

CONTRACT VERIFICATION REPORT

TON CASH

Deteact, 2020

Contract Verification

TIP-3 Token

2

CONTENTS

1 GENERAL INFORMATION .. 3

1.1 Introduction .. 3

1.2 Scope of Work .. 3

1.3 Threat Model... 3

1.4 Weakness Scoring ... 4

2 SUMMARY ... 5

2.1 Discovered Issues ... 5

2.1.1 [Low] Incorrect error code in TONTokenWallet transfer 5

2.1.2 [Low] Inconsistent access control checks 5

2.1.3 [Medium] No address check in transferUTXO 6

2.2 Possible issues .. 6

2.3 Possible attacks ... 7

3 GENERAL RECOMMENDATIONS .. 8

3.1 Current weaknesses remediation ... 8

3.2 Security process improvement .. 8

4 DETAILS .. 9

4.1 Description ... 9

4.1.1 Fungible Tokens .. 9

4.1.2 Non-Fungible Tokens .. 13

4.1.3 UTXO Tokens... 14

4.2 Roles ... 15

4.3 Contract interfaces .. 16

4.3.1 Fungible Tokens .. 16

Contract Verification

TIP-3 Token

3

1 GENERAL INFORMATION

This report contains information about the results of Phase 1 of the TIP-3 Token

Contract Verification, conducted by Deteact in the period from 11/24/20 to 12/07/20.

Contacts:

• Telegram @beched,

• Email beched@deteact.com.

1.1 Introduction

Tasks solved during the work are:

• Review of the TIP-3 Token architecture and security design,

• Development of the high-level description of the token business logic,

• Description of the possible attack vectors and weaknesses of the contracts.

1.2 Scope of Work

The analyzed token contracts are located in the following repository:

https://github.com/tonlabs/ton-labs-contracts/tree/master/cpp (commit

bad13bbd8223de5e0257f44514e9ca208de6a8b2).

1.3 Threat Model

The assessment presumes actions of an intruder who might have capabilities of any

role (an external user, token owner, token wallet owner, a contract).

mailto:beched@deteact.com
https://github.com/tonlabs/ton-labs-contracts/tree/master/cpp

Contract Verification

TIP-3 Token

4

1.4 Weakness Scoring

The findings in this report are scored by an expert evaluation, an impact of each

vulnerability is calculated based on its ease of exploitation and severity (for the considered

threats).

Contract Verification

TIP-3 Token

5

2 SUMMARY

During the testing of the Customer’s web applications several high impact issues

have been identified. All the high and medium risk vulnerabilities have been fixed

within a month after report.

 The identified vulnerabilities could pose a risk to the Customer’s product, but

after the appropriate mitigations have been applied, the overall security level of the

Customer’s infrastructure and software can be described as medium.

2.1 Discovered Issues

The purpose of this work did not include the security audit or contract code

verification. However, during the analysis, we’ve discovered some errors.

2.1.1 [Low] Incorrect error code in TONTokenWallet transfer

There is the following check on the lines 49-50 of the tokens-

fungible/TONTokenWallet.cpp file:

 // Transfer to zero address is not allowed.

 require(std::get<addr_std>(dest()).address != 0, error_code::not_enough_balance);

 The thrown error is wrong, there should be a different error code (like

zero_dest_addr in tokens-nonfungible/TONTokenWalletNF.cpp).

2.1.2 [Low] Inconsistent access control checks

The access control in tokens-fungible/TONTokenWallet.cpp file is done using

the check_owner method but other contracts use inline checks which makes it

inconsistent and may lead to an error. An example of such inline check on the lines 42-

43 of the tokens-nonfungible/TONTokenWalletNF.cpp:

 void transfer(lazy<MsgAddressInt> dest, TokenId tokenId, WalletGramsType grams) {

Contract Verification

TIP-3 Token

6

 require(tvm_pubkey() == wallet_public_key_, error_code::message_sender_is_not_my_owner);

2.1.3 [Medium] No address check in transferUTXO

The transferUTXO method in tokens-utxo/TONTokenWalletUTXO.cpp file

does not check that the destination is not zero (unlike transfer methods in other two

contracts). Here’s the beginning of the method code starting from the line 43:

 void transferUTXO(int8 workchain_dest, uint256 pubkey_dest, int8 workchain_rest, uint256

pubkey_rest,

 TokensType tokens, WalletGramsType grams_dest) {

 require(tvm_pubkey() == wallet_public_key_, error_code::message_sender_is_not_my_owner);

 // the function must complete successfully if token balance is less that transfer value.

 if (balance_ < tokens)

 return;

 tvm_accept();

2.2 Possible issues

The table below contains sample weaknesses (which can lead to intentional attacks

or unintentional bugs) which might be found in the analyzed contracts.

Table 1. Possible issues

Issue Risk Level Probability

Memory Corruption High Low

Improper Access Control High Medium

Incorrect Arithmetics High Medium

Incorrect Error Handling Medium High

Denial of Service High Medium

Contract Verification

TIP-3 Token

7

Issue Risk Level Probability

Incorrect Gas Allocation Medium Medium

2.3 Possible attacks

The table below contains sample attacks which might be carried out by malicious

attackers.

Table 2. Possible attacks

Attack Risk Level Probability

Contract code hijacking

Deploying a malicious wallet contract
High High

Financial fraud

A malicious manipulation of the business logic

and balances, such as a reentrancy attack

High Medium

Unauthorized transactions

Neutralization of the access control leading to

unauthorized messages accepted

High Medium

Attacks on implementation

Exploiting the weaknesses in the compiler or the

runtime of the smart contracts

High Medium

Security Assessment Report

{company.name}

8

3 GENERAL RECOMMENDATIONS

This section contains general recommendations how to fix discovered during the

testing weaknesses and vulnerabilities and how to improve overall security level.

Section 3.1 contains a list of general mitigations against the discovered

weaknesses, sorted by the impact (first one is the most critical), technical

recommendations for each finding can be found in section 5. Section 3.2 describes a

brief long-term action plan to mitigate further weaknesses and bring the product security

to higher level.

3.1 Current weaknesses remediation

• Fix the issues described in the section 2.1.

• Perform review and verification of all the business scenarios of the contracts,

• Make the interfaces of the contracts consistent:

o The error codes should have the same values and names between different

contract types,

o The access checks should be done in the same way.

• Perform security audit of the whole architecture and the implementation.

3.2 Security process improvement

To build mature security process and avoid the losses, the contracts have to be

thoroughly audited. The code review, dynamic and static security analysis must be

performed.

Furthermore, we recommend launching a public bug bounty campaign.

Security Assessment Report

{company.name}

9

4 DETAILS

4.1 Description

The analyzed smart contracts implement an alternative token standard (as

opposed to e.g. ERC20) which is suitable for the TON blockchain.

There are also 2 alternative versions of the token: the non-fungible token

(RootTokenContractNF and TONTokenWalletNF contracts respectively) and the

UTXO extension of the fungible token (RootTokenContractUTXO and

TONTokenWalletUTXO contracts).

4.1.1 Fungible Tokens

Each token wallet is a separate contract (TONTokenWallet instance) created

by the root token (RootTokenContract instance). Token wallets store the respective

balances in their own storage, and the transactions between them are verified.

Upon creation RootTokenContract instance stores the TONTokenWallet

code, the total token supply, the total number of granted tokens (initially 0, additional

minting available later).

After creation, the RootTokenContract can deploy the TONTokenWallet

contracts and optionally grant them the tokens.

The flowchart below shows a brief algorithm for deploying an empty wallet.

The blue blocks are called by the user.

Security Assessment Report

{company.name}

10

Image 1. The process of deploying an empty wallet

Security Assessment Report

{company.name}

11

Image 2. The process of granting tokens to a wallet

The TONTokenWallet contract provides the functions to transfer tokens to

other wallets. The external transfer calls can be done only by the wallet owner. The

contract sends the internal transfer message to the destination wallet contract.

This internal message is handled by the internalTransfer method which checks

that the message sender is a wallet by reconstructing the StateInit structure and

calculating the expected wallet contract address.

Security Assessment Report

{company.name}

12

Image 3. The process of transferring tokens between wallets

Security Assessment Report

{company.name}

13

The overall process of interaction between different parties (root token owner,

wallet owner, root contract, wallet contracts) can be described by the following

diagram:

Image 4. The interaction of users and contracts

4.1.2 Non-Fungible Tokens

The non-fungible tokens work essentially the same as fungible except each

token is assigned a unique identifier, and instead of updating the balances

transferring the tokens actually moves them from one wallet to another (to the

tokens_ array).

Security Assessment Report

{company.name}

14

4.1.3 UTXO Tokens

The UTXO token contract is an extension of the fungible token contract.

UTXO-based wallet allows to identify tokens as coins. The set of all UTXOs

represents total token supply. Each coin has an owner and number of tokens it

represents. So, one coin is one wallet. This model allows, for example, to process

transactions with coins in parallel.

There is no allowance interface for UTXO wallet, and a TONTokenWallet

contract cannot transfer tokens to an existing wallet. It can only receive tokens once,

during the deploy message processing.

Every token transfer results in creation of at least 2 new wallets. The first

holds the transferred number of tokens and the second holds the remaining token

balance. After the transfer the original wallet must have a 0 token balance. Zero-

balance destination wallets should not be created.

UTXO Root contract doesn’t have grant method, it can create wallets using

deployWallet only. Zero tokens in deployWallet is not accepted

(zero_tokens_not_allowed error thrown).

To transfer tokens, a TONTokenWallet contract must perform the following

steps within a single transaction:

1. Calculate the address of a new TONTokenWallet #1 using the public key

provided by the destination wallet owner,

2. Deploy the new TONTokenWallet #1 at the address calculated at step 1,

3. Send some tokens to it in an internal deploy (internalTransfer) message,

4. Calculate the address of a new TONTokenWallet #2 using the new public

key given by current wallet owner,

Security Assessment Report

{company.name}

15

5. Deploy the new TONTokenWallet #2 to the address calculated at step 4 and

send the remaining tokens to it in a deploy (internalTransfer) message.

Initial data of a UTXO wallet contains an additional utxo_received_ boolean

flag set to false. When a wallet receives tokens, it is switched to true.

Image 5. The process of transferring tokens between UTXO wallets

4.2 Roles

The following roles have been assigned based on the logic of the contracts:

Name Description

Anyone Anyone on the blockchain

Security Assessment Report

{company.name}

16

Token internal owner Owner of the root token contract defined by

owner_address_

Token external owner Owner of the root token contract defined by

root_public_key_

Token owner Owner (internal or external) of the root token contract

Wallet internal owner Owner of the root token contract defined by

owner_address_

Wallet external owner Owner of the root token contract defined by

wallet_public_key_

Root contract Root token contract (not owner)

Wallet contract Wallet contract (not owner)

Allowance spender An address with approved allowance

4.3 Contract interfaces

4.3.1 Fungible Tokens

4.3.1.1 RootTokenContract

The following variables are defined:

Name Description

name_ Token name

symbol_ Token symbol

decimals_ Number of digits after the decimal

root_public_key Public key of the contract creator

total_supply_ Total current number of supplied tokens (initial + minted)

Security Assessment Report

{company.name}

17

total_granted_ Total current number of granted tokens (deployed to the

wallets)

wallet_code_ The code of the TONTokenWallet contract

owner_address_ (Optional) Root contract owner address

The following action methods are implemented:

Name Description Required role

constructor Create the root token contract Anyone

deployWallet Deploy the TONTokenContract Token owner

deployEmptyWallet Deploy the TONTokenContract

with initial balance 0

Anyone

grant Grant tokens to the

TONTokenWallet instance

Token owner

mint Increase the total supply Token owner

The following getters are implemented:

Name Description

getName Return name_

getSymbol Return symbol_

getDecimals Return decimals_

getRootKey Return root_public_key

getTotalSupply Return total_supply_

getTotalGranted Return total_granted_

getWalletCode Return wallet_code_

getWalletAddress Return the wallet address for a given public key

Security Assessment Report

{company.name}

18

The following miscellaneous and support functions are implemented:

Name Description

_on_bounced Process the bounced message

_fallback Process the unknown message

calc_wallet_init Calculate the StateInit structure and the wallet

address for a given public key

is_internal_owner Check if the owner_address_ is defined

check_internal_owner Check if the sender address equals

owner_address_

check_external_owner Check if the sender contract’s public key

equals root_public_key_

check_owner Run check_internal_owner or

check_external_owner

prepare_root_state_init_and_addr Reconstruct the StateInit structure and

calculate the expected root contract address

The following error codes are defined (variable names are self-explanatory):

• message_sender_is_not_my_owner

• not_enough_balance

• wrong_bounced_header

• wrong_bounced_args

• internal_owner_enabled

• internal_owner_disabled

• define_pubkey_or_internal_owner

4.3.1.2 TONTokenWallet

The following action methods are implemented:

Name Description Required role

Security Assessment Report

{company.name}

19

constructor Create the root token contract Anyone

transfer Transfer tokens Wallet owner

accept Accept tokens Root contract

internalTransfer Receive tokens Wallet contract

approve Approve allowance Wallet owner

transferFrom Receive using allowance Wallet owner

internalTransferFrom Transfer using allowance Allowance spender

disapprove Disapprove allowance Wallet owner

The following getters are implemented:

Name Description

getBalance_InternalOwner Return balance_ (only for Wallet internal owner

which is currently not set)

getName Return name_

getSymbol Return symbol_

getDecimals Return decimals_

getWalletKey Return wallet_public_key

getRootAddress Return root_address_

getOwnerAddress Return owner_address_ (or 0)

allowance Return allowance_ (or 0)

The following miscellaneous and support functions are implemented:

Name Description

_on_bounced Process the bounced message

onEmptyDeploy Set balance to 0

_fallback Process the unknown message

Security Assessment Report

{company.name}

20

expected_sender_address Calculate the StateInit structure and the

wallet address for a given public key

is_internal_owner Check if the owner_address_ is defined

check_internal_owner Check if the sender address equals

owner_address_

check_external_owner Check if the sender contract’s public key

equals root_public_key_

check_owner Run check_internal_owner or

check_external_owner

prepare_wallet_state_init_and_addr Reconstruct the StateInit structure and

calculate the expected wallet contract

address

The following error codes are defined (variable names are self-explanatory):

• message_sender_is_not_my_owner

• not_enough_balance

• message_sender_is_not_my_root

• message_sender_is_not_good_wallet

• wrong_bounced_header

• wrong_bounced_args

• non_zero_remaining

• no_allowance_set

• wrong_spender

• not_enough_allowance

• internal_owner_enabled

• internal_owner_disabled

