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Abstract— People often hold inaccurate mental models of
robots. When such misconceptions regard a robot’s percep-
tual capabilities, they can lead to issues with safety, privacy,
and interaction efficiency. This work is the first attempt to
model users’ beliefs about a robot’s perceptual capabilities
and make plans to improve their accuracy—i.e., to perform
belief repair. We designed a new domain called the Robot
Olympics, implemented it as a web-based game platform for
collecting data about users’ beliefs, and developed an approach
to estimating and influencing users’ beliefs about a virtual robot
in that domain. We then conducted a study that collected user
behavior and belief data from 240 online participants who
played the game. Results revealed shortcomings in modeling
the participant’s interpretations of the robot’s actions, as well
as the decision making process behind their own actions. The
insights from this work provide recommendations for designing
further studies and improving user models to support belief
repair in human-robot interaction.

I. INTRODUCTION

People often hold inaccurate beliefs about robots. This
is partly due to a lack of insider knowledge—users are
rarely privy to the robot’s programming or the design pro-
cess that produced it. Instead, they can only observe the
“system image”—how the robot looks and behaves—when
developing their mental model of the robot to explain and
predict its behavior [1]. Included in the user’s mental model
are their beliefs about what the robot can sense, detect,
and recognize about the world—i.e., the robot’s perceptual
capabilities. These beliefs are also prone to inaccuracies,
perhaps because of the “perceptual belief problem”: that
“the perceptual capabilities of robots are diverse and often
difficult to infer” [2]. For example, users do not always
notice or recognize a robot’s sensors, even when they are
visible, and it is often unclear when those sensors are
recording data [3]. Also, users can struggle to understand
robot perceptual capabilities that differ from their own [2].

Research has suggested that, to work well with robot team-
mates, people need accurate mental models of the robots,
including what those robots know and intend to do [4].
Inaccurate mental models of robots can induce two types
of problems in human-robot interaction. The first type of
problem arises due to the user’s misconceptions: the user

might command the robot to do things it cannot do, might
accidentally reveal personal information to the robot, or
might find the robot too unpredictable. The second type
of problem arises from the robot’s ignorance of the user’s
misconceptions. The robot might proceed with the inter-
action under the incorrect assumption that the user knows
its capabilities, causing inefficient actions or even safety
risks. Robots can use shared mental models to improve the
performance of human-robot teams [5]—in particular, a robot
might need to estimate the user’s beliefs about its perceptual
capabilities to avoid these problems. If a belief estimate were
used in action planning during a human-robot interaction,
the robot could decide whether to work around the user’s
inaccurate beliefs or address them with teaching actions to
improve subsequent interactions.

This work is, to the best of our knowledge, the first attempt
to model a user’s mental model of a robot’s perceptual
capabilities. It is also the first attempt to use belief estimates
about perceptual capabilities to make plans to influence those
beliefs through the robot’s actions. This paper presents the
following contributions. First, we introduce a novel exper-
imental domain—the Robot Olympics—implemented as a
web-based game with a virtual robot. Next, we introduce an
approach to estimating and influencing the user’s beliefs dur-
ing the game toward improving the combined performance
of the human-robot team. Rueben et al. previously reported
preliminary findings from a pilot study [6]; this work reports
findings from a new study with 240 online participants. The
analysis of the study results revealed shortcomings in model-
ing both the participant’s interpretations of the robot’s actions
and the decision making process behind their own actions.
Using those insights, this work presents recommendations
for designing further studies and improving user models to
support belief repair in human-robot interaction.

II. RELATED WORK

A. Forming Mental Models About Robots

There is relatively little research into how people form
mental models of robots, especially of robot perceptual
capabilities over longer interactions. Theories of mental



models from cognitive science that have been applied to
how people understand, e.g., computer systems [7], have
not yet been applied to human-robot interaction. A small
number of human-robot interaction studies have looked at
mental model formation. Stubbs et al. [8] tracked mental
model formation over multiple interactions; they studied how
museum employees came to understand a robot that was
part of a museum exhibit over more than three months.
Several other studies have focused on the development of
mental models about the robot’s perceptual capabilities in
particular. Thellman and Ziemke, for example, found that
people struggle to learn about perceptual capabilities that
humans lack, and that watching a robot’s behaviors over time
aids that learning process while verbal descriptions of those
behaviors do not [2].

A study by Rueben et al. was both long-term and focused
on perceptual capabilities [9]; it involved a six-week interac-
tion with a piece of mobile robotic furniture deployed in
a public setting. Results showed that people can employ
sophisticated reasoning to draw conclusions (or decide to
hold back from drawing conclusions) about a robot’s capa-
bilities based on its behavior. Furthermore, robot behaviors
were found to be especially important for inferring perceptual
capabilities (sometimes incorrectly) when the robot’s sensors
were not clearly visible. This work focuses on a similar
scenario via a robot—Kuri by Mayfield Robotics—with
sensors that are not clearly visible to users, and is also
inspired by the authors’ recommendation to control the order
in which robot behaviors are displayed to users to improve
the accuracy of their mental models.

Distinct from previous work, this work is the first attempt
for a robot to model a user’s belief formation process about
its perceptual capabilities. In the absence of existing models
or frameworks, we designed a custom domain to help us
predict and measure user beliefs throughout the interaction.

B. Mutual Modeling/Adaptation in Human-Robot Collabo-
ration

Two agents maintaining models of each other has been
called mutual modeling [10]. In the last decade, tools
like POMCoP [11] and Cooperative Inverse Reinforcement
Learning [12] have enabled an artificial agent to not only
consider its estimate of a human teammate’s mental model,
but also to intentionally gather information to improve that
estimate when needed. Nikolaidis and colleagues have de-
veloped a game-theoretic approach to this problem wherein
the robot’s objective is to maximize the team’s joint reward
over time in light of a human policy that the robot can
both learn and influence [13], [14]. Our domain is similar
in that it refrains from directly rewarding these learning and
influencing processes so that the robot is only incentivized to
do them if they improve the team’s task performance. Instead
of only modeling the user’s policies, however, which are
domain specific, we explicitly model the user’s beliefs about
the robot’s perceptual capabilities; we model the user’s policy
separately as a function of those beliefs. Explicitly estimating

beliefs allows the robot to identify specific misconceptions
that the user holds and take actions to correct them.

Action selection is challenging in such domains because
the robot must account for both the immediate rewards of
its actions and their effects on the user’s future decisions
via influencing the user’s mental model. Nikolaidis and
colleagues have used a Partially Observable Markov Decision
Process (POMDP) approach to select optimal actions for
the robot. Solving the POMDP quickly becomes intractable,
however, as the state and action spaces increase in size.
The belief space in our domain is quite large because we
are interested in user beliefs about multiple robot skills and
combinations of skills, so we use a particle-based approach
to state estimation with a Monte Carlo tree search for action
selection.

III. RESEARCH QUESTION AND SCOPE

This work addresses the following research question:“How
can the robot improve the combined performance of the
user-robot team by estimating and influencing the user’s
beliefs about its (the robot’s) perceptual capabilities?” We
focused on using the robot’s physical motions to implicitly
communicate information about its perceptual capabilities;
we did not enable the robot to talk about them explicitly
via text-based or spoken dialogue. This work is especially
relevant for interactions in which dialogue is problematic:
e.g., in noisy environments, when interacting from a distance,
when the interaction must be very brief, or even when
dialogue would lead the user to overestimate the robot’s
natural language capabilities. Similarly, we restricted the
robot to only using the human user’s in-game choices to
estimate the user’s current beliefs.

IV. HUMAN-ROBOT INTERACTION DOMAIN: THE ROBOT
OLYMPICS

We designed a simulated multi-turn human-robot collab-
oration game for our study. Each game board was designed
such that the robot must communicate its perceptual capa-
bilities to the user at certain times in the game to earn the
highest possible team score. Without this information, the
user is likely to make suboptimal choices and lose points for
the team. We chose a web-based format with pre-recorded
videos of the robot’s actions to facilitate collecting a large
sample of participants. Also, the user’s actions were simple
button presses in a web browser, which were easily and
reliably detected by the virtual robot.

The user’s teammate in the game was a virtual robot based
on the Kuri robot by Mayfield Robotics. The name “Denise”
was used to refer to the virtual robot throughout the study.
Participants were introduced to a picture of a Kuri at the
beginning of the game, and then viewed video recordings of
the robot performing selected tasks.

The game was called The Robot Olympics, and was
themed after the Olympic Games. It consisted of 2–5 “days”,
and on each “day” there were 4 events that the robot could
attempt (see Table I). Of these, two were chosen for the robot
to attempt: the user chose the first one, and then the virtual



robot chose the second one. After each event was chosen,
a pre-recorded video of the robot attempting that event was
displayed along with a message informing the user whether
the robot succeeded and earned the points associated with
that event. The day was over after the two choices and two
videos.

Each event consisted of 1–3 tasks (see Table I); if the
robot successfully completed all of them, the team earned
the number of reward points associated with that event. If
the robot failed at any of the tasks, the team earned zero
points. The robot attempted the tasks in sequence, so if
it failed at a task, users saw the failure as well as any
successes that came before it. There were 6 different skills
(i.e., perceptual capabilities) required by the tasks in the
game. Most tasks required one skill to complete; a few tasks
could be completed using either of two skills (i.e., a Boolean
OR condition). The robot’s success or failure at each task
was determined only by its skills: if it had the required
skill (or either of two sufficient skills for OR tasks) then
it always succeeded; otherwise, it always failed. The skills
that the robot had were LIDAR navigation, color tracking,
face detection, and directional sound tracking; it did not
have natural language understanding or object recognition.
We chose these six perceptual capabilities because they are
realistic possibilities for the Kuri robot. The robot knew
which skills it had, and which were required to successfully
complete each event. The user was not told the robot’s actual
skills, or the list of possible skills. On each day, the user was
shown a cartoon diagram of each event that described what
tasks the robot had to complete to earn that event’s reward.

Each participant in the study was randomly assigned to
one of four game boards. Each game board was a different
sequence of the five days shown in Table I. The sequence
for each game board is listed in the table’s caption. Note
that game board AB is composed of game board A followed
by game board B, and that game board BA is the same
composition in the opposite order.

Each game board was designed so that earning the highest
possible team score required the robot to warn the user
away from choosing one or two “trap” events. The two
“trap” events are impossible for the robot—one requires
natural language understanding, the other requires object
recognition—but have much higher rewards than the other
events on that day, designed to tempt the user. For each trap
event, another event was included on a previous day that
required the same skill, but with lower stakes: all the events
on that day were worth fewer points than on the day of the
trap. We thereby made it the optimal strategy for the robot to
intentionally fail at the earlier, “teaching” event, scoring zero
instead of a low number of points for that day, so that the
user, learning from the robot’s demonstrated failure, would
avoid the trap event and instead score a higher number of
points on the day of the trap.

The trap and teaching events can be seen in Table I. In
game board A, event 3C is the trap and it costs the fewest
points for the robot to intentionally fail at event 1C—the
robot attempts and fails the natural language understanding

task first, demonstrating to the user that it lacks that skill.
In game board B, event 5C is the trap and the robot’s only
chance to help the user avoid it is to intentionally fail at event
4B, which will show the robot succeeding at the LIDAR
navigation task, succeeding at the color tracking task, and
then failing at the object recognition task. Game boards AB
and BA each have both traps, but in opposite orders.

TABLE I: Events in the Robot Olympics shown by day,
including the robot perceptual capabilities needed to succeed
at each event and the possible reward points. Game Board
A = Days 1, 2, 3; Game Board B = Days 4, 5; Game Board
AB = Days 1, 2, 3, 4, 5; Game Board BA = Days 4, 5,
1, 2, 3. L = LIDAR navigation, C = color tracking, F =
face detection, S = directional sound tracking, N = natural
language understanding, and O = object recognition.

V. VIRTUAL ROBOT SYSTEM: APPROACH AND
IMPLEMENTATION

We designed and implemented a system that estimated
the user’s beliefs about the robot’s perceptual capabilities,
and selected actions for the virtual robot that could influence
those beliefs to maximize the combined score of the user-
robot team. This system was our first attempt at producing
reward-oriented decision making that is informed by an
estimate of the user’s beliefs about the robot’s perceptual
capabilities. The design of the user belief models leveraged
our game design: we assumed that participants would play as
we expected them to, and that the game would encourage the
strategies that we had predicted. We designed the game such
that modeling the user’s beliefs would be relatively simple,
which also kept the robot’s actions explainable so we could
more easily analyze the results.

A. State Representation and Initial Estimate

The goal of the state estimator was to estimate the user’s
current beliefs about the robot’s perceptual capabilities. We
modeled the user as having an independent belief about each
of the six skills that the robot could have in the game, even
though we never explicitly listed them to the participants.
Furthermore, we modeled the user as believing that there
are only two possible levels for each skill: the robot either



has the skill, or it does not. This yielded a total of 64 possible
skill level combinations: 2 possible skill levels for each of
the 6 different skills. Our model did not represent beliefs
about intermediate skill levels, occasional malfunctions, or
changing skill levels over time.

We modeled the user as considering all 64 possible skill
level combinations, and maintaining a probability that each
combination is the robot’s actual set of skill levels. This was
encoded by the virtual robot as a vector of 64 probabilities
that always summed to 1. Each probability is the robot’s
estimate of the user’s confidence that the robot actually has
that set of skill levels.

This state representation makes the robot’s belief space
quite large, as the 64 probabilities could each vary indepen-
dently. Discretizing the user’s confidence into 128 tokens
to distribute among the 64 possible skill combinations, for
example, still yields 2 ∗ 1051 (64 multichoose 128) belief
states for the robot to consider. We chose to avoid this
dimensionality challenge in our system by tracking just a
single particle representing the robot’s best guess of the
user’s belief state. For the initial value of this particle we
assumed that the user starts the game considering all 64 skill
combinations to be of equal probability, so we used a uniform
probability distribution.

B. Transition Model

We modeled the user as understanding which skills are
required to complete each task comprising each event from
viewing the diagram of the event and the video of the robot
attempting it. We also modeled the user as believing that
the robot has a 100% success rate when it has the necessary
skills to complete a task and a 0% success rate when it does
not, which is how the game was programmed. Therefore,
whenever the user witnessed the robot succeeding or failing
at a task, the probabilities for the skill combinations that
would not yield that result were set to zero and all remaining
(nonzero) probabilities were normalized to sum to 1. This is
a special case of a Bayesian update wherein the likelihood
p(success | skill combinationi) = either 0 or 1.

C. Observation Model

We modeled the user as understanding from the event
diagrams which skills were required for the robot to succeed
at the tasks in each event. We could therefore calculate the
user’s believed likelihood that the robot would succeed at
each event by summing the probabilities in the robot’s esti-
mate of the user’s belief state for all the skill combinations
with which the robot would succeed at the event.

The virtual robot planned its actions under the assumption
that the user would always play greedily and rationally—
i.e., choosing the event with the highest expected value of
reward on each day. We assumed that the user did not plan
for future days because they were not told how many more
days, if any, were left in the game. Assuming that the user
used the expected value assumes a certain level of comfort
with risk: we multiplied our current estimate of the user’s

believed likelihood of success for each event by that event’s
reward without weighting either number.

Because our system only tracked one particle representing
the robot’s best guess as to the user’s belief state, we de-
signed an ad hoc adjustment for this estimate when needed.
Whenever the user chose a different event besides the one
with the highest expected value, the virtual robot used a
simple heuristic to adjust its estimate to make more sense of
this choice. Specifically, the robot increased the probabilities
of all skill combinations with which the chosen event is
possible, and also decreased the probabilities of all skill
combinations with which events that yield higher rewards
are possible. These increases and decreases were all by the
same amount: the difference in expected values between the
event the user actually chose and the event the robot expected
them to choose, multiplied by 0.01.

D. Action Selection

Our first goal for the action selector was for the robot
to balance long-term payoffs with immediate rewards. The
long-term payoffs would come from improving the accuracy
of the user’s beliefs to help them earn more points in
subsequent days. The immediate rewards were the points
from the event chosen by the robot on the current day, if
the robot succeeded at the event. We considered using a
POMDP to achieve this balance, but the large user belief
space made this intractable, and each day of the game also
had an abnormal sequence: observation, transition, action,
transition.

Our second goal was for each action to be chosen in
under five seconds so the game could be played without
the user becoming impatient from waiting for the robot to
take its turns. Although we pre-computed all of the virtual
robot’s decisions so the robot’s policy would be the same
for all participants, our system’s online performance was fast
enough to meet this requirement.

A Monte Carlo tree search (MCTS) was used to make
each of the virtual robot’s choices. A MCTS tree was pre-
computed for each possible sequence of prior user choices
that the virtual robot could encounter at any point in the
game. Growing one tree to make one robot choice took an
average of 2.6 seconds on a laptop computer. Whenever
a leaf node was expanded, upper and lower bounds were
calculated for the expected reward from each of the new leaf
nodes using a greedy playout. The greedy playout obtained
the total team score at the end of the game if the robot
were playing greedily and the user were playing rationally.
Greedy play for the robot meant always choosing the event
that yields the highest reward on each day after first ruling
out any that the robot cannot successfully complete. Rational
play for the user meant always choosing the event with
the highest expected reward, calculated as described above.
While traversing the tree up to the leaf node, user actions
were sampled according to the probability that the robot
currently believes that the user will choose each event, and
the robot chooses the event with the highest expected reward
from all the tree traversals thus far that include that event.



E. Benchmark Policy for Comparison: “Ignoring Beliefs”

In the rest of this paper we refer to our system for
estimating and influencing beliefs about a robot’s perceptual
capabilities as “our system.”

We also implemented a second behavioral policy for the
virtual robot to represent its behavior if it were not attempting
to estimate or influence user beliefs. We refer to this policy
as “ignoring beliefs.” This policy implemented greedy play:
on each day, the virtual robot chooses the event with the
highest reward after first ruling out any that the robot cannot
successfully complete. When using this policy, the robot
always gets its highest possible rewards, but the user remains
likely to choose our trap events (see Section IV above),
which would greatly reduce the total team score.

VI. DESIGN OF SYSTEM EVALUATION STUDY

For the study, we used a 4 (game boards: A, B, AB, BA)
x 2 (robot policy: our system vs. ignoring beliefs) between-
subjects design.

A. Measures

Pre-Game Questionnaire: Before starting the game, par-
ticipants answered questions about their age, gender, and
experience with computers and robots. They also answered
three questions about risk-taking behavior when playing
games, but we did not analyze those responses for this paper.

During the game we recorded which events were chosen
by the participant and the virtual robot, including whether
the participant chose a trap event.

Post-Game Questionnaire: After finishing the last day
of the game, participants answered several open-ended ques-
tions about their understanding of the game. They then
answered six questions—one for each skill—assessing their
beliefs about each of the six skills used in the game. For
example, the question for directional sound tracking read:
“[Rate your level of certainty] Denise is able to locate and
drive towards the origin of a noise” [“Definitely cannot”,
“Probably cannot”, “Maybe cannot”, “Unsure”, “Maybe
can”, “Probably can”, and “Definitely can”].

Participants then answered four questions assessing
whether they played the game the way we expected
them to. Our expected responses are underlined: “Before
choosing an event, I studied the four options until I un-
derstood them the best I could” [“Never”, “Sometimes
but not always”, “Every time”]; “After I was done look-
ing at the event option, I thought carefully about which
one of them to choose” [“Strongly disagree”, “Disagree”,
“Slightly disagree”, “Neutral”, “Slightly agree”, “Agree”,
“Strongly agree”]; “How many times did you ignore the
reward points when choosing an event? For example, choos-
ing an event just to see if Denise could do it.” [“Never”,
“Sometimes but not always”, “Every time”]; and, “On aver-
age, how risky vs. safe were you when choosing an event?
I.e., how much did you *gamble* to try to win more points
when you weren’t sure about Denise’s abilities?” [“1. Safest -
when possible, only chose events that I *knew* Denise could
complete”, “2. Safer”, “3. Balanced”, “4. Riskier”, and “5.

Riskiest - always chose the highest possible points if there
was any chance that Denise would succeed”].

Attention Checks: To gauge participants’ attention and
effort, we read each participant’s responses to open-ended
questions and calculated the time they spent deciding be-
tween the four events on each day.

B. Procedure

Participants were recruited via Amazon Mechanical Turk
(AMT), and then redirected to our website. After responding
to the pre-game questionnaire, each participant watched a
5½-minute long instructional video explaining the game rules
and interface. The video tried to encourage participants to
play the way our system assumed they would play: learning
the robot’s capabilities by watching the videos carefully,
balancing risk and reward each time they chose an event,
and thinking only about rewards on the current day without
planning for the future. After watching the instructional
video, the participants played the game. A game board and
robot policy were randomly assigned to each participant at
the beginning of the game. After completing the game and
responding to the post-game questionnaire, the participants
were given a unique code to receive their payment on AMT.
The first 5 participants were paid 9 USD based on an
overestimate of the total game duration; the remaining 235
were paid 8 USD. The average duration of participation
across all 240 participants (i.e., the AMT-reported “Average
Time per Assignment”) was about 43 minutes.

VII. RESULTS

In Subsections VII-A to VII-C, we report the main results
evaluating our system’s performance. In Subsections VII-
D to VII-G, we report additional performance metrics and
assumption checks.

A. Participants

Two hundred and forty participants (96 women, 1 non-
binary, 143 men; 40 aged 20–29, 114 aged 30–39, 48 aged
40–49, 28 aged 50–59, 8 aged 60–69, and 2 aged 70 or
older) were recruited to test whether our system improved
team performance by estimating and influencing the user’s
beliefs. Random assignments of these participants to the 8
(i.e., 4x2) experimental conditions are shown in Table II.
Fewer than 10% of participants failed our attention checks by
giving incoherent responses or taking fewer than 3 seconds
to look at the event diagrams and choose one, so we chose
not to exclude anybody’s data from analysis.

B. Scores from Participant’s Choices Only

Although our system attempted to maximize the combined
score of the participant-robot team, we only report the
participants’ scores here to show that our system did not
perform better than when ignoring beliefs even when the
robot’s scores are not lowering the combined team score.
The robot’s scores were lower for our system than when
ignoring beliefs because the robot intentionally failed at
certain events to attempt to improve the accuracy of the
participant’s beliefs.



Participants’ game performance with our system vs. the
control system that ignored beliefs is reported in Figure 1 and
Table II. Table II shows that mean scores for our system were
only better by one point or less (cf. the reward distribution
within each day in Table I) for game boards A, B, and BA;
for game board AB it was more than two points worse. None
of these differences was statistically significant.

TABLE II: Mean Scores from Participant’s Choices Only
with Two-Tailed Student’s t-test Results

TABLE III: Participant Beliefs at the End of the Game, and
What Fraction of Participants Chose the “Trap” Events

C. Participant Beliefs at the End of the Game

We examined whether experiencing our system resulted
in more accurate participant beliefs about the skills that
were most highly incentivized by the game boards: natural
language understanding for game boards with Trap A (i.e.,
A, AB, and BA) and object recognition for game boards with
Trap B (i.e., B, AB, and BA). The robot lacked both of these
skills, so lower beliefs on the 7-point response format are
more accurate (see Section VI-A). Table III shows the results.
For Trap A, participants who experienced our system had
more accurate beliefs about natural language understanding
than those in the ignoring beliefs condition for game board
AB, but no effect of robot policy was found for game boards
A and BA. For Trap B, our system was not found to affect
participant beliefs about object recognition for game boards
B, BA, or AB. Since we only collected self-reported beliefs

at the very end of each game, there are not enough data
to determine whether only certain events were not being
interpreted as expected, or if there was a more systemic flaw
in our assumptions.

D. Which Participants Chose “Trap” Events

Table III shows that no effect was found of our system
on how many participants chose each of the two trap events
described in Section IV.

A much stronger predictor of which participants would
choose the trap events than robot policy was the participants’
answer to the post-game question about risk taking (see
Section VI-A for item text). The percentage of participants
who fell into either of the traps increased monotonically
with self-reported riskiness, from 20% of the 23 participants
who answered “1. Safest” to 100% of the 16 who answered
“5. Riskiest”. Self-reported riskiness was also predictive of
participants’ other event choices, which made it difficult to
evaluate whether the events altered participants’ beliefs in
the expected ways.

E. Accuracy of Belief Estimator

Participants’ self-reported beliefs at the end of the game
were not as we expected from what the events were designed
to teach them. The overall correlation for all 240 participants
and all 6 skills between our system’s predictions at the end
of the game and self-reports was low (Pearson’s r = .27,
Spearman’s ρ = .26).

F. Factor Structure of Participant Beliefs

To analyze whether participants distinguished between the
six robot skills, we calculated the intercorrelations between
responses to the six post-game skill belief questions. All but
two of the intercorrelations were low (|r| <= .15): beliefs
about natural language understanding and object recognition
were positively correlated (r = .47), as were beliefs about
face detection and object recognition (r = .42). These results
suggest that participants probably thought of the robot as
having at least four or five distinct skills.

G. Accuracy of Assumptions About How Participants
Choose Events

We also analyzed how well participants met our assump-
tions about how they would study the event options and make
choices. Less than one third—69 (29%) of 240—met our
assumptions as defined in Section VI-A by the underlined
response options. These participants who met our assump-
tions did not constitute a large enough sample for statistical
analysis, as there were as few as 5 participants in some of
the 8 conditions. Instead, we performed a visual comparison
of the histograms of scores from participants’ choices only
for these participants vs. those for all 240 participants. This
did not reveal a clear and consistent increase or decrease in
our system’s performance. Therefore, if our system worked
better for participants who met our assumptions, it was likely
by only a small amount.



Fig. 1: Histograms of scores from the participant’s choices only, separated by game board and robot policy.

VIII. DISCUSSION

Our system mostly failed to achieve its goals: it did not im-
prove the accuracy of participant beliefs about key skills for
most game boards, and therefore did not help participants to
avoid the trap events and score more points. Here we present
recommendations for future systems based on insights from
our findings. We also present recommendations for future
studies in this and similar domains.

A. Modeling and System Design Recommendations

Regarding the state representation and initial estimate,
the size of the robot’s belief space, which spans all possible
user beliefs, remains a challenge. Our system used a 64-
dimensional continuous space spanning all possible values
of the 64 independent probabilities that comprised the user’s
belief. One way this dimensionality could be reduced is if the
user is assumed to believe that the robot does not use its skills
in complicated combinations. In the case where the robot
only uses its skills individually, for example, beliefs about
N skills could be represented with only N probabilities—
i.e., an independent probability for each skill. If beliefs
about skill combinations are deemed necessary for the model,
independent confidence levels could be tracked for just a
subset of them, as it seems unlikely that a user could maintain
probabilities for all possible skill combinations at once.

Also, we defined the user’s belief space according to the
six capabilities we knew the robot to have; another approach
would be to discover this structure from interaction data.
The factor structure of participants’ beliefs from our study
showed that this can be important, as there were two pairs
of skills that participants did not fully distinguish. Such an
analysis could also uncover other, unforeseen elements of the
user’s state that inform their estimate of the likelihood that
the robot’s action will succeed.

If the dimensionality of the robot’s belief space is not too
high, the robot’s belief could be handled by a particle filter
with a particle for each candidate user belief state.

In the future, the transition model should be learned from
interaction data. One approach is to make a separate model
for each robot action that estimates the likelihood in the
user’s mind that the robot will succeed given a certain skill
combination. If combinations of skills are suspected to be
used in the user’s interpretation, perhaps in Boolean (e.g.,
AND, OR) relationships, a decision tree or a neural network
could be used to capture this.

It might be important to use a different approach than
the one just described if the user’s belief updates are not
approximately Bayesian, or if the user’s interpretation of
a robot action is influenced by the history of past robot
actions they have observed, thereby breaking our Markov
assumption. For example, the transition model may need to
account for nonmonotonic reasoning [15] by which people
make provisional belief updates that can be revised later in
response to additional information.

Also, changes to the user’s belief about one capability
might itself cause their beliefs about other capabilities to
change. For example, manipulating a robot’s apparent speech
capabilities can change someone’s perception of its physical
capabilities [16]. This kind of relationship would make it
hard to build a model from interaction data of the believed
likelihood of the robot’s success as suggested above; beliefs
that change when a robot action is viewed might not be part
of the user’s determination of that action’s success likelihood.

The observation model should use not just the user’s
current beliefs, but also any additional contextual variables
found to influence the user’s actions (e.g. in our domain:
riskiness, thoughtfulness). Also required is an accurate un-
derstanding of how the user will choose their actions in the
task domain, which can be difficult to obtain for unstructured
or novel scenarios. Lastly, the failure of our observation
model to use participants’ choices to correct our system’s
belief estimates could partly be because the scaling parameter
for the heuristic adjustment method described in Section V-C
was too small; that method would not have been necessary if
a full particle filter had been used instead of a single particle.

The Monte Carlo tree search used for action selection
worked as expected: when using our system, the robot
intentionally failed at the teaching events to warn participants
away from the trap events. Currently, the MCTS tries to
maximize the combined score of the user-robot team; it could
also be explicitly incentivized to minimize the error in the
user’s beliefs relative to the robot’s actual capabilities.

Future work on this problem could also benefit from
the literature on Intelligent Tutoring Systems. Many such
systems improve learning via personalized “curriculum
sequencing”—i.e., manipulating the order in which learning
materials are presented—using a “student model” of the
student’s knowledge and learning process [17].

B. Study Design Recommendations
Our results showed that our assumptions about how people

would interpret the robot’s actions in this domain were



largely wrong. Future work should begin with a more
qualitative approach—e.g., using a think-aloud protocol—to
discover which factors are important for modeling the user.

Additionally, measurements of the user’s beliefs about
the robot’s skills should be more frequent in future studies.
After witnessing each robot action, participants could rate the
likelihood that the robot would succeed at a series of hypo-
thetical events. This would still avoid revealing the identities
of the six skills during the game, and the hypothetical events
could be chosen so as to measure beliefs about all six skills.
Using this measure at the beginning of the interaction could
establish the robot’s initial estimate of the human’s beliefs.

Future work should also study when it is better to com-
municate explicitly about perceptual capabilities via dialogue
instead of using implicit communication as in this work.

IX. CONCLUSIONS AND OUTLOOK

This work was the first attempt to model a user’s beliefs
about a robot’s perceptual capabilities and make plans to
influence those beliefs via the robot’s actions. We docu-
mented challenges with accomplishing these two goals from
our study of 240 online participants who used the system
we developed. We also presented recommendations for future
systems, and for designing future studies to better understand
users and to collect better data for training models.

In future work, robots could use dialogue to say what they
can sense, or an instruction manual or explanatory video
could provide the same information. Alternatively, robots
might be designed such that their appearance and behaviors
implicitly communicate their perceptual capabilities to users
without the need for explicitly modeling user beliefs. Our
work is important, however, in the cases where belief repair
is needed. When a robot’s dialogue is misunderstood or
ignored, when there is significant variance in how people
interpret a robot’s actions, or as a safety precaution in case
of unforeseen circumstances, robots will need to reason
explicitly about how to make their perceptual capabilities
clear to the people who need to know.
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