Groth16 zk-SNARK Proof Verification on
Freeton : Three Use Cases

OCamlPro - Fabrice Le Fessant*and Thomas Sibut-Pinote!
https://github.com/0CamlPro/devex-18-zk-contest

1 Introduction

1.1 Description of the submission

The present document is an official submission to the 18" contest! of the DevEx
governance: Groth16 zk-SNARK Proof Verification Use Cases. Although we
accepted earlier to be part of the jury, we understand that by submitting this
document we waive our right to vote in the present contest.

In this submission, we propose three different use cases for Grothl6 zk-
SNARK proofs on the FreeTON blockchain:

e (Section 2) Sudoku: zk-SNARKs are used to prove that the user has a
solution to a given Sudoku problem, without providing the solutions to
other users ;

e (Section 3)Project Euler: zk-SNARKSs are used to prove that the user
has found the solution to a math problem from the famous https://
projecteuler.net website;

e (Section 4)Pin-code reset of forgotten keys: zk-SNARKSs are used to re-
place a pubkey when the user has lost his secret key.

We then show the contributions that we made for the Free TON commu-
nity while working on this contest (Section 5). Finally, we discuss the three
paradigms of using zk-SNARKSs that our examples showcase (Section 6).

1.2 General remarks

ft: Throughout this project, we make heavy use of our in-house freeton wal-
let and client £t. We have taken extra care to make its use very simple,
using docker images and intuitive, well-documented features. We have spe-
cially adapted this tool to be able to create local sandboxes using the Nil
Foundation’s fork of the TON OS, as well as to interact with the Nil foun-
dation server. Please check out https://hub.docker.com/r/ocamlpro/

*Telegram: @fabrice dune

fTelegram: @ThomasSibutPinote

Ihttps://devex.gov.freeton.org/proposal ?proposalAddress=0%
3Ae6b65075478e7d412fdb0870452f30dfa8bf51272e28a3167abc5c5df6£d051d

https://github.com/OCamlPro/devex-18-zk-contest
https://projecteuler.net
https://projecteuler.net
https://hub.docker.com/r/ocamlpro/ft
https://hub.docker.com/r/ocamlpro/ft
https://hub.docker.com/r/ocamlpro/ft
https://hub.docker.com/r/ocamlpro/ft
https://devex.gov.freeton.org/proposal?proposalAddress=0%3Ae6b65075478e7d412fdb0870452f30dfa8bf51272e28a3167abc5c5df6fd051d
https://hub.docker.com/r/ocamlpro/ft
https://devex.gov.freeton.org/proposal?proposalAddress=0%3Ae6b65075478e7d412fdb0870452f30dfa8bf51272e28a3167abc5c5df6fd051d
https://hub.docker.com/r/ocamlpro/ft

ft. The documentation is available both in the command line through
ft --help and on the website https://ocamlpro.github.io/freeton_
wallet/sphinx/.

Code: All our code comes with a README, standard in-code documentation
and tests. This document is provided as an overview of our use cases
for zk-SNARKSs on the Freeton blockchain but you can also directly dive
into the code. All our code is under the GPL license and is hosted at
https://github.com/0CamlPro/devex-18-zk-contest.

Compilation time: The long compilation time of the repository provided was
a major obstacle in our progression. We would suggest trying to make it
shorter for future contests.

Marshalling and memory corruption: Because of a memory corruption er-
ror in the marshalling function (in the code provided for the contests) of
the verification key, we were unable to do a full 9 by 9 Sudoku, restricting
ourselves to 4 by 4. All our code is generic (it is generated from an OCaml
program which takes as a parameter the value n such that the Sudoku is
n? by n?). We were told that after the contest, a more robust marshalling
library would be provided. In any case we would be glad to discuss this
issue with the Nil foundation team to give users the full Sudoku experi-
ence! In the meantime, a 4 by 4 Sudoku is sufficient to get a sense of the
dynamics of zk-SNARK-based Sudoku.

Keys on contracts: In the Euler and Pincode smart contracts, we provided,
along with the verification key as needed by the vergrothi16 instruction,
the proving key (in a zipped format) on the smart contract. This enables
users to easily find it in order to generate their proofs. In case the contract
deployer should decide to keep the possibility of changing the verification
and proving keys of the problem(s), this also makes it easiest to follow
changes before submitting a solution. Unfortunately, the proving key for
Sudoku is an order of magnitude bigger than for Euler and Pincode (even
zipped), and we decided not to include it.

Separate submissions: After deliberation, we decided to submit only one
document rather than three separate submissions, in a spirit of coherence.
We leave it to the appreciation of the jury whether this work deserves to
be counted as several submissions.

Thanks: We would like to thank @noam for his efforts and sportsmanship
during the contest, and to the Nil foundation team for their answers to
our various questions.

2 A toy example: the Sudoku grid

Let’s start with our first toy use case. Suppose you want to set up a Sudoku
problem for your students to solve, so that upon completion they receive some
token. The issue is that once any student has solved it, the solution sits on the
blockchain for all to see. All the other students can cheat by copying it, instead
of doing the work by themselves, which defeats the whole purpose.

https://hub.docker.com/r/ocamlpro/ft
https://hub.docker.com/r/ocamlpro/ft
https://ocamlpro.github.io/freeton_wallet/sphinx/
https://ocamlpro.github.io/freeton_wallet/sphinx/
https://github.com/OCamlPro/devex-18-zk-contest

1 6
6 2 7
7,8, 945 6|12
8 7 4
3
9 4| 2 1
311297 4
6 4 1| 2 8
9 7 8

Figure 1: A Sudoku grid

As mentioned in Section 1.2, we had to restrict ourselves to a 4 by 4 Sudoku
grid, even though our code generator is generic in the grid size. This is because
the marshalling function (in the codep rovided for the contest) on the 9 by 9
code produced a memory corruption error.

2.1 Mathematical encoding

Note: This section may be skipped upon a first reading without loss of informa-
tion.

Let n? be the size of a Sudoku grid (in our case, n = 2 and n? = 4 is the length
of a side of the Sudoku square).In the following, the variables (z;;)o<; j<n2
denote the (secret) values of the solution of a given instance of a Sudoku. The
variables (f; ;j)o<i j<n2 denote the instance so that

s {0 if square 7,7 is not fixed by the Sudoku instance
i =

The value in square i,5 otherwise
(1)

The (well-known) constraints of a Sudoku are encoded by the following equa-
tions:

’I’L2

H(mihj—k)zoforallogi,j<n2

k=1
and

figmiy = f7; for all 0 <i,j < n?

and, for all S set of indices representing a row, a column or a box as per the

rules of Sudoku: ,
I =z =1]k=@".
(i,4)€S k=1

The first equations guarantee that the only permitted values for x; ; are the
integers from 1 through n?, while the second force

V0 < i,j < nQ,fi,j 7é 0 = Tij = fi,j~

The last equation, by forcing the product of n? integers between 1 and n?
to be equal to (nz)!, forces every row, column and box to contain one and only
one instance of the integers 1 through 9.

2.2 Components

This use case includes two different components:

The cli: it is a C++ program linked to the Blueprint zk-SNARKs library. It
can be used in two different ways:

e To create the original proving and verification keys. This step is
independent of any given Sudoku instance and should only be done
once.

./sudoku-client --sudoku-generate-keys

e To generate a proof given an instance and a solution.

./sudoku-client --sudoku-generate-proof --instance
instance.in --solution solution.in

The instance is given as a text file such as

0000
0000
0000
0001

where 0s denote free values. The solution should be a similar text
files with no zeroes, such as

1234
3412
2143
4321

Note that if your solution is not correct, this step will fail.

The Sudoku smart contract: The only contract for this use case is the Sudoku
contract. Only the deployer’s public key is allowed to submit new Sudoku
instances. Its constructor defines an initial instance and the verification
key (in this case the proving key is not included in the smart contract due
to its size). The main function submit takes as input a proof and returns
a boolean stating its correctness. The local function pi_from_instance
encodes the primary input given the current instance, but does not store it
anywhere. The submit_instance allows the owner to add a new challenge
at any time.

3 Project Euler

Project Euler

About Archives Recent News Register Signin

Multiples of 3 and 5
Problem 1 = B

If we list all the natural numbers below 10 that are multiples of 3 or 5, we get 3, 5, 6 and 9. The sum of these multiples is 23.

Find the sum of all the multiples of 3 or 5 below 1000.

Figure 2: The first Project Euler problem

The previous example is somewhat limited by the fact that Sudokus are easily
solvable problems, either by hand or with a computer; they are not the most
convincing use case of (at least the zero-knowledge aspect of) zk-SNARKSs?.

Let’s keep the idea of a decentralized classroom. the famous website Project
Euler? offers math and programming problems of various difficulty to its users.
It uses captchas to prevent brute force attempts at guessing the answer to a
problem. The answers to problems are stored statically on its servers and the
answers are checked against them. Can we make Project Euler decentralized?
Using zk-SNARKSs, we can prevent users from stealing others’ solutions and
from brute-forcing them, due to the cost of generating proofs.

3.1 Components

This use case includes two different components:
The C++ client The ‘euler-client‘ program can be used in 2 ways:

1. ./euler-client prepare PROBLEM NONCE SOLUTION
, where PROBLEM is a problem number, NONCE is an arbitrary number
different for every problem, and SOLUTION is the numeric solution,
will generate a proving key and a verification key for the problem
and its solution. These files can be published for users to propose
submissions and to verify them.

2. ./euler-client prove PROBLEM NONCE SUBMISSION PUBKEY
, where SUBMISSION is the numeric solution proposed by the user and
PUBKEY is his own public key (to prevent other users from submit-
ting the same solution). The program generates a proof to be then
submitted online.

Solidity Smart Contracts The Solidity smart contracts are located in the
‘contracts/¢ directory. They can be built with ‘make’ if ‘ft¢ (freeton-wallet)
is installed.

The following smart contracts are defined:

2Although they hint at a possible use for zk-SNARKSs: checking a result without imple-
menting its full logic in Solidity may save precious storage and computations on the blockchain.
Shttps://projecteuler.net/

https://projecteuler.net/

1. EulerRoot : it’s the central contract of a set of Euler problems. The
EulerRoot contracts is owned by the organizer, who is the only one
able to publish new Euler problems. Its most important functions are
new_problem() to deploy a new problem contract, new_user() to
deploy a user contract (anybody can call it) and submit () to submit
a solution for a problem. problem_address() and user_address()
are useful to get the contract address of a problem or a user. An
event is emitted everytime a problem is solved by a user.

2. EulerProblem: it’s the contract corresponding to a given Project Eu-
ler problem. The contract contains the verification key of the prob-
lem, so that it can check the proofs submitted by users. Since proofs
are attached to users’ pubkeys, other users cannot re-use proofs sub-
mitted by other users. Each EulerProblem contract contains the top
10 of the first users to submit a correct solution. An event is also
emitted everytime the problem is solved by a user. The contract also
contains the description of the problem (title, description, url) and
the information needed to submit solutions (compressed proving key
and nonce).

3. EulerUser: it’s the contract corresponding to the pubkey of a user.
The user can provide a name using the set_name () function. The
has_solved() function is called by the EulerRoot contract when the
user has solved a new problem. The function stores the problem and
the time of solution in the contract.

For internal messages between these contracts, they either check that mes-
sages are coming from the unique EulerRoot contract, or that they come
from pre-computed addresses a la TIP-3.

3.2 Brute-force protection

This small section details an interesting aspect we had to develop to prevent
bruteforce attacks.

Project Euler is a gentlemen’s competition. For example, competitors are
supposed to have found the answer using a program running at most in one
minute, but no mechanism enforces this. Still, some protections are in place,
partly to enforce the spirit of the competition, and partly because of past abuse.
For instance, a captcha system prevents one from attempting many solutions
in a row. We decided to emulate the latter mechanism. If we simply gave a
proving key to try and find the actual solution to the problem, users might be
tempted to try to build a proof using every single integer until it works*. Hence,
the value they must find is actually

SHA256' 2090 (problem number|solution|nonce)

where the exponent denotes repeated application of the SHA256 hashing func-
tion, and ‘|* denotes the concatenation of strings. Note that this does not protect
against replay attacks, which is why we also included a form of authentication
described in Section 4. This repeated application takes about 20 seconds on

4We have noticed that although generating a correct proof may take time, an incorrect
input is usually rejected in less than one second.

our laptops, which seems enough to discourage brute-force by all but the most
determined cheaters.

To prevent users from easily brute-forcing the numeric solutions, we added
a simple proof of work of about 20 seconds. The proof of work is based on
1,000,000 iterations of sha256 over the concatenation of the problem number,
the nonce and the solution. Since a random nonce included in the hash, the
proof-of-work cannot be done before the new problem has been submitted and
the corresponding new nonce published.

4 Pin code reset for forgotten keys

In this use case, we use zk-SNARKS to allow users to replace their public
keys in other contracts, for example multisig wallets. The typical use is when a
user has lost the associated secret key, and is unable to sign/confirm any new
transaction. With our approach, the user first creates a recovery contract, where
a passphrase is associated to his public key. If he needs to change his public key,
he can use zk-SNARKSs to associate a new public key in his recovery contract,
and tell other contracts to safely replace his pubkey by the new one.

Compared to other approaches, this use can provide several improvements:

e The user does not disclose his passphrase. Most other approaches (based
on hashes for example) give an opportunity for man-in-the-middle attacks;

e As the user does not disclose his passphrase, the pubkey can be replaced
several times;

e The user does not need to create the new public key ahead of time. Instead,
he can create it when he has lost the former one,

decreasing the likelihood of losing the associated secret key also.

4.1 Technical solution
This use case includes 3 different components:

PinCode Client: it is a C++ program linked to the Blueprint zk-SNARKSs
library. It can be used in two different ways:

e To create the initial circuit using the passphrase. The client should
be called as:

1 pincode-client prepare "my pass phrase"

This will generate a file verifkey.hex that can be used as an argument
when deploying the PubkeyRecovery smart contract, and a file provkey.
hex that can be used to create new witnesses;

e To create a witness that the passphrase is known when providing a
new public key. Because the witness contains the new public key,
an attacker cannot intercept the message and replace it. The client
should be called as:

pincode-client prove "my pass phrase" "PUBKEY_AS_HEX_NUMBER"

The command expects to find the file provkey.hex and generates a
file proof.hex that should be submitted to the PubkeyRecovery smart
contract together with the new public key.

PubkeyRecovery smart contract: This smart contract is a contract a la
TIP-3 contract, using the initial public key to verify its address. This
contract is very simple. It contains:

e A constructor to set the circuit that will be used to verify that the
passphrase is known when it is used;

e An external function SetFromPincode (bytes proof, uint256 pubkey) to de-
fine the new public key, while providing a proof of knowledge of the
passphrase;

e An external function RecoverPubkey(RecoverablePubkey addr) to call a
recoverable contract to update the corresponding pubkey.

Abstract RecoverablePubkey contract: This is an abstract contract, from
which other contracts should inherit to be able to benefit from the PubkeyRecovery
mechanism. The contract provides two main functions:

e An external function SetPubkeyRecoveryCode(TvmCellcode) to define the
code of the PubkeyRecovery smart contract. Because the code hash is
known (inlined in the code), anybody can call this function with the
correct code.

e An external function RecoverPubkey (uint256 oldkey,uint256 newkey) that
can only be called by a PubkeyRecovery smart contract. The function
verifies that the address belongs to such a contract before calling a
function recover_pubkey(oldkey, newkey), that the inheriting contract
should define to specify the business logic that should happen when
a pubkey is replaced.

Modified Multisig Wallet: The RecoverableMultisigWallet contract is the stan-
dard multisig wallet of Surf, updated for version 0.40 of Solidity, and mod-
ified to inherit from the RecoverablePubkey contract. It defines the business
logic to replace a custodian key. For that, it first checks that the old key
belongs to an existing custodian of the contract, that the new key does
not belong to an existing custodian, and then replace the old key by the
new one, associated to the same index (for bitfields).

5 Contributions to the Free TON community

In the course of participating to this contest, we were led to refine our in-house
tools in order to more easily manipulate the Nil Foundation forks of the Ton
Virtual Machine (TVM), the TON Solidity compiler and the TVM linker.
Our first contribution is a public Docker image containing the TONOS SE
compiled with zk-SNARKs support. The image is published as ocamlpro/nil-local-node
and is built from https://github.com/NilFoundation/tonos-se.
Running it is simple:

docker run -d --name local-node -e USER_AGREEMENT=yes -p80:80 ocamlpro/mnil-local-node

Another way to use it is through our development tool £t, a Free TON Wallet
designed for developers: https://github.com/0CamlPro/freeton_wallet

For this contest, a set of improvements has been contributed to ft to ease
using it.

In particular:

e The interface has been improved to provide multiple levels of subcom-
mands, making them easier to understand and to use;

e A new argument -image is available with ft switch create to specify
the Docker image to use. This new argument is specially useful for our
Docker image for NilFoundation TONOS SE.

As a consequence, a zk-SNARK-ready sandbox (local network) can be in-
stalled by simply running:

1 ft switch create sandbox ——image ocamlpro/nil—local—node

Now all commands from the ft documentation will work, in particular it
will be easy to create accounts, deploy contracts, and call them as seen in
https://ocamlpro.github.io/freeton_wallet/sphinx/use-cases.html.

The Docker image of £t has been updated to use NilFoundation tools (solc,
tonos-cli, tvm_linker), it is the easiest way to use £t if you don’t want to build it.
See the installation instruction at (https://ocamlpro.github.io/freeton_
wallet/sphinx/install.html#using-docker).

6 Thoughts on three paradigms of zk-SNARKSs
on blockchains

We wish to conclude with some broader considerations. This contest has given
us the opportunity to think harder about the categories of uses of zk-SNARKSs
on blockchains:

1. Statically checking that someone has some information at their disposal(Euler
case)

2. Encoding a possibly complex computation in a circuit and challenging a
user with an instance of that computation (Sudoku case)

3. Using the zk-SNARK as an extension of the blockchain protocol itself
(pincode, anonymous transactions, voting protocols)

https://github.com/NilFoundation/tonos-se
https://github.com/OCamlPro/freeton_wallet
https://ocamlpro.github.io/freeton_wallet/sphinx/use-cases.html
https://ocamlpro.github.io/freeton_wallet/sphinx/install.html#using-docker
https://ocamlpro.github.io/freeton_wallet/sphinx/install.html#using-docker

Of course, the boundaries between these categories may be blurred, but still
they are meaningful. The point of the first category is that the data whose
existence we are verifying is inert, static, it was chosen by the verifier according
to some human meaning which is completely meaningless to the contract or the
blockchain. In the second category, the value whose existence we are verifying
has a computational (i.e. mathematical, see Section 2.1) meaning, and though
this computational meaning® is not present on the blockchain itself, it is implic-
itly present in the verification key. Finally, the third category consists in the
verification of data which has blockchain-protocol-level computational meaning
(such as a public key). The privacy aspect of zk-SNARKSs, which is of course
the whole point, had initially hidden these distinctions from us.

In category 1, the main advantage of zk-SNARKSs is to not spoil the fun for
other competitors. One must protect oneself from replay attacks (re-using the
same zero-knowledge proof as some other competitor in order to pretend one
has solved the problem) and brute-forcing the answer.

In category 2, the point is to guarantee some mathematical properties of a
wide range of submitted solutions to a given problem of a known computational
nature, when not all of possible instances may be computed in advance. The
zero-knowledge part may or may not be important, but the succinct part may
well save some gas for cost-heavy verifications.

In category 3, the zero-knowledge part plays a crucial part in preventing
man-in-the-middle attacks for security-critical operations such as changing a
lost public key in a wallet, or sending an anonymous amount of tokens to an
anonymous recipient, or voting without revealing one’s ballot.

These three categories may be combined in several ways depending on the
purpose.

50f course, the answers to the Project Euler problems do have computational meaning
ultimately, but no program is provided to encode the problem or check the solution. This
computational meaning is inferred from the english description of the problem by the problem
solver.

10

	Introduction
	Description of the submission
	General remarks

	A toy example: the Sudoku grid
	Mathematical encoding
	Components

	Project Euler
	Components
	Brute-force protection

	Pin code reset for forgotten keys
	Technical solution

	Contributions to the Free TON community
	Thoughts on three paradigms of zk-SNARKs on blockchains

