
Vente POS

Documentation

Web and Mobile Application

1. Introduction

Thank you for your interest in Vente POS.

This guide was implemented to help you set up this project successfully. For the process to go

smoothly, it’s essential to follow all the steps in this file.

Vente POS is an online point of sale system developed with Flutter at the front end and

Firebase at the back end. Leveraging the power of Flutter, this application is available on the

web, Android, and iOS. It’s available in English and French, possibly adding even more

languages.

POS Software allows your business to accept payments from customers and keep track of

sales. Vente Point of Sale software also helps you handle orders and inventory, reach

customers, and manage your team.

Vente POS uses Firebase as the backend service. Firebase, a product by Google, is a backend

service that offers an online database, authentication service, storage, and much more.

This guide will walk you through how to link your Flutter project to Firebase.

2. Prerequisite

Some basic development knowledge will be needed in order to install Vente POS successfully.

Here’s what’s needed:

a. IDE for mobile and web development, we recommend VSCode

b. Flutter SDK and JDK with path setup on your local machine

c. Basic knowledge of Google services and Firebase in particular.

3. Environment Setup

To run the project, some environment setups are needed:

a. You’ll have to download and install Flutter on your system. You can check the

documentation on the following link: Install | Flutter

https://docs.flutter.dev/get-started/install

b. You’ll need to create an account with Firebase by following this link: Firebase |
Google’s Mobile and Web App Development Platform

c. You’ll have to download and install Node.js which you can do by following this

link: Node.js (nodejs.org)
d. To set cors you’ll need to install gsutil from this link: Install gsutil | Cloud

Storage | Google Cloud

4. Basic Setup
a. Download the compressed file provided and unzip it on your machine.

b. Unzip vente file containing the Flutter project

c. Open vente folder in VS Code or Android Studio

d. Unzip vente_functions file which will be needed later

5. Firebase Setup

This project was configured to be linked with multiple Firebase projects. In general, you want to
use different Firebase projects during development and production to avoid messing with your
production data during the development process. Because of that, two flavors on the app with
two different Firebase projects can be configured: Production, and Development flavors.
You don’t have to configure all of them and can just use the production flavor. The following
steps focus on the production flavor, but the same steps can be repeated to add the
development flavor. More info on this link: Multi-environment Flutter Projects with Flavors
(sebastien-arbogast.com)

a. Go on and create a new Firebase project

https://firebase.google.com/
https://firebase.google.com/
https://nodejs.org/en
https://cloud.google.com/storage/docs/gsutil_install
https://cloud.google.com/storage/docs/gsutil_install
https://sebastien-arbogast.com/2022/05/02/multi-environment-flutter-projects-with-flavors/#Preparing_Your_Web_App
https://sebastien-arbogast.com/2022/05/02/multi-environment-flutter-projects-with-flavors/#Preparing_Your_Web_App

b. Once created, You’ll get to the overview of your Firebase project

c. Head to Build > Authentication to get started enable Email/Password

authentication and click save

d. Head to the project settings and click Generate key pair under cloud messaging.
Copy the key pair generated.

e. Once copied, open bootstrap.dart in VS Code and paste the key pair in the

YOUR_PRODUCTION_MESSAGING_KEY parameter. This key is needed in

order to be able to send notifications to users.

f. Head to Build > Firestore Database create your database in production mode

and choose your database location.

g. Head to Build > Storage and click Get Started. Start in production mode and set

up your storage location.

6. Firebase Functions Setup

Now we will configure Firebase functions, Firestore rules and indexes, and Storage rules. This is

optional but will ensure database indexes and some Firebase cloud functions are set up. Unzip

the downloaded file from Envato and unzip the vente_functions file. Open the decompressed

folder vente_functions in VSCode.

a. Upgrade your Firebase project to the Blaze plan. This is required in order to use

cloud functions

b. In the vente_functions project terminal run npm install -g firebase-tools
c. Then run firebase login to login to your account

d. Run firebase init. Type Y when it asks you to override the previous project

e. On the list of features to configure, select, firestore, functions, and storage
using the space key

f. In the next step select Use an existing project and choose the project we

previously created in Firebase

g. When asked what to call Firestore rules, just press enter

h. When asked what to call Firestore indexes, just press enter

i. When asked to override any of the files, select no and continue

j. When asked whether to initialize a new codebase or override it, select

Overwrite, and press enter

k. Choose javascript as the language for cloud functions and press enter

l. Just press enter when it asks to use ESLint

m. When asked to override functions/package.json, Enter N and press enter

n. When asked to override functions/index.js, Enter N and press enter

o. When asked to override functions/.gitignore, Enter N and press enter

p. When asked to install dependencies enter Y and press enter and the

dependencies will start installing.

q. When asked what to call Storage rules, just press enter
r. Finally, run firebase deploy. You may need to run this command 2 times to be

successful

s. Head to Functions and click Get Started. You should see the functions we

installed in the previous step

7. Flutter Setup

Now that we’ve set up our Firebase projects, open the Flutter project in VS Code and follow
these steps to link it to Firebase.

a. Open pubspec.yaml file and run flutter pub get to download all the

dependencies

b. To change the package name, run dart run change_app_package_name:main
com.new.package.name and replace com.new.package.name with your

package name

c. To change your flutter app name run the command flutter pub global activate
rename. Run then rename setAppName --targets ios,android,web,macos
--value "YOUR_APP_NAME" where YOU_APP_NAME is the name of your

app. Go to strings.csv and under the key appName, change appTitle values to

your own name. Run then dart run flappy_translator

d. To change the logo, convert your logo to PNG format and rename it to logo. Move

it to the assets folder to replace the file also named logo.png. Run then dart run
flutter_launcher_icons

e. To change the splash screen, replace the images logo_512.png and

branding.png in the assets folder with your own images with the same name

and format then run dart run flutter_native_splash:create
f. Run in vente project terminal dart pub global activate flutterfire_cli to install

the flutterfire cli

g. Now run flutterfire configure -o lib/firebase/prod/firebase_options.dart. This
will create the Firebase file needed to launch in your production environment.

Note that if you change your package name after running this command you will

have to run it again

h. In the next step, select which project to link

i. Make sure all platforms are selected and press enter

j. Open a terminal and run keytool -list -v -alias androiddebugkey -keystore
%USERPROFILE%\.android\debug.keystore to generate the SHA1 and SH256

of your system. If it doesn't work, make sure java sdk is installed with the path

environment well set up. If it still doesn’t work, try this:

i. Go to this path or wherever you have your keytool.exe file like

C:\Program Files\Java\jre7\bin for example

ii. Hold shift and right click -> then press Open command window here

iii. The terminal will pop up, paste then the above keytool command

k. You may be asked to enter a password. If you’ve never entered a password, just

press enter or try android as the password

l. The following key will allow you to launch in debug mode. For more information

on debug and release keys check this post Authenticating Your Client | Google

Play services | Google for Developers

m. Go back to your Firebase project and go to project settings. Under General locate

the Android app and add the SHA1 and SHA256 previously generated.

8. Other Installation

You may notice that images do not display on the web. This is related to a CORS configuration.

Generally, Firebase doesn’t allow access to storage from unknown domains. The Flutter project

contains a cors.json file to allow any domain to display images in Firebase Storage.

● Install gsutil from this link Install gsutil | Cloud Storage | Google Cloud

● Run in the terminal gcloud init. You may have to restart vscode for this to work

● Run in the terminal gsutil cors set cors.json gs://YOUR_BUCKET_NAME where

YOUR_BUCKET_NAME is the name of your Firebase Storage Bucket which you can

find in Build > Storage on Firebase. In my case I’d run gsutil cors set cors.json
gs://vente-temp.appspot.com

https://developers.google.com/android/guides/client-auth
https://developers.google.com/android/guides/client-auth
https://cloud.google.com/storage/docs/gsutil_install

● If you wish to use GitHub CI/CD for deployment, you’ll need to configure the

android-production-release.yaml and android-development-release.yaml files in the

.github/workflows folder to create releases on Github. Check this post for more info:

Deploy your Flutter App to Firebase App Distribution using GitHub Actions -
Android (bernos.dev)

● To host your app, run flutter build web --release -t lib/main_production.dart and the

folder build/web will be generated which you can deploy on your server. Alternatively,

you can configure Firebase hosting and GitHub actions to deploy your website every

time you push your project to the main branch. The project has GitHub workflow files to

help you deploy quickly with GitHub actions. You’ll need to upload the different secret

keys needed however to complete the workflows. Check these articles for more info:

Deploy your Flutter App to Firebase App Distribution using GitHub Actions - Android

(bernos.dev)

Automating Flutter Web Deployments to Firebase Hosting using GitHub Actions | by

Quentin Estrach | Medium

Integrate GitHub Actions with Slack, Say Goodbye to Email Notifications (tvaidyan.com)

https://guillaume.bernos.dev/how-to-deploy-to-firebase-app-distribution/
https://guillaume.bernos.dev/how-to-deploy-to-firebase-app-distribution/
https://guillaume.bernos.dev/how-to-deploy-to-firebase-app-distribution/
https://guillaume.bernos.dev/how-to-deploy-to-firebase-app-distribution/
https://medium.com/@quen09t/automating-flutter-web-deployments-to-firebase-hosting-using-github-actions-4893e4f17135
https://medium.com/@quen09t/automating-flutter-web-deployments-to-firebase-hosting-using-github-actions-4893e4f17135
https://www.tvaidyan.com/2023/01/27/integrate-github-actions-with-slack-say-goodbye-to-email-notifications/

