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1 Introduction
Authenticated cluster transaction log clusters preserve change history in explicit manner.

Index changes are done with publicly auditable transactions which disables any kind of privacy.
Several cluster replication protocols provide stronger privacy guarantees [Noe15], [Mie+13],

but since their index structure is unique, methods used by them don’t suit for the incorporation
into other protocols.

This paper proposes a more generic mechanism to provably hide the integral index contents
changeset.

The proposed mechanism uses NIZK arguments for arithmetic circuit satisfiability and
Elgamal cryptosystem [ElG85].

NIZK argument is instantiated as construction from [Gro16] but can be interchanged by
other constructions to meet particular requirements.

2 Preliminaries
2.1 zk-SNARK

Zero-Knowledge Succinct Non-Interactive Argument of Knowledge (ZK-SNARK) is a non-
interactive zero knowledge argument of knowledge for NP that also achieves succinctness.
ZK-SNARK contains three probalistic polynomial algorithms:

1. Setup(λ,C): for a given private parameter λ and an arithmetic circuit C, outputs public
parameters pp.

2. Prove(pp, pub_in, priv_in, out): generates an argument π that C(pub_in, priv_in) =
out without disclosure any information about priv_in

3. Verify(pp, pub_in, out, π): checks that π is a valid argument for (C, pub_in, out, pp)

We are focused on the R1CS-based zk-SNARKs. In particular, we use a Groth[Gro16]
construction because of the verifier efficiency. However, the proposed system can be used
with other zk-system constructions (e.g. [Par+13], [Mal+19], [GWC19]), including transparent
constructions that do not require trusted setup (e.g. [Set19], [BFS19]).
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2.2 Elgamal Cryptosystem
Elgamal encryption is described by Taher Elgamal in [ElG85]. In this work, we use elliptic

curve version of the cryptosystem. Let p be a large prime number. The elliptic curve E is de-
fined over a field Fp, its cyclic subgroup G ∈ E(Fp) has prime order q. Generator of group G is G.

Elgamal Cryptosystem defined by the following algorithms:

• Setup(1λ): Choose a private key x R←− Zq and a public key Q = xG.
• Encrypt(Q,m): Map message m to the point M ∈ G. The ciphertext is C = (rG,M +
rQ), r R←− Zq.

• Decrypt(C, x): For the ciphertext C = (A,B) ∈ E(Fp)× E(Fp), decrypted point is
M = B − xA. Decode point M to the message m.

The mapping into a point on the elliptic curve has to have an efficiently calculated re-
verse mapping function for big enough message space. The probabilistic embedding from N.
Koblitz[Kob87] can be used for these purposes.

Let m be the message to be mapped to an elliptic curve. We choose a random integer r and
concatenate (r||m) < q. It would be a potential x-coordinate of point M . If the solution of a
quadratic equation of elliptic curve exists then we found the point M . Else we try with a new
random integer r. Thus, the reverse mapping is a simple dropping of the bits that relate to
r from the x-coordinate. This is a probabilistic embedding so there is a negligible probability
that the point M does not exist. If p = 3 mod 4, then r takes about 10 bits.

3 Proposal
The protocol contains two parts:

1. Circuit Components. Required for proof generation.

2. Participant’s Communication Protocol. Required to define participants’ behavior.

3.1 Circuit Components
In this section, basic components of our ZK-SNARK circuit get defined.

3.1.1 Range Check Circuit’s Component

The range circuit’s component checks that the value lies in a certain interval.
Suppose that the prover wants to convince the verifier that the witness w is less than c. Let

n be a public value, such that c < 2n.
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Algorithm 1 Range Check Circuit (RCC)
Public Input: n
Private Input: w, c, α, {αi for i = 0, ..., n}, d

1. (2n + w − c)× (1) = (α).

2. (
∑n
i=0 αi2i)× (1) = α

3. (1− αi)× (α) = (0) for i = 0, ..., n

4. (
∑n
i=0 αi)× (1− d) = (0), where d =

∨n−1
i=0 αi

5. (
∑n
i=0 αi)× (

∑n
i=0 αi)−1 = (d)

6. (d)× (1− d) = (0)

7. (αn)× (d) = (0)

Note, that the value c can be public as well.

3.1.2 Elgamal Encryption Check Circuit’s Component

In order to prove the correctness of ElGamal encryption, the following functions are presented.
The basic operations on the elliptic curve in the ZK-SNARK circuit are out of the scope of this
paper. For this reason, the following protocols use the elliptic curve’s arithmetic as a black box.

Proof of Encryption Let Prover has a public key Q of the verifier, but knows nothing about
the secret key. They proves a knowledge of the random integer r and the message m in the
encrypted message (A,B).

Algorithm 2 Encryption Check Circuit (ECC)
Public Input: G,Q, (A,B)
Private Input: r,m,M

1. rG−A == O

2. rQ+M −B == O

3. Check that M = (Xm, Ym) lies on the elliptic curve

4. (
∑N
i=0 mi2i)× (1) = (Xm)

5. (1−mi)× (mi) = (0) for i = 0, ..., N

6. (
∑l
i=0 mi2i)× (1) = (m)

The steps 1 and 2 relate to Elgamal encryption. These steps allow to convince the verifier,
that the prover knows the random r and the point M used in the private input. The remaining
steps prove that m contains in the x-coordinate of M , which have to belong to the defined
elliptic curve. The step 4 checks that the sequence of bits mi, i = 0, .., N fits to XM and the
step 5 checks that mi ∈ B. Clearly, the step 6 means that the sequence of bits mi, i = 0, .., l fits
to m.

Proof of Decryption Decryption Check Circuit acts similarly to Encryption Check Circuit
except the part with knowledge of the secret key.
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Algorithm 3 Decryption Check Circuit (DCC)
Public Input: G,Q, (A,B)
Private Input: x,m,M

1. xG−Q == O

2. B − xA−M == O

3. Check that M = (Xm, Ym) on the elliptic curve

4. (
∑N
i=0 mi2i)× (1) = (Xm)

5. (1−mi)× (mi) = (0) for i = 0, ..., N

6. (
∑l
i=0 mi2i)× (1) = (m)

3.1.3 Integral Index Changeset Circuit Component

For requirements of confidentiality, it is required to hide each integral index value and the
index integral value difference within the changeset.

Let the prover with an integral index value a (which is encrypted as A = (A1, A2)) wants to
introduce an integral value changeset z ≤ a to the verifier’s index. The new Prover’s integral
value a′ = a− z is encrypted as A′ = (A′1, A′2).

Assume that the prover’s pair of private and public keys is (xP , QP ) and verifier’s public
key is QV . The zk-SNARKs circuit in the Prover’s phase proceeds as in (Algorithm 4).

Algorithm 4 Integral Index Changeset Circuit
Public Input A = (A1, A2), B = (B1, B2), A′ = (A′1, A′2), H,QP , QV
Private Input xP , a, z, a′, r1, r2,Ma,Mz,Ma′

1. DCC(H,QP , (A1, A2), xP , a,Ma), where Ma is encoded a

2. ECC(H,QV , (B1, B2), r1, z,Mz), where Mz is encoded z

3. The Prover creates the RCC for z ≤ a.

4. a′ = a− z

5. ECC(H,QP , (A′1, A′2), r2, a
′,Ma′), where Ma′ is encoded a′

Proof. Firstly, it is required to prove that the RCC for z ≤ a shows that Prover’s index integral
value will not break the local storage consistency (the chageset index integral value difference is
positive).

Since 2n + z − a ≤ 2n ⇔ z ≤ a, the coefficient αn is 1 in the case, when z = a, and 0
otherwise. The value d =

∨n−1
i=0 αi equals 0, if z = a and 1 otherwise. The checks that αi, d ∈ B

are added explicitly. As a result, the final step αn · d = 0 can hold iff z ≤ a.
Secondly, the prover’s index integral value a and an the changeset value difference z are

encrypted so it is required to map the values from the statement above to encrypted values and
vice versa. The algorithms ECC and DCC repeat steps from the original algorithms Elgamal
Encryption Scheme and Koblitz’s probabilistic embedding and save each step as part of the
circuit. The correctness of the circuit obviously follows from that fact.

Now consider the case, when the changeset integral index value ẑ is negative. Since the field
Fq is used, then ẑ = q− ẑ is used in real calculations. Therefore, if q− ẑ ≤ a then the proof and
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the changeset are valid. The value a′ = a− (q − ẑ) ≥ 0 is correct. If the statement q − ẑ ≤ a is
not held then the proof is not valid.

Since the homomorphic encryption is not being used, the expression a′ = a − z checks
a′. Then, its encryption gets proved in the same manner as z. This approach allows the
prover to convince the verifier that the prover’s integral index value and its changeset value are
consistent.

Third Party Verifier In case a third-party has to be able to verify that the Prover’s index
integral value is consistent, but cannot decrypt the ciphertext, the proving of statement z ≤ a
is not enough.

If the expected index changeset integral value is a public value z, then an additional step of
the protocol is added as follows:

Algorithm 5 Integral Index Changeset Circuit (Public Integral Value)
Public Input A = (A1, A2), B = (B1, B2), A′ = (A′1, A′2), H,QP , QV
Private Input xP , a, z, a′, r1, r2,Ma,Mz,Ma′

1. DCC(H,QP , (A1, A2), xP , a,Ma), where Ma is encoded a

2. ECC(H,QV , (B1, B2), r1, z,Mz), where Mz is encoded z

3. The Prover creates the RCC for z ≤ a.

4. a′ = a− z

5. ECC(H,QP , (A′1, A′2), r2, a
′,Ma′), where Ma′ is encoded a′

6. The Prover creates the RCC for z ≤ z′, where z′ is an index changeset integral value.

Since RCC does not require many constraints, the total size of the circuit does not increase
significantly.

If z is stored as an encrypted value Enc(z,QP ) = (Z1, Z2), then two additional steps are
added as follows:

Algorithm 6 Integral Index Changeset Circuit (Encrypted Integral Value)
Public Input A = (A1, A2), B = (B1, B2), A′ = (A′1, A′2), H,QP , QV
Private Input xP , a, z, a′, r1, r2,Ma,Mz,Ma′

1. DCC(H,QP , (A1, A2), xP , a,Ma), where Ma is encoded a

2. ECC(H,QV , (B1, B2), r1, z,Mz), where Mz is encoded z

3. The Prover creates the RCC for z ≤ a.

4. a′ = a− z

5. ECC(H,QP , (A′1, A′2), r2, a
′,Ma′), where Ma′ is encoded a′

6. DCC(H,QP , (Z1, Z2), xP , z,Mz), where Mz is encoded z.

7. The Prover creates the RCC for z ≤ z′, where z′ is an index changeset integral value.
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3.2 Communication Protocol
The protocol proposed containts two kinds of indexes:

1. Participant’s Index. Contains mutable relations mapped to participant’s unique identi-
fier. Accepts mutations from participant only. Such relations may contain: integral values
in mapped to participant n, various notes.

2. Root Index. It is supposed to store non-mutable protocol parameters such as: participants

amount N , index integral values maximum
N−1∑
n=0

in ≡ C ∀C ∈ Z or any other params. This

index has it’s participant’s unique identifier mapping as well (aka "index owner").

3.2.1 Confidential Participant’s Index Integral Changeset Protocol

Considering the communication protocol, let participant A wants to introduce some index
integral value changeset z to an index which already has value a : a ≥ z mapped to participant
A and some value mapped to some participant B. The key pair of A is QA, xA, and QB is
a public key of the participant B. The protocol supposes every step is being performed over
consistent data storage.

Algorithm 7 Confidential Index Changeset

1. The participant A decrypts a = Dec(xA, (A1, A2)).

2. The participant A encrypts Z = Enc(z,QB) = (r1G, r1QB +Mz) = (Z1, Z2) for r1
R←− Fq.

3. The participant A encrypts R = Enc(a − z,QA) = (r2G, r2QA + Ma−z) = (R1, R2) for
r2

R←− Fq.

4. The participant A generates proof πAB , that z ≤ a as in 4.

5. The participant A sends Z,R and the proof πAB to B.

6. The participant’s index integral value A sets on R.

Proof Sketch. The proof idea is that the original protocol could be reduced (using framework
[Sho04]) to calculation through a trusted third party (TTP) where both participants cannot
influence it and cannot get any information about secret values. Here the main steps of the
reduction are mentioned.

From the security of the SNARK protocol, it follows that the arithmetic circuit can be
calculated by a TTP with data sent from the prover via a private channel. The circuit’s
correctness is proved above. The security properties of Elgamal encryption allow hiding
participants integral index values and the index changeset value difference on the TTP side and
show random ciphertexts instead of the real one. Thus, all sensitive calculations can be brought
to the TTP side.

Index integral values aggregation The changeset integral value (or a wrapping relation)
is being written-in to B’s integral value index as a new entity. In order to send few entities,
the index owner adds DCC for each additional entity into zk-SNARK. For the requirements of
efficiency, we bound the amount of these entities by L. Additionally, the participant can send
an aggregation transaction which is also bounded by L.

Let the index owner has n < L entities ei. The aggregation transaction is created as follows:
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Algorithm 8 Changeset Aggregation Circuit

1. The index owner creates the DCC for each ei.

2. E =
∑n
i=0 ei

3. The index owner creates the ECC for E.

3.2.2 Confidential Root Index Integral Changeset Protocol

Confidential root index integral values changeset now gets described. This case supposes
there is no need to prove the after-changeset value, because the root index relations do not store
it. Instead of this, the index owner has to prove the new granted index integral value g′.

Let a root index has N integral value written-in, where N is a public value (aka totalSupply).

The total index integral value is a value g =
N−1∑
n=0

in or totalGranted, which is stored as an

Elgamal ciphertext G = (G1, G2). The key pair of an index owner is QP , xP .

Algorithm 9 Root Index Changeset

1. The index owner calculates some unique address of the participant’s index.

2. The index owner encrypts the integral value from the new index b as B = Enc(b,QV ) =
(rbH, rbQV +Mb) = (B1, B2) for rb

R←− Fq using the public key QV of this index.

3. The index owner decrypts g = Dec(xP , G).

4. The index owner increases the integral value g′ = g+b and encrypts as G′ = Enc(g′, QP ) =
(r′gH, r′gQP +M ′g) = (G′1, G′2) for r′g

R←− Fq.).

5. The index owner generates proof, that the sum of b and g is less or equal than N :

5.1 ECC(H,QV , (B1, B2), rb, b,Mb), where Mb is encoded b
5.2 DCC(H,QP , (G1, G2), xP , g,Mg), where Mg is encoded g
5.3 The index owner creates the RCC for the b+ g ≤ N .
5.4 ECC(H,QP , (G′1, G′2), r′g, g′,M ′g), where M ′g is encoded g′

5.5 g′ = g + b.

6. The index owner asks the root index to emplace the data defined within the participant’s
index.

7. The index owner updates the totalGranted value.

Proof Sketch. The validity of Root Index Changeset circuit index integral contents follows from
the integral index changeset circuit correctness proof 4 and the root index interaction part gets
reduced to TTP computations using framework [Sho04] just as it is done with 3.2.1.

Remark. The root index does not hide the changeset integral value, because the totalSupply is a
public value. The details about changing such immutable root index parameters are out of the
scope of this paper since it is a matter of a particular index management logic implementation.
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3.3 Participants Identifiers Confidentiality Extension
Protocol extension covering hiding participant’s index identifiers is also possible according

to the scheme described. The difference would be about circuit components’s data put under
the ElGamal scheme extended from having only index integral value g to the tuple (QV , g)
containing participants’ public identifiers as well.
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Appendices
A Telegram Open Network Terms

Telegram Open Network calls integral index contents mapped to some unique identifier a
"Wallet". Integral value (or a wrapping relation) itself is called a "Token". There are several
types of wallets:

• Root Token Wallet - a merge operator that deploys a TON Token wallets. It supports the
only one token type. The token owner deploys the root token wallet with a root public
key as a part of initial data. It contains the total number of tokens N and the number of
the granted tokens g.

• TON Token Wallet - a merge operator deployed by root wallet. One token wallet owner
can have several wallets. Anyone who has the TON token wallet code, the root public key,
and the root wallet address can calculate the TON wallet address and deploy the wallet.
When the wallet was constructed the StateInit structure from the inbound message to
store it in its persistent storage for later use.

B Telegram Open Network UTXO Use Case
The participant A has UTXO-based wallet with a tokens, where QA, xA are public and

private keys. They send z, z ≤ a tokens to participant B, which public key is QB , as follows:

Algorithm 10 UTXO Confidential Transaction

1. The participant A decrypts a = Dec(xA, (A1, A2)).

2. The participant A encrypts Z = Enc(z,QB) = (r1G, r1QB +M1) = (A1, B1) for r1
R←− Fq.

3. The participant A encrypts R = Enc(a − z,QA) = (r2G, r2QA + M2) = (A2, B2) for
r2

R←− Fq.

4. The participant A generates proof πAB , that z ≤ a.

5. The participant A calculates an address of new wallet using the B’s public key.

6. The participant A deploys a new wallet at the address from the previous step.

7. The participant A sends Z,R, πAB to new wallet of the partiicipant B.

8. The participant A calculates an address of the new wallet with own public key.

9. The participant A deploys a new wallet at the address from the previous step.

10. Th participant A sends Z,R, πAB to new wallet of the partiicipant A.

These actions perform as one transaction.
The deployment of UTXO-based wallet proceeds as for Token wallets. However, the initial

data of a UTXO wallet contains an additional utxoFlag boolean flag set to false. When a wallet
receives tokens, it is switched to true. Note, that the zero tokens in the transaction are not
accepted.

The aggregation proceeds as described for the token wallets, but instead of several balances
on the one wallet, the aggregation of several wallets is used.
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