state.

Example

Let us find the transient and steady state terms of the time response of the
control system C(t)=10+5e-t

Here, the second term 5e-t will be zero as t denotes infinity. So, this is the
transient term. And the first term 10 remains even as t approaches infinity. So,
this is the steady state term.

Prepared By: Er. Prakash Chandra Das
47




Control Systems & Component

LAPLACE TRANSFORM PAIRS

[TH-2]

No. Funciion Time-domam Laplace domain
x(f)= £ {3(s)} Hs)= L{x(t)}
1 Dralay oit-T) g
2 Ut mogalse oith 1
3 Ut step uft) 1
kY
4 Ramp t 1
5 1
5 Exponential decay e 1
S+ O
& Exponentizl approach 1—&™™ ) o
' 55+ a)
7 Sine s1m ot @
o + @?
S Cosme cos ot 5
2 1
9 Hyperbolic szine simh ot e
uh - E--l
10 Hyperbolic cosine coch ot 5
PR
11 Exponentally decaving sine &~ cin ot )
wae (s+a) +a@°
12 Exponenhally decaving cosme & com e 5+

wave

(s+alf +a
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5.3 STEADY-STATE ERROR:

For a step excitation the difference between the desired o/p & the final value of the o/p of a

system is term as steady state error of the system

5.3. ANALYSIS OF STEADY STATE ERROR

The deviation of the output of control system from desired response during steady state is

known as steady state error. It is represented as e,, . We can find steady state error

using the final value theorem as follows.

o= Jimell) = [ipaBR)

Where,

E(s) is the Laplace transform of the error signal, e(t)

Let us discuss how to find steady state errors for unity feedback and non-unity feedback

control systems one by one.

Steady State Errors for Unity Feedback Systems

Consider the following block diagram of closed loop control system, which is having unity

negative feedback.

R(s) + G(s)

C(s)
o

|
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Where,

" R(s) is the Laplace transform of the reference Input signal r(t)
" C(s) is the Laplace transform of the output signal c(t)

We know the transfer function of the unity negative feedback closed loop control system as

C(s)  G(s)
R(s) 1+G(s)

R(s)G(s)

#C(s):m

The output of the summing peint is -

E(s) = R(s) — C(s)
Substitute C'(s) value in the above equation.

R(s)G(s)

E(s) = R(s) — 1160

R(s) + R(s)G(s) — R(s)G(s)
1+ G(s)

= E(s) =

__R(s)
> E®) = T em

Substitute F{s) value in the steady state error formula

sR(s)
=0 1+ G(s)

Egg —

The following table shows the steady state errors and the error constants for standard input signals
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like unit step, unit ramp & unit parabolic signals.

Input signal Error constant

Steady state error e,

unit step signal

ﬁ K, = lim, ,0 G(s)

unit ramp signal h% K, = lim, ,p sG(s)

unit parabolic signal %u. K, = lim, ,y s°G(s)
Where, K, . K, and K, are position error constant, velocity error constant and

acceleration error constant respectively.
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Example

Let us find the steady state error for an input signal 7(t) = (5 + 2& + "—;) u(t) of unity negative

feedback control system with G(s) = #}j}”ﬂ]

The given input signal is a combination of three signals step, ramp and parabolic. The following
table shows the error constants and steady state error values for these three signals.

Input signal Error constant Steady state error
n(t) = sult) Ky = lim, 10 G(s) = 00 cut = 15 = 0
hep
ra(t) = 2tu(t) K, = lim, p sG(s) = 0o €w2 = 3 =0
r3(t) = t_;“(ﬂ K, =1lim, ,0s°G(s) =1 €wt = 3 =1

We will get the overall steady state error, by adding the above three steady state errors.

€gg — €551 + €52 + a5

= e, =0404+1=1

Therefore, we got the steady state ermor e, as 1 for this example.

OR
5.3 ANALYSIS OF STEADY-STATE ERROR:
A simple closed-loop control system with negative feedback is shown as follows

R(s EGCLI 6(s) C(s)

B(s)

H(s)
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E(s)=R(s)—-B(s)
B(s)=C(s)H(s)
C(s)y=E(5)G(s)
E(s)=R(s5)-C(s5)H(s)
E(s)=R(s5)—E(5)G(s)H(s)
=[1+G(s)H(s)]E(s)=R(s)

:Eu‘s)=-—m’5“
‘ 1+G(s)H(s)
Steady-state error,
e, —hme(r}— lim
e, =HmsE (5)=lim—0)
=0 =01+G(s5)H(s)

Therefore, steady-state error depends on two factors, i.e.
(a) type and magnitude of R(s)
(b) open-loop transfer function G(s)H(s)

STEADY-STATE ERROR IN TIME DOMAIN:
Steady-state error in time domain (ess)

I.e€ss= llr(r)l e(t)
~ess = limsE(S)

s—0
=ess = lim__SR®)
s—0 1+G(S)H(S)

5.4. TYPES OF INPUT & STEADY STATE ERROR
(STEP ,RAMP, PARABOLIC)

'£|:)

The standard test signals are impulse, step, ramp and parabolic. These signals are used to know the

performance of the control systems using time response of the output.

Unit Impulse Signal
A unit impulse signal, §(t) is defined as

5(t)=0 for t#0
and [6(t) dt =1
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8t) 4

>
0 t
Unit Step Signal
A unit step signal, u(t) is defined as
u(t)=1;t=0
=0;t<0
u(t)
E'S
1
>
0 t

So, the unit step signal exists for all positive values of ‘t’ including zero. And its
value is one during this interval. The value of the unit step signal is zero for all
negative values of ‘t’.

Unit Ramp Signal

A unit ramp signal, r(t) is defined as

r(t)=t;t>0

=0;t<0

We can write unit ramp signal, r(t) in terms of unit step signal, u(t) as
r(t)=t. u(t)
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r(t)
A

>
0 t
So, the unit ramp signal exists for all positive values of ‘t" including zero. And its

value increases linearly with respect to ‘t’ during this interval. The value of unit
ramp signal is zero for all negative values of ‘t’.

Unit Parabolic Signal

A unit parabolic signal, p(t) is defined as,
p(t)=t2/2;t20

=0;t<0

p(t)
A

>
0 t
So, the unit parabolic signal exists for all the positive values of ‘t’ including zero.

And its value increases non-linearly with respect to ‘t” during this interval. The
value of the unit parabolic signal is zero for all the negative values of ‘t’.
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5.4 TYPES OF INPUT AND STEADY-STATE ERROR:

Step Input:
R(s)=%
Jf4)
45 4
, =lm —— =lim .
b = 16 (5)H(s) ~91+G(s)H(s)
—e, = 2 .
o l+!i_13°JG(:)H(s) 1+K,
Where. .=l (s (5
ere. K, =lmG(s)H(s)
Ramp Input:
R(s\=:—'§
J4)
s A g
“501+G(s)H(s) >-C-sf1+G(:pH(:'):|
A
=ézehin——————
¥ =05+5G(s)H(s)
A A4
28 = S
“ lmsG{s)H(s) K,
=0
Where, K, =lmsG(s)H(s)
Parabolic Input:
A
R(:)=7
4]
PR U5 2
e, = - = —
“ =01+G(s)H(s) =05 [1+G(s)H(s)]
:e“=hm+
505 +5°G(5)H(s)
A A
=, F————————— T
T Ims’G(s)H(s) K,
Where, K, =lms’G(s)H(s)
=0
Types of input and steady-state error are summarized as follows.
Error Constant Equation Steady-state error (e,,)
Position Error Constant (Kr) K, =lmG(s)H(s) A
- =) B
- 14K
Veloaity Emror Constant (K,) K, =lmsG(s)H(s) i 4
=0 K;
Acceleration Error Constant (K,) K =lim’:G(S]Hf'b A
A ."' / \© 8. =—
=N 15 K"

Where, Kp,Kv and Ka are position error constant, velocity error constant and acceleration error
constant respectively.
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EXAMPLE:
Let us find the steady state error for an input signal

r(t) = (5+2t+ %) u(t)
of unity negative feedback control system with
5(s+4)

G(s) = (s11)(5420)
Solution: The given input signal is a combination of three signals step, ramp and parabolic. The

following table shows the error constants and steady state error values for these three signals.

Error constant Steady state error

Input signal
ri(t) = 5u(t) K, = lim, , G(s) €1 = 71 =0
= X "
9 {5) — 2tu(t) K, = lim, .y sG(s) €ss2 = Ki =0
= OO
Tg{t}l — t_;u{t] Ka = lillllq v SEG(S) €553 — %ﬂ =1
=1

We will get the overall steady state error, by adding the above three steady state errors.

€ss = €551 T €552 1 €453

= e, =04+04+1=1
Therefore, we got the steady state error ess as 1.

5.4.1 Types of open-loop transfer function G(s)H(s)and Steady-state error:

Static Error coefficient Method:

The general form of G(s)H(s) is
E(1+T5)(1+Ts)..(1+ IT5)

G(5)H(5)=
{1+ s)1+15)...(1+ T 5)

Here, j = no. of poles at origin (s = 0)
or, type of the system given by eq. is j.

Type 0
. E(1+Ts)(1+ Ts).(1+T,5)
Gl=)H(s)= (1+ T s)(1+ T,5)(1+ T 5)

K, =HJ_:§G[5}H[5]=K
A

e
Therefore, Y

Here,
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Type 1
{ W1+Ts)h.( i
GmHI.”:EL.i1+1F,s_|_|1+I_5_ |1+Tﬂ:._
0 51+ T a1+ Ts) {1+ T 5)
Here, E, =lm:G(5)H(s)=K
]
Therefore, -E!H=-—{.
Type 2
E{(1+Is)1+Ls).(1+Ts
Gis)H(s) == 'E.H' ) i. }
s (1+Ts)14+ Ts) .1+ T 5)
Here, K,:]iE;IL.::G[SPH[:hK
Therefore, 2 _4
B E2) K

Steady-state error and error constant for different types of input are summarized as follows.

Type Step input Eamp input Parabolic input
' K By Ey ey K, N
Typeld | K = |0 x 0 -
Twvpel w 0 E i 0 =
K
Tyvpel w 0 o 0 E —i_
E

The static error coefficient method has following advantages:
+ Can provide time variation of error
+ Simple calculation
But, the static error coefficient method has following demerits:
+ Applicable only to stable system
+ Applicable only to three standard input signals
+ Cannot give exact value of error. It gives only mathematical value i.e. 0 or co

PROBLEMS: Find the error co-efficient for the system.

G(s)H(s) = St3
S(140.608)(1+0.355)
Solution: Given that, G(s)H(s) = 5+3
S(140.608)(1+0.355)
a. K = limG(s)H(s) = lim 5+3 - o
P ss0 §—0 S(1+0.608) (1+0.355)
b. K = limG(s)H(s) S = lim S(S+3) —0
Vo 550 §—0 S(1+0.608) (1+0.355)
c. K = limS2G(s)H(s) = lim S%(5+3) == lim 5(5+3) _
¢ 550 §-0 S(1+0.605)(1+0.35S) §-0 (140.60S)(1+0.355)

PROBLEMS: Find the error co-efficient for the system
G(s) =——=—&H(s) = 0.6

5243545
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Solution:Given that,G(s) = —3__ & H(s) = 0.6

5243545 3
~ GH(S) = 577 35+5 x 0.0 S2+35+5

a. K = limG(s)H(s) = lim =3 or 0.6

P 550 §-0 S2+35+5 5
b.K = limG(s)H(s)S =lim __ 35 _

Vo ss0 §—0 S24+35+5
c. K = limS2G(s)H(s) = lim _3s* _

¢ 550 §—0 S2+35+5

5.5 PARAMETERS OF FIRST ORDER SYSTEM& SECOND ORDER SYSTEM:
5.5.1 FIRST ORDER SYSTEM:

Consider a 1** order system

with unity feedback

R(S) & 1 C(S)

G(s) =~ ,H(s) =1

sT
1 1
@ = G(s) = ST = ST = L
R(s)  1+G(s)H(s) 1+;?1 L%l sT+1
C(s) 1
" R(s) sT+1

TIME RESPONSE OF THE FIRST ORDER SYSTEM

The time response of the first order system. Consider the following block diagram of the closed
loop control system. Here, an open loop transfer function, 1_T is connected with a unity negative
S

feedback.

R(s) 4: 1 C(sz

>

L

We know that the transfer function of the closed loop control system has unity negative feedback
Cs) _ G

R(s) 1+G(s)

Substitute, G(s) =L in the above equation.

as,

1
R(s) 1+_T sT+1
N
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The power of s is one in the denominator term. Hence, the above transfer function is of the first
order and the system is said to be the first order system.We can re-write the above equation as,

C(s) = ﬁ R(s)

Where,

C is the Laplace transform of the output signal ¢

R is the Laplace transform of the input signal r and T is the time constant.

Follow these steps to get the response output of the first order system in the time domain.
Take the Laplace transform of the input signal r(t)

IMPULSE RESPONSE OF FIRST ORDER SYSTEM

Consider the unit impulse signal as an input to the first order system.
So, r(t) = d&(t)

Apply Laplace transform on both the sides.

R(s) =1

Consider the equation,

C(s) = (A7) R(s)

Substitute, R(s) =1 in the above equation.

C(s) = (5T1+ 1) (1) = 5T1+ 1

Rearrange the above equation in one of the standard forms of Laplace transforms.

D SR o G
cs) T(s—l—__i_) c) T(s—l—%)

c(t)
Apply inverse Laplace transform on both sides. 1
1 /- T
e(t) = ?e{ 7 )u(t)
The unit impulse response is shown in the following figure. %
0 t

The unit impulse response, ¢ is an exponential decaying signal for positive values of ‘t” and it is
zero for negative values of ‘t’.

STEP RESPONSE OF FIRST ORDER SYSTEM

Consider the unit step signalas an input to first order system.
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So, r(t) = u(t)

Apply Laplace transform on both the sides.
R =1
() =1

Consider the equation, C(S) = ﬁ R(s)

Substitute, R(s) :i in the above equation.

Cls) = (5T1+1) (%) B m

Do partial fractions of C

1 A B
C - =
(s) s(sT +1) 5 sT+1
1 _ A(sT +1) + Bs
s (sT+ 1) s(sT+1)

On both the sides, the denominator term is the same. So, they will get cancelled by each other.
Hence, equate the numerator terms.

1=A(sT+1)+ Bs

By equating the constant terms on both the sides, you will get A =1.

Substitute, A =1 and equate the coefficient of the s terms on both the sides.
0=T+B=B=-T

Substitute, A =1 and B = —T in partial fraction expansion of C(s).

vyt T 1 T
C(b) 5 sT +1 s T(5+L)
g
1 1
—bC(S}—;— 1
.5+,I.

Apply inverse Laplace transform on both the sides.

qt)—-(1-_e—{f})t4¢}

FOR UNIT STEP RESPONSE

Here  r(t) = u(t) c(t)
A
R(s) =1
(5) =1 :
1 1

Ce)=_L R(s) = = _T__1__1_

14Ts s(14Ts) S(HT—B T s+
C()=1l-e 5 >
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The value of the unit step response, c is zero at t = 0 and for all negative values of t. It is
gradually increasing from zero value and finally reaches to one in steady state. So, the steady
state value depends on the magnitude of the input.

RAMP RESPONSE OF FIRST ORDER SYSTEM

Consider the unit ramp signal as an input to the first order system.
So, r(t) = tu(t)

Apply Laplace transform on both the sides.
R(s) = siz
Consider the equation, —1— R(s)

sT+1

Substitute, R(s) = é in the above equation.

C(s) = (5T1+ 1) (?1”) ) ﬁ

Do partial fractions of C(s).
1 A B C

Cs) = == +—=+
(s) s2(sT+1) 2 s  sT+1
1 B A(sT+ 1)+ Bs(sT +1) + Cs?
’ s2(sT+1) s2(sT+1)

On both the sides, the denominator term is the same. So, they will get cancelled by each other.
Hence, equate the numerator terms.
1 = A(sT + 1) + Bs(sT + 1) + Cs*
By equating the constant terms on both the sides, you will get A = 1.
Substitute, A = 1 and equate the coefficient of the s terms on both the sides.
0=T+B= B=-T
Similarly, substitute B = —T and equate the coefficient of S2 terms on both the sides.
You will get C = T2
Substitute A= 1, B =-T and C = T2in the partial fraction expansion of C(s).

, R A o 1 T T?
R S T R ALY
5 5 T(S+I—.)
, 1 T
> C(s) E_:+5+i

Apply inverse Laplace transform on both the sides.

e(t) = (t T+ Te‘(ﬂ) u(t)
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The unit ramp response, ¢ has both the transient and the steady state terms.
The transient term in the unit ramp response is

e (t) =Te (T) u(t)
The steady state term in the unit ramp response is

Css (t} = [t — T}u[t}

The following figure shows the unit ramp response.

c(t)
A
o\of’
For,
P,
z >
0 t

The unit ramp response, ¢ follows the unit ramp input signal for all positive values of t. But,
there is a deviation of T units from the input signal.

5.5.2 SECOND-ORDER SYSTEM

The block diagram of a 2" order system is

2

R(s) 4+ Wy, C(s)
N s(s + 2qw,) i
€ _ G(s)
R(S) 1+ G(s)H(s)
G == _" JHE) =1
R(s) s(s+2qwn)
. C(s) _ w?n/s(s + 2Qwn)
" R(s) wn?
s(s+2wn)
Cls) wn?

R(s) 2+ 2Twns + w2
TIME RESPONSE OF SECOND ORDER SYSTEM
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The time response of second order system. Consider the following block diagram of closed loop
2

control system. Here, an open loop transfer function, is connected with a unity negative s_(;i;(s—w)
feedback.

R(s) + w,2 C(s)
il s(s+ 26w,,)

We know the transfer function of the closed loop control system having unity negative feedback as
C(s)  G(s)
R(s) 1+G(s)

- Zn
Substitute, G(s) = —2"___ jn the above equation.

s(s+28wn)
Wi
C(s) (.;{.Hzau,:;. ) w?
R(s) ( wh ) 52 4 20wy s + wi
s s+28w, )

The power of ‘s’ is two in the denominator term. Hence, the above transfer function is of the
second order and the system is said to be the second order system.

The characteristic equation is

s 4 28w, s + w2 =0

The roots of characteristic equation are

!

—2wln £ 4/ (20wn)* — 4wt — 26wy, £ wy /02 — 1)
6 — _

2 2

= 5 = —8wn & w67 — 1

The two roots are imaginary when 6 = 0.

The two roots are real and equal when 6 = 1.

The two roots are real but not equal when & > 1.

The two roots are complex conjugate when 0 <6 < 1.
We can write equation as,

-f.r.-'g
Cls) = L R(s
(3) (52 + 28wn s + wi ) (5)

Where,

C is the Laplace transform of the output signal, ¢

R is the Laplace transform of the input signal, r

onis the natural frequency

6 is the damping ratio.

Follow these steps to get the response output of the second order system in the time domain.
Take Laplace transform of the input signal, r(t).

Consider the equation,
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e} wh '
¢ (‘5} (.if'—'—l—?du,:.i—l—wﬂ ) R[:é}
Substitute R(s) value in the above equation.Do partial fractions of C(s) if required.
Apply inverse Laplace transform to C(s) .
STEP RESPONSE OF SECOND ORDER SYSTEM

Consider the unit step signal as an input to the second order system.
Laplace transform of the unit step signal is, R(s) = é
We know the transfer function of the second order closed loop control system is,

C(s) Wh
R(s) 52+ 26w,s + wl
Casel:0=0
Substitute, 8 = 0 in the transfer function.
C(s) wh

R(s) s +uwh

2

= C(s) = (""—“9) R(s)

s2 + ws
Substitute, R(s) =§ in the above equation.

, wi 1 w2
C‘(S}_(.a 2)(_.)_ 2 L, 2
52 4wy, 5 s(s? + wp)

Apply inverse Laplace transform on both the sides.
c(t) = (1 — cos(wat)) u(t)

Case2:0=1
Substitute, /delta = 1 in the transfer function.
C(s) B Wi

R(s) s>+ 2wns +wi

= C(s) = (—’"”% ) R(s)

(3 | {.r.-'n}g
Substitute, R(s) =§ in the above equation.

co-(55) () - s

Do partial fractions of C(s).
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Ols) — wl B é B C
(s) ey s tagro Tt o)

After simplifying, you will get the values of A, B and C as 1,—1 and —wnrespectively.
Substitute these values in the above partial fraction expansion of C(s).

Cs) =2 ——L U
s sten (s twny

c(t) = (1— e — w,te ™ u(t)

So, the unit step response of the second order system will try to reach the step input in steady
state.

Case3:0<o<1

We can modify the denominator term of the transfer function as follows

52 4+ 20w s + Wi = {52 +2(s)(dwn ) + (ﬁwn}z} JwE — (ﬁwn}z
= (s+ ﬁwn}z + wa(1—6%)
The transfer function becomes,
C(s) wh
R(s) (s + dwn)? +wi(1 - 62)
, wa
= Cle) = ( (5+ Swn)? + w2 (1 — 67) ) R(s)

Substitute, R(s) =§ in the above equation.

§) — =1 =
(8 +8wn)? + wi (1 — 6%) 5 s ((s 4 6wn)? + wi(1 — 62))
Do partial fractions of C(s).

) wa A Bs+ C
Cls) = 2 =5 T 2 2
s (s + 0wy )? +wn (1 — 62)) 5 (54 0wn)? +wh(l—6?)
After simplifying, you will get the values of A, B and C as 1, —1 and — 2dwn respectively.
Substitute these values in the above partial fraction expansion of C(s).

C[s}—l— 5 + 20w,
5 (84 0wy)? +uA(1l—42)
C(s) - 1 5 + dwy, B dewy,

$  (s4 0w, +wi(1—8%) (54 6w,)? +wi(l —8?)
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1 G : w,y /1482
C(S} o % N {.-:+du.ln:|— B d—( Wiy _ )

(s+0w,) +H{wa/1-67)7 (1282 \ (s+w,) +H{way/1-62)?

Substitute,
wny’jm as wd
In the above equation.
C[s}—l— (s + dwn) B i) ( Wy )
5 (5 + 6wn)? + w3 gﬁ (5 + 6wn)? + w3
Apply inverse Laplace transform on both the sides.

c(t) = | 1 —e ™ cos(wyt) — LE_J"""* sin(wgt) | u(t)
V1 —é2

c(t) = (1 - i((ﬁ ~8%) cos(wat) + ml(w@))) u(t)

If /1 — 6% = sin(f), then ‘8" will be cosf. Substitute these values in the above equation.

c(t) = (1 - m(sjn(ﬁ'} cos(wdt) + cos(f) sin(wd t}}) u(t)

=c(t) = (1 - (%) sin(wqt + 6’}) u(t)

So, the unit step response of the second order system is having damped oscillations when ‘5’
lies between zero and one.

Cased:0>1

We can modify the denominator term of the transfer function as follows —

5% + 20wns + w2 = {5 +2(s5) (6wy) + (dwn)? } + Wk — (dwy )?
= (s +dwn)” — B (67 — 1)
The transfer function becomes,
C(s) wp
R(s) (5 + 6wy,)? —wi(62 — 1)
C wi R
> Cls) ( (5 + dwn)? — w2(82 — 1) ) )

Substitute, R(s) =§ in the above equation.
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2 2

LY Ll (L . Wl
G(b} AR {e2 a2 -'5) - feg onr ok Fa o
[stdw, )" —lwy /47 —1) sl s+, +uwn g 07 —1)(s+dw, —wy /07 —1)

Do partial fractions of C(s).

wn
C(s) = — —
A B C
= +

3 b+6ﬂdn+wnf§2 — ]. a—l—ﬁwn—wnxﬁﬁz — ].
After simplifying, you will get the values of A, B and C as 1,
1 —1

: : and : —— respectively.
2(0+/82-1)(y/82-1) 25—/ 82-1)(4/82-1)

Substitute these values in above partial fraction expansion of C(S).

C(s) = 1 | L L
§ 0 2004 4/02 —1)(/6%2 —1) \ 54 dwy + wn\,’"m

1 1
(z(a — /8T —1) (V8 1) ) (5 + 8w — wn /62 — 1 )
Apply inverse Laplace transform on both the sides.

c(t)

' A La .'II 'Z_ 3 R _.'I .z_ %
. 1 + . 1 . E—I:'L'I\.J,:-fwl,: i a°—1jt . , 1 . e | ety —taty y 4 —1)t "
2(0+4/8°-1)(y/ 8" ~1) 2(6—/ 8- 1)(y/ 8% -1)

(t)
Since it is over damped, the unit step response of the second order system when & > 1 will never
reach step input in the steady state.

5.6 DERIVATION OF TIME RESPONSE SPECIFICATIONS:
(DELAY TIME, RISE TIME, PEAK TIME, SETTING TIME, PEAK OVER SHOOT)

Delay time, Td

Rise time, Tr

Peak time, Tp

Peak overshoot, Mp
Settling time, Ts

okrwnE
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A ct)

() o |+

1.0

05

t, . >

(1) Delay time, Td: It is the time required to reach 50% of output

1 .—;fﬂﬂl'_. .
V(ts)===1-——sin(a,t, + )
i l_‘-';-'
1+0.7£
ty; =
W

(2) Rise time, Tr:The time required by the system response to reach from 10% to 90% of the
final value for over-damped case, from 0% to 100% of the final value for under-damped case
and from 5% to 95% of the critically value for over-damped case.

Lo,

¥(t,) =1=1-——sin(a,f, + )
1-£-
-2 =sin(@,f, +@) =0
1-£°
=>ar +tP=1T
= =19
‘rl-'d.

(3) Peak time, Tp:The time required by the system response to reach the first maximum value.
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dv(t,)
dt

el

l_E?

[TH-2]
0

—Lat,

J_ﬂsm(a}drp +(p)jl
1-2-

—

=0
dt

-

sin(md.rp + qa:l):l
0

, _ -1
= w,, +@ =tan

dr

T+ @ wWheren=1.2.3...

For n=1,

= 'H-'H,IJE| =RT

H

::?E‘p— -
Wa

(4) Peak overshoot, Mp: It is the time required to reach 50% of output.

= M, (%) =100x

= M, (%)=100x

= M, (%)=100x

= M, (%)=100x

vir }I—l
MP{%}:I{JDK{+
g =t
l_ﬁﬁm(rﬂd% +¢J)_1]
1-¢72
—{e,t, _;ﬂ“%
—————sm(@,f, +@) |=100x _£ sin(@,t, + @)
1-¢7 1-¢7
= - -
—f (e, ——=—+0) |=100x| -Z sin(7 + @)

=2

i

e V-
1—

sing |=100x| £

=2
]
=

= M, (%)=100xe V=

(5) Settling time, Ts: It is the time taken by the system response to settle down and stay with
in+2% or +5% its final value. For +2% error band.
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For £5% emrorband. ¢ =

Time Specifications
Sl No.
Tvpe Formula
_ 1+0.70
1 Delay time Iy =
W,
. T—qQ
2 Rise time t = :
'h-'sr
. T
3 Peak time t,=
Towy
4 Maxinmm overshoot _Mﬂ [: %]I —100x g_\l"-—i' :
4
5 Settling time I =T
EXAMPLES.6.1:
The open loop transfer function of a system with unity feedback is given by
G(s) = o
(s+2)(s+5)

Determine the damping ratio, undamped natural frequency of oscillation. What is the percentage
overshoot of the response to a unit step input.

SOLUTION: Given that

Gj=—30
(s+2)(s+5)

H(s)=1
Characteristic equation, 1+G(s)H(s) =0
10

12645
(s+2)(s+5)+10 B

(s+2)(s+5)
s2+55+2s+10+10
(s2+5s5+2s+10)
s*+75+20=0
Compare with

s +28m s+ =0
We get,
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w, =20

28w =7

RNORES V20 =4.472rad / sec
2XEX4472="T

£=0.7826

7*0.7826

g _
M =e V€ —¢ 09 %1001 929

P

EXAMPLE 5.6.2:
A feedback system is described by the following transfer function
12
G(s)=—"——
(%) s’ +4s+16
H(s)=Ks
The damping factor of the system is 0.8. determine the overshoot of the system and value of ‘K’.

EXAMPLE 5.6.3:

Consider the system shown in Fig. 5.6.3.. To improve the performance of the system a feedback
is added to this system, which results in Fig. 5.6.4. Determine the value of K so that the damping
ratio of the new system is 0.4. Compare the overshoot, rise time, peak time and settling time and
the nominal value of the systems shown in Fig. 5.6.3 and Fig. 5.6.4.

R(s) RS) 20
i s(i?l) FC(S) + A + %_ S+1.

Fig. 5.6.3Fig.5.6.4

Solution: For Figure 5.6.3,

6(9) = 2
Cs) _ G(s)

R(s) 1+ G(s)
20

S(S+1)
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20

_S(S+D)
= S(S+1)+20
S(S+1)
20
SG+D 20

T TEST0 T 245+ 20
S(S+1)

Here, &, =20 and 2l0, =1

o, =+20rad'sand [ = =

4 =0.112
T 20, 2-320

For Figure 5.6.4,

Cs)  Gs)
R() 1+ G(s)

20
S(S+1+20K)
20
1+ —
S(S+1+20K)
20
—  __S(S+1420K)
 S(S+1+420K)+20
S(S+1+20K)
_ 20
S2+(1420K)S+20

Here, ) =20 and 2 e, =1+ 20K
@, =20 rad’s

1+20K  1+20K

20, -~ 220

But, given that = =04

= K=0.128

Transient characteristics of Figures 5.6.3 and 5.6.4

CharacteristicS Figure :5.6.3 Figure :56.4
Overshoot. M, 70% 25%

Rise time, t, sec 0.38 048

Peak tume. t,,, sec 0.71 0.77

Settling time (2%), sec 8 224
Steady-state value, ¢ 1.0 1.0
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SHORT QUESTIONS WITH ANSWER

Q1.What s peak time ?

Ans- If the signal is over damped, then rise time is counted as the time required
by the response to rise from 10% to 90% of its final value. Peak time (tp) is simply
the time required by response to reach its first peak i.e. the peak of first cycle of
oscillation, or first overshoot.

Q2. What is settling time?

Ans- In control theory the settling time of a dynamical system such as an amplifier
or other output device is the time elapsed from the application of an ideal
instantaneous step input to the time at which the amplifier output has entered
and remained within a specified error band.

Q3. What is time response ?

Ans- If the output of control system for an input varies with respect to time, then
it is called the time response of the control system. The time response consists of
two parts. Transient response. Steady state response.

Q4. What is rise time in control system ?

Ans - Rise time (tr) is the time required to reach at final value by a under damped
time response signal during its first cycle of oscillation. If the signal is over
damped, then rise time is counted as the time required by the response to rise
from 10% to 90% of its final value.

LONG QUESTIONS:

Q1. Derivation of time response specification for delay time, rise time, peak time,
setting time, peak over shoot of a second order system.

Q2.What are the different type of input and derive steady state error for step,
ramp and parabolic input.
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CHAPTER -6
FEEDBACK CHARACTERISTICS OF CONTROL SYSTEM

6.1 EFFECT OF PARAMETER VARIATION IN OPEN LOOP SYSTEM & CLOSED LOOP SYSTEMS:
Effect of parameter variation:

Feedback reduces error, reduces the sensitivity at the system to parameter variation.

Parameter may very due to some change in condition and it’s variation effect the performance of
the system.So it is necessary to make the system insensitive to parameter variation.

Effect of parameter variation on overall gain of a degenerative Feedback Control system:
The overall gain or transfer function of a degenerative feedback control system depends upon
these parameters i.e. (i) variation in parameters of plant, and (ii) variation in parameter of
feedback system and (ii) disturbance signals.

The term sensitivity is a measure of the effectiveness of feedback on reducing the influence of
any of the above described parameters. For an example, it is used to describe the relative

variations in the overall Transfer function of a system T(s) due to variation in G(s).
Sensitivity — % change in output (Ts)

% change in input (Gs)

Effect of variation in G(s) on T(s) of a degenerative Feedback Control system:
In an open-loop system,

C(S) = G(S)R(S)

Let, due to parameter variation in plant G(s) changes to [G(s) + AG(s)] such that
|G(S)| >> |AG(s)|. The output of the open-loop system then changes to

C(s)+AC(s)=[G(s)+AG(s)]R(s)
= C(s)+AC(s)=G(s)R(s)+AG(s)R(s)
= AC(5)=AG(5)R(s)
In an closed-loop system,

G(s)
T1+G(s)H(s)
Let, due to parameter variation in plant G(s) changes to [G(s) + AG(s)] such that
|G(S)| >> |AG(s)|. The output of the open-loop system then changes to

[G(s)+AG(s)]
1+[G(s‘p—aG:js}]H{s:

Cls) R(s)

Cls)+AC(5)= Ri(s)

G(s)+AG(s)
1+Gls)H(s)+AG(s)H(s)
Since, |G(S)| >> |AG(s)|, then G(S)H(S) +A G(S)H(S). Therefore, A G(S)H(S). is
neglected. Now,

= C(s)+AC(s)=

G(s)+AG(s) )
———  R(s
1+G(s)His)

G(s) , AG(s)
- FRis)r—
1+G(s)H|(s) 1+G(s)H(s)

Cls)+AC(s)=

= C(s)+AC(s)= R(s)
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) AG(s) .
Or AC(s)=————"——R(s)
1+G(s)H (5)
Comparing eq. (1) and (2), it is clear that AC(open loop) = (1 + GH) AC(closed loop).
This concept can be reproved using sensitivity. Sensitivity on T(s) due to variation in G(s)
is given by
eT/T _éT G
EG/IG éG T

For open-loop system,
r_eT/T _oG G _,

T aGiIG oG G

For closed-loop system,

g_orr _(+GH)-GH G _ 1
° 6G/G (1:eH)} G/(1+GH) (1+GH)
A S T & T ) s o
Therefore. 1t 1s proved that S lopeniioeii™ (1+ GH)S; (closed loop)~ TISTICE. the effect of

parameter variation in case of closed loop system is reduced by a factor of PPRPTY

Effect of variation in H(s) on T(s) of a degenerative Feedback Control system:
This concept can be reproved using sensitivity. Sensitivity on T(s) due to variation in H(s) is
given by

r éT/T éT H
Sp=—~ —_=""_.2

EGH/H éH T

¢ H -G H -GH
> 7 | ] - = N
(1+GH) | G/(1+GH) (1+GH)

-
For higher value of GH, sensitivity S approaches unity. Therefore, change in H
affectsdirectly the system output.

6.2 INTRODUCTION TO BASIC CONTROL ACTION & BASIC MODES OF FEEDBACK:

6.2.1 Introduction to basic Control action:

It is the value of controlled variable, compare the actual value to the desired value (reference i/p)
and its deviation & produces a control signal that will reduce the deviation to zero or to a
smallest possible value and produces the control signal is called mode of control or basic control
action. Example: — Mechanical, Hydraulic, Pneumatic or Electromechanical.

Basic Control action and response of Control Systems:

An automatic controller compares the actual value of the plant output with the reference input
(desired value), determines the deviation, and produces a control signal that will reduce the
deviation to zero or to a small value. The automatic controller produces the control signal is
called the control action. The Fig. below is a block diagram of an industrial control system,
which consists of an automatic controller, an actuator, a plant and a sensor (measuring element).
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Error Detector

Ref 1P Amplifier .| Actuator Plant Output

b
v
b

Sensor

r

The controller detects the actuating error signal, which is usually at a low power level,

and amplifies it to a sufficiently high level. The output of the controller is fed to an actuator

such as pneumatic motor or valve, hydraulic motor or electric motor. The actuator is the device
that produces the input to the plant according to the control signal so that the output signal will
approach the reference input signal.

The sensor or measuring element is device that converts the output variable into another

suitable variable such as a displacement, pressure or voltage that can be used to compare the
output to the reference input signal. This element is in the feedback path of the closed-loop
system. The set point of the controller must be converted to a reference input with the same

units as feedback signal from sensor.

6.2.2 BASIC MODES OF FEEDBACK
PROPORTIONAL.:
In Proportional control action, there is a continuous linear relation between the o/p of the
controller m(manipulated variable) and actuating error signal e(deviation).
Mathematically,

/ E(s)

m(t) = Kee(t) .
or in Laplace Transform of + K. M(s)
M(s) = Kol - ; B(s)

E(s)
Where Kyis known as proportional gain
Basically it is an amplifier with adjustable gain.
INTEGRAL:
The o/p of the controller is changed at a rate which is proportional to the actuating error signal
e(t).
Mathematically,

IO R F— )

Where Kiis a constant. . E(s) K
Equation (1) can be written as, " 5 [ M(s)
m(t) = Ki [ e(t) + m(0)

where m(0) = control o/patt =0
Laplace Transform of equation(1)
SM(s) = KiE(s)

(MO _ K

E(s) s

The o/p of the controller is ramp(positive), for zero error, there is no change in the o/p of the
controller and negative error the o/p of the controller is negative ramp. It is also known as “Reset
control”.
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DERIVATIVE:
The o/p of the controller depends on the rate of change of actuating error signal e(t).
Mathematigally,
m(t) =K _e(t)
d 3 E(s)

where, Ka= derivative gain constant . SKi = M(s)
Laplace transform of equation -
I\/I(I\SA) = K4SE(s)

or M® = Ky
E(s)
When the error is zero or constant, the o/p of the controller will be zero. This type of controller

cannot be used alone. Its gain should be small. It is also known as rate control.

OR
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6.2 INTRODUCTION TO BASIC CONTROL ACTION & BASIC MODES OF FEEDBACK

CONTROL: PROPORTIONAL, INTEGRAL AND DERIVATIVE
Proportional Controller

The proportional controller produces an output, which is proportional to emmor signal.
u(t) oc e(t)
= ult) = Kpe(t)

Apply Laplace transform on both the sides -

U(s) = KpE(s)

Therefore, the transfer function of the proportional controlleris Kp .

Where,

(=) is the Laplace transform of the aciuating signal ult)
E(s) is the Laplace transform of the error signal e(t)

K= is the proportionality constant

The block diagram of the umnity negative feedback closed loop control system along with the
proportional controller is shown in the following figure.

R(s) + E(s) U(s) C(s)
» Kp }——| G(s) »

The proportional controller is used to change the transient response as per the requirement
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Derivative Controller

The derivative controller produces an output, which is derivative of the error signal.

de(t)

u(t) = Kp—,

Apply Laplace transform on both sides.

Therefore, the transfer function of the derivative controlleris K ps

Where, Kp isthe derivative constant.

The block diagram of the unity negative feedback closed loop control system along with the
derivative controller is shown in the following figure.

E(s) us)
b 2 ko8 |—a] &(s)

C(s)

The derivative controller is used to make the unstahle control system into a stable one.
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The integral controller produces an output, which is integral of the error signal.

u(t) = Kj /e(t)dt

Apply Laplace transform on both the sides -

K E(s

U(s) = 18()
Ul(s) :ﬁ
E(s) s

Therefore, the transfer function of the integral controller is K

Where, K; isthe integral constant.

The block diagram of the unity negative feedback closed lcop conirol system along with the integral
confroller is shown in the following figure.

R(s) + E(s) U(s)

¢
o Ki/s » G(s) (s)

The integral controlier is used to decrease the steady siate error.
Let us now discuss about the combination of basic controllers.

Proportional Derivative (PD) Controller

The proportional derivative controller produces an output, which is the combination of the outputs of
proportional and derivative controllers.

de(t)
dt

u(t) = Kpe(t)+ Kp
Apply Laplace transform on both sides -

U(s) = (Kp + Kps)E(s)
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U(s)

E(s) = I\p -.—I\Ds

Therefore, the transfer function of the proportional derivative controlleris Kp + Kps .

The block diagram of the unity negative feedback closed loop control system along with the
proportional derivative controller is shown in the following figure.

E U
R(s) + (S). — (5)’ p— C(s)

The proportional derivative controller is used to improve the stability of confrol system without
affecting the steady state error.
Proportional Integral (Pl) Controller

The proportional integral controller produces an output, which is the combination of outputs of the
proportional and integral controllers.

u(t) = Kpe(t) + K; /e(t)dt

Apply Laplace transform on both sides -

K;

U(s) = (K,, + T) E(s)
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U(s)

=Kp+ K
E(s) P DS

Therefore, the transfer function of the proportional derivative controlleris Kp + Kps .

The block diagram of the unity negative feedback closed loop control system along with the
proportional derivative controller is shown in the following figure.

R(s) +< E(s) U(s) C(s)
| Kp + Kp Sl G(S)

The proportional derivative controller is used to improve the stability of conftrol system without
affecting the steady state error.
Proportional Integral (Pl) Controller

The proportional integral controller produces an output, which is the combination of outputs of the
proportional and integral controllers.

u(t) = Kpe(t) + K; /e(t)dt

Apply Laplace transform on both sides -

K;

U(s) = (K,, + T) E(s)
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U(s) .  K;p

B

Therefore, the transfer function of proportional integral controlleris Kp + % :

The block diagram of the unity negative feedback closed loop control sysiem along with the
proportional integral controller is shown in the following figure.

E u
R(s) + (s)N o K (s)’ — C(s)

S

The proportional integral controller is used to decrease the steady state error without affecting the
stability of the control system.
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Proportional Integral Derivative (PID) Controller

The proportional integral derivative controller produces an oufput, which is the combination of the
outputs of proportional, integral and derivative controllers.

u(t) = Kpe(t) + K; fg{t}dt + Kp d':'i'[:)

Apply Laplace transform on both sides -
K
U(s) = (Kp + =14 _rfﬂs) E(s)
L]

Uls) K;
~Kp+—+K
E(s) P s

=]

Therefore, the transfer function of fthe proportional integral derivative controller is

Kp+X + Kps .

The block diagram of the umnity negative feedback closed logop control system along with the
proportional inteqgral derivative controller is shown in the following figure.

U
R(s) + E(s)._ e+ Erkys (s) — C(s)

The proportional integral derivative confroller is used to improve the stability of the conirol system
and to decrease steady state error.
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6.3 EFFECT OF FEEDBACK ON OVERAL GAIN, STABILITY
6.3.1 Effect of feedback on Gain:
The overall transfer function in an open-loop system is

G(S)-S
R(S)
Closed loop, L&) = ___GS)
R(S)  14+G(S).H(S)
Hence, the gain is reduced by a factorof — 1

1+G(S)H(S)
6.3.2 Effect of feedback on Stability:
G(S)_X_ (Open loop system)
)

Sothe pole is located at s =- t
For closed loop system,
ceS) _— K
RGS)  S+(t+k)
So the pole is located at —(t+k)
Hence feedback control the time response by adjusting the location of poles.
The stability depends on the location of pole. Hence we can say feedback effects the stability.

6.4 REALISATION OF CONTROLLER WITH OPAMP:

Cz c
. I
: 1 in
1 \ &

Ve Ml—J i == VW >—— Vou

G = —_

It’s shows the op-amp circuit realization of a two stage phase-lead controller.
The i/p Transfer function of the circuit is

Gc(s) = Vout(s)

1 Vin(s) 1
S+ S+
=G 9
R2C R4C
or Ge(s) = L (1+aiTiSy (1+asTaS
a1ap ( 1+T4S ) ( 1+T2S )
Where, a1 = Ri/R:
az = R3 /Rs
Tl = RzC

T2, = R4C

The design of multistage phase lead controller in time-domain becomes more as there are more
poles and zero to be placed.For a two-stage controller, we can choose the parameters of 1% stage
of a two stage controller so that a portion of phase margin requirement is satisfied and the 2"

stage fulfils the remaining requirement.
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OR
Realization of Controllers (P, PI,PD,PID) with OPAMP
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RP1 5 RPZ g
- R4
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+
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to RC 132 13 14 15
VERR 4%|LV\» ! RO g R7 Ra Ra
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=] cl
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+
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SHORT QUESTIONS WITH ANSWER

Q1. What are the different controllers?

Ans- Proportional, Derivative, Integral and Combination of

Proportional and integral controllers (Pl Controller) Proportional and derivative
controllers (PD Controller) Proportional integral derivative control (PID
Controller).

Q2.What is Proportional control system ?

Ans- Proportional control, in engineering and process control, is a type of linear
feedback control system in which a correction is applied to the controlled variable
which is proportional to the difference between the desired value (setpoint, SP)
and the measured value (process variable).

Q3. What happens when a derivative controller applied to a Control system ?
Ans- When derivative control is applied, the controller senses the rate of change
of the error signal and contributes a component of the output signal that is
proportional to a derivative of the error signal.

LONG QUESTIONS

Q1.What is the effect of feedback on overall gain and stability?

Q2. State different type of controller with block diagram and represent them
mathematically.
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CHAPTER -7

STABILITY CONCEPT & ROOT LOCUS METHOD
7.1.0 CONCEPT OF STABILITY:
Stability is a very important characteristic of the transient performance of a system. Any working
system is designed considering its stability. Therefore, all instruments are stable with in a
boundary of parameter variations.
A linear time invariant (LTI) system is stable if the following two conditions are satisfied.
(1) Notion-1: When the system is excited by a bounded input, output is also bounded.
A SISO system is given by

(:‘ ) b m—1
{s}zG[S}zbus +bs 1+...+£::,,i
R(s) ' ays" +as"T +.+a,
So. ¢(t)=a'[G(s)R(s)]

Using convolution integral method

c{r}:?g{rjr{r—r}a’r
0

glr)= af"'Gl:_s] = impulse response of the system

Taking absolute value in both sides,

Tg{r]r[r— T T

Since, the absolute value of integral is not greater than the integral of absolute value of the
integrand.

[e()]=

om

e () E,HE[:”"{’*_TMW

0

=>|r[:f}|£ b|4|g[:r}r{.r— r]|a'r
0
=e(r)|= [le(@)|-(t-1)lar
0
Let, r(t) and c(t) are bounded as follows.
|r'{!:]|£M'1 <00
|r{r:]|£M': < 00
Then,

le(2)| <M, [|e ()T <M,
|:| ==

Hence, first notion of stability is satisfied if { |E (r ]|ﬂ’ T

is finite or integrable. 0

(i) Notion-2: In the absence of the input, the output tends towards zero irrespective of initial

conditions. This type of stability is called asymptotic stability.
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7.1. EFFECT OF LOCATION OF POLES ON STABILITY

A system is said to be stable, if its output is under control. Otherwise, it is said to be
unstable. A stable system produces a bounded output for a given bounded input.
The following figure shows the response of a stable system.

c(t)
A

>
0 t

This is the response of first order control system for unit step input. This response has the
values between 0 and 1. So, it is bounded output. We know that the unit step signal has the
value of one for all positive values of t including zero. So, it is bounded input. Therefore, the
first order control system is stable since both the input and the output are bounded.

Types of Systems based on Stability
We can classify the systems based on stability as follows.
[ Absolutely stable system

[ Conditionally stable system

L Marginally stable system

Absolutely Stable System

If the system is stable for all the range of system component values, then it is known as the
absolutely stable system. The open loop control system is absolutely stable if all the poles
of the open loop transfer function present in left half of ‘s’ plane. Similarly, the closed loop
control system is absolutely stable if all the poles of the closed loop transfer function
present in the left half of the ‘s’ plane.

Conditionally Stable System
If the system is stable for a certain range of system component values, then it is known as
conditionally stable system.

Marginally Stable System

If the system is stable by producing an output signal with constant amplitude and constant
frequency of oscillations for bounded input, then it is known as marginally stable system.
The open loop control system is marginally stable if any two poles of the open loop transfer
function is present on the imaginary axis. Similarly, the closed loop control system is
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marginally stable if any two poles of the closed loop transfer function is present on the
imaginary axis
OR
7.1 EFFECT OF LOCATION OF POLES ON STABILITY:

Location of poles has direct effect on stability.
The entire S-Plane is divided in to three categories.
» LHP (Left Half Plane)
> Jw-axis
> RHP (Right Half Plane)
LHP POLES:
» Onreal axis & Simple
» Onreal axis & Multiple
» Complex conjugate & Simple
+ For all these conditions the system is stable.
Jw-AXIS:
» Complex & Simple
» Complex & Multiple
» Atorigin & Simple
» At origin & Multiple
+ In this case the system is always unstable.
RHP POLES:
+ On real axis & simple
+ On real axis & multiple
+ Complex conjugate & simple
% In this case the system is always unstable.
EXAMPLE:
1. Determine whether the system is stable, Unstable or Marginary stable.
-2,-5 — Stable (LHP)
5,-7 = Unstable (RHP)
-2,0 - Stable (LHP)
-2+j,-2-j —» Stable (LHP)
-2+j4,-2-j4,-2 — Stable (LHP)
-2+j2,-2J2,-2j,+2j - Marginary Stable.
%+ Marginary Stable because the poles aren’t repeat& have a zero real part.

FEEEEE

>
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7.1.1 EFFECT OF LOCATION OF POLES ON STABILITY:

Pole-zero map

Normalized response

Over-damped close-loop poles

Over-damped close-loop poles

jen s plane

i

k
N
|
Q

Overdamped system

Critically damped close-loop poles

Critically damped close-loop poles

Pole-zero map

Normalized response

<o s plane

A

)§( W— 5

Critically damped aystem

Under-damped close-loop poles

Under-damped close-loop poles

Pole-zero map

Normalized response

]y s plane

A

X

Normaiized response

Underdampad systom

Un-damped close-loop poles

Un-damped close-loop poles

Pole-zero map

Normalized response

e $ plane

i
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Negative Under-damped close-loop poles Negative Under-damped close-loop poles
Pole-zero map Normalized response
‘I-(f) s plane S E e
X
—
X
Negative Over-damped close-loop poles Negative Over-damped close-loop poles
Pole-zero map Normalized response
i(ll $ phne ey e

CLOSED-LOOP POLES ON THE IMAGINARY AXIS:
Closed-loop can be located by replace the denominator of the close-loop response with s=jm.
Example:
1. Determine the close-loop poles on the imaginary axis of a system given below.
G(s)=—=
s(s+1)
Solution:
Characteristics equation,s2 + s+ K=0
Replacing s = jw
(jw)*+(jw)+K =0
(K-w?)+jw =0
Comparing real and imaginary terms of L.H.S. with real and imaginary terms of R.H.S., we get
w= VKand w =0
Therefore, Closed-loop poles do not cross the imaginary axis.
Example:
2. Determinethe Close-loop poles on the imaginary axis of a system given below.
(w)3+6(jw)*+8(jw)+K = 0
Solution: Characteristics equation,
(w)3+6(jw)*+8(jw)+K =0
= (K- 6w)2+j(8w — w3) =0
Comparing real and imaginary terms of L.H.S. with real and imaginary terms of R.H.S., we get
® = +V8rad/sand K = 602 = 48
Therefore, Close-loop poles cross the imaginary axis for K>48.
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7.2 ROUTH-HURWITZ’S STABILITY CRITERION:
General form of characteristics equation,
Bs)=as" +a,5" + a5 +a; =0
=E—)s—7)-—7)=0
Where,ri= Roots of the characteristics equation

Necessary condition of stability:

Coefficients of the characteristic polynomial must be positive.

Example 7.2.1:

Consider a third order polynomial B(s) = s3 + 3s2 + 16s + 130. Although the coefficients of
the above polynomial are positive, determine the roots and hence prove that the rule about
coefficients being positive is only a necessary condition for the roots to be in the left s-plane.
Solution:Characteristics equation, B(s) =s3 + 3s2 + 16s+ 130 =0

By using Newton-Raphson’s methodri= -5andrz3=14j5

Therefore, from the above example, the condition that coefficients of a polynomial should be
positive for all its roots to be in the left s-plane is only a necessary condition.

7.2 ROUTH-HURWITZ’S STABILITY CRITERION:
It determines the poles of the characteristics equation w.r.t the left half and right half of the
S-Plane without solving the equation.

The Transfer function of any close loop system is given by
c(S) _ aoS™+aiS™ 1+ ...am

R(S) boS"+b1SP~1+ ......an

SYSTEM STABILITY:

This means that the system must be stable at all times during operation. Stability may be used to
define the usefulness of the system. Stability studies include absolute & relative stability. It is the
quality of stable or unstable performance.

The stability study is based on the properties of the TF. In the analysis, the characteristic
equation is of importance to describe the transient response of the system. From the roots of the
characteristic equation, some of the conclusions drawn will be as follows,

(1) When all the roots of the characteristic equation lie in the left half of the S-plane, the system
response due to initial condition will decrease to zero at time t = co . Thus the system will be
termed as stable.

(2) When one or more roots lie on the imaginary axis & there are no roots on the RHS of S-
plane,

the response will be oscillatory without damping. Such a system will be termed as critically
stable.

(3) When one or more roots lie on the RHS of S-plane, the response will exponentially increase

in magnitude; there by the system will be Unstable.

SOME OF THE DEFINITIONS OF STABILITY ARE:

(1) A system is stable, if its o/p is bounded for any bounded i/p.

(2) A system is stable, if it’s response to a bounded disturbing signal vanishes ultimately as time
“t” approaches infinity.
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(3) A system is un stable, if it’s response to a bounded disturbing signal results in an o/p of
infinite amplitude or an Oscillatory signal.
(4) If the o/p response to a bounded i/p signal results in constant amplitude or constant
amplitude oscillations, then the system may be stable or unstable under some limited constraints.
Such a system is called Limitedly Stable system.
(5) If a system response is stable for a limited range of variation of its parameters, it is called
Conditionally Stable System.
(6) If a system response is stable for all variation of its parameters, it is called Absolutely Stable
system.

7.2 STABILITY CRITERION:

In general, a system before being put in to use has to be tested for its stability. Routh-Hurwitz
stability criteria may be used. This criterion is used to know about the absolute stability.

As per Routh-Hurwitz criteria, the necessary conditions for a system to be stable are,

(1) None of the co-efficient™ of the Characteristic equation should be missing or zero.

(2) All the co-efficient™ should be real & should have the same sign.

A sufficient condition for a system to be stable is that each & every term of the 1% column of the
Routh array must be positive or should have the same sign. Routh array can be obtained as
follows. In this criterion the co-efficient are arranged in an array known as Routh’s array.
General form of characteristics equation,

Sufficient condition of stability:

Method I (using determinants)

The coefficients of the characteristics equation are represented by determinant form

as follows

arl—'. HFI—3 ﬂrl—i
_‘I. _ a?l an—" Hrz—-&
"0 a a

Here, the determinant decreases by two along the row by one down the column. For stability, the
following conditions must satisfy.

K arl—'. Hr|—3 ail—5
. _ |1 n=3| . _ ~
A=a,; >0A, = ; 0,A;,=|a, a,, a,|=0--
n n=2
G 'H?z—l Iﬂlr|—3

Method Il (using arrays)
The coefficients of the characteristics equation are represented by array form as follows.

aoS" + a1S" 1 + @S2 + a3S$n3 . .....an=0
sn dg = ag dag
sn—1 aq as ag as
sn—2 b, bs bs 0
Sn_3 Cq Ca Cg 0
gn—4 d, ds 0 0
sP an O 0 0
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Where,

Where,
(Hrl—'_ )(an—l) —da, (an—s)

a

b, =

=1

E) — [:ﬂ'“_-_ )(ﬂ'”__‘ )__ arz(a_-e—:?)

n-3
a.'?—l

— (bn—l)(arz—S) — an—l(bn—i-)

n-1 b_.e_l
For stability, the following conditions must satisfy.
The number of roots of B(s) with positive real parts is equal to the number of sign
changesan, an-1, bn-1, Cn1,€tC.
Similarly we can evaluate rest of the elements:
The following are the limitations of Routh-Hurwitz stability criteria,
(2) Itis valid only if the Characteristic equation is algebraic.
(2) If any co-efficient of the Characteristic equation is complex or contains power of “e”, this
criterion cannot be applied.
(3) It gives information about how many roots are lying in the RHS of S-plane; values of the
roots are not available. Also it cannot distinguish between real & complex roots.
Special cases in Routh-Hurwitz criteria:
(1) When the 1%t term in a row is zero, but all other terms are non-zeroes then substitute a small
positive number for “e”zero & proceed to evaluate the rest of the elements. When the 1% column
term is zero, it means that there is an imaginary root.

Example:1
Find stability of the following system given G(S) = (K ) and H(S) = 1 using Routh-Hurwitz
S(S+1
stability criterion.
K

Solution: Inthe system, —G® = _ss+p  _ K

1+G(S)H(S) 1+@) SZ+S+K
Method-I, Characteristics equation, B(S) =s* + s + K
A=1
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Here, A=11 0p_
2 |1 Wl =K

For stability,A1> 0,
A> 0
The system is always stable for K>0.

Method-II,
Characteristics equation, B(S) =s2+s+ K=0
Here, Routh array is

sl K
stf1 0
s°|K

There are no sign changes in first column elements of this array. Therefore, the system is always
stable

for K>0.
Example:2
Find stability of the following system given by G(S) = —X____ and H(S) = 1 using
S(S+2)(S+4)
Routh-Hurwitz stability criterion.
Solution:¢® = °® — s<s+2l)<(s+4> — K -0
R(S) 1+G(SH(S) 1+— —  $346S2+8S+K

S(S+2)(S+4)
Characteristics equationis s3> +6s2+8s+K=0
And Routh’s array

53 1 8
6 K

¢ 48-K

s — 0

5" K

There are no sign changes in first column elements of this array if K <48. Therefore, the system
is always stable for 0 <K <48.

Example:3

Find stability of the following system given by B(s) = s3 + 5s2 4+ 10s + 3using Routh-
Hurwitzstability criterion.

Solution:

In this problem, given Characteristics equation isB(s) =s3 + 5s2 4+ 10s + 3 = 0,and Routh’s
array is

1110
|5 3
s194 0
ol 3

5

There are no sign changes in first column elements of this array. Therefore, the system is always
stable.
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Example:4

Find stability of the following system given by B(s) = s3 + 2s% 4+ 3s + 10using Routh-
Hurwitzstability criterion.

Solution:In this problem, given characteristics equation is B(s) =s3 + 2s2 + 3s+ 10 =0 and
Routh’s array is

sSl1 3
5|2 10
si-2 0
0|10

There are two sign changes in first column elements of this array. Therefore, the system is
unstable.

Example:5
Examine stability of the following system given by
B(s) = s° + 2s* + 4s3 + 8s2 + 3s+ 1 using Routh-Hurwitz stability criterion.
Solution:
In this problem, Routh’s array is

4 3
8 1
2

Lh

[
[}
s T =

Here, the criterion fails. To remove the above difficulty, the following two methods can be used.
Method-1

Replace 0 by g(very small number) and complete the array with e.

(ii) Examine the sign change by taking € - 0

Now, Routh’s array becomes

s 1 4 3
st 2 g 1
E £ 25 0
52 3—8¢ 1 o

E

sl25( 232 )¢
\ E
3—8e¢
E
Now putting € —» 0, Routh’s arri ~ s° 1
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5 1 4 3
s 2 g 1
5 £ 25 0
5 5—8¢ 1 0
£
al25(2=22 )¢
' £
5—8¢
£
s° 1

There are two sign changes in first column elements of this array. Therefore, the system is
unstable.

Method-2
Replace s by% . The system characteristic equation B(s) = s>+ 2s*+4s3+8s2+3s+1 =10

becomes

1., 2.4, 83
Rz

= ZT 374877 4477 4272 +1=0
Now, Routh’s array becomes

CH I 8 2
s 3 4 1
$°| 667 167 0
2325 1 0
J|-0385 0 0
g 1 0 0

There are two sign changes in first column elements of this array. Therefore, the system is
unstable.

Example:6

Examine stability of the following system given by B(s) = s + 2s* + 2s3 + 4s2 + 45+ 8
using Routh-Hurwitz stability criterion.

Solution:

In this problem, Routh’s array is

1 2 4
s*12 4 8
S0 00

Here, the criterion fails. To remove the above difficulty, the following two methods can be used.
The auxiliary equation is
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Al5)=25" +45 +8
dd(s)
1) g5t 485
as

Now, the array is rewritten as follows.

Sl 2 4

s 2 408

s 8 8 0

S22 8 o0

S-24 0

o 8

5

There are two sign changes in first column elements of this array. Therefore, the system is
unstable.

Example:7Examine stability of the following system given byB(s) = s* + 5s3 + 2s2 + 3s + 1
using Routh-Hurwitz stability criterion. Find the number of roots in the right half of the s-plane.
Solution:

In this problem, Routh’s array is

s 2 2
5 30
sl 1.4 2
1|-4.14 0
50 2

There are two sign changes in first column elements of this array. Therefore, the system is
unstable. There are two poles in the right half of the s-plane.

% Advantages of Routh-Hurwitz stability
+ Stability can be judged without solving the characteristic equation
% Less calculation time
+ The number of roots in RHP can be found in case of unstable condition
+ Range of value of K for system stability can be calculated
+ Intersection point with the jw-axis can be calculated
+ Frequency of oscillation at steady-state is calculated
% Advantages of Routh-Hurwitz stability:
+ It is valid for only real coefficient of the characteristic equation
+ Unable to give exact locations of closed-loop poles
+ Does not suggest methods for stabilizing an unstable system
+ Applicable only to the linear system

7.3 ROOT LOCUS:

Definition: The locus of all the closed-loop poles for various values of the open-loop gain K is
called root locus. The root-locus method is developed by W.R. Evans in 1954. It helps to
visualize the variouspossibilities of transient response of stable systems.

Closed-loop response functiont® =
R(S)  14+G(S)H(S)

Characteristic equation
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1+ G(s)H(s) =1+
(s)H(s) G- P

Vector from open-loop pole to the root-locus

OPEN LOOP POLE| S-pi

Kis—zNs—z).(s—z, _

p})---(s - p."i‘)

s-plane
s

T——d , ROOT LOCUS
pi /

e >
&
Vector from open-loop zero to the root-locus
AJw s-plane
B 3
A-9i
|
5‘ ROOT LOCUS
OPEN LOOP
ZERO
-
a
BEHAVIORS OF CLOSED-LOOP POLES:
Closed-loop poles negative Exponential decay Stable
and real
Closed-loop poles complex Decaying and oscillatory Stable
with negative real parts
Closed-loop poles positive and | Exponential increase Unstable
real
Closed-loop poles complex Exponential and oscillatory Unstable
with positive real parts increase

7.3 BASIS FOR CONSTRUCTION:
Construction steps:

Mark open-loop poles and zeros on the s-plane

Determine breakaway and break-in points
Draw asymptotes to the root-locus
Determine angles of departure

Determine angles of arrival

wCoNOOR~WNE

Obtain additional points and complete the root-

7.3 RULES FOR THE CONSTRUCTION OF ROOT LOCUS:
(1) The root locus is symmetrical about the real axis.

Determine the number of open-loop poles and zeros

Determine parts of the root-locus on the real axis

Determine points on the root-locus crossing imaginary axis

locus

101
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(2) The no. of branches terminating on ‘oo’ equals the no. of open-loop pole-zeroes.
(3) Each branch of the root locus originates from an open-loop pole at ‘K = 0’& terminates
At open-loop zero corresponding to ‘K = oo’.
(4) A point on the real axis lies on the locus, if the no. of open-loop poles & zeroes on the real
axis to the right of this point is odd.
(5) The root locus branches that tend to ‘oo’, do so along the straight line.

Asymptotes making angle with the real axis is given by
p_n x180"
‘L)_Z B

Where, n=1,3,5,......ccccceveninn...
P = No. of poles & Z =No. of zeroes.

(6) The asymptotes cross the real axis at a point known as Centroid. i.e.,
Y poles—Y zeroes
P—Z
(7) The break away or the break in points [Saddle points] of the root locus or determined from
the roots of the

equationdk = Q.

ds

(8) The intersection of the root locus branches with the imaginary axis can be determined by the
use of Routh-Hurwitz criteria or by putting ‘s = jw’ in the characteristic equation & equating
the real part and imaginary to zero. To solve for ‘w’ & ‘K’ i.e., the value of ‘w’ is
intersection point on the imaginary axis & ‘K’ is the value of gain at the intersection point.
(9) The angle of departure from a complex open-loop pole is

(6, givenby,ba = 180° + «GH*!

ie, o=

Starting points:
Characteristics equation of a closed-loop system
1+ Go)H(s) =1+ 2E ~ 26 7 2)-(72)
—pP)s—py)-(s—p,)

For K=0,
=)= py) S p) + K5 =5 X5 = 25). (S — 2p)
(s—p)s—py).(s—p,)
= E-—pls—p,).(s—p,)=0
Open-loop poles are also closed-loop poles for K=0. A root-locus starts from every open-loop
pole.

=0

Ending points:

Characteristics equation of a closed-loop system

1+ G HE) =1+ 26726 =2)6-5) _,
(s—p)s—p,)-(s—p,)

For K=,

1 << K(s—z)s—z,)..(5s—z2,)
(s=p)—=py)As—p,)

= (E—g)s—z)(s—z,)=0

Root-locus ends at an open-loop zero or at infinity.

7.4 ROOT LOCUS METHOD OF DESIGN (SIMPLE PROBLEM)
Problem 7.4.1:
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Draw the root-locus of the feedback system whose open-loop transfer function is given

by G(s)H(s) = —X

S(S+1)

Solution:

Step 1: Determine the number of open-loop poles and zeros
Number of open-loop poles n=2

Number of open-loop zeros m=0

Open-loop poles: s=0 and s=-1

Step 2: Mark open-loop poles and zeros on the s-plane

w
r s=(0 OPENLOOPPOLES
s=-1
5 |
" v 0
N ——
6

Fig.7.4.1 (Step-2)

Step 3: Determine parts of the root-locus on the real axis
Test points on the positive real axis

JW
vectorsfrom s=0&
-1 '/' s=-1
“ e ~- b=0
0 s 6 92 L0

l Test point

Fig.7.4.1 (Step-3)

Test points in between the open-lop poles

Jw
O2:0' . 180
VECTOR VECTOR
&1 4:0
-1 0
¢

Test poine

Fig.7.4.1 (Step-3)
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VECTORS FRoM Jw
€0 Ara -1
9‘ . 180°
'-. Oz = 18"
; M L S ——
4 &
TEST POINT

“Jw

-1
SE—— o ——

RooTr Locus ote-1

Fig.7.4.1 (Step-3)

Step 4: Determine breakaway and break-in point

Characteristic equation, K = -s(s+1) Jw

dK=_25+1=0

ds ]

breakaway point as b= - 0.5 G050 _
Gain at the breakaway point S ka;avp(;( "6

Step 5: Draw asymptotes of the root-locus

Fig.7.4.1 (Step-4)

Angle of asymptotes: §
6 -8 = 180"+ k360  180%360k ASYMPTOTE

o (n—m) 2
6 =090 k=0 i
6 =270" k=1 % i
Centroid of asymptotes r @ 6:-05
o =(Jt:ll+Jt:l3+...p,|}—[:l+:3—...:m}=II:|—1=_|:].j _ "'A&‘As )

‘ (n—m) 2

ASYMPTOTE -~

Fig.7.4.1 (Step-5)

Steps 6 & 7: Since there are no complex open-loop poles or zeros, angle of departure and arrival
need not be computed.
Step 8: Determine points on the root-locus crossing imaginary axis

1+GH =1+ =5 +5+K=0

s(s+
B(jo)=(jo) +(jo)+K = (K -0") + jo
E-o'=0= Jo=0
The root-locus does not cross the imaginary axis for any value of K>0
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ASYMETETG Liw
TEST g
PoreT oM
THE Asyme [/ h (=
reo-u_ / ’

A e
_— . - l-
el :

ad®
17 Temg

ALYAABTCE I Jw
pss ROOT LoCUs
o ny: K

Fig.7.4.1 (Step-8.1) Al4+1)

Here,

s=— — T Nt B——

|
+
o | =
|
I
el
o

e
g

Fig.7.4.1 (Step-8.2)

PROBLEM 7.4.2:
Draw the root-locus of the feedback system whose open-loop transfer function is given by
G(s)H(s) = —~—
S(S+2)(S+4)
Solution:
Step 1: Determine the number of open-loop poles and zeros
Number of open-loop poles n=3
Number of open-loop zeros m=0

Open-loop poles: s=0, s=-2 and s=-4 (i
Step 2: Mark open-loop poles and zeros on the s-plane OPENLOOP |
Pol'.[_:‘_:'
8:0,-2,-4
.X* .i 0# “’b‘

Step 3: Determine parts of the root-locus on

the real axis
Test points on the positive real axis |

Je Fig.7.4.2 (Step-2)

=0 6,0 g

-

=0
¥ >
P
- of [ o
2 ‘I‘ J\TE.ST POINT

VECTORS FROM

. OFENLOOPPAS  rig 7 4.2 (Step-3)
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Test points in between the open-lop poles

‘JCA)

5 TEST PoInT
= &2 L
P Gz =0 — o=\ . fgs *
-4 -2 W o

_—

ol

—
VECTORS
FROM OPEN
LOOP POLES

£l J.T/E.‘S’T 180" S |
30 i * 150 /8o L

e %
-4 }/ -2 5
VECTORS

FROM OPEN
LOOP POLES

Jew
& TEST 2 .
C 8s=r80 = 8, =180 = By =180

-4 -2 o
VECTORS FROM OoPEWN
LOoP POLES

Jw

ROOT LoCuS ONTHE REAL
AXIS

Fig.7.4.2 (Step-3)

Step 4: Determine breakaway and break-in point
Characteristic equation,
K = -s(s+2)(s+4)

d_= —(s+2)(s+4)—s(s+4)=0

S

Breakaway point as cb=-0.85 and —3.15

ob = -3.15 is not on the root-locus and therefore not a breakaway or break-in point

Gain at the breakaway point
K, =|—085-0||—0.855—(~2)||-0.85—(—4)|=3.079

1 6 8 K
-0.85 4378 -3.079
1 515 3622 K-3.079=0
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I e
4 a6
=085
(k:3m9)

X

Fig.7.4.2 (Step-4)
Step 5: Draw asvmptotes of the root-locus
Angle of asymptotes:
g _180°+k360 _180%360k
‘ (n—m) 3
6.=60"k=0
8. =180 k=1
8. =300 k=2
Centrond of asymptotes
_pApt p)-(mrntoz,) 0-2-4
‘ (n—m) 3
4
13854 (ic: ag) ROOT
; Locus
ASYMPTOTE % CROSSING
T J
180/ .

e - 60 _o45

%15 P-a -3 33)

<4¢) (k=3-074) O =)

~24

ASYMPTOTE

Fig.7.4.2 (Step

-2-83J (K=48) ROOT
=3J Locus

\ CROSSING

-5)

Steps 6 & 7: Since there are no complex open-loop poles or zeros, angle of departure and arrival

need not be computed

Step 8: Determine points on the root-locus crossing imaginary axis

107
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I+ GH=14— & P 462 +8:+K =0
s(s+ s+

B(jo)=(jo) +6(jo) +8jo+K =(K—60")+ j(8v—0’)=0

When imaginary-part is zero, then w = +v8

=>s= +jV8
K=6w? =48
The root-locus does not cross the imaginary axis for any value of K>48.
1 6 8 48
+2.828 -8+j16.97 48
1 6+2 828 11697 0
1 6+2 828 11697
52.828 16.97
1 6 0

Therefore, closed-loop pole on the real axis for K=48 at s =-6

Noo | Gnmeremams | K| Qosed loop poles Remarks
1 -4.309 3.07 -0.85.-0.85 Already computed
2 -4.50 5.625 -0.75%;0.829
3 -3.00 15 -0.5451.6583
4 -5.50 28 875 -0.25522776
3 -6.00 48 132 8284 Already computed
6 -6.5 73.125 025153 448

Determine the gain corresponding to s=-4.5
K=|-4.5-(-4)[-4.5-(-2)||-4.5-0= 5.625
5 +65 +85+K =0

1 6 8 K
-4.5 -6.73 -5.625
1 1.5 1.25 K-5.625=0

(s° +1.55+1.25)=0

5,,=—0.75% j0.829
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-

‘47/0-::13-:2\5:
/'25?3'4]
J o
/2-33_1(K>48)

. x-28-815
2J

025+ 2 3

-G 54165
3‘15
b - =5 EZiT 075108
/‘L k=4 ;:}o/
55 -5 - lr -3 -2
-075-jo¢

Fig.7.4.2 (Step-8)
SHORT QUESTIONS WITH ANSWER

Q1. What do you mean Root locus ?

Ans : The root locus is a graphical representation in s-domain and it is symmetrical about the
real axis. Because the open loop poles and zeros exist in the s-domain having the values either
as real or as complex conjugate pairs. In this chapter, let us discuss how to construct (draw) the
root locus.

Q2. What is Routh—Hurwitz stability criterion ?

Ans : In control system theory, the Routh—Hurwitz stability criterion is a mathematical test that
is a necessary and sufficient condition for the stability of a linear time invariant (LTI) control
system.

Q3.Wht is the need of root locus ini control system ?

Ans : In control theory and stability theory, root locus analysis is a graphical method for
examining how the roots of a system change with variation of a certain system parameter,
commonly a gain within a feedback system.

LONG QUESTIONS

Q1. Write down the rules for constructing a root locus ?

Q2. What is Routh—Hurwitz stability criterion, explain with 7th order characteristic equation?
Q3. What happens if first element or any row of Routh—Hurwitz table become zero?
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CHAPTER -8
FREQUENCY RESPONSE ANALYSIS & BODE PLOT

8.1 FREQUENCY RESPONSE:
This is defined as the steady-state response of a system due to a sinusoidal input.

X(sh » '@ - Y5}
Here,
G(s)=St)__ ()
' Ris) (s+a)ls+b)(s+c)...
= C(s)=- -?'{S]R{SII
(s+a)(s+B)(s+e). (1&2)
Let, r (t) = Asinwt , then
R{S}Zﬂ
sSHeT 3)
Using eq. (3) ineq. (2),
c(s)=—— ) [ £ }
(s+a)s+b)(s+e)..[ s +a

. 4 A4 A B, B,
=C(s)= - =y b 2
' s+a s+b s+c s+jo s—jo

In time domain, eq (5) becomes
ct)=Ae™ + de™ + 4™+ + Be ™ + B’
The term with Ai terms are decaying components. So, they tend to zero as time tends to infinity.
Then, eq. (5) becomes
C_(t)=Be ™ + B,e™

Where,
AwG —. e
) )
§—J0 5 — =J
AoG y e i
5,=220)  _L5(jo)l <t
sHJ@ |_, 27

Since, |G(jo)|=|G(-jo)| and £G(-jo)=£G(jo)=0

A

C[:!]=;_j:|{_’;{jm]|g—,f:w+?«:. +

: G{jﬁ?}| EJ:E.‘G"+»'!':|

] j¢ _ i
= c(t)= —A|G[: j@ }| g’ {%]
=J

=c(t)=4

G(jo)|sin(ot+9)

Where, B(0)= 4|6 = c(r)=B(w)sin(er +9)
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Therefore, the steady-state response of the system for a sinusoidal input of magnitude A and
frequency wis a sinusoidal output with a magnitude B(w), frequency wand phase shift ¢.
The following plots are used in frequency response.

1. Polar plot

2. Bode plot

3. Magnitude versus phase angle plot

8.1.1 RELATIONSHIP BETWEEN TIME AND FREQUENCY RESPONSE:
For a second order system:

C(s) (.-)s

R(s) s*+2los+o;

Putting s = jo

Cljo) ok
R(jo) o -0+ j2loo
C(jo) |
TS R —
0) ™[22, e[
. o, L@,

@
Let. u =—/_ then

o,
Cljo) 1
R(jo) ('l—uz‘)+_;'2-;u
Now, ' '
M(jo)=|M(jo)|M(jo)
Where,
M(jo)|= f
\/('l—uz) +(2&u)
6 =—tan" [ ot I'
)
Now,
M=
20\1-¢7

@, = a:r_,\,\fl—.lg'l
PM=-180"+¢@

Where, @ =tan"

J 47 +1-272
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8.2 METHODES OF FREQUENCY RESPONSE:
There are three types of methods in frequency response.They are
1. Bode Plot
2. Polar Plot
3. Nyquist Plot
These methods are used in frequency domain to find out the stability of the system.
Definition of frequency domain specifications:
The frequency domain refers to the analysis of mathematical functions or signals with respect
to frequency, rather than time.

iy e

(i) Resonant peakMr: Maximum value of M (jw)when wis varied from 0 to co(Minimum to

Maximum as response peak ()).

Where O = 6O =M(s) R(s G(s) C(s)
’ R(S)  1+G(S)H(S)
M(w) = —GGw) "

1+G(jw)H(w)

(i) Response frequency (wr): The frequency at which the peak resonance (M) is attained is

known as response frequency.

(iii) Cut-off frequency(w ): The frequency at which M (jw)has a value 1. It is the frequency
¢ VZ

at which the magnitude is 3dB below its zero frequency value.
(iv) Band-width (wy): It is the range of frequencies in which the magnitude of a closed-loop

system is Ltimes ofMr.
V2

(v) Phase cross-over frequency: The frequency at which phase plot crosses -1800.

(vi) Gain margin (GM): It is the increase in open-loop gain in dB required to drive the
closed-loop system to the verge of instability.

(vii) Gain cross-over frequency: The frequency at which gain or magnitude plot crosses 0dB

line.

(viii) Phase margin (PM): It is the increase in open-loop phase shift in degree required to
drive the closed-loop system to the verge of instability.

8.3 POLAR PLOTS& STEPS FOR POLAR PLOTS:
8.3.1 Polar Plots:

+ It is a graphical method of determining stability of feedback control systems by using the
polar plot of their open-loop transfer functions.
+* It is a sinusoidal transfer function G(jw) is a plot of the magnitude of G(jw) versus the

phase angle of G(jw) on polar plot coordinates as ‘w’ is varied from zero to infinity.
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+* Therefore the locus of vectors |G(jw)|2G(jw) as w is varied from zero to infinity.
8.3.2 Steps for polar plot:
Step 1: Determine the transfer function G(s) of the system
Step 2: Put s = jw in the transfer function to obtain G(jw)
Step 3: At w = oo calculate |G(jw)]. by lin})IG(jw)l and lim |G(jw)].

w— w—0
Step 4: Calculate the phase angle of G(jw) at w =0 and w = oo by lirr(l) £G(jw) andlimOAG(ju))
w— w—

Step 5: Rationalize the function G(jw) and separate the real and imaginary parts.

Step 6: Equate the imaginary part Im|G(jw)| to zero and determine the frequencies at which plots
intersects the imaginary axis and calculate the value of G(jw) at the point of intersection

by substituting the determined value of frequency in the rationalized expression of G(jw).

Step 7: Equate the real part Re|G(jw)| to zero and determine the frequencies at which plots
intersects the imaginary axis and calculate the value of G(jw) at the point of intersection

by substituting the determined value of frequency in the rationalized expression of G(jw).

Step 8: Sketch the polar plot with the help of above information.

Example 8.3.1:
Draw a polar plot of the open-loop transfer function for
K
G(s)H(s) =
SHH() s(s+1)
Frequency response G(jo)H(jo)=——
Jjo(jo+1)
Magnitude |G(jo)H (0)|= K
o1+ o?
Angle ZG(jo)H(jo)=— % —tan"' @

270° < ZG(jo)H (jo) <180°
Magnitude and phase of the open-loop frequency transfer function

No. Freque.ucy. Magnitude Phase,

rad/s degrees
1 0 o 270
2 0.2 4.9029 259
3 0.4 2.3212 248
4 0.8 0.9761 231
5 1 0.7071 225
6 4 0.0606 194
7 10 0.01 186
8 50 0.0004 151
9 100 0.0001 151
10 200 =0 =180

Polar plot of the transfer function _ X and K=1

SGS+D)
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180

270

Fig. 8.3.1
Example 8.3.2:
Draw a polar plot of the open-loop transfer function for K=1, 10, 25, 55
——Fk——
S(S+2)(S+4)
Solution:
Frequency response

1 i - K @000
G (] (D) H (J w) jo(jw+2)(jw+4)

Magnitude
K
G(jo)H(jo)| = = =
| | oo + 4o +16
Angle
T o o

ZG(jo)H(jo)=-———tan™ ——tan™ —

(o) H(je) . an . an P

The lies in 11 and_III quaarants as
90" < LG(je)H(jw) < 270°
Magnitude and phase of the open-loop frequency transfer function (K=1)

No. | Frequency, | Magnitude | Phase,
rad/s degrees

1 0.1 1.2481 266

2 02 0.6211 261

4 04 0.3049 233

5 0.8 0.1423 237

6 1 0.1085 229

7 4 0.0099 162

8 10 0.0009 123

9 30 0 97

Polar plot of the transfer function GH = K for K=1, 10, 25, 55
S(S+2)(S+4)
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Fig. 8.3.2
Example 8.3.3:
Draw a polar plot of the open-loop transfer function G(s)H(s) = - K
S2(S+1)
Solution:
Frequency response
G(jo)H(jo)=

(o) Ga+D)
Magnitude

GUH (o) ==

(-J'vm] +1
Angle

ZG(Ja)H (jo) = -180° —tan~' @
The lies in 11 quadrant only as
90° < LG(jo)H(jo) < 180°
Magnitude and phase of the open-loop frequency transfer function (K=1)

No Freque.nc‘_r, Magnitude Phase,

rad/s degrees
1 0.4 5.803 158
2 0.5 3.5777 153
4 0.8 1.2201 141
5 1 0.7071 135
6 2 0.1118 117
7 3 0.0351 108
8 4 0.0152 104
9 3 0.0078 101
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Polar plot of the transfer function X
S2(S+1)

L EoT p T p—

270

Fig. 8.3.3
OR
POLAR PLOT
1. TYPE 'ZERO' SYSTEM
K
GB) = A+ ST (1+573)
Step1: Put S = jo
o) = 3 joT,) (1+ joTy)

—tan™ 0T, -tan™ 0T,
1+(0T,)? J1+(0T,)?
Step 2 : Taking the limit for the magnitude of G(jw).
Lim|G(jo)| = Lim a =K
- 840 ;]H(w’l',)z ]u(wr,)*
K

Lim G( ) - Lim =
.-o-l le @ =) w- h_‘.(wr‘)? h‘_(w-rz)z 0

Step 3 : Taking the limit for the phase angle of G(j)
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116




Control Systems & Component

The frequency at which plot intersects the imaginary axis is 71=
For positive values of frequencies the polar plot intersects the imaginary axis at @ = <o

[TH-2]

T,

W= T and @woe
Value of G(jo) when
1
W=
Ji:Tz
1
KF—(TI'FT:)
W =01 s 1;1‘2 2, 1 _r202
14— 4+ =T, TT'T T:
+7'17'2 e +7'1"'2 l+7'1 e
KT‘+T T,"‘Tz
o ;;T,Tz i .-\;TlTI __,K,fT,Tz
/ T - M+ T T hAh

LT
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2. TYPE 'ONE' SYSTEM

K
Gls) = SA+3T,) (1+573)
Step 1: Put $ = jo
: K
G®) = Jo(1+ joT, )1 + (joTy)
K
i) = ~90°—tan~! @T; —tan~’ o
o0» o1+ (07, J1+(0hy)? < ! :
Step 2 : Taking the limit for the magnitude of G{je)

le lG( fO)» Limt K = oo
=9 m:;l +(oT,)? ,]1 + (@T?)
Lim |G( jo)| = Lim =

=0
o-se (031 +(wh)? 71+(wT,)’

Step 3 : Taking the limit for the phase angle of G(jw)
O*Oé_ﬂ 'o-.oo A-”"m—lm?l —tan” 073 = - 90°
Lr'm

Lim  G(je " -90°-tan”! ©T; -tan™" @7, = -270°
Step 4 : Separating the real and imaginary parts

: K
Glje) = T+ jaT,) (1 + joTy)

-oK(T, +T;) ” J(Ko™)T; - K) A
"0+ (T + T+’ Ty) @+o(l+T +07 %) =~
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Equate the imaginary part equal to zero
KQzT'B - K
w+ my(T" +Ty + sz,’Tz’) .«
1 1

“" TR T e
1
mmmaewmtdmmmmmum-.wwnm
112
G(jw) at this point.

Put 0-71711.— in equation (A) -
Step 5: Equate the real part to zero
- wK(T} +T3)
0+ (7 + T’ +@’I )

=0

oo W = e
For positive values of frequencies the
polar plot intersects the imaginary axis at

K
S +ST,X1 +5T3)

Mo Gls)=

G(jw) =0 £ -270°

Polar plot is shown in Fig.

From the polar plot it is clear that in type
one system the jo term in denominator
contributes ~ 90° to the total phase angle. At
® = 0, the magnitude is infinity and phase
angle -90°. At @ = e, the magnitude becomes
zero and curve converges to origin. At low
frequency, the polar plot is asymptotic to a
line parallel to negative imaginary axis.

3. TYPE 'TWO' SYSTEM

0 > Re

K
Ges) = 35(l+3T,)

Puts = jo
K K
Gjw) = = ~180°~tan °
) (jo)* (1+ joTy) - e? ;iu(or,)’ < S B

: K
G = Lty =
.!..t_n IG(IQ)| .-:"0..@: l'*(”‘rl)z
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Lim [G(jo)f = 2 — 2Jl+(‘"r =0

-1
E?’o 4-180°—tan (0T| --130’

‘Hrn G(jw) - Lim L_]w"..um"m’rl = - 270°

L R ]

~00°A 1,
S
..;L_://\ s
L > Kl

8.4 BODE PLOT& STEPS FOR BODE PLOT:
8.4.1 Bode Plot:
It consist of ¥ -0
0] The plot of the logarithm of the magnitude in dB of a sinusoidal transfer
function vs frequency in logarithmic scale.
(i) The plot of phase angle vs frequency in logarithmic scale.
8.4.2 Steps for Bode Plot:
Step 1: To identify the corner frequency
Step 2: Draw the asymptotic magnitude plot. The slope will change at each corner frequency
by +20db/dec. for zero and -20db/dec. for pole. For complex conjugate pole and
zero the slope will change by + 0db/decade.
Step 3: (a) For type 0 system draw a line upto 1% (lowest) corner frequency having 0 dbdec.
slope.
(b) For type 1 system draw a line having slope -20db/dec.uptow = K. Mark 1% (lowest)
corner frequency.

(c) For type 2 system draw the line having slope -40db/dec.uptow = v/Kandso on.
Mark 1% corner frequency.
Step 4: Draw a line upto 2" corner frequency by adding the slope of next pole or zero to the
previous slope and so on.
Step 5: Calculate phase angle for different values of w from the equation and join all points.
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8.4.3 Magnitude plot and phase plot on a semi-log paper:
Magnitude plot on a semi-log paper

40 T T T T T T

Magnitude, dB
o

-40 A 0 6 A 1 I T T
10 107 10"
Frequency, rad/s

M = 20log|G(jw)H(jw)|dB
Phase plot on a semi-log paper
360

350 -
300 -
250 -

200
180

Phase,degrees

100

idil : e il | i PR S |
10° 10" 10°
Frequency, rad/s

121
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Magnitude versus phase Bode plot Nichols plot:

20

10

Magnitude, dB

180

(o] 50

L L i I
100 150 200 250 300 350
Phase, degrees

Basic frequency response factors:

No | Laplace term Frequency response Type of factor

1 K K Constant

2 s Jjo Derivative factor

3 1/s 1/ jm Integral factor

4 Ts+1 I+ jot) First order denmvative factor

5 1/(ts+1) 11+ jot) First order integral factor

6 s+ 2cw ns+ (ofl (:}_,-;' —@ + j2 g, Second order derivative factor

1 1

7 < = S Ea— Second order integral factor

57+ 20,5+ oy @, — & + jloe, o

Derivative factor: magnitude:

M= 3010g|jm| =20loge dB

£j@m= 90°
AM =20loge, —20logm, = EOIGgEdE.-"decade
@

AM =201logl10 =20 dB/decade
AM =20log 2 = 6 dB/octave

Magnitude variation of a derivative factor for various multiples of the initial frequency:

€y
— 1 2 3 4 5 6 7 8 9 10

9
AM dB 0 1 10 12 14 16 17 18 19 20
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40

Derivative factor

20 - : i -

10 - £ =

Magnitude

10 kL 20 dB/decade

" iSdB/octave
20 i S S, 4 i H i 5 e 40

10 10° 10’ 10°
Frequency, rad/s

Derivative Factor: (phase)

o T T T T ]

300 i i

250

N
o
(=]
T
|

Angle, degrees

=
a
o
T
|

100 |- y i i b

50

Frequency, rad/s

Derivative factor

Frequency. rad/'s
0.1 1 10 | 30 100
Magmitude, dB -20 0 20 | 30 40
Phase. degrees a0 a0 90 20 a0

Integral factor: magnitude
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20

M =20log

[TH-2]

Jja

=—20loge dB

Liw= 270"

AM =-20loge, +20logm, = —El)logﬂ dB/decade
@,

AM =-201log10=-20dB/decade
AM =20log 2 = —6 dB/octave

Magnitude
>

-20

-40
10

R -6 dB/octave

10

0

T

-20 dB/decade

10'

Frequency, rad/s

10°

Table: Magnitude variation of an integral factor for various multiples of the initial frequency

@,

“

1

2 3

4 5 = 7 a8

9 10

AM , dB

0

-6

-10

-12

-14

-16

=17

-18

-19

=20

Integral factor: phase:

350

300 -

250

N

[=]

o
T

Angle, degrees
@

o

T

100 -

50 -

10°

Frequency, rad/s

10°
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Table: Bode magnitude and phase of an integral factor

Frequency, rad/s

0.1 |1 10 | 20 (100

Magmtude. dB | 20 (O -20 | -26 | -40

Phase, degrees | 270 | 270 | 270 | 270 | 270

Problem 8.4.1:
Draw the Bode magnitude and phase plot of the following open-loop transfer function and
determine gain margin, phase margin and absolute stability?
G(s)H(s) =
S(S+1)
Solution:
Applying S = jw
Gw)H(w) = —L—

jo(jo+1)
The above frequency response function has two factors: (1) Integral factor and (2) First order

integral factor with a corner frequency of 1 rad/s

Bode magnitude of the transfer function:

Frequency. radians/s
0.01 0.1 1 10 100
1 40 20 0 -20 -40
20log—dB
J
0 0 -3 -20 -40
201log dB
Jeor+1
Magnitude, dB 40 20 -3 -40 -30

wp= 100 rad/s

Frequency. rad/s
0.01 0.1 1 10 100
21
£— degrees 270 270 270 270 270
jo
L1
L degrees 360 360 315 270 270
Jjo+1
Bode phase, degrees 270 270 225 180 180
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Magnitude, dB

Magnitude, dB

-100
180

40

[TH-2]

-100

G‘éin erSé
: frequency
- 08 rad;/s

T T O ) L T 2SN A

\pproximate

act  GEWHW=1/5(s+1)

10

40

20

10" 10° 10' 10°
Frequency, rad/s
T | T | T T T T
............................................. il ol
| EEpEEEL . | SRR,

R
<
I

-408"

Phase ;nargin 520

g

|

i i
190 200

Gain

210

220

230 240 250

Phase, degrees

260 270
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Problem 8.4.2:
Draw the Bode magnitude and phase plot of the following open-loop transfer function and
determine gain margin, phase margin and absolute stability?

H(s) = — 1
GEHE) S(S+2)(S+4)
Solution:
G(jw)H(jw) = —1

gjo(5+1)(%+1)
The corner frequencies corresponding to first order integral factors are 2 rad/s and 4 rad/s.
Minimum frequency is chosen as 0.01 rad/s and maximum frequency 100 rad/s.
Table: Computation of Bode magnitude using asymptotic properties of the integral first-order

1
termt = >

x1 x2 x1 %10 X2 x1 x1 X2 x1 %10
Frequency, rad/s 2 4 2 20 20 10 20 40 10 100
Magnitude, dB 0 -6 0 -20 -20 -14 -20 -26 -14 -34

Table: Computation of Bode magnitude using asymptotic properties of the integral first-order
Termt = 11

x1 | x10 %2 x1 x2 x1 xl x10
Frequency, rad/s 4 40 40 20 20 10 10 100
Magnitude, dB 0 -20 -20 -14 -14 -8 -8 -28

Table: Bode magnitude

Frequency, rad/s
Factor 0.01 0.1 02 |04 |1 2 4 10 20 40 100
1 -18 -18 -18 | -18 | -1&8 | -18 | -18 [ -18 | -18 | -18 -18
20log—
8
40 20 14 8 0 -6 -12 | 20 | 26 | -32 -40
20log—
Jo
0 0 0 0 -1 -3 -6 -14 | 20 | -26 -34
20log =
B
0 0 0 0 0 -1 -3 -8 -14 | -20 -28
20log—
EAs |
4
Bode 22 2 -4 -10 | -18 | -28 | -39 [-60 |-78 | -96 -120
magmitude, dB

Prepared By: Er. Prakash Chandra Das
127




Control Systems & Component [TH-2]
Bode magnitude:

30

GisIH(s)=1/5{s+ 2)(5¢ 4)

Gain crossover
frequency=0 125 rad/s

0 - L TN TC"T"”""™~

il .
p Approvimate Gain
Eu ! margin
2 32 dB
=.30¢
Exact
40+
S0 *
=601
0 ) 4 - - 4 il i A .
10° 10 10 10
Frequency. rad’s
Bode phase:
Frequency, rad/'s
Factor 001 [01 |02 |04 |1 2 4 10 20 |40 | 100
0 0 0 0 0 0 0 0 0 0 0
ps
1 270 | 270 | 270 | 270 [270 | 270 | 270 270 | 270 | 270 | 270
Ja
L1 360 | 360 | 360 | 346 | 328 | 315 | 301 284 | 270 | 270 | 270
42 4
2
1 360 | 360 | 360 | 360 | 342 | 326 | 315 297 | 285 | 270 | 270
B
4
Phase 270 | 270 | 270 | 256 | 220 | 191 | 166 131 | 105 |90 |90
degrees
Phase plot:
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280 7 T H ! S o 4 BT

260 - : Sesnd ;.-G(S)H(S)=;1/S(Sf2)(5.+»4) _

- 'vaaict

margin 85 > NG
L pig Apvroxi:mate: :

N

N

Q
T

Phase, degrees
N
Q
Q
T
|

-
o]
Q
T
1
1
1
1
i
1
1
]
1
]
I
1
] _
1 .
1
i
1
1
1
i
i
]
i
1
i
!
i
!
1
!

Phage crosagver :
. R : i i B frequency: o P

1401 M e s NS

120 H i 8B i ; A i i P saEs
10

Frequency, rad/s

Bode plot

30 T T T T T T
20 .
10+ .
Olmmm———— o o e
bl Margin
o Exact
% 00 s S el |
B 34 dB
= ; :
30| = A e N ”
s | | 82
: |
Ly - -
S0 ' Phase Margin (Approximate) o 7
; : - 85
60 ]

Foe ) P S ———

i | i I
0 200 220 240 260 280
Phase, degrees

0 1 1
120 140 160 1
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OR
BODE PLOT

The main advantage of using Bode plot is that multiplication of magnitudes can be converted
o addition.
Consider open loop transfer function of a closed loop control system

K(1+sT,)(1+5T,)....
CE) HB) = R oeT,) (14 573)..00
Put S =jo

. . K(1+joT,)(1+ joT,).......
GGoo) H () = TR (1 4 JooTy) (1+ jooT3) o

20 log,, 1G(jm) H(je)! -(20|ogx+2ologJ1+m=r’. +2mogJ1+m’T=.]....)
-(zomogm»zoxog,fum’r,’ +20log J1+0T3 )....)

Hence, in order to get 1G(jw) H (jw)! we will have to obtain the individual plots and adding
individual components, the resultant can be obtained. Suppose, H(s) = 1.
Case 1. The Gain K
Gls) =K
Put s = jo
G(jw) =K
20log,, | Gjew) | = 20log, K ..(4.1)
Phase angle ¢ = ,G(jo) = 0° ~(4.2)
From equations (4.1) and (4.2) itis clear that the magnitude T
is independent of log, s and phase angle always zero. The plots M r
are shown in Fig.

Case2: G(s)=§};r

Put s = (joy¥ (8)

1
G(jw) = W

;
; 1
20 logy, 1 G(jw) =?D'08wW é
= 20 log,q (o)™ Jogum =
= =20 N log;, (®) ®)
G(I”)N = - 90 N°
where B Vo 2 —

The plot M Vs log,, @is a straight line. For N = 1 the line has a slope of 20 db/decade and angle
- 90°. For N = 2, the slope of the line will be 40 db/decade and angle will be ~ 180° and so on.
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[TH-2]

-60 db/decade
=40 db/decade

=20 db/decade
log,g—

CE

Case 3:
Ful

Cased:
Put

20 logyy |Gljw)| = 2010810[

Put the different values of m, we will get | G(jw) | consider following two cases.

N=1

Gls) =S

S =j®
Gljw) = jo
M =20 log,, |1 Gjw) | =
AG(j0) =+ %0°
The plot M V, log,, ® is a straight line having a slope of

+ 20 db/dec. and angular phase shift of + 90°.

1
G = 135T

s = (jw)

¢ 1
C(]u)) = W
1

IG(jw)| = il

1+ 0°T? ]

N=1

N=2

Phase shift —

N=3

388,

20 log,, ®

+20db; dec.

(=)

“ 20|ogm 1~ 20108,0 J l+(|)27'2

= —20log;p V1+0*T?

(@) For®T <<1 (very low frequencies)
~201ogy V1+@?T? = ~20log,, V1 =0

. M=Oform’1‘<<loro.)s%
(b) ForoT >>1 (very high frequencies)

—20l0go V1+ @ T? = —20logy Yo'T?

=-20log, 0T for® >>1/T

(&)

& Tog

v logg 1

131
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Hence, M Vs log,, @ has two parts
() One part having M =0 forw << 1/T

(i) In other part M varies as a straight line with slope of - 20 db/decade for » >{} 71-
W = % is called break frequency or comer frequency
M =-20log,o 0T =20 (log,, ® + logy,T)
M = =20log;q ®~20log,, T
==20logy, @ + 20 log,, 1/T
The above two parts of the graph intersect 0 db axis is determined by equating||the ¢
o zero
0 = ~20log,, @+ 20 log,, 1/T
® =1/T is called break frequency.
+20:
T
Mo
(db)
-204
Case 5: G(s) = (1+sT)
Put s = jo

G(jw) = (1+ jwT)
1GGo)! = J1+w?T?
20 log,, 1G(j®)! = 201og,o V1+0*T?
() WhenaT <<1
M = 20log,o V1 = 0db

(i) When ol >> 1
M =20 log,, oT

©
M =20 logyy ®T = 20log,, T

1
Equate the above equation to zero

l.

wﬁ

1 "
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Thus, the two parts of the graph intersects the ‘0’ db
axis at © = . The second partis a straight line having the 20 '”“’/H';j
slope of + 20 db/decade. t .~
Phase Angle Plot (:;l’)o on1/T|| to
o= ,G(j©) = tan”! T
(i) At very low frequencies @T is very very small -20 (@
¢ =tan™1 (0) = 0°
(i) AteT=1 = |
¢ = tan"'l = 45°
(it)) Atvery high frequencies p & Ly
¢ = tan! (=) = 90° é / .
Thus, the value of ¢ gradually changes from 0° to 90° 0 dﬂk
as o increases from 0 to very high values. 3
Case 6 : General second order system -45° 1
mzn 90° |
) s 428w, s+ 0%, ®)
Put s = jo
. 1y ®2
) (jw)? + 28w, (joo) + s " 0?4 j2lo 0o,
2
w, 1
C(S) il m.Z _02_._,-2;0)'0 = -9- 2+ .2C-9-
o) "%,
1 | o V1 [ .0
1-(a) +iar
Suppose ':;nzu
20 10gyy 1Gje)| = M =~ 20log,q J(1-4*)? + 4%
Consider the two cases

icl
1. u<<l € o, <<1

M = -20logy, 1 =0db

, ®
2. u>>ll-tj€ >>1

i 10 -ty 10 - 10
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So, it is a straight line having slope of ~ 40 db/dec. and passing through the point u.

Therefore, the asymptotic plot consists of
(HM=0 n<<al
(i) M =-40logu u>>1
'hase Angle Plot

. -d 25u
¢ = ,Gljw) = ~tan™ =5

(f) For small value of u, 1% is small

o = - tan™ 2&u
(i7) For large value of 4, #* >> 1
¢ = +t£m'1 %
(i) Whenu =1
o = tan™! co = -90°
Initial Slope of Bode Plot
K
Let G(s) H(s) = v
Put § = }(l)
K

Gljeo) Hjo) = (7o)

20 logy, | Gije) H(jw)| = 20logy

K
(ju)™
1. For N=0 (Type zero system)

20 log, | G(jeo) H (jw) | = 20 log,, K.

This is a straight line. The graph is shown in Fig,

2. For N =1 (type one system)
Put N =1 in equation

20logy, | Glje) H (j) | = 20 log,p K —20 log,®

Intersection with 0 db axis

K=o

locate i = K on 0 db axis and at this point draw a line
of — 20 db/decade produce it till it intersect the y-axis

that will be the starting point on Bode plot.
3. For N =2 (type two system)
Put N = 2 in equation (44)

20 logy, | Glje) H(jw)| = 20log,q K - 20. 2log,, @
=20 log,o K- 40 log,®

Intersection with 0 db axis

0 = 20 log,y K — 40 log ©

+m4
X
é ¢ logypw —+
: -40 db/ dec.
= 5 /
(a)
ar i
45° 4
1 - log,, 0 —
- d
—45° 4
ek (8
40
' 1
M(db) 20 : 20log,n K
; |
logy @ —

134
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20 logyy K = 40 log,, ®
20logyo K = 20 log,, &?
w? =K

o= JK
Hence, graph intersect the 0 db axis at w= JK . Locate 0= JK on 0 db axisand draw a |
db/dec. and produce it to the y-axis. Graph having the slope of - 40 db/decade is showh in Fi

" 20 db/dec. n 40 db/dec.
= =
l e N
bs)o“ -» o=K w =JE Iosioﬂ “»
| Table
Type of the . Initial Slope " Intesection with
System N - 0db Axis 2
0 0 db/decade Parallel to 0 axis
1 -20 db/dex. =K
2 - 40 db/dec. = JK
3 60 db/dec. =K/
N -20N db/dec. KI/N
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Negative gain

="
o

/
»
7
:

- o o -

T 12 crossover 1‘
sz s frequency G
i Positive 7 5% - f N
g ega

(a) Stable system (b) Unstable system

ve
frequency &ﬁl

Positive gain margin means the system is stable and negative gain margin means the sys

unstable. For minimum phase system both phase margin and gain margin must be pos
system to be stable.

The point at which the magnitude curve crosses the 0 db line is the gain crossover
The phase crossover frequency is the point where the phase curve crosses the 180° line,

Gain Margin : Gain margin is defined as the margin in gain allowable by which
increased till system reaches on the verge of instability. Mathematically gain margin
as the reciprocal of the magnitude of the G(jm) H(j®) at phase cross over frequency.

1
O = TE(w) H(0l -,

where ©_, = phase crossover frequency.
Generally, G.M. is expressed in decibels

itive f
frequ

gain ¢
1 is de
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8.6 NYQUIST PLOTS NYQUISTABILITY CRITERION:

8.6.1 Definition Nyquist Criterion:

Nyquist criterion is a graphical method of determining stability of feedback control systems

by using the Nyquist plot of their open-loop transfer functions.

Feedback transfer function:

S G(S)

R(S) 1+ G(S)H(S)

Poles and zeros of theopen-loop transfer function

Kis—z)ls—z)..(5—z,)

-pNs—p,)(s-p,)

1+G(5)H(5}= {‘5_pl}(‘s_p]j---{s_p_-r:]+K(5_:1>{5_:2}“'(‘5‘_:m)

(s=p)s—py)(s—p,)

Number of closed-loop poles - Number of zeros of 1+GH = N umber of open-loop poles

(s—z Ms—z, Ns—z,

(s—p)s—p,y)-(s—p,)

These are also poles of the close-loop transfer function

G{s)H(s)=

1+ G(s)H(s) =

Magnitude
1+ G()H ()] = S e
s = p)||s—p)|-|s—p,)|
Angle 1+ G(s)H(s) = LS—I LS—ZI L5—Z,

Z(s-p)LG-pl)i(s—p,)

The s-plane to 1+GH plane mappingphase angle of the 1+G(s)H(s) vector, corresponding to a
point onthe s-plane is the difference between the sum of the phase of all vectors drawn from
zeros of 1+GH(close loop poles) and open loops on the s plane.

If this point s is moved along a closed contour enclosing any or all of theabove zeros and poles,
only the phase of the vector of each of the enclosed zeros or open-loop poles will change by
360°. The directionwill be in the same sense of the contour enclosing zeros and in the opposite
sense for the contour enclosing open-loop poles.

ll’m

1+6H plare

-
| - r} )
Wy Re
z 2 ‘\

©2
B {+GH vector

k. b, poles of
{+GH

;JJ 5, Heroes Of
I+ GH

A-plane

Prepared By: Er. Prakash Chandra Das
137




Control Systems & Component [TH-2]

8.6.2 Principle of argument:

Im
‘P 1+ H pianeg Tm
? GH Plare
0 1 Re
—i B
1+GH i +GH © Re
GH

When a closed contour in the s-plane encloses a certain number of poles and zeros of 1+G(s)H(s)
inthe clockwise direction, the number of encirclements of the origin by the corresponding
contour in the G(s)H(s)plane will encircle the point (-1,0) a number of times given by the
difference between the number of its zeros and poles of 1+G(s)H(s) it enclosed on the s-plane.

Jw
joo
GH from the polar plot
4
0 - Magnitude zero since n >m
o
o
A
GH from the mirror image of the
joo polar plot

Modified contour on the s-plane for checking the existence of closed-loop poles s =cel’f

) A- plai
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Magnitude of GH remains the same along the contour Phase of Bchanges from 270 to 90

degrees.
Gain Margin and Phase Margin:
Phase crossover frequency wp is the frequency at which the open-loop transfer function has a
phase of 180°. The gain crossover frequency wg is the frequency at which the open-loop transfer
function has aunit gain.
Gain margin
M =-20log|G(jo,)H(je,)|
Phase margin
y = £G(jo,)H(jo,)-180°

Im (b)
* GH PLANE A Im GH PLANE

UNIT
CIRCLE UNIT CIRCLE

- Wy

.
~ |GCiwy) eiongy
w0 | Glow) H{jw) GJ=0 G Hiw)
STABLE UNSTARBLE

Procedure:

+ Locate open-loop poles on the s-plane

+ Draw the closed contour and avoid open-loop poles on the imaginary axis

+ Count the number of open-loop poles enclosed in the above contour of step 2, say P

+ Plot G(jw)H(jw) and its reflection on the GH plane and map part of the small semi-circle
detour on the s-plane around poles (if any) on the imaginary axis.

+ Once the entire s-plane contour is mapped on to the GH plane, count the number of
encirclements of the point (-1,0) and its direction. Clockwise encirclement is considered
positive, say N.

+ The number of closed-loop poles in the right-half s-plane is given by Z=N+P. if Z >0, the
system is unstable.

+ Determine gain margin, phase margin, and critical value of open-loop gain.

Problem 8.6.1:
Using Nyquist criterion, determine the stability of a feedback system whose open-loop transfer

function is given by G(s)H(s) = S(SK D
+

Solution:
Step 1Locate open-loop poles on the s-plane. Open-loop poles are at s=0 and —1. Let K=1
Step 2 Draw the closed contour on the s-plane to check the existence of closed-loop poles in the

righthalf s-plane.
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Open-loop poles and s-plane contour

£-pblane

J200[2

-~J200
F

_ 1
G(je)H ()| =
AL l (-.Qlow:
1

——tan™ @

'-G(]('))H('](*)) - —

(8%
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No. | Freguency, Magnitude Phase, p. GH plane.
rad/s degrees p. s-plane. deg|deg
1 0.2 Positive 4.9029 259 270 101
frequencies
2 0.4 23212 248 280 91
3 08 0.9761 231 290 80
4 1 0.7071 225 300 69
5 4 0.0606 194 310 58
6 10 0.01 186 320 46
7 50 0.0004 181 330 35
8 100 0.0001 181 340 23
9 200 0 180 350 12
10 -200 Negatrve 0 180 0 0
frequencies
11 -100 0.0001 179 10 348
12 -50 0.0004 179 20 337
13 -10 0.01 174 30 325
14 4 0.0606 166 40 314
15 -1 0.7071 135 50 302
16 0.8 0.9761 129 60 291
17 -0.4 23212 112 70 280
18 0.2 4.9029 101 80 269
GH

Plane

'Tfa'ﬁsfer R
function. -

270
The above system is stable. Here, phase crossover frequency is very large (infinity) and gain
crossover frequency 0.786 rad/s. Phase angle corresponding to gain crossover frequency = 2320
and Phase margin is 520,
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Problem 8.6.2:
Using Nyquist criterion, determine the stability of a feedback system whose open-loop transfer

function is given byG(s)H(s) —=5
S(S+2)(S+4)

Solution:

Step 1Locate open-loop poles on the s-plane. Open-loop poles are at s=0, -2 and —4. Let K=1
Step 2 Draw the closed contour on the s-plane to check the existence of closed-loop poles in the
right half s-plane.

Open-loop poles and s-plane contour

4S-plane

Ja

i

weslE

-4 -2 -JI-5

—i9

F'
The number of open-loop pole enclosed, P is zero

|G H(je)| =

K
(-J\I"(-J: + 4af'm: +16

LG(jo)H (jo) = _%_mﬂ_; %_mﬂ_: %
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MNo. Phase. B. s-plane.
Frequency Magmtude degrees |deg
1 1.5 | Positive 3.4332 213 270
frequencies

2 > 2.1741 198 280
3 2.5 1.4568 187 200
4 283 1.1446 180 300
5 3 1.017 177 310
6 3.5 0.7334 169 320
7 4.5 0.4122 156 330
g 5 0.319 150 340
9 5.5 2513 146 350
10 6 0.201 142 0

11 7 0.1339 136 10

12 8 0.0932 131 20

13 9 0.0673 126 30

14 9 Negative 0.0673 234 40

frequencies

15 8 0.0932 229 50

16 7 0.1339 224 60

17 6 0.201 218 70

18 5.5 2513 214 80

19 5 0.319 210 90

20 _

45 0.4122 204 0

21 35 0.7334 191 343

22 3 1.017 183 326

23 2.83 1.1446 180 309

24 2.5 1.4568 173 292

25 2 21741 162 276

26 _ _

1.5 3.4332 147 259
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GH

Plane
GH=55/s(s+2)(s+4)

180

270

Here, Z=N+P=2.
Hence, the above system is unstable.
Again,

Phase crossover frequency 2.83 rad/s

The gain at which the system becomes marginally stable, K*= 55 /1.1446 = 48
Gain margin

M =-20 10g|G|:ij]H(jr-:r?}

=—20log|1.1446|=-1.17dB

Gain crossover frequency =3 rad/s and the corresponding angle of GH=1779°
Phase margin=177-180=-30°
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OR_NYQUIST PLOTS NYQUISTABILITY CRITERION

NYQUIST CRITERION

The characteristic equation is given by
D(s) =1+ G(s) H(s)

The zeros of DXs) are the roots of the characteristic equation. For a feedback system the necessary
and sufficient condition is that all zeros of 1 + G(s) H(s) that is the roots of the characteristic equation
must have negative real part i.e., they must lie in the left half of s-plane. In order to determine the
presence of zeros in right half of s-plane we choose a contour as shown in Fig. called Nyquist
contour. Let there are Z’ zeros and ‘P’ poles in the right half of s-plane . If this contour is mapped in
D(s) plane as T, then I, enclosesthe origin N times (where N = Z-P) in clockwise. Hence the system
is unstable because the clockwise encirclement is possible only when there are zeros of D(s) in right
half of s-plane.

A feedback system (close loop system) is stable if and only if there is no zeros of D(s) in the right
half of s-plane. ie. Z=0

& N=-pP

Therefore, for a closed loop system to be stable, the number of counter clockwise encirclement
of the origin of D(s) plane by I}, should equal the number
of right half s-plane poles of D(s) which are the poles of

open loop transfer function G(s) H(s).
Since D(s) =1 + G(s) H(s)
or G(s) H(s) = D(s) -1

The contour I, in D(s) plane can be mapped in G(s)
H(s) plane. Iz, by shifting horizontally to the left by one  I'gy~contour
unit. Thus the encirclement of the origin by the contour I,

is equivalent to the encirclement of the point (~1+)0) by the contour I.,,as shown in Fig.

In most single loop feedback system G(s) H(s) has no poles in the right half plane i, P = 0 then
closed loop system is stable if N= P = 0.

So, we can say that A closed loop system with P =0 is stable if the net encirclement of the origin
of D(s) plane by Ij, contour is zero,

Now, we can state the Nyquist stability criterion as follows:

A feedback system or closed loop system is stable if the contour [, of the open loop
transfer function G(s) H(s) corresponding to the Nyquist contour in the s-plane encircles the
point (-1 + jO) in counterclockwise direction and the number of counterclockwise
encirclements about the (-1 + j0) equals the number of poles of G(s) H(s) in the right half of
s-plane i.e., with positive real parts. _

In common case of open loop stable system, the closed l0op system is stable if the contour
Iy ©of G(s) H(s) does not pass through or does not encircle (~1 + j0) point, i.¢., net encirclement
is zero.
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GENERAL CONSTRUCTION RULES OF THE NYQUIST PATH

o e 5 e Table )
# Path ab s= jo O<weon : _:i
Path b 5= Lim (joo, +Pe’™) 907505 90° l
Pathcd §=jo DSWS oo !
Path def s=mw . 90°5059%° |
Path fg s=jo —m<W<—m, :
| Pathgh 5= Lim (joo, + Pe!®) 90°$0590° i
| Pathhi $ = jo ~hS0s0 |
| Pathijs g Lim Pef® -9 0 <90° :

Step 1 : Check G(s) for poles on jo axis and at the origin.

Step 2 : Using equation to equation sketch the image of the path g - d in the G(s)-plane.
If there are no poles on jo axis equation need not be employed.

Step 3: Draw the mirror image about the real axis of the sketch resulting frc
step 2.

Step 4 : Use equation plot the image of path def. This path at infinity usually plot into a point
in the G(s) -plane.

Step 5 : Use equation plot the image of path ija (pole at origin)

Step 6 : Connect all curves drawn into the previous steps.

PROBLEM: Determine the closed loop stability of a control system whose op¢n lo
transfer function is

K :
) HG) = S (Type 'L pyste
Solution : Given that

K
G(s) HG) = 555
Put s = jo

S s K
Gtjo) H(fo) = Fofi faT)
Rationalizing the equation and separating into real and imaginary parts.

, KT K
o) Lige) == 1+@°T? - {1+ ®%T?)
Lim IG(jo) H(jo)) w o

Lim ,G(j0)H(jo) w - ope

TR —
Ve =0

P~ SmP e SRS %
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o b splane &) G(s)H(s)-plane

0 a 1
0 >Re Re
4 NV 180
-0 d )
Nyquist plov o

The polar plot will lie in third quadrant.
The Nyquist plot is shown in Fig. The part for 0 < ® < + = is drawn (1) (2) and for - i< ®
< 0 is shown by the point (2), (3) which is the mirror image of (1), {2). The senucxm:m:ec
around the origin in s-plane is mapped into a semicircular path of infinite radius rep tir
change of phase from + x/2 to -%t/2.
As the point (-1 + jo) is not encircled by the plot, N =0
N=0 P=0
N =2-P sH Z=0 ;
The number of zeros or roots of the characteristic equation with positive real part js nil
hence the closed loop system is stable.
EXAMPLE - Sketch the Nyquist plot and determine the stability of a unity feedback cofftrol
system.

K
Gl) = GIsT,) (1+s73) (Type O system)
Solution : Given that :

K
Gls) HE) = @35y (14515)
Put $ =jo

» 2 K
G(jw) Hjo) = G370T) (1+ jols)
K

Gl Ho)1 =TT, Jivar

,G(j0)H(j®) = - tan™! @l - tan™! T,
EL%IG()'(OD)H(I'&N =K
.’:i.% ,G(jw)H(jo) - o

Lim IG(jo)H(jo) - g

Lim ,G(o)H(j®) - _ 150°
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Rationalize the equation and separate the real and imaginary parts.

i KQ-oiT;) . o +T)K
(1+ joTy) (1+j0T;) = (1+0°T?) (1+0’T,?) I (1+0°T*) (1+0’%?)
Equate the real part to zero, we get

'G(iW)H(fW,m 1 KTT.
T T

\ - 1
Q) -~ W=
50 37172

The plot of G(jw) H(jw) is shown in Fig. The infinite semicircular arc of the Nyquist contour
maps into origin. As'the point (-1 + jo) is not encircled by the plot

N=0

P=0
Z=0
Hence, the system is stable,
EXAMPLE - Using Nyquist criterion, determine the stability of the feedback system which

has the following open loop transfer function.

K
GO 9 = 300 o7) (e 2 oy
Solution : Given that

K
G(s) H(s) = S2(1+5T)
Put s =jo

| F— i
Rationalizing the equation (5.39) and separating the real and imaginary part

e X K
o) Hio) = 30w T i+ 0’1

The Nyquist diagram is shown in the Fig. Because of the double pole at s = 0, a small
semicircular detour at the origin should be made.
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The point (- 1 + jo) is encircled twice. Hence N =2
P=0

5 Z=2

Hence, the system is unstable.

EXAMPLE - Use Nyquist criterion, determine whether the closed loop system Navin
following open loop transfer function is stable or not.

1
GG) Hls) = T2 (v s)

Solution : Given that

1
Gs) HE) = 5525y (1+9)
Puts = jo

i 1
Gjo) Hj®) = S50 20) (1+ o)

A,

' |

Rationalizing the equation and separate the real and imaginary part.

' . 120’
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SHORT QUESTIONS WITH ANSWER

Q1.What do you mean by Polar Plot ?

Ans: The Polar plot is a plot, which can be drawn between the magnitude and the phase
angle of G (jw) H (jw) by varying w from zero to infinite

Q2. What do you mean by Bode Plot ?

Ans: A Bode plot is a graph of the frequency response of a system. It is usually a
combination of a Bode magnitude plot, expressing the magnitude (usually in decibels) of
the frequency response, and a Bode phase plot, expressing the phase shift.

Q3. What do you mean by Nyquist stability criterion ?

Ans : Nyquist stability criterion states the number of encirclements about the critical
point (1+j0) must be equal to the poles of characteristic equation, which is nothing but
the poles of the open loop transfer function in the right half of the 's' plane.

LONG QUESTIONS

Q1. State the rules for plotting a polar plot?

Q2. Write down the procedure to draw a bode plot ?

Q3. What is the need of a Nyquist plot, Explain with a suitable example
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CHAPTER -9
STATE VARIABLE ANALYSIS

9.1 STATE SPACE ANALYSIS:
State space analysis is an excellent method for the design and analysis of control systems.
The conventional and old method for the design and analysis of control systems is the transfer
function method. The transfer function method for design and analysis had many drawbacks.
Advantages of state variable analysis:

+ It can be applied to non linear system.

+ It can be applied to tile invariant systems.
+ It can be applied to multiple input multiple output systems.
+ Its gives idea about the internal state of the system.

9.1 CONCEPT OF STATE:

State: The state of a dynamic system is the smallest set of variables called state variables such
that the knowledge of these variables at time t=to (Initial condition), together with the knowledge
of input for >to , completely determines the behaviour of the system for any time t>to .

State vector:If n state variables are needed to completely describe the behaviour of a given
system, then these n state variables can be considered the n components of a vector X. Such a
vector is called a state vector.

State space: The n-dimensional space whose co-ordinate axes consists of the xiaxis,xz axis,....Xn
axis, where x1, x2,...... Xpare state variables: is called a state space.

9.1.2 STATE MODEL:

Lets consider a multi input & multi output system is having
rinputsuy t,uy t,..... uy(t)

m no of outputs y1 t,y2 ¢, ......ym(t)

n no of state variables xit ,xat ,........ Xn(t)
Then the state model is given by state & output equation
Xt=AXt+BUt............. state equation
Yt=CXt+DUt............ output equation

A is state matrix of size (nxn)

B is the input matrix of size (nxr)

C is the output matrix of size (mxn)

D is the direct transmission matrix of size (mxr)
X(t) is the state vector of size (nx1)

Y (t) is the output vector of size (mx1)

U(t) is the input vector of size (rx1)

BLOCK DIAGRAM OF THE LINEAR, CONTINUOUS TIME FUNCTIONS

The block diagram of the linear, continuous time functions is represented by following
equations.

Xt =AXt +ButY

t =CXt +Dut
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j D)
u(2) x(r)
B(r) @—0 Jdr |

x(e)

(Block diagram of the linear, continuous time functions)
It has multiple number of input, output and state variables, this has been represented by thick
arrow as shown in above fig. Therefore n, parallel integrators must be present as there are n state
variables where the output of each integrator is a separate variable.
OR

9.1. CONCEPTS OF STATE, STATE VARIABLE

State Variable

A state variable is one of the set of variables that are used to describe the mathematical
"state" of a dynamical system. Intuitively, the state of a system describes enough about
the system to determine its future behaviour in the absence of any external forces
affecting the system. Models that consist of coupled first-order differential equations
are said to be in state-variable form

In mechanical systems, the position coordinates and velocities of mechanical parts are
typical state variables; knowing these, it is possible to determine the future state of the
objects in the system.

In thermodynamics, a state variable is an independent variable of a state function like
internal energy, enthalpy, and entropy. Examples include temperature, pressure, and
volume. Heat and work are not state functions, but process functions.

In electronic/electrical circuits, the voltages of the nodes and the currents through
components in the circuit are usually the state variables. In any electrical circuit, the
number of state variables are equal to the number of storage elements, which are
inductors and capacitors. The state variable for an inductor is the current through the
inductor, while that for a capacitor is the voltage across the capacitor.

Prepared By: Er. Prakash Chandra Das
152




Control Systems & Component [TH-2]

The state space model of Linear Time-Invariant (LTI} system can be represented as,

X—=AX + BU

Y=CX+DU

The first and the second equations are known as state equation and output equation respectively.
Where,

- Xand X are the state vector and the differential state vector respectively.

L

U and Y are input vector and output vector respectively.

5 Ads the systern matrix.

L

B and C are the input and the output matricas.

D is the feed-forward matrix.

L

Basic Concepts of State Space Model

The following basic terminclogy involved in this chapter.

State

It iz a group of variables, which summarizes the history of the system in order to predict the future
values (outputs).

State Variable

The number of the state variables required is equal to the number of the storage elements present
in the system.

Examples - cumrent flowing through inductor, voltage across capacitor

State Vector
It i= & vector, which contains the state variables as elements.

In the earliar chapters, we have discussed two mathematical models of the control systems. Those
are the differential equation model and the transfer function model. The state space model can be

obtained from any one of these two mathematical models. Let us now discuss these two methods
one by one.
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9.2. STATE MODELS FOR LINEAR CONTINUOUS TIME

FUNCTIONS(SIMPLE)

Consider the following series of the RLC circuit. It is having an input voltage, w;(t) and the

current flowing through the circuitis  #(t) .

i(t) R L
— MA—
+ +
w(t) v(t) TC

There are two storage elements (inductor and capacitor) in this circuit. So, the number of the state
variables is equal to two and these state variables are the current flowing through the inductor,

i(t) and the voltage across capacitor, w.(t) .

From the circuit, the output voltage, wp(t) is equal to the voltage across capacitor, w.(t) .

v (t) = ve(t)

Apply KVL around the loop.

v;(t) = Ri(t) + L% + v.(t)

__di(t)  Ri(t)  w() | vi(t)
~Tat L L L

The voltage across the capacitor is -
1 :
ve(t) = el i(t)dt

Differentiate the above equation with respect to time.

dve(t) (1)

dt c
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State vector, X = [ i(t) ]
v (t)

du,(t)

dift)
Differential state vector, X :[ dt ]
dt

We can arrange the differential equations and output equation into the standard form of state space

model as,
dift) R 1] , 1
= || T f{ﬂ] [T]
N [ i(t)
r=lo ll_uciﬂ]
Where,
& 1
A=[ T L],B=[ﬂ],c=[n 1] and D = [0]
e 0 0
OR

STATE SPACE REPRESENTATION OF NTH ORDER SYSTEMS OF LINEAR DIFFERENTIAL
EQUATION

Consider following nth order LTI system relating the output y(t) to the input u(t).

yr+a vyttt ayt i+ -4 a, vyt +a,y=u

Phase variables: The phase variables are defined as those particular state variables which are
obtained from one of the system variables & its (n-1) derivatives. Often the variables used is the
system output & the remaining state variables are then derivatives of the output. Let us define the
state variables as
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—_ a1 dxn_l
Xn = y - dt
From the above equations we can write
xl — x2
Xy = X3
Xn—1 = Xn
Xp = —ApX] — Ap_1X3 — *** eee e o —a X, tu
Writing the above state equation in vector matrix form
X(t) = AX(t) + Bu(t)
- 0 I B.... 0
b 0 0 1.... 0
Where X = | : T — oo :
. 0 0 Biosess 1
ndnx1 —a, —@n-1 —Gp—p ... —agl
Output equation can be written as
Y(t) = CX(t)
C = [1 D TR 0]1)(71
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DIRECT DERIVATION OF STATE SPACE MODEL (ELECTRICAL):
Derive a state space model for the system shown. The input is i.and the output ise.

R ...
L W
AN o G )
e ‘_._:L_ : __;'I .
* R J

There are three energy storage elements, so we expect three state equations. Try choosingis,
izand e1 as state variables. Now we want equations for their derivatives. The voltage across the
inductor L; is e1(which is one of our state variables)
di
T
so our first state variable equation is
di
i = i el
dt L,

If we sum currents into the node labeled n1 we get
ia _iL2 _iC:L _iLl =0
This equation has our input (ia) and two state variable (iL; and iL1) and the current through the
capacitor. So from this we can get our second state equation

, de, . .

ey zcl_l =~z

dt

de, 1 .

= (i, —io—i,)
dt Cl [ E] L2 L1
Our third, and final, state equation we get by writing an equation for the voltage across Li (which

iS e2) in terms of our other state variables

IL].

di .
€ = ld_l; = el_RlLl
di 1. .
d—Ltl = L—[.el_mu;I

1

We also need an output equation:

e, =¢e, —Ri,

So our state space representation becomes
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ql iL2
=0 |=|&
qB IL].
0 1 0

L, 0

. 1 1 1

= Aq+Bu A=-—— 0 —— B=|__

[I q I::1. CL Cl

1 _R 0

L I—l I—l_
y = Cq+Du C=[0 1 R] D=0

STATE SPACE TO TRANSFER FUNCTION
Consider the state space system:

q(t) = Aq(t) + Bu(t)

y(t) = Cq(t) +Du(t)

Now, take the Laplace Transform (with zero initial conditions since we are finding a transfer
function):

sQ(s) = AQ(s) + BU(s)

Y(s) = CQ(s) + DU(s)
We want to solve for the ratio of Y(s) to U(s), so we need so remove Q(s) from the output
equation. We start by solving the state equation for Q(s)

sQ(s) - AQ(s) =BU(s)
(sI-A)Q(s) =BU(s)

Q(s) = (sI —Jlﬂll:l_l BU(s) = ®(s)BU(s); where ®(s) = (sI —Ml:_l'1
The matrix @(s) is called the state transition matrix. Now we put this into the output equation
¥(s) = C®(s)BU(s) + DU(s)
= (Co(s)B + D) U(s)
Now we can solve for the transfer function:

H(s) = Y& _ co(s)B+D = C(sT- A *B+D

U(s)
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EXAMPLE:

Find the transfer function of the system with state space representation
0 1 0 0

q=Aq+Bu=/0 0 1 |g+|0ju
3 -4 -2 1
y=Cq+Du=[5 1 0]+0-u

First find (sl-A) and the ®=(sl-A)-1 (note: this calculation is not obvious. Details are here).
Rules for inverting a 3x3 matrix are here.

s -1 0
sI-A=|0 s -1
3 4 s+2
s?+2s+4 2+s 1
-3 s(2+s) s
. — -3s -3-4s5 g°
®=(sI-A)" = —
- ’ ST +25" +454+3
Now we can find the transfer function
He) = ) _ coB =D
U(s)
S+ 5

I T
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SHORT QUESTIONS WITH ANSWER

Q1. What do you mean by state variable?

Ans : A state variable is one of the set of variables that are used to describe the
mathematical "state" of a dynamical system. Intuitively, the state of a system
describes enough about the system to determine its future behaviour in the
absence of any external forces affecting the system. Models that consist of
coupled first-order differential equations are said to be in state-variable form.
Q2. How the state variable electrical circuit is represented?

Ans:In electronic/electrical circuits, the voltages of the nodes and the currents
through components in the circuit are usually the state variables. In any electrical
circuit, the number of state variables are equal to the number of storage
elements, which are inductors and capacitors. The state variable for an inductor is
the current through the inductor, while that for a capacitor is the voltage across
the capacitor.

Q3. Write down the state space representation of a LTI system ?

Ans: The state space model of Linear Time-Invariant (LTI) system can be
represented as,

X'=AX(t)+BU(t)

Y=CX(t)+DU(t)

LONG QUESTION
Q1. Derive the state space representation of a series RLC circuit.

LEARNING RESOURCES:

1. Conrtol Systems by Samarajit Ghosh-Pearson

2. Control Systems by Principles and Design by Gopal. M,-Tata McGraw-Hill

3. Automatic Control System by Kuo, B.C,-Prentice Hall

4. Modern Control Engineering byOgata, K -Prentice Hall

5. Modern Control Engineering by Nagrath& Gopal-New Age International, New Delhi
6. Control System Engg by P Ramesh Babu& R. Anandanatarajan -SCITECH
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