
NEVER Phase 2 (Auctions)

Submission by Radiance Team

Table of contents
Introduction

Radiance Team

Overview of the solution

System Requirements

Test case details

EVER => NEVER Auctions Algorithms

NEVER => EVER Auctions Algorithms

Common technical requirements

Hard criteria

Deliverables

Future Roadmap

Introduction

Live demo: https://never.defispace.com

Gitlab repository: https://git.defispace.com/never

License: Free software (Apache 2.0)

Contact: https://t.me/UltraNihilist

Wallet: 0:e989bda452d7276ec42cce90307dc3ed1d828205c304776322c8df2e2350780d

https://never.defispace.com
https://git.defispace.com/never
https://t.me/UltraNihilist

Radiance Team

General manager: Dmitry Summit

Team and product manager: Anzor Daurov

Lead developer: Yaroslav A.

Developer: Anzor B.

Developer: Maxim Z.

Developer: Ramazan C.

Developer: Alexey K.

Overview of the solution

Solution provides implementation of the Vickrey auctions for NEVER stable coins in exchange of native EVER
cryptocurrency and for collective participation as well (D’Auction). The auctions base on the rules from chapter IV.
NOT The Auction from [Defi#14]. The auctions for NEVER tokens initiate upon price reveal as implemented by
[Defi#24].

Oracle used for price update in the auction is fully implemented as well.

Detailed architecture can be seen in GitLab repository readme.

https://firebasestorage.googleapis.com/v0/b/ton-labs.appspot.com/o/documents%2Fapplication%2Fpdf%2F4rdykjz6rxbkk4gmv6k-NOT%20a%20TON%20Binary%20System.pdf?alt=media&token=8fca4969-e2cc-477d-bc80-1456e8107f1b
https://defi.gov.freeton.org/proposal?proposalAddress=0%3A87c0bf7977a1465faba5250c4b8b2493dbc9bb5564f9f4d0b90017d8533cecd3
https://git.defispace.com/never/auction/-/blob/main/README.md

System Requirements

Platform: MS Windows, Mac OS, Linux GUI or compatible

Browser: Google Chrome or compatible, desktop only

Wallet: EVER Wallet Chrome Extension

Network: Everscale test network (already deployed), Everscale mainnet (ready to
deploy)

System clock should be synchronized with the world clock on the client device for
the auction to work well. (Win10 guide, Mac guide)

https://chrome.google.com/webstore/detail/ever-wallet/cgeeodpfagjceefieflmdfphplkenlfk
https://pureinfotech.com/sync-clock-windows-10/
https://www.macinstruct.com/tutorials/synchronize-your-macs-clock-with-a-time-server/

Test case details
To test this implementation go to the live demo here: https://never.defispace.com

Install EVER Wallet Extension and use these seed phrases:

1. fall bright add apology random leopard rice witness stock where economy dust

2. sadness fall dune more actor kangaroo demand snake cousin acquire predict flight

To properly test the auction you will need at least two participants in the same auction.

The wallets above contain both EVER and NEVER tokens for your convenience so that you can test both types of auctions.

D’Auction is currently only implemented only on smart-contract level, user interface will be provided in the next version, as
well as debot interface to allow for use in EVER.Surf.

https://never.defispace.com

EVER => NEVER Auctions Algorithms
Creating Auctions and Making Bids

Auction
phase Open User Bid

1 - hash and
EVER for
deposit and
gas

2 - deploy bid
with hash and
owner

3 - return rest
EVER

Make Bid

Auction
Root Auction

1 - EVER for Auction
deploy

2 - deploy
auction

Create auction

EVER => NEVER Auctions Algorithms
Confirming and Removing Bids

Auction
phase
Confirmation

User Bid

1 - EVER for
additional amount
+ (if necessary)
value salt & over
deposit, gas

2 - confirm

4 - return rest
EVER

Confirm Bid

2

3 - confirm
callback and
destroy bid

Auction
phase Open
or
Close

User Bid

1 - EVER gas

2 - remove
bid

4 - return
deposit and
rest Ever

Remove Bid

3 - callback
and destroy
bid

EVER => NEVER Auctions Algorithms
Updating Bids

Auction

1 - EVER for
gas

3 - return rest
EVER

2 - Update Phase. If phase = Close and
winner chosen: yes -> 2 | no ->5

3 - initFinish
bid value +
additional
value

Auction
Root

Auction
Root

Auction
Root
Validators

4 - send Ever
fee

Token Root

User NEVER
Wallet

6 - mint
Never,
return rest
Ever

7 - return the
rest of EVER

5 - save
EVER to
Storage Storage

EVER => NEVER Auctions Algorithms
Buying NEVER after Auction Finish

Auction
Root

Auction

1- EVER for
amount to
buy, gas

7 - return all
EVER
or
rest EVER

2 - check this
auction is last:
yes -> 3 | no -> 7

3- check that user
is participant:
yes -> 4 | no -> 7

4 - save
EVER to
Storage

StorageToken Root

5 - mint
Never,
return
rest Ever

User
NEVER
Wallet

6 - return rest
EVER

5 - mint
Never,
return
rest Ever

NEVER => EVER Auctions Algorithms
Creating Auctions and Making Bids

Auction
Root Auction

NEVER
Root

Auction
NEVER
Wallet

1 - EVER for Auction
deploy

2 - deploy
auction

3 - deploy
wallet

Create auction

User
NEVER
Wallet

Auction
phase Open

Auction
NEVER
Wallet

User Bid

1- EVER for
gas with
payload

2 - transfer:
deposit with
payload

3 - callback
with payload

4 - deploy

5 - return
rest NEVER
and EVER

6 - return
rest NEVER
and EVER

7 - return
rest EVER

Make Bid

Payload:
- phaseFlag: 1
- hash

NEVER => EVER Auctions Algorithms
Confirming Bids

User
NEVER
Wallet

Auction
phase
Confirmation

Auction
NEVER
Wallet

User Bid

1- EVER for
gas with
payload

transfer: value for additional
amount + (if necessary) value
over deposit, payload

3 - callback
with payload

4 - confirm

7 - return rest
NEVER and
EVER
or
all bid value
Never and
rest Ever

8 - return rest
NEVER and
EVER
or
all bid value
Never and
rest Ever

9 - return rest
EVER

Payload:
- phaseFlag: 2
- salt
- bid value
- additional amount

2

5 - confirm
callback and
destroy bid6 - check that bid is

more suitable than
previous saved bid

NEVER => EVER Auctions Algorithms
Removing Bids and Updating Bids

Auction
phase Open
or
Close

User Bid
1 - EVER gas

2 - remove
bid

Remove Bid

3 - callback
and destroy
bid

Auction
NEVER
Wallet

4 - return
deposit and
rest Ever

Auction
NEVER
Wallet

5 - return
deposit and
rest Ever

6.- send
EVER from
Storage

Auction

1 - EVER for
deposit and
gas

7 - return
rest EVER

Update Bid

2 - Update Phase. If
phase = Close and
winner chosen: yes -> 3
| no -> 6

3 - initFinish
bid value +
additional
value

Auction
Root

Auction
Root

Auction
Root
Validators

4 - send
Ever fee

Storage

Auction
NEVER
Wallet

5 - burn
NEVER

5 - burn
NEVER

6.- send
EVER from
Storage

NEVER => EVER Auctions Algorithms
Buying EVER after Auction Finish

User
NEVER
Wallet

Auction
phase Close

Auction
NEVER
Wallet

Auction
Root

1- EVER for
gas with
payload

transfer: value
for amount,
payload

3 - callback
with payload

5 -
calculate
last
auction
address

9 - return rest
EVER

Buy Ever
after finish

Payload:
- phaseFlag: 3
- amount to buy

2

7.1 - burn
NEVER

6 - check this
auction is last:
yes -> 7 | no -> 8

4- check that user is
participant:
yes -> 5 | no -> 8

7.2 - send EVER from
Storage

Storage

8 - return
NEVER and
rest EVER

8 - return
NEVER and
rest EVER

Common technical requirements
Requirement Status

The solution MUST implement the auctions for NEVER tokens automatically initiated upon price reveal as implemented by Defi#24 Done

The auctions MUST fulfill the requirements mentioned in the corresponding section Done

The D’Auctions MUST be implemented fulfilling the requirements mentioned in the corresponding section Done

The NEVER Tokens MUST be referred via the interface (or set of interfaces) that MUST be applicable, at least, both for NEVER native tokens
(Currency Collections) and for TIP-3 style NEVER tokens

Done (NEVER native tokens do
not exist yet)

The evidence of workable solution MUST be provided: i) The solution MUST be deployed to any test network (local usage is not enough) ii) The
demonstration of the workable solution MUST be provided (both at AMA session as well as at the personal environment of each juror) iii) The
manual for verifying the solution MUST be provided and MUST provide extremely clear and detailed instruction iv) In case the implementation of
NEVER token is required for the demonstration its stub implementation MUST be provided

Done
https://git.defispace.com/never/auc
tion/-/blob/main/README.md

All the contestants MUST provide their contact information as a Telegram ID Done

All the participants are strongly encouraged to reuse the results of Defi#14, otherwise they MUST provide a strong explanation and description of
their approaches.

Done

https://defi.gov.freeton.org/proposal?proposalAddress=0%3A87c0bf7977a1465faba5250c4b8b2493dbc9bb5564f9f4d0b90017d8533cecd3
https://git.defispace.com/never/auction/-/blob/main/README.md
https://git.defispace.com/never/auction/-/blob/main/README.md
https://firebasestorage.googleapis.com/v0/b/ton-labs.appspot.com/o/documents%2Fapplication%2Fpdf%2F4rdykjz6rxbkk4gmv6k-NOT%20a%20TON%20Binary%20System.pdf?alt=media&token=8fca4969-e2cc-477d-bc80-1456e8107f1b

Hard criteria
Requirement Status

Implementation of Auction and D’Auction contracts (as well as auxiliary contracts) that satisfy to the requirements
above

https://git.defispace.com/never/auction
https://git.defispace.com/never/oracle

The contract system must be deployed to any testnet. The submitter must provide the clear instructions how to
demonstrate it works as well as to demonstrate it at AMA session

AuctionRoot:
0:7a4214d1cc81c69895a6f733c2234baef73023022053a880e1b5713833be7b56

Storage: 0:3abd74face6b8e75f9ae322f2cd75b709327665577106f72725eed0fac65b1ea

TokenRoot: 0:0cfc8d5b3b1203769db9088d3b85130ad03b50f1e102e3129abdffc125057039

All the elements to be developed at the later stages may be substituted with some dummy implementations.
However, these dummies still must not prevent the system from demonstration its workability

The D’Auction functionality is implemented in contracts only, user
interface will be provided in the next version

The submission must be accompanied with the full documentation that should contain:
○ Generic description of the solution
○ Technical description of the solution
○ Clear build and deployment instructions

https://git.defispace.com/never/auction/-/blob/main/README.md
https://git.defispace.com/never/oracle/-/blob/main/README.md
https://git.defispace.com/never/frontend/-/blob/master/README.md

All the configurable constants must be moved to a separate file and clearly described https://git.defispace.com/never/auction/-/blob/main/test
s-devnet-draft/Constants.json

The configurable parameters describing D’Action strategy must be clearly described. The D’Action contract must
provide all the getters to fully understand its strategy

https://git.defispace.com/never/auction/-/blob/main/test
s-devnet-draft/Constants.json

https://git.defispace.com/never/auction
https://git.defispace.com/never/oracle
https://git.defispace.com/never/auction/-/blob/main/README.md
https://git.defispace.com/never/oracle/-/blob/main/README.md
https://git.defispace.com/never/frontend/-/blob/master/README.md
https://git.defispace.com/never/auction/-/blob/main/tests-devnet-draft/Constants.json
https://git.defispace.com/never/auction/-/blob/main/tests-devnet-draft/Constants.json
https://git.defispace.com/never/auction/-/blob/main/tests-devnet-draft/Constants.json
https://git.defispace.com/never/auction/-/blob/main/tests-devnet-draft/Constants.json

Deliverables
Requirement Status

Source code of all the implemented smart contracts (published at github or any other widely recognized repository storage) https://git.defispace.com/never/auction
https://git.defispace.com/never/oracle

Documentation in PDF or MD format https://git.defispace.com/never/auction/-/bl
ob/main/README.md

Addresses of the contracts published in the testnet AuctionRoot:
0:7a4214d1cc81c69895a6f733c2234baef73023022053a880e1b571383
3be7b56

Storage:
0:3abd74face6b8e75f9ae322f2cd75b709327665577106f72725eed0fac
65b1ea

TokenRoot:
0:0cfc8d5b3b1203769db9088d3b85130ad03b50f1e102e3129abdffc125
057039

Evaluation instructions Test case provided in current document on page 7

https://git.defispace.com/never/auction
https://git.defispace.com/never/oracle
https://git.defispace.com/never/auction/-/blob/main/README.md
https://git.defispace.com/never/auction/-/blob/main/README.md

Future Roadmap

● Implementation of D’Auction in the user interface (contracts are ready)
● Debot interfaces for Auction and D’Auction functionality to allow access using

Ever.Surf

Thank you for your attention!

For any questions contact https://t.me/UltraNihilist

https://t.me/UltraNihilist

