
Smart Contract Audit

Tropykus

Smart Contract Audit
Prepared for Tropykus • July 2021

v211407

1. Executive Summary

2. Assessment and Scope

3. Summary of Findings

4. Detailed Findings
TRO-001 - Outdated Solidity compiler version
TRO-002 - ERC20 approve front running
TRO-003 - Hardcoded COMP token address

5. Disclaimer

1. Executive Summary

In June 2021, Tropykus engaged Coinspect to perform a source code review of the

Tropykus Protocol lending platform.

Tropykus is a fork of a previously audited project, RLending, which is a fork of the

Compound project. This incremental audit focused on the changes introduced since

Coinspect's last review.

Coinspect found the modifications performed to be consistent and to not affect the

original project’s threat model and security assumptions. The new code additions

are clearly documented.

Coinspect did not find any vulnerabilities that could allow adversaries to steal user

funds.

However, as Coinspect previously reported during the RLending project audit, the
current oracle infrastructure available on the RSK network represents a potential
risk and constitutes a single point of failure.

© 2021 Coinspect 1

https://tropykus.finance/
https://coinspect.com

2. Assessment and Scope
The audit started on June 30, 2021 and was conducted on the master branch of the

git repository at https://github.com/Tropykus/protocol as of commit

3b2ea8bf1364b6b7af2e114ec2c550d1c9cbebfb of June 30, 2021.

The Tropykus Finance Protocol whitepaper (June 18, 2021 version) was utilized as a

reference during the engagement.

The smart contracts are compiled with an outdated Solidity compiler version:

0.5.16. Newer compiler versions include several gas usage optimizations, compile

time warnings improvements and bug fixes. For example, a recently published

security issue was fixed in Solidity compiler 0.8.4 and affects all previous versions

(see Solidity ABI Decoder Bug For Multi-Dimensional Memory Arrays for more

information).

Tropykus Protocol will be bootstrapped by a set of “protocol sponsors” who will act

as the initial administrators with the capacity to configure all contracts in the system

and update all parameters. After the system matures, governance will migrate to a

more decentralized model involving the protocol users.

The most important modification introduced by Tropycus is the Hurricane interest

rate model which guarantees a base return rate for lenders. It is worth noting that

Tropykus markets can use either the new Hurricane interest model or the legacy

Compound interest rate model. A subsidy fund was added with the objective of

subsidizing the promised yields to the market suppliers. The smart contracts allow

anybody to add funds to any market’s subsidy fund and according to the whitepaper

this funds will be initially provided by the protocol sponsors. However, the origin of

funds, minimum values, and maintenance schedule are not programmed in the

© 2021 Coinspect 2

https://github.com/Tropykus/protocol
https://blog.soliditylang.org/2021/04/21/decoding-from-memory-bug/

smart contracts in scope for this audit. The whitepaper does not make clear which

will be the criteria that is going to be used for this purpose. It is worth observing

that if the subsidy funds are not enough, the protocol might fail to meet the

promised rate to suppliers.

The protocol exposed attack surface suffered minor modification. The most

important modifications to the smart contracts were concentrated in the following

files:

● InterestRateModel.sol

● CErc20.sol

● CRBTC.sol

● CRBTC.sol

● CToken.sol

● CTokenInterfaces.sol

● HurricaneInterestRateModel.sol

● SignedSafeMath.sol

A detailed list of the changes performed to each file is provided in the Tropykus

whitepaper.

The CToken contract was the most heavily modified source file. Several Tropykus

specific scenarios are handled after checking if the Tropykus interest model is being

utilized by calling the isTropykusInterestRateModel function. The new

tropykusExchangeRateStoredInternal function was added to calculate the

promised supply rate. The reserves capitalization was incorporated into the

accrueInterest function, by calling newReserves and checking if the utilization

rate is below the optimal rate. Changes to the supply business logic were

performed to the mintFresh and redeemFresh functions, which now utilize the

© 2021 Coinspect 3

subsidyFund when appropriate, according to the information stored in

supplySnapshot. The new _addSubsidyInternal function allows adding funds to

the subsidy fund and can be called by anybody.

The CRBTC is a CToken implementation that wraps RBTC.

The HurricateInterestModel contract implements getSupplyRate and

getBorrowRate functions according to the formulas in the whitepaper. The legacy

functions were refactored to the InterestRateModel contract.

The TROP contract implements the project’s governance token, which allows

delegation for voting purposes. The contract supports EIP-712 and delegateBySig

functionality.

Regarding the price oracles utilized by Tropykus, there have been no updates to the

code handling the price data feeds, and as Coinspect previously reported during the

RLending project audit, the current available infrastructure represents a potential

risk and constitutes a single point of failure.

A document acknowledging this risk and presenting users a roadmap can be found

in Tropykus code repository:

https://github.com/Tropykus/protocol/blob/main/audit/oracles.md.

Neither Compound Protocol’s security nor the Money on Chain oracle

infrastructure were evaluated during this audit.

It is recommended to follow-up with all changes to the Compound project in

order to quickly react if a vulnerability is fixed as it is very probable that it also

affects Tropykus.

© 2021 Coinspect 4

https://github.com/Tropykus/protocol/blob/main/audit/oracles.md.
https://github.com/Tropykus/protocol/blob/main/audit/oracles.md

3. Summary of Findings

ID Description Risk Fixed

TRO-001 Outdated Solidity compiler version Info ✘

TRO-002 ERC20 approve front running Info ✘

TRO-003 Hardcoded COMP token address Info ✘

© 2021 Coinspect 5

4. Detailed Findings

TRO-001 Outdated Solidity compiler version

Total Risk

Info

Fixed
✘

Impact

Likelihood

Location
*

Description

Using outdated Solidity compiler versions might miss fixes and ignore
optimizations and warnings introduced in newer versions which could help flag
security vulnerabilities.

The contracts reviewed during the assessment are specified to be compiled with
Solidity version 0.5.16 at least:

pragma solidity ^0.5.16;

The latest Solidity version available is 0.8.6. Version 0.5.16 is outdated, and does
not contain all the checks included in the latest versions. The newer versions
include changes to the language that render it safer, preventing some mistakes that
could lead to security-relevant bugs. Also, bug fixes in Solidity are not backported,
so it is always recommended to upgrade all code to be compatible with Solidity
v.0.8.6.

Recommendation

Upgrade the contracts to the newest version of Solidity if possible.

© 2021 Coinspect 6

TRO-002 ERC20 approve front running

Total Risk

Info

Fixed
✘

Impact

Likelihood

Location
CToken.sol
ERC20.sol

Description

An attacker could leverage a well known issue in the ERC20 standard to spend

more than their intended allowance when this value is updated.

The CToken and StandardToken contracts suffers from a well known ERC20

standard security vulnerability that takes place when the token transfer allowance

is modified: an attacker can front run the approve transaction to transfer the original

allowed amount of tokens (N) before the allowance is changed, and then, after the

approve transaction takes place, the attacker can again transfer more tokens (M),

obtaining as a result more tokens than the toker owner intended (N+M instead of

M).

Note this issue is correctly documented in the source code:
* @dev This will overwrite the approval amount for `spender`

* and is subject to issues noted [here](https://eips.ethereum.org/EIPS/eip-20#approve)

Recommendation

Add the functions increaseApproval and decreaseApproval to the affected

contracts, using as a template the implementations in the OpenZeppelin library.

https://github.com/ethereum/EIPs/issues/20#issue comment-263524729
https://github.com/OpenZeppelin/zeppelin-solidity/blob/master/contracts/token/StandardToken.sol#L70

© 2021 Coinspect 7

https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
https://github.com/OpenZeppelin/zeppelin-solidity/blob/master/contracts/token/StandardToken.sol#L70

TRO-003 Hardcoded COMP token address

Total Risk

Info

Fixed
✘

Impact

Likelihood

Location
ComptrollerG6.sol

Description

The address of the COMP token in Ethereum mainnet is hardcoded in the
ComptrollerG6 contract:

/**

* @notice Return the address of the COMP token

* @return The address of COMP

*/

function getCompAddress() public view returns (address) {

return 0xc00e94Cb662C3520282E6f5717214004A7f26888;

}

This function is used in transferComp and grantCompInternal functions, for
example:

function transferComp(address user, uint userAccrued, uint threshold)

internal returns (uint) {

if (userAccrued >= threshold && userAccrued > 0) {

TROP comp = TROP(getCompAddress());

Recommendation

Define a constant to replace the hardcoded address.

© 2021 Coinspect 8

5. Disclaimer

The information presented in this document is provided "as is" and without

warranty. The present security audit does not cover any off-chain systems or

frontends that communicate with the contracts, nor the general operational security

of the organization that developed the code.

© 2021 Coinspect 9

