
DePool Contract Verification Phase 2 1

DePool Contract Verification
(Phase 2)

Short Description
Contract proofs in Coq according to the specifications produced in Phase 1

Motivation
Contest submission should prove the correctness of DePool contract using Coq
according to the below requirements by translating the contract code into a Coq
eDSL (embedded Domain Specific Language), provide and prove Eval/Exec
provide formal Scenarios description for all public functions. Issue reviews, fixes
and corrections, with their subsequent reproving.

Term

Each participant should provide the following:
Translation to Coq eDSL

 Types and abstractions

 Contract Class to be realized during the next steps

Coq Eval/Exec specification for all public functions

 Error/Value equivalence conditions, e.g. for each function the iff conditions
are to be formulated when the function acts normally or throws an exception
(with number)

 Eval: full return values on all branches (including exceptions throwing)

 Exec: full state modification on all branches (in terms of contract members,
including branches with exception throwing)

DePool Contract Verification Phase 2 2

 Non public functions analyzing in terms if they need to be specified, or just
included to correspondent public (as inlines, without additional proofs)

Proof of Eval/Exec specification

Issues review and corrections if needed, respecification and proofs

Formal specification of scenarios in terms of the already “proven functions” and
state members

 Invariants (global, local etc). Here we need invariants hierarchy as well.

 Having Inv S we get Inv S*), where S → S*

 Subclasses of invariants: value invariants (the concrete computation over
the state is constant, including members themselves, as projection-like
computation), predicate invariants (the concrete proposition over the
state is held)

 Direct scenarios (functional) formulation: what we get doing smth

 Inverse scenarios (security) formulation: what we had done if we got smth

Review, fixes, corrections, respecification, reproving

The answers should be provided in the following form:
Code equivalently mapped to the formally verifiable language (with clear
indication of equivalence degree)

Standalone/separated list of statements to be proven

Requirements explicitly mentioned in the “Coq Eval/Exec specification for all
public functions”

Code that proves the specification and verifiable by an external trusted proof
checker (such as Coq, Agda, Isabelle, Idris, K

The list of externally required specifications must be moved to a separate file
that will allow to make a quick checkup.

Internal specifications and proofs must be provided and fully pass build chain

All the axioms (not proved assumptions) must also be moved to a separate
file

DePool Contract Verification Phase 2 3

Check if all the requirements mentioned above are met and provide the
detailed assessment

List of notes, accepted and fixed corrections, list of rejected corrections with
justification

Contest Dates:
26 October 2020 — 26 November 2020

Proposed prices:
1 place — 350,000

2 place — 250,000

3 place — 150,000

The jury:
Jury members who vote in this contest must be known experts in the field of
security, smart contract audit, and formal verification.

Jurors whose team(s) intend to participate in this contest by providing
submissions lose their right to vote in this contest.

Each juror will vote by rating each submission on a scale of 0 to 10 or can
choose to reject it if it does not meet requirements, or they can choose to
abstain from voting if they feel unqualified to judge.

Jurors will provide feedback on your submissions.

Duplicate, modifications of another submission, sub par, incomplete or
inappropriate submissions will be rejected.

Jury rewards:
An amount equal to 5% of the sum total of all total tokens actually awarded to
winners of this contest will be divided equally between all jurors who vote and
provide feedback. Both voting and feedback are mandatory in order to collect
this reward.

DePool Contract Verification Phase 2 4

Procedural requirements
Because of the very specific nature of this contest only 1 submission per team
is acceptable. Submissions should not be a modified version of another
submission. Jury should take special care in reviewing submissions in that
respect.

All submissions must be accessible for the jury to open and view, so please
double-check your submission. If the submission is inaccessible or does not
fit the criteria described, the submission may be rejected by jurors.

Contestants must submit their work before the closing of the filing of
submissions. If not submitted on time, the submission will not count.

All submissions must contain the contestant’s contact information, preferably
a Telegram ID by which jurors can verify that the submission belongs to the
individual who submitted it. If not, your submission may be rejected.

If your submission has links to the work performed, the content of those links
must have the contestant's contact details, preferably a Telegram ID so jurors
can match it and verify who the work belongs to. If not, your submission may
be rejected.

Disclaimer
Anyone can participate, but Free TON cannot distribute tokens to US citizens or
US entities.

