
Smart Contract Audit

Tropykus

Smart Contract Audit
V211208 Prepared for Tropykus • November 2021

TablE oF cOnTEntS

1. Executive Summary

2. Assessment and Scope

3. Summary of Findings

4. Detailed Findings

TRO-4 RBTC can be stolen

TRO-5 Blocks per year might lead to wrong interest model

TRO-6 Unhandled math errors

TRO-7 Deposit subsidy might be ignored by CRBTC

5. Disclaimer

© 2021 Coinspect 1

1. Executive Summary

In November 2021, Tropykus engaged Coinspect to perform a source code review
of their Protocol lending platform.. The objective of the project was to evaluate the
security of the smart contracts.

Tropykus is a fork of a previously audited project, rLending, which is a fork of the
Compound project. A previous version of Tropykus was already audited by
Coinspect. This incremental audit focuses on the changes introduced since
Coinspect's last review.

The following issues were identified during the assessment:

High Risk Medium Risk Low Risk

1 2 1
Fixed

1
Fixed

1
Fixed

1

The high risk issue TRO-4 warns about not verifying the value sent in a transaction.
The medium risk issue TRO-5 refers to wrong assumptions made about the RSK
blockchain. The medium risk issue TRO-6 and the low risk TRO-7 caution about bad
error handling.

© 2021 Coinspect 2

https://coinspect.com

2. Assessment and Scope
The audit started on November 15, 2021 and was conducted on the tag v0.2.4 of
the git repository at https://github.com/Tropykus/protocol as of commit
6f61541e7fbfd68c85e6e7c66d9e8f167a536a44 of November 14, 2021.

The aggregated file changes are shown with their respective sha256 hash below
9b4466b38cadb046fdea51416ad38c58417fb9826d24215d89d29048f9a1e6b8 contracts/CCompLikeDelegate.sol

527e4240980a202d28e4fe10f107e0c7852b296fda8a7bacdcfe78519aaf18f1 contracts/CErc20.sol

bf3b9fd86d7d3ba1340ca7a9e4e76d5210392b1c83aef76a606a4b2ffd97727f contracts/CErc20Delegate.sol

c4488c256dfb38e071dffd7642d03beb491349acfb736f02308d85266add76f7 contracts/CRBTC.sol

857fb7bc87ec044d6fc6bff354f9a65526972827b313da23f07c50f2c0775df7 contracts/CRBTCCompanion.sol

da01bb6d70c4e5507023a3281820d87bdc8d9985a42ce55f32d85e7d82f46e61

contracts/CRBTCCompanionInterface.sol

e054c7f837a8707dae835c9e78098dcf0f23baa701a66521782382b844aa23d4 contracts/CRDOC.sol

b5b608e8b9c6c63494aafda3ce4e632d15dc140db6c753fa5ae4dd50aa71562c contracts/CToken.sol

8f20e6c304df72cb63c15be5394677f7b351e4169436cd73e937dba8e7975256 contracts/Comptroller.sol

0e667da76fe3a26aa03fab5a97c31d66527fbcaebc834f83c026acbf4b584716 contracts/ComptrollerG1.sol

c52d57b7cafcd7ab45ba7ebaa35270c5ec0a61744afce1c12d5ff67a2e58c6c1 contracts/ComptrollerG2.sol

51bfbb8f6a6603a7cee77da13babc31c70b9236671f9ed374896a5ac10ac5d6c contracts/ComptrollerG3.sol

60fd605e7f3ef05834743181cf63502132fa3e1874316e7530c8249d060c1ec8 contracts/ComptrollerG4.sol

6c26f79ab65cb4fe97be5502cc920931ffe2b542a53e22be8b34f3f047566213 contracts/ComptrollerG5.sol

93a40f2b4784a287b76066091aef9f6edcb93f6f2ea567407ab6eeb1cd1fde5d contracts/ComptrollerG6.sol

b49f47b93ddbfb965a741de9a49a8d9ead695af11f0ee51360c2b9e56a6b1cda contracts/Governance/TROP.sol

On December 6, 2021 an update with fixes was submitted for review. The
corresponding sha256 hashes of the updated files are shown below.
0cebef1032e555ff9197c403b619347da7eecf71be878039df594f3a00ad15d5 CRBTC.sol

d738e9626f79940156cc442aa7a819472da74948ad8b2f7f6958a44808db8216 CToken.sol

2419423352373dfef33a5b2870bfcc2ef4fd9cdacebb2d4ba9810045645a4dbd BaseJumpRateModelV2.sol

502240407f21107952627196f70a985d540a027f677699f2c411729c91959390 HurricaneInterestRateModel.sol

ec62aa919d359d30158a51912b31948cbe5d05d05a3bdce8b1738b6bff725d3f InterestRateModel.sol

aa9f60fd3cad493181db3235e34cf7729cacd4e8fb378bbfae51dc0763e9ba8d JumpRateModel.sol

14abaa64a2a9a94b401495c743b288137f55853d6534a4dc55ec1b68348b8ca2 JumpRateModelV2.sol

b416197ac83f95a40059569faacb844400d13be644acfc09fa333bd0abf37e4e WhitePaperInterestRateModel.sol

The smart contracts are compiled with an outdated Solidity compiler version:
0.5.16. Newer compiler versions include several gas usage optimizations, compile
time warnings improvements and bug fixes. For example, a recently published
security issue was fixed in Solidity compiler 0.8.4 and affects all previous versions
(see Solidity ABI Decoder Bug For Multi-Dimensional Memory Arrays for more
information).

Tropykus is based on rLending and Compound protocol and will be deployed the
RSK blockchain. Tropykus implements a new interest model called Hurricane

© 2021 Coinspect 3

https://github.com/Tropykus/protocol
https://blog.soliditylang.org/2021/04/21/decoding-from-memory-bug/

Interest Rate Model with guarantees of a Minimum Interest Rate provided by a
subsidized fund.

The main documentation used is the whitepaper provided by the Tropykus team.
The motivation and details of the Hurricane Interest Rate Model can be found there.

The largest set of changes introduced by Tropykus are for supporting multiple
interest rates for the CToken contract and the implementation of the Hurricane
Interest Rate Model.

The new version includes:
● Limits on rBTC lending
● Limits on RDOC borrowing
● Reduced smart contract size
● Changed error strings for error codes
● New logic for redeeming and accruing interest when using the Hurricane rate

model
● Bug fixes

A fixed block time is assumed by the code, but in the RSK network the average
block time is not as stable as in Ethereum and it could change, leading to TRO-5, an
issue where the interest rate can be miscalculated.

The changes that added the repayBorrowAll function also missed an important
validation about the value sent on the CRBTC contract, allowing users to steal funds
from the contract (see TRO-4).

It is important to note that limiting minting per address is ineffective as the same
user can split the minting desired in any number of addresses.

© 2021 Coinspect 4

https://firebasestorage.googleapis.com/v0/b/tropycofinance.appspot.com/o/Tropykus_Protocol%20V4.pdf?alt=media&token=d2b0cb1e-4163-432f-8b17-38df7393baff

3. Summary of Findings

Id Title Total Risk Fixed

TRO-4 RBTC can be stolen High ✔

TRO-5 Blocks per year might lead to wrong interest
model

Medium ✓

TRO-6 Unhandled math errors Low ✔

TRO-7 Deposit subsidy might be ignored by CRBTC Medium ✔

© 2021 Coinspect 5

4. Detailed Findings

TRO-4 RBTC can be stolen

Total Risk

High

Impact
High

Location
contracts/CRBTC.sol

Fixed
✔

Likelihood
High

Description
Attackers can steal rBTC by calling the repaying borrow function without actually
returning funds.

When calling the repayBorrowAll function in the CRBTC contract, the contract never
checks that the correct amount was sent in the transaction.

The repayBorrowAll function calls the internal repayBorrowFresh method with the
repayAmount equals to uint256(-1). The function calls an inherited method to check
the transferred amount,

[contracts/CToken.sol]
1594 if (repayAmount == uint256(-1)) {
1595 vars.repayAmount = vars.accountBorrows;
1596 vars.actualRepayAmount = doTransferIn(
1597 payer,
1598 vars.repayAmount,
1599 true
1600);
1601 }

But in the implementation the value is not checked.

[contracts/CRBTC.sol]
192 function doTransferIn(
193 address from,
194 uint256 amount,
195 bool isMax
196) internal returns (uint256) {
197 isMax;

© 2021 Coinspect 6

198 // Sanity checks
199 require(msg.sender == from, "sender mismatch");
200 return amount;
201 }

The msg.value is never validated through all the repayBorrowAll calls.

Recommendation
Check that the funds were sent within the transaction.

Status
Fixed in commit f00b7d30713f90af9fd7f9872f7a4c7674d579de

© 2021 Coinspect 7

TRO-5 Blocks per year might lead to wrong interest model

Total Risk

Medium

Impact
Medium

Location
contracts/InterestRateModel.sol

Fixed
✓

Likelihood
High

Description
A wrong interest rate might be accrued by an incorrect assumption about the number
of blocks per year.

The difficulty adjustment algorithm used by the RSK network does not guarantee an
average time between mainchain blocks, it targets a given density of blocks including
trunk and ommen blocks.

In RSK, most miners are configured to minimize mining pool bandwidth and create a
high number of ommers. This is permitted by design. They can also be configured to
minimize the number of ommers, and consume more bandwidth. RSK targets
approximately a density of 2 blocks every 33 seconds, and currently one block is an
ommer, and the other is part of the trunk.

If miners decide to update their configurations to minimize ommer blocks the average
block time may go down to 16.5, making the number of the block unreliable as a time
measure.

Recommendation
Use the block time value instead of the block number for calculating the accrued
interest.

Status

Partially fixed in commits 3785220a20abb08f0bdcbb93891e8678066456aa and
cb40e0a3413b043960e8b1a8ac8acfade9aebefe. Instead of using the block time
Tropykus team decided to make the blocksPerYear variable updatable. This is not

© 2021 Coinspect 8

a solution per se, but allows the admins of the network to solve the issue through
monitoring and updating this value.

Additionally setBlocksPerYear does not emit any event. This makes it difficult for
users to track changes on the value that might be significant for them.

© 2021 Coinspect 9

TRO-6 Unhandled math errors

Total Risk

Low

Impact
Low

Location
contracts/CToken.sol

Fixed
✔

Likelihood
Medium

Description
The CarefulMath and Exponential libraries provide methods for safely performing
math operations similar to OpenZeppelin SafeMath library but with different error
handling. Where the SafeMath lib reverts, the CarefulMath lib returns an error.

In the tropykusInterestAccrued function all errors returned by CarefulMath and
Exponential are ignored.

[contracts/CToken.sol]
508 function tropykusInterestAccrued(address account)
509 public
510 view
511 returns (
512 MathError,
513 uint256,
514 uint256,
515 uint256,
516 uint256
517)
518 {
519 SupplySnapshot storage supplySnapshot = accountTokens[account];
520 uint256 promisedSupplyRate = supplySnapshot.promisedSupplyRate;
521 Exp memory expectedSupplyRatePerBlock = Exp({
522 mantissa: promisedSupplyRate
523 });
524 (, uint256 delta) = subUInt(
525 accrualBlockNumber,
526 supplySnapshot.suppliedAt
527);
528 (, Exp memory expectedSupplyRatePerBlockWithDelta) = mulScalar(
529 expectedSupplyRatePerBlock,
530 delta
531);
532 (, Exp memory interestFactor) = addExp(
533 Exp({mantissa: 1e18}),
534 expectedSupplyRatePerBlockWithDelta
535);
536 uint256 currentUnderlying = supplySnapshot.underlyingAmount;
537 Exp memory redeemerUnderlying = Exp({mantissa: currentUnderlying});
538 (, Exp memory realAmount) = mulExp(interestFactor, redeemerUnderlying);

© 2021 Coinspect 10

539 (, uint256 interestEarned) = subUInt(
540 realAmount.mantissa,
541 currentUnderlying
542);
543 (, Exp memory exchangeRate) = getExp(
544 realAmount.mantissa,
545 supplySnapshot.tokens
546);
547 return (
548 MathError.NO_ERROR,
549 interestFactor.mantissa,
550 interestEarned,
551 exchangeRate.mantissa,
552 realAmount.mantissa
553);
554 }

There is a similar issue in the tropykusExchangeRateStoredInternal function where
errors are ignored. The caller even assumes that the only possible error is when there
is no supply as shown below.

456 (error, exchangeRate) = tropykusExchangeRateStoredInternal(
457 msg.sender
458);
459 if (error == MathError.NO_ERROR) {
460 return (MathError.NO_ERROR, exchangeRate);
461 } else {
462 return (MathError.NO_ERROR, initialExchangeRateMantissa);
463 }

Coinspect did not confirm the exploitability of these issues, but improper error
handling increases security risks.

Recommendation
Do not ignore errors that could lead to security issues.

Status
Fixed at commit c892950eeb78045a08c429ff2f2cf7f73bb0cb12.

© 2021 Coinspect 11

TRO-7 Deposit subsidy might be ignored by CRBTC

Total Risk

Medium

Impact
High

Location
contracts/CRBTC.sol

Fixed
✔

Likelihood
Low

Description
If a user deposits a subsidy in the CRBTC contract it might be ignored.

The addSubsidy function calls the addSubsidyInternal which can return an error
when accruing interest, but the caller does not revert appropriately.

[contracts/CRBTC.sol]
232 function addSubsidy() external payable {
233 _addSubsidyInternal(msg.value);
234 }

[contract/CToken.sol]
2215 function _addSubsidyInternal(uint256 addAmount)
2216 internal
2217 nonReentrant
2218 returns (uint256)
2219 {
2220 uint256 error = accrueInterest();
2221 if (error != uint256(Error.NO_ERROR)) {
2222 // accrueInterest emits logs on errors...
2223 return fail(Error(error), FailureInfo.ADD_SUBSIDY_FUND_FAILED);
2224 }
2225
2226 (error,) = _addSubsidyFresh(addAmount);
2227 return error;
2228 }

In the case that an error is returned in line 2223, the money transferred within the
transaction is kept in the contract, but without the side effects of _addSubsidyFresh.

Recommendation
Revert on error in addSubsidy.

© 2021 Coinspect 12

Status
Fixed at commit f2b2e5b773b29c15af6b76e432b4bc5f32541873.

5. Disclaimer
The information presented in this document is provided "as is" and without
warranty. The present security audit does not cover any off-chain systems or
frontends that communicate with the contracts, nor the general operational security
of the organization that developed the code.

© 2021 Coinspect 13

