
Free TON Governance (Part II)
Repo — https://github.com/RSquad/BFTG

(contest branch: contest)
Tg — @inyellowbus

About
This document presents RSquad's submission for the Free TON Governance (Part II) Contest
facilitated by DGO Subgovernance.

The code of the developed system of smart contracts can be found at
https://github.com/RSquad/BFTG

The document contains:
● an overview of the statuses of competition requirements in relation to the solution

developed by RSquad;
● description of the main smart contracts of the BFTG smart contract system;
● description of the smart contracts of the SMV smart contract system;
● description of third-party smart contracts used by the BFTG smart contract system;
● description of smart contracts used for testing;
● DeBots description;
● description of basic user scenarios;
● description of the test environment and infrastructure;
● description of test cases.

The BFTG smart contract system has been developed following the requirements provided in
the contest description and in accordance with the architectural specifications developed as
a part of the Practical BFT Governance.

Limitations:
● Node SE was used for development and testing;
● the developed solution deployed by RSquad in the DevNet network, but at the time of

March 24 DevNet does not work consistently. RSquad will retest the deployed
solution and fix all troubles after DevNet becomes stable again.

Glossary
● smc — smart-contract
● System — the BFTG smart contract system
● SMV — the DGO SMV smart-contract system (https://github.com/RSquad/smv)

https://github.com/RSquad/BFTG
https://github.com/RSquad/BFTG
https://github.com/RSquad/smv

Overview
The purpose of the System is to automate the decentralized governance for Free TON
communities through voting.

The following figure shows the top-level diagram that describes the System:

Figure 1 — High-level System Architecture

The implementation of the System supports all features described in previous contest
(https://dgo.gov.freeton.org/proposal?proposalAddress=0:9d42e2c600d4d72ca45cdefb467
63605bdaa70a549eed4f8619358613ce05eaa). Requirements from the current
specifications of the contest is described in the table below:

Feature Status Comment

The BFTG system is built on
the basis of the existing
modified SMV solution

Fully
supported

The SMV system is implemented and
refined for the needs of the contest
specification

https://app.diagrams.net/?page-id=DzRJQlp8F3GLFMfMZv6E&scale=auto#G1kiZKO-KEckHkH-Lgm4d0zBvb_72Sx5_z
https://dgo.gov.freeton.org/proposal?proposalAddress=0:9d42e2c600d4d72ca45cdefb46763605bdaa70a549eed4f8619358613ce05eaa
https://dgo.gov.freeton.org/proposal?proposalAddress=0:9d42e2c600d4d72ca45cdefb46763605bdaa70a549eed4f8619358613ce05eaa

Creation of ContestProposals,
deployment of Сontests
based on the results of
ContestProposals

Fully
supported

For any contest of the system, a special
Proposal must be created, according to
the results of which Contest is accepted.

New full-cycle contests
contracts

Fully
supported

Contests have been completely
redesigned and provide enhanced
functionality relative to existing contests
according to the competition specification

Hidden voting to the stage of
the reveal

Fully
supported

Two-phase voting mechanism has been
developed in which jury members vote in
encrypted votes and disclose them after
the vote is completed

Receiving prizes and awards
of the jury

Fully
supported

All payments come from the system

Full featured tags and jury
groups

Fully
supported

The System emits a ProposalFinalized
event when the timed / premature
proposal ends.

Formation of jury groups from
the winners by contest tags

Fully
supported

New mechanism for selecting the jury, in
which only the winner of the contest can
become a jury member for the
corresponding tag

Using tags to select a jury in a
contest

Fully
supported

The contestants are selected only from
the groups of the corresponding topics

Lock of a winning prize in a
special jury group

Fully
supported

Part of the prize can be locked up with a
special group

Sending the jury group stake
to validation

Partially
supported

A mechanism has been developed to
implement this function, but since it is
ideologically unclear who will be the holder
of the node, the mechanism is not ready
for production operation

Mechanics for calculating the
duration of the contest stages

Partially
supported

Contest stages are calculated according
to a special formula depending on the
number of submissions, the period for
submitting applications, the maximum
score, etc. At the moment, the formula is
simplified relative to the one given in the
document, since there is no possibility of
implementing a floating point number

Mechanics of allocating funds
for contests from giver

Fully
supported

Contests receive a prize fund from special
givers whose interface is developed

Point value calculation Fully The prize is calculated according to the

mechanics supported formula from the specification and is
based on the number of earned points

DeBots coverage all of the
main scenarios of the system

Fully
supported

The functionality of the system is
supported by the latest version of the
DeBots on interfaces

Described slashing mechanics
and jury blame

Currently
is not
supported

Temporary jury voting slots
and corresponding
punishment mechanics for
skipping a slot

Currently
is not
supported

System’s Smart contracts

The main smart contracts of the System

Contest
The Contest system smart-contract encompasses the full cycle of the FreeTON contest
facilitation. Major segments of the functionality are:

● collection of contest entries;
● recording jury evaluations of the entries;
● assessment of the jury evaluations according to the contest regulations;
● calculation of the rewards for contestants and jurors following generally accepted

principles of governance;
● distribution of the rewards to the winners per the specified process.

Collection of contest entries
submit(address participant, string forumLink, string fileLink, uint hash, address contact)
Records contest entries submitted by contenders.

Recording jury evaluations of the entries
vote(Evaluation evaluation)
Processes a single vote.

voteAll(Evaluation[] evaluations)
Processes mass votes.

Assessment of the jury evaluations according to the contest regulations
finalizeResults()

Processes the results and form the final set of raw data.

Calculation of the rewards for contestants and jurors following generally accepted
principles of governance
rank()
Assesses the entries quality and the jurors' performance according to the specified metrics
and criteria.

Distribution of the rewards to the winners per the specified process
claimContestReward()
Allows winners of the contest to claim their prizes.

claimJurorReward()
Allows qualified members of the jury of the contest to claim due rewards.

claimContestRewardAndBecomeJuror()
Allows winners of the contest to invest parts of the hard earned rewards in the selected
areas of expertise governed by this contest, effectively joining the respective jury groups.

Transparency of the contest at all stages
The following get-methods provide access to the key data of the Contest contract:
getEntryStats(uint8 entryId) public view returns (Stats entryStats)
Stats for an entry.

getJurorStats(uint8 jurorId) public view returns (Stats jurorStats)
Stats for a juror.

contestStatistics() public view returns (uint16 pointsAwarded, uint16 totalVotes, uint16
avgScore, uint8 entries, uint8 jurorsVoted)
Overall contest statistics:

● total points awarded by all jurors combined;
● total number of votes;
● average score (multiplied by 100);
● number of entries submitted;
● unique jurors voted.

getCurrentData() external override view returns (ContenderInfo[] info, address[] juryAddresses,
Stats[] allStats, mapping (uint16 => Mark) marks, mapping (uint16 => Comment) comments,
mapping (uint16 => HiddenEvaluation) hiddens)
Snapshot of the contest data.

getFinalData() public view returns (Stats[] contestResults, Stats[] juryStatistics, mapping
(address => Payout) contestPayouts, mapping (address => Payout) juryPayouts,
ContestTimeline timeline)
Resulting contest data.

getJurorId(address addr) external view override returns (uint8 jurorId)
Returns juror ID for the specified address.

getContestInfo() external override returns (ContestInfo contestInfo)
Returns general information about the contest.

getContestTimeline() external override returns (ContestTimeline timeline)
Returns timeline of the contest.

getContestSetup() external override returns (ContestSetup setup)
Returns all components of the contest setup.

getContest() external view override returns (ContestInfo contestInfo, ContestTimeline timeline,
ContestSetup setup, Stage stage)
Returns the exhaustive set of data points for the contest.

JurorContract
Contract for voting for submissions. Each member of the jury transmits the public key when
he becomes a member and Demiurg deploys the JurorContract for him.

Through it, you can vote with hidden votes, reveal the votes and manage the balance in
JurYGroup.

Also, the Contract stores encrypted lines of hidden voices so that each juror can download
them through the DeBot (or any other client), disassemble them using the specified pin-code
and reveal their vote without memorizing and repeating the full vote.

JuryGroup
Contest defining the groups of the jury by tags. Allows Demiurge to register new jury
members based on Contest results, collecting stacks of winners.

The contract can be resolved by tag and provides information on the jury members to the
Contest upon request.

ContestGiver
ContestGiver is a smart contract which is developed to give prize pools to contests. It is
deployed by Demiurge and is called when creating a Contest for transferring tokens.

DemiurgeStore
The contract is the central repository of the system. It accepts and stores codes of almost
all contracts of the System, from JuryGroup to Contest. The contract is deployed first during
System initialization and waits for the required codes to be loaded. After that, other

contracts of the system can apply for the code of the required contract and receive it in the
callback.

This contract is necessary to update the system elements and also so that there is no need
to "drag" heavy code between contractions.

ContestDebot
Entry point to the Contest voting system. Allows you to view information about the Contest,
submit applications and vote for them using JurorContract. Moreover, this DeBot is deployed
once for all available System Contests and allows any user to interact with any System
Contest.

SMV smart contracts of the System

Demiurge
It is a central smart contract in a voting system. It is a ledger that creates and stores
proposals and user padawan addresses. After deployment demiurge requests Demiurge
Store smart contract to gain proposal and padawan images (tvc), list of depool addresses
and address of vote price provider.

Demiurge starts in preworking mode in which it has several checks that must be passed
before it will accept requests to deploy proposals and padawans. Checks contains the
following:

1. Check that the demiurge contains a Proposal image.
2. Check that the demiurge contains a Padawan image.
3. Check that demiurge contains a list of depools.
4. Check that demiurge contains the address of a price provider.

When the check mask becomes equal to 0 Demiurge is ready to work.

Padawan
Padawan smart contract is a user ballot that allows users to vote for proposals.

Padawan accepts deposits of different types (tons, tip3 tokens, depool stakes), converts
them to votes and sends votes to proposals. Votes cannot be converted into deposits and
received back until all the proposals that the Padawan voted for are completed. The User
can vote for different proposals with a different number of votes, but a number of locked
votes in padawan is always the maximum number of votes spent for one proposal.

At any time a user can ask to reclaim some deposits equivalent to a number of votes.
When it happens Padawan starts to query the status of all voted proposals. If any of them is
already completed Padawan removes it from the active proposals list and updates the value
of locked votes. If the required number of votes becomes less or equal to unlocked votes

then Padawan converts the requested number of votes into a deposit (tons, tokens or stake)
and sends it back to the user.

Padawan is controlled by a user contract that requested deployPadawan from
Demiurge.

Proposal
Smart contract that accumulates votes from Padawans. Deployed by Demiurge by user
request (deployProposal) Notifies about its state to Demiurge.
Can be optionally instantiated with a white list of Padawan addresses. In that case Proposal
accepts votes only from addresses from this list.

Demiurge Debot

An entry point to an onchain voting system. Allows to deploy new Demiurge to blockchain or
to attach to existing Demiurge. Also deploys Voting Debot for users.
Debot implements the interface of Demiurge Store and stores all images (tvc) and ABIs of
voting system contracts.

Voting Debot

Debot that works on behalf of the user. Deploys Padawan and allows to create new
proposals, deposit tons, convert them to votes and vote for existing proposals.

External smart contracts used by voting system

NSEGiver
Builtin giver of NodeSE. Used to deploy contracts in local node tests.

RootTokenContract & TONTokenWallet
TIP3 smart contracts. Can be found here:
https://github.com/tonlabs/ton-labs-contracts/tree/master/cpp/tokens-fungible

DePool
DePool smart contract. Used to transfer ownership of user stake to Padawan. Can be found
here:
https://github.com/tonlabs/ton-labs-contracts/tree/master/cpp/solidity/depool

PriceProvider
Simple smart contract that implements an interface of converting tons and tokens to votes.

Smart contracts used by test system

UserWallet
Test user wallet used to send requests to Demiurge and control Padawan.

BatchGiver
Giver smart contract that allows to make several transfers in one transaction. Used to
increase speed of contracts deployment.

TagsResolve
Smart contract for testing resolve of tags and jury groups.

TestDeployer
Smart contract for unit testing of various contracts of the system, implying an on-chain
deployment, for example, JuryGroup.

Voting
Smart contract for unit testing of hidden voting scenario.

How to use DeBots
1) Compile all contracts.
2) Run nodeSE locally.
3) Download tonos-cli (version >= 0.8.2).
4) Deploy and initialize Demiurge Debot. It is an entry point to the whole SMV system.

Go to the root of the project repository. Change the current directory to sbin and run
bash script deploy_pp.sh and then deploy_dd.sh.

5) After Debot starts you will see the main menu.

6) Choose menu item 1 to deploy new SMV voting system “demiurge”. Generate a new
seed phrase and generate a public key from the phrase. Enter the public key.

7) You have deployed a new voting system. Now create a personal voting client - voting
debot. Choose menu item 3 and follow the instructions of debot.

8) Your Voting Debot is deployed. Lets run it.
tonos-cli debot fetch <address_of_voting_debot>

9)
10) You don’t have a Padawan yet. Deploy it. Sign it with a seed phrase for voting debot.

11) Padawan deployed. Restart the debot and you will see the extended menu of Voting
Debot.

12) Choose menu item 2 to create a new Contest Proposal. Follow the instructions to set
proposal parameters. Sign request with Voting Debot.

13) After returning to the main menu choose menu item 3 to view a list of all proposals.

14) Choose item 1 to deposit tons into Padawan and receive votes.

15) After returning to the main menu you will see updated voting stats. You have 20
available votes.

16) Choose item 5 to vote for the proposal. Enter the number of votes to send. To
complete a proposal send more than 50% of total votes. Sign request with seed
phrase of Voting Debot .

17) Now you have 1 active proposal and 8 locked votes.

18) Choose menu item 4 to see a list of all proposals. Mention that the proposal has
status “Passed”.

19) If a proposal is passed it means that the contest smart contract is automatically
deployed by demiurge. Deploy and run Contest Debot to see contests. Open
deploy_cd.sh script and update vars demiurge (set to address of demiurge) and
store (set to address of DemiurgeDebot). Run the script.

20) Choose menu item 1 to see a list of all running contests.

21) Choose one of the contests.

You will see a list of submissions and jurors. Choose menu item 1 to add new
submission.

Return to the main menu. Choose the contest again and see the updated list of
submissions.

After the contest is finished go to the contest view. `Add submission` menu item changed to
`Vote for submission`. If you are a juror choose it and follow the instructions.

When the voting period for submissions is over run the debot again and go to the
contest view. Now you can reveal your vote as a juror. Choose `reveal vote for submission`.

Deploy and initialize the System
There are two ways to initialize the system - manual and through DeBot

Manual system start
To start the system manually, you need to prepare:

● Demiurge contract
● DemiurgeStore contract
● Padawan contract
● PriceProvider contract
● Proposal contract
● Contest contract
● JuryGroup contract
● Juror contract

System deployment script:
1. Deploy PriceProvider
2. Deploy DemiurgeStore
3. Point Proposal’s tvc to DemiurgeStore
4. Point Padawan’s tvc to DemiurgeStore
5. Point Contest’s tvc to DemiurgeStore
6. Point JuryGroup’s tvc to DemiurgeStore
7. Point JurorContract’s tvc to DemiurgeStore
8. Point address of PriceProvider to DemiurgeStore
9. Point addresses of DePools to DemiurgeStore
10. Point DemiurgeStore address to Demiurge and deploy
11. The System is ready to use

System start using DeBots
The voting system can be configured and used with debots. There are 3 debots:

1) Demiurge Debot - central debot. One for the whole voting system. Deploys Demiurge
and Voting Debot for each user.

2) Voting Debot. One debot per user. Deploy Padawan and allow users to vote.
3) Contest Debot - to work with contests: view, vote, add submissions, reveal votes.

See section ‘How to use Debots’ that describes how these debots are working

User Scenarios

Proposal creation scenarios
Proposal can be created by any user after deploying and initializing the system. Importantly,
Proposal accepts only internal messages, therefore, to deploy and work with Proposal, you
should use Multisig, UserWallet from the example or analogs.

The main parameters and functions of the Proposal are described in System’s Smart
Contracts paragraph.

To create a Proposal, you need to specify:
● Voting period — the start and end time of voting after which the results are summed

up
● The voting model is Majority, Soft Majority or Super Majority, below are the formulas

for calculating the model, where y - votes for, n - votes against, t - total votes
according to the picture:

○ Majority (y > n)
○ Soft Majority (y * t * 10 >= t * t + n * (8 * t + 20))
○ Super Majority (y * t * 3 >= t * t + n * (t + 6))

More details can be found here —
https://forum.freeton.org/t/developers-contest-soft-majority-voting-system-finished/65
An example of using all models can be found in the majorities test

● Description
● Accompanying text
● White sheet of voters:

○ Not specified, in which case all Padawan owners can vote

https://forum.freeton.org/t/developers-contest-soft-majority-voting-system-finished/65

○ Specified, in this case, only those Padawans whose identifier is indicated in
the sheet vote

○ A link to the group is specified - in this case, only Padawans members of the
specified group vote

● Appointment proclaimed
○ No final result handler
○ To create a contest
○ To add to the group
○ To remove from the group
○ To create a group

Please, see proposal creation examples here ./tests/parts/deploy-proposal.ts

Group scenarios
1. Adding a new member to the group

a. invoke applyFor(string name) function of the Group contract, as specified in
the IGroup interface. Address of the sender is considered to be applying for
the group membership. NB: Padawan contract can be efficiently used for the
application process. The corresponding function is applyToGroup(address
group, string name) from the IPadawan interface.

b. Provided the input data is valid, a proposal to include a new member to the
group is automatically created and put to voting.

c. Upon voting completion, the results are evaluated.
d. If the proposal passes, the applicant is added to the list of group members,

and becomes eligible (and responsible) to vote for the proposals in scope of
this group from now on.

2. Removing a member from the group
a. invoke unseat(uint32 id, address addr) function of the Group contract, as

specified in the IGroup interface. The respective helper in the IPadawan
interface is removeFromGroup(address group, uint32 id, address addr).

b. Provided the input data is valid, a proposal to remove the specified member
from the group is automatically created and put to voting.

c. Upon voting completion, the results are evaluated.
d. If the proposal passes, the specified member is removed from the group, thus

revoking voting rights for the proposals deployed subsequently.
3. Voting using groups (whitelist)

a. proposals deployed by a group are put to voting in a very special fashion,
enabling only a selected list of individual contracts to vote for them. This
voting model is sometimes referred to as “whitelist”. Proposals with this
feature disregard any votes cast from the addresses not on the list.

Base Voting Scenarios
1. Voting with TON

○ User deploys Padawan, or requests previously deployed Padawan
○ User sends TONs to Padawan

○ Padawan "converts" TONs into voices
○ User sends votes from Padawan to Proposal
○ The volume of sent votes in tokens is frozen
○ Proposal ends on time, or prematurely, if the result is unambiguous
○ The volume of votes sent by all users is unfrozen
○ Proposal informs Demiurge of the voting result
○ The Demiurge performs an action if it was described and the result was

accepted
○ User withdraws deposited TONs

Base and base-against test (to check voting for and against, respectively)
2. Voting with DePool:

○ User deploys Padawan, or requests previously deployed Padawan
○ The user transfers the stake from the DePool specified in the Demiurge to the

Padawan
○ Padawan "converts" stake into votes
○ User sends votes from Padawan to Proposal
○ The volume of sent votes is frozen
○ Proposal ends on time, or prematurely, if the result is unambiguous
○ The volume of votes sent by all users is unfrozen
○ Proposal informs Demiurge of the voting result
○ The Demiurge performs an action if it was described and the result was

accepted
○ User withdraws stake

3. Voting using TIP-3
○ User deploys Padawan, or requests previously deployed Padawan
○ User creates a token account for Padawan
○ User transfers tokens to Padawan
○ Padawan "converts" tokens into votes at the rate given by PriceProvider
○ User sends votes from Padawan to Proposal
○ The volume of sent votes in tokens is frozen
○ Proposal ends on time, or prematurely, if the result is unambiguous
○ The volume of votes sent by all users is unfrozen
○ Proposal informs Demiurge of the voting result
○ The Demiurge performs an action if it was described and the result was

accepted
○ User withdraws sent tokens

4. Basic voting scenario with combined votes. Combines the first three scenarios and
combines ways to get votes.

Main full-cycle scenario

1. Deploy the system
2. Create ContestProposal with needed information
3. Pass Contest parameters (contest duration, giver, tags, prize pool etc.) to Demiurge

what would be in the Contest if the ContestProposal will be accepted
4. Follow “Proposal creation scenarios” and “Base Voting Scenarios” to accept

ContestProposal
5. After ContestProposal acceptance, contest will be deployed immediately
6. Contest asks for jurors from JuryGroups by tags that was passed to the Contest
7. Contest asks Giver for prize pool
8. After the Contest receives the list of the jury and the prize pool, it will automatically

start accepting submissions
9. Participants accept their submissions
10. After the completion of the stage of accepting submissions, the Contest calculates

the voting period, which depends on the number of submissions received, and
proceeds to the voting stage

11. At the voting stage, all the jury received from the groups by the corresponding tags,
through their JurorContract, can send a vote, which consists of

a. hash of vote (type, rating, comment, submission number)
b. encoded vote strings (type, rating, comment) with a key according to the

chacha20 algorithm
12. Contest will store all votes

https://app.diagrams.net/?page-id=xUjOzbonqFCgOwDhtztT&scale=auto#G1kiZKO-KEckHkH-Lgm4d0zBvb_72Sx5_z

13. After the completion of the voting stage, the reveal stage begins, which lasts one day.
In it, the judges send their revealed votes to the Contest, or, using the DeBot, they
reveal the encryption key. DeBot, in turn, downloads the encrypted strings and
converts them to the desired format.

14. The Contest will take the hash from the revealed vote and compare it with the original
hash. If they converge, the vote will be revealed and registered

15. All jury members who have not revealed their votes are not counted in the final tally
16. After reveal stage, the Contest will calculate point value and make reward tables,

where the reward is the multiplication between the value of the point and the points
earned

17. Participants can now claim their prizes or stake a piece to become the jury.
18. The participant transmits an array of tags and the amount of TONs to each of them,

as well as his public key to create a jury contract (or not create a contract if one
already exists)

19. Contest calls Demiurge, to make winner a juror
20. Demiurge deploys JurorContract for participant and register him in JuryGroup by tags

(if JuryGroup doesn’t exists Demiurge will deploy it)
21. Now participant can pick up the leftover prize

Testing
All tests of the System are located in the ./tests directory.

To run tests, it is needed to install Node and tondev package
1. Install node.js
2. Install docker
3. Install tondev. npm install -g tondev. If you encounter problems during installation,

read the instructions in the official repository
4. Go to the project folder and install the dependencies with npm install
5. Create .env file at the root of the project and fill it in.

○ Available variables (this example is used to work with Node SE)
i. NSE_GIVER_ADDRESS=0:841288ed3b55d9cdafa806807f02a0ae0c16

9aa5edfe88a789a6482429756a94
ii. NETWORK=LOCAL

6. Create ./build folder
7. Create ./ton-packages folder
8. Run Node SE — tondev se start
9. Run — npm run test:compile — it will compile all smart-contract and run all available

tests

Infrastructure

ton-contracts.ts
Class for working with TON contracts. It provides a convenient interface for deploying,
calling, getting balance, and so on. Used in tests everywhere.

Interface:

export class TonContract {

client: TonClient;

name: string;

tonPackage: TonPackage;

keys?: KeyPair;

address?: string;

async init(params?: any): Promise<void> {}

async callLocal({ functionName, input = {} }: { functionName: string; input?: {}

}): Promise<DecodedMessageBody> {}

async call({ functionName, input }: { functionName: string; input?: any }):

Promise<ResultOfProcessMessage> {}

async calcAddress({ initialData } = { initialData: {} }): Promise<string> {}

async deploy({ initialData, input }: { initialData?: any; input?: any } = {}):

Promise<ResultOfSendMessage> {}

async getBalance(): number {}

}

ton-packages.ts
Package which consists of ABI and tvc.

Interface:

type TonPackage = {

image: string;

abi: {};

};

Description of tests

Test “voting.unit.test”
It tests the contest voting scenario. The test checks:

● calculating evaluation hash,
● calculating evaluation encoded,
● voting with hashed vote,
● revealing of hidden votes

Test “tags-resolve.unit.test”
It tests the jury groups resolving by tags. The test checks:

● JuryGroup deploying,
● new member registering,
● JuryGroup addresses calculation by tags.

Test “register-jury.test”
It tests scenario when the winner holds his stake to become a juror. The test checks:

● registration of new jury member and new group through Demiurge,
● registration of new jury member to existed group through Demiurge,
● registration of new jury member to existed group two times (to check balance top up)

through Demiurge

Test “jury-group.unit.test”
It tests the jury group's simplest case. The test checks:

● JuryGroup deploying,
● registration of new members.

Test “initial-jury.test”
It tests the case of adding initial groups to Demiurge. The test checks:

● DemiurgeStore deploying,
● Demiurge deploying,
● Initial members

Test “contest.unit.test”
It tests the case of initiating Contest. The test checks:

● Contest deploying,
● Contest tags revealing.

Conclusion
The system developed during the contest is undoubtedly extremely voluminous. But despite
this, we did it. We applied all our knowledge accumulated during the whole time of working
with FreeTON, from writing simple contracts to DePool, TIP-3 and DeBots. The total volume
of the source code of contracts is close to 200Kb, more than 20 developed contracts and the
same number of interfaces. This allows us to say that this is one of the largest systems
developed within the FreeTON network.

In addition to the implementation of the contest requirements, we also updated the first part
of the contest — the DeBots of the SMV were completely rewritten from events to interfaces.

As part of the support and subsequent DGO contests, we will definitely finalize a number of
features, and we will also improve the developed system with the latest technologies and
patterns.

