
Auction Smart Contract Report
Pruvendo Team

07/26/21

Executive Summary

This document describes the auction smart contract system developed by Pruvendo. This
flexible system supports a wide variety of auctions allowing, at the same time, to implement
other scenarios such as a cascaded auction. All the auctions are thoroughly tested and
accompanied by the depots that allow to deal with auctions in the interactive mode.

Table of Contents

Executive Summary 1

Table of Contents 1

Source Data 1

Description of the smart contract system 2
Overview 2

Business Logic Description 2

UML Diagrams 2

Smart Contract System Audit 3
Program Description 3
Issues / Errors Found 3

Conclusion 3

1



Source Data
The source code of the smart contracts that have been verified is available at:
https://github.com/Pruvendo/freeton-auctions, branch master, commit hash :
fad8be512a305e345d8ee59d5c5a622a40b6b0bc

Deployed smart contracts

All the smart contracts were deployed to the developers network with the following address for
the root 0:2fff952ec5b83553dc502ac86890b12b56387131181562b086c376714edf4cc0.

Description of the smart contract system

Overview

The proposed solution provides the implementations for the following types of auctions:
● English1

● English first price
● English reverse2

● First price reverse
● Dutch3 straight
● Dutch reverse

The first price options for the Dutch auctions are not considered as they are technically
equivalent to the corresponding English options. The provided framework provides support for
another types of auctions, such as second price or cascaded, but they are not immediately
implemented as it was not required in the present contest.

The following types of bids are supported:
● Bids in TONs (native currency)

3 Dutch auction initially sets a very high price (or low, in case of reverse one) and gradually decreases it.
When somebody finds the price applicable he pushes a button and wins an auction. This type of auction
is widely used for flower trading (especially, in the Netherlands, the top seller of tulips)

2 In contrast to the straight auctions where the highest price wins the reverse ones are where the lowest
price wins. The simplest example is a tender where the participants offer the lowest price for their service

1 English auction states the most convenient type of auction where the person that provides some price
(usually, highest) wins. The most known example of English auction is Salisbury one

2

https://github.com/Pruvendo/freeton-auctions
http://www.salisburyauctioncentre.co.uk/netherhampton-salerooms/welcome-netherhampton-salerooms.html


● Bids in TONs bound to DePools4

● Bids in TIP-3 tokens

The core part of the framework is accompanied with tests and debots for simpler usage.

High-level technical description
The smart contract system is implemented in Solidity, where tests are implemented using TS4
framework.

The system includes the following key smart contracts:
● AuctionRoot - initiates an auction and settles the transfer of tokens from IGiver (seller) to

IBid (bidder). The AuctionRoot is moved to a separate entity from the IAction entities to
allow to implement cascaded auctions in future

● IAuction - contains the properties of the specific auction
● IBid - contains the properties of a bid
● IGiver - contains the properties of a sale proposal

While IBid can be either a plain native currency, a TIP-3 token or depooled native currency, the
IGiver can be arbitrary (the good example is NFT-token, however its nature is known by the
auction).

Business Logic Description

A root contract is deployed by the host of the auction. Once deployed, it can implement Auction
contracts with the desired parameters. All the activity can be managed through depots.

Users can deploy sale proposals (Givers) or bids (Receivers). Commonly such proposals will be
submitted via depots (Receivers only, the Givers are supposed to be handled manually until
their origin is clearly identified).

When the auction’s time has run out, the system determines the winner (its meaning depends
on a particular kind of an auction). Funds are then transferred to the winner, and, if the winning
bidder/Receiver had sent a sum in excess of the final auction price, the excess sum is returned
to them. The details for TIP-3 and DePools are provided below.

TIP-3

4 TONLabs implementation of DePool is used as a reference

3



TIP-3 supported by the presented auction system is compatible with Flex TIP-3. This means
that, in addition to the basic TIP-3 support, it’s assumed that such an operation as lending is
supported. So the TIP-3 tokens set as a deposit are not transferred to the IBid instance, but
rather lent to the bid until the auction is over. This approach is much safer than a direct transfer
and eliminates the risk of deposit stalling due to a software bug.

Depool

Depool depositing is based on the transferStake method. The main trick here is that all the
depool deposits can be at work (sent to Elector) upon the time of the auction’s end. To ensure
all the assets are correctly distributed between the giver and receiver, the distribution is
postponed until the onRoundComplete message is received that indicates that all the money is
unlocker and can be freely distributed. This approach looks as know-how as the depooling was
never correctly handled in the previous contracts.

4

https://github.com/tonlabs/flex


UML Diagrams

Direct English auction

5



Direct Dutch auction

6



Direct First Price auction

7


