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1 Introduction

In this document, we present a technical report on the function formal
verification of FLeX trading system.

1.1 Overview

During our verification effort, we have discovered 9 defects, some of
them are critical.1

All found defects were reported to the developers; for each defect we
opened a separate issue on GitHub 2. All issues were confirmed. We
describe all our findings in Section 8.4.

The work also contributes in the following ways:

1. We provide a concise mathematical model of the TON smart-
contracts runtime. It might be useful both for better under-
standing and for building reasoning formalism specifically tai-
lored for the TON blockchain 5

2. We deliver TVF - TON Verification Framework - a set of libraries
for Dafny programming and verification language. The frame-
work allows rapid verification of TON smart-contracts, both on
functional-level and targeting safety properties 7

3. FLeX smart-contracts encoded in the TVF, equipped with spec-
ifications and annotations. Proofs are generated automatically
in most cases. 8.2

4. We prove strict lower and upper bounds on the number of gener-
ated messages by the system core smart-contract Price. Building
those proofs helped us to discover several critical issues.

To the best of our knowledge, this work is one of the first to apply
formal verification as means to enhance reliability of a industrial-scale
trading system. Our observations and conclusions regarding the work
are put in Section 8.5 and 9.

1May lead to full stop of the system working without a chance for recovery.
2https://github.com/tonlabs/flex/issues
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1.2 Acknowledgments

1.2 Acknowledgments

We would like to thank Andrey Zhogin (TON Labs) - the main de-
veloper behind FLeX - for delivering nearly instant feedback on found
issues and for addressing our technical questions on TON C++. His
help greatly improved our work.

We also would like to thank for Boris Ivanovskiy (TON Labs) for ad-
dressing our questions on TON node architecture and on TON Solidity
specifics. It also helped a lot.

1.3 Artifacts

All verification-related files, as well as TVF framework is available at:
https://bitbucket.org/unboxed_type/flexphase2/src/
master/

A high-level specification of FLeX system is available at:
https://bitbucket.org/unboxed_type/flexphase2/src/
master/FlexSpec/spec_eng.pdf

We did our best to do this document relatively self-contained, however
additional studying might be necessary to grasp the material in full.

1.4 Warning

We started this verification project nearly from scratch - there were
no formal verification tools available targeting the TON specifics what
so ever.

What is worse, there is no definite specification for the TON node
(documents of N.Durov are not precise enough is most cases). The
current Rust node keeps changing, and some of its behavioral aspects
are still not clear.

So, please keep in mind that there may be some deviations in our
models from the real TON blockchain. Some of them are already
known and planned to be fixed in future releases of TVF.
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2 FLeX System Overview

Before going deep on technical verification aspects, we suggest to do
a quick recap on the Flex system: what is the system purpose, what
are the parts, how it is implemented, what parts are the most critical
for its reliability.

2.1 About FLeX

FLeX is a blockchain-based trading system. It allows users to buy,
sell and exchange tokens. To overcome classic shortcomings of other
blockchain-based trading systems, FLeX implementation relies on a
different highly distributed architecture. This makes FLeX a highly
distributed system with intensive message passing between its compo-
nents.

The main system function is to match user orders of opposite direction
(buy vs sell) into deals. The deal here refers to an act of tokens
exchange between users without a chance of cancellation.

2.2 FLeX Architecture

There are several known architectures of how the trading system might
work. FLeX uses an order book based architecture, but with dis-
tributed implementation. It means that user orders are stored not in
one smart-contract, but spread among several smart-contracts.

For example, buy/sell orders for TKN token by the price 10000 and
orders for TKN token by the price 12000 gets placed into different
smart-contracts.

The overall order book is formed by scanning the blockchain for pres-
ence of specific smart-contracts that are placeholders for trading or-
ders. It is done on the user side.

One more specifics of FLeX is in how the user tokens get operated
by the trading system. It is done by granting the FLeX a temporary
permission to do user wallet operations on the user’s behalf. Those
permissions are limited in time duration and allowed tokens amount.
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2.3 FLeX Smart-Contracts

For more specifics on FLeX, please refer to the High Level FLeX
Specification document.

2.3 FLeX Smart-Contracts

The FLeX system consists of the following smart-contracts:

Price, PriceXchg. It is both a main orders storage and orders
matching engine. Price contract allows to buy/sell tokens for native
blockchain coins. PriceXchg contract allows to , well, exchange one
type of token for another in a given ratio. There is a separate Price
and PriceXchg created for every trading pair and a price level.

FlexClient. The main user entry point into the system. Using this
contract, the user can create buy/sell/exchange orders, cancel orders
and operate do some wallet management.

TradingPair, XchgPair. Those contracts store information regard-
ing the tokens being traded. They are needed to correctly identify
available tokens at trade and form the order book on the user-side.

Flex. This contract stores the main system operational values, like
fees value and contract binary program code values. Besides storing
options, it is used to distinguish between different FLeX instances that
may run in parallel.

TONTokenWallet, RootTokenContract. Implementation of TIP3-
compatible token. RootTokenContract is a main entry point for users
willing to create an instance of TONTokenWallet. Such wallet is
needed to trade tokens in FLeX.

FlexToken. A variant of the TONTokenWallet, specifically tailored
for FLeX.

In the latest FLeX, there are some more contracts present, but they
are out of scope of the current work, so we do not describe them.

2.4 FLeX Implementation

FLeX smart-contracts are implemented in TON C++ programming
language https://github.com/tonlabs/TON-Compiler.
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Each smart-contract described in a pair of files: a header file with
.hpp extension, and an implementation file with .cpp extension.

In this work, the following files are taken into account:

• FlexClient.hpp, FlexClient.cpp

• TradingPair.hpp, TradingPair.cpp

• XchgPair.hpp, XchgPair.cpp

• Price.hpp, Price.cpp

• PriceXchg.hpp, PriceXchg.cpp

• Flex.hpp, Flex.cpp

• TONTokenWallet.hpp, TONTokenWallet.cpp

• RootTokenContract.hpp, RootTokenContract.cpp

The repository link we refer to in our work:
https://github.com/tonlabs/flex/tree/5a83080941

3 Formal Verification Methodology

In this section, we explain our approach to formal verification. We
also state the problem we are solving and define criteria by which to
evaluate trustworthiness of the overall verification attempt.

3.1 Methodology Overview

To do verification, we embed a TON C++ program together with the
TON Node Runtime layer into Dafny 3 - the programming language
with built-in formal verification capabilities.

Dafny is both the name of the programming language and the name
of a tool that do verification on those programs.

3https://github.com/dafny-lang/dafny
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3.1 Methodology Overview

To do verification, Dafny programs get equipped with annotations -
statements that describe desired program behavior. Annotations are
given in the form of fist-order logic predicates with theories, or func-
tional programming constructs. The program code that gets anno-
tated is written in a richly typed imperative programming language.

In Dafny, the proof of correspondence between program code and its
annotation is done automatically most of the time. It is achieved
by translating the program with annotations into SMT formulas and
feeding it into powerful SMT-solver. The solver answers if the speci-
fication holds for the code, or it is unknown. In the latter case extra
annotations may be needed.

The ability to generate proofs automatically greatly simply and en-
hance the work of formal verification engineer. For example, contrast
it with the burden of building proofs manually, how it is done in some
modern proof-assistants.

It turned out, not only Dafny is expressive enough to model most
of the TON C++ language in one way or another, but it is also a
nice tool to build reasoning frameworks, specifically tailored for your
domain.

To both simply our current work and make possible future verifica-
tion projects, we developed the TON Verification Framework
(TVF). It is a set of libraries for Dafny that allows an engineer to
rapidly verify TON smart-contracts against the TON node execution
logic modeled after the TON Rust node executor.

From the engineer perspective, TVF removes necessity of implement-
ing stereotyped things from scratch each time, like message processing
logic, TON programming primitives, TON specific types by putting
all of this into reusable extendable components.

The methodology is depicted on Fig.1.

Later in the document, we give a brief overview of each verification
component used in the methodology :

• Dafny Tool 4
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3.2 Problem Statement

TON C++

Spec

    TVF

Dafny

Boogie SMT solver

Correct Unknown1 2

3

4

Figure 1: Verification in the methodology consists of 4 stages. Stage 1 - the TON
C++ program is translated into Dafny, using the TFV framework. The specifica-
tions for the program get translated into Dafny annotation language. Stage 2 -
Dafny tool translates the Dafny program into the Boogie program - the verification
backend. Stage 3 - Boogie program gets translated into the language of SMT-
solver, Z3 in case. Stage 4 - SMT-solver does the check and give an answer about
the enquiry. After that, the answer propagated back to Dafny, and is displayed to
the user. From a user perspective, stages 2, 3 and 4 are done automatically. They
are shown for better clarity.

• TON smart-contracts Execution Environment 5

• TVF Framework 7

• TON C++ language overview 6

The procedure of encoding TON C++ program into TVF/Dafny in
described Section 8.1.

3.2 Problem Statement

Now we would like narrow down what problem we are solving in the
current work.

3.3 Background

Previously, we developed a high-level specification on FLeX. The doc-
ument contains requirements for different aspects of the system be-
havior.

However, in the current work, by the contest rules, we limit our ef-
fort by doing formal verification of single functions, and not high-level
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3.4 Function-level Predicates

properties. The latter consist of modeling interactions between differ-
ent smart-contracts and proving that property holds in any possible
interaction scenario. Thus, it is related to safety properties class, and
to be done on the next stages of formal verification.

The current work limits the effort on the function-level granularity.
However, and even more importantly, we also prepare the infrastruc-
ture for doing system-wide safety and liveness proofs. Without this
infrastructure, it is nearly impossible to conduct safety proofs in an
efficient manner.

3.4 Function-level Predicates

What does the formal verification on a function-level granularity means
in our specific case? We define it as follows.

For distinguished contract methods, provide the following:

1. Develop the Weakest Precondition predicate that, if holds, guar-
antees the success of the Compute phase execution

2. Develop the Post-condition predicate that describe the action
queue contents after the method successfully executed the Com-
pute phase

The point 1 is to derive a necessary and sufficient condition for the
method to compute successfully. We latter check the condition with
common sense understanding of the system intention. For some meth-
ods, this method is trivial (sometimes it is not even necessary to do
anything at all!), and for others - very difficult (for example, Price.dfy,
dealer::process queue)
The point 2 is needed to evaluate the needed account balance value
that would guarantee the success of Action phase.

Conditions 1 and 2, if put together, gives the precondition on the
account, smart-contract and the message state that guarantees the
successful execution through out the phases Compute and Action. If
you add some trivial preconditions for Storage and Credit phase, you
receive a predicate that, if holds, guarantees the success of message
processing.
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3.5 Methodology Soundness

3.5 Methodology Soundness

Here we define a criteria that we use to judge the logical soundness of
the presented methodology.

1. Smart-contract Execution Environment model is adequately re-
flects what happens in a real system. It may contain divergences,
but they should not be that critical.

2. TVF framework precisely encodes the SmC Execution Environ-
ment logic (Section 7)

3. FLeX TON C++ implementation is correctly translated into the
primitives of TVF/Dafny (Section 8.1).

4. Annotations for smart-contract methods makes sense relative to
the defined problem statement, defined in Section 3.4.

5. Assumptions that are used to foster proofs looks reasonable and
safe. (Section 8.3)

6. Annotations and proofs written in the supplied artifacts do not
contain any insertions that may fool the tool into false conclu-
sions (see Vacuous Proofs).

Actually, there are more: TON C++ compiler correctness, TON Node
correctness, Dafny tool soundness/correctness, etc. We consider all of
this to be reliable and trustworthy.

4 Dafny Tool

Here we give a very brief overview of what is Dafny.

Dafny - is a name of both a programming language with built-in
formal verification capabilities, and the tool that does the verification
checks. From now on, it should be obvious what exactly we refer to
when use this name.

9



As an example, lets see the tiny annotated program written in Dafny.

1 method test(a:nat, b:nat) returns (c:nat)
2 ensures c == a + b
3 {
4 var v1 := a + b + a;
5 var v2 := b + b;
6 return v1 + v2 - b - b - a;
7 }

The test method adds two natural numbers, but does it in somewhat
tricky way. The method annotation on the line 2 states that this
method will always return a sum of two numbers. Dafny automatically
proves that this indeed holds for every possible method input. If we
try to change annotation for something different (and wrong), Dafny
will discover this and show an error.

The statement on line 2 is a very simple theorem, and the proof for it
gets built automatically by the tool. Using a classic predicate form,
this theorem might be written as follows:

∀a, b : test(a, b) = a+ b

Put it another way, Dafny can be seen a automatic theorem prov-
ing tool that is specifically tailored for reasoning about richly typed
imperative programs 4

Dafny programming language supports a wide range of useful ab-
stractions and mechanisms mimicking modern general-purpose pro-
gramming language constructs.

• Algebraic Data Types

• Type parameters

• Exceptions using Failure-Compatible Types

• Traits, Classes and simple inheritance

• Heap-based object allocation

• Modules as an abstraction mechanism
4As opposed to general-purpose interactive theorem provers like Coq that allows to reason about
broad range of mathematical objects, but at the expense of much less automation.
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• Handful collection types, like: sequence, set, dictionary

And all of this is carefully adopted to be used with Dafny annotations.

There are also powerful proof encapsulation mechanisms like lemmas,
axioms, ghost predicates, etc. We use it in our development, but do
not discuss it here.

Truly, Dafny language and the tool leaves very pleasant impression!

5 Execution Environment Model

Smart-contracts do not exist on their own, they inhabit the blockchain,
and the blockchain operates by its own rules. Blockchain node is an
execution environment of smart-contracts. Hence, to reason about
smart-contracts, we need to have a model of how the whole execution
environment acts. The execution environment may not be dissected
from the smart-contract without hurting the reasoning accuracy, and
should be modeled properly.

Therefore, we describe our understanding of how the TON blockchain
operates. The description is given in a high-level set-theoretic fashion,
leaving a lot of details aside. We believe that if details were present,
it would significantly hinder the understanding of the reader. For
details, we advise to inspect TVF source code.

The whole blockchain may be described by the following entities:

Accounts,Messages

and the function eval

eval : Accounts×Messages 7→ Accounts× 2Messages

5.1 Accounts

Elements of the Accounts set are so-called accounts: they are basically
placeholders for smart-contracts, equipped with some extra service
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5.2 Messages

fields. The whole account is described by the following values: address,
status, state (”state init”) and the balance.

Accounts := Addr × Status× StateInit×Balance

Addr is a unique identifier of the account among all existing accounts.
Status describes an account mode of operation, and can be of 3 pos-
sible values:

Status := {Uninit, Active, Frozen}
Initially, all accounts have Uninit status. After the account state init
is initialized with the code and data of a smart-contract, the status is
switched to Active. If the balance of the account becomes insufficient
to cover storage blockchain expenses, the account is switched into the
Frozen state, and is unable to operate until it is switched back into
Active state.

The smart-contract state contains its initial code and data.

StateInit = Code×Data

Initial means that the state variables will change in future, but, at the
time of initialization, they have the values supplied in the Data part
of StateInit.

Elements of StateInit set are datasets that have some meaning for
the eval function. As with many other fields, we intentionally do not
define those elements, leave them under-specified, because their nature
is heavily depend on internals of eval function, and it is not defined
here either.

A smart-contract gets executed when the blockchain node receives a
correct message addressed to that smart-contract. In this case, it is
said that the smart-contract executes the message. After the message
is processed, the outcome is the updated account: new smart-contract
state, balance and also a set of outbound messages generated by the
smart-contract during the execution.

5.2 Messages

Messages between smart-contracts are called internal. Messages de-
livered from outside world into a smart-contract are called external.

12



5.2 Messages

Among internal messages, we define the following types: ordinary
messages - messages that are sent by the smart-contract itself, during
its execution; bounce message - a reply message that is sent to the
originating smart-contract in case one of its messages failed to be
processed properly on a receiver side.

Internal message is different to external message in that it has source
address field, and it can carry coins within itself. External message
carry no coins, and the smart-contract have to decide whether it should
process such message, in runtime.

There is also a notion of event. Sometimes, being far fetched, events
are called ”external outbound messages”. Conceptually, an event is
just a record in the abstract events journal. This journal could be
read by external users (but not by smart-contracts). To stay within
the common terminology, we also relate events to messages.

Let us define those entities:

Message := OrdinaryMessage×BouncedMessage×EventMessage

The set OrdinaryMessage is defined this way:

OrdinaryMessage := MsgHeader ×Option(MsgBody)

Elements of MsgHeader are service message headers. They may be
of 2 kinds:

MsgHeader := IntMsgHdr × ExtMsgHdr

Here,

IntMsgHdr := Bounce×Src×Dest×V alue×AnswerId×AnswerAddr

Also Bounce - is a boolean, denoting our intent to receive the no-
tification message in case the destination contract fails to process
our message, Src Dest - source and destination address, V alue -
amount of coins attached, AnswerId and AnswerAddr - identifiers of
smart-contract and its method where the answer message should be
addressed.

ExtMsgHdr := Dest× Pubkey

13



5.2 Messages

Here Dest - destination address, Pubkey - sender public key. It is
assumed, that the message is signed with a secret key that corresponds
to the provided public key, the signature should match.
Let us now define the main carrier of the useful bytes, the message
body.

MsgBody := Call ×Deploy ×DeployCall

The separation into 3 sets is by the following reasons: if the smart-
contract is already deployed, the call into this contract has to be en-
veloped into a message from the set Call.
If a smart-contract is not yet deployed, it could be deployed in two
different (and orthogonal) ways: a message of type Deploy denotes a
constructor call, and a message of type DeployCall is an initialization
of static contract variables with further method call (executed during
the same message processing context).

Now, we define it further:

Call := ContractMethod

Deploy := StateInit× ConstructorMethod

DeployCall := StateInit× ConstructorMethod× ContractMethod

Here, ContractMethod elements are all possible method calls for the
smart-contract, for example name of a method + argument values.

Elements of StateInit are values that unambiguously define the smart-
contract code and values of its state variables, ConstructorMethod -
a set of all possible constructor invocations.

Bounce notification messages are defined this way:

BouncedMessages := IntMsgHdr ×Option(MsgBody)

Here, the header may originate only from the IntMsgHdr set, because
bounce messages are generated only during the internal messages pro-
cessing. The MsgBody part may be absent (hence, the Option type),
for example, if the message with some coins was sent into a contract,
and the contract failed to process it (exception in fallback method).

An event is a pair of address and the event body:

EventMessage := SrcAddr × EventBody

The EventBody set may differ for each smart-contract.

14



5.3 Message Processing

5.3 Message Processing

The message processing refers to a computation that takes place when
the blockchain node receives a message addressed to some smart-
contract. We describe it using the eval function.

The processing of a single message is the following :

eval : Account×Message → Account× 2Message

or
eval(account,msg) 7→ (account′, outMsgs)

Here, account refers to an account record that corresponds to the
message destination address. The destination smart-contract inhabits
this account.

Here, we describe the message processing logic in a superficial manner.
A lot of details here takes place, most of them are not included in this
description, not to hinder the general understanding.

1. Credit phase - The coins from the message are put on the balance
of the account.

2. Storage phase - the node deducts so-called storage fee from the
accounts balance. If the balance becomes insufficient to cover
those expenses, the account becomes Frozen, and the execution
stops here.

3. Compute phase - The smart-contract code gets invoked with the
parameters from the message and from the account state. If the
computation succeeds, the output of this phase is an updated
contract state, and a sequence of actions to be performed on the
next phase. If error happens, the execution continues on the
Bounce phase.

4. Action phase - the actions generated on the previous phase starts
to execute by the action handler. The order of execution depends
on action type, so of them get postponed.

We elaborate a bit further on what Actions are in the next sec-
tion.
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5.4 Actions

The phase completes successfully if all actions are valid entities
and there is enough coins on the account balance to cover all
the actions fees. Successful processing of Send Message actions
result in outbound messages put in the queue.

If the phase completes with an error, then execution goes to
Bounce phase. In this case, smart-contract state gets recovered
to the initial state, that was before the execution of the Compute
phase.

5. Bounce phase - If the incoming message was an internal message
and had the bounce flag set in its header, then reply message of
type BounceMessage is generated.

It is put straight into the outbound message queue. The original
coins of the incoming message minus some fees get attached to
the bounce message. The balance of the account is updated
accordingly.

5.4 Actions

Lets discuss entities called Actions. To the best of our knowledge, it is
a unique concept among existing blockchains and may be unfamiliar
for some experts.

During its execution, a TON smart-contract may perform a series
of distinguished operations, like message sending, coins reservation,
program code substitution, etc. Those distinguished operations are
called Actions.

From a user perspective, those operations are nothing special. It is
how they get processed inside the TVM/TON node that constitutes
the most of its complexity.

Actions do not get executed at the place of its invocation, inside a
smart-contract, but are put aside into a special queue - the action
queue. Elements of this queue get processed after the computation
phase of the contract is successfully finished.

16



The complexity that we are referring to arise due to following reasons:

• Because actions do not get executed immediately, but get queued,
the contract, while executing, has no clue if he has enough bal-
ance to cover the fees of the next action it needs to do. The
balance is not updated during the computing phase. Because of
that, special logic has to be introduced to track such things.

• Some actions are highly customizable. Due to this, some ac-
tions are processed out-of-order, not to break common sense
logic. This out-of-order rule greatly hinders ones ability to rea-
son about the Action phase.

• Action customization leads to great number of possible out-
comes. For example, you can send message with 26 = 32 flag
combinations. Some flag combinations may conflict with other
actions in non-trivial way.

This complexity creates a perfect environment for generating logic
errors. It also greatly complicates formal verification process.

6 TON C++ Language

Here we list some facts on TON C++ language and smart-contracts
written in it, that might be handful during the work evaluation.

6.1 TON C++ Features

From C++17 standard, TON C++ language dialect differs consider-
ably. Here are some of the most important differences:

• No memory management operations permitted.

• Only integer arithmetic is allowed. Any integer type, and also
the char type, has a length of 257 bits.

• Exceptions mechanism is not supported. There is a built-in
function require(cond, code), that stops execution in case the
condition cond does not hold at the time of function invocation.

17



6.2 Header Files

• Function pointers are prohibited.

• Pointers on function arguments are prohibited, excluding func-
tions with the attribute always inline

• Most of the STL containers are not supported (due to memory
management issue)

• No multi-threading allowed

The TON C++ compiler is shipped with its own standard library that
includes functions for message delivery, working with runtime, TVM-
specific functions, TVM-specific container implementations, etc.

6.2 Header Files

In the header file with ’.hpp’ extension, the smart-contract interface
gets declared. For each smart-contract method, several method at-
tributes may be specified. The attributes semantics is described be-
low:

• internal - the method may be called by an internal message.
Please note, that this attribute may be combined with exter-
nal attribute. In this case, the method is reachable using both
internal and external message.

• extenral - the method may be called by an external message.
May be combined with internal.

• For external -methods, noaccept attribute means that the method
is willing to manually execute the tvm.accept() in case it is
needed. Otherwise, the tvm.accept() is called automatically.

• answer id attribute mean that the method is supplied with extra
answer id parameter value. This value will be used to coordinate
the return message if any5

5In TON Solidity, such methods are called responsible
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• dyn chain parse attribute signals that the serialization mecha-
nism for the method have to be implemented in a way that favors
gas usage over bytecode size.

6.3 TON C++ Runtime

The program code of TON C++ smart-contract is only a visible part
of the code base that gets translated into TVM bytecode, and later
put into the account StateInit.
Besides the program code itself, the contract has its own runtime
included. It is implemented in the following directory:

https://github.com/tonlabs/TON-Compiler/blob/
master/llvm/projects/ton-compiler/cpp-sdk/tvm/

We distinguish the following modules among others:

• smart contract info.hpp - System variables of the smart-contract,
such as: the current block time (unix epoch), random seed and
the current account balance. It is only copies of the values re-
ceived from the actual account record, so mutating it will not
effect the account values directly.

• contract.hpp - definition of tvm transfer(), tvm rawreserve(),
tvm accept(), tvm hash() functions

• contract handle.hpp - a wrapper that lets a developer send
messages in a convenient way

• default support functions.hpp - definition of int sender(),
int value(), set return func id() functions

• builder.hpp - cell type marshalling logic (cell)

• queue.hpp, small dict.hpp - queue and dict implementations

We provide this information by the following reason:

• All of this is used in FLeX code

• TVF models many of this functionality, so it is useful to know
where to see the original implementation that we model.

19

https://github.com/tonlabs/TON-Compiler/blob/master/llvm/projects/ton-compiler/cpp-sdk/tvm/
https://github.com/tonlabs/TON-Compiler/blob/master/llvm/projects/ton-compiler/cpp-sdk/tvm/


6.4 Operator Return is a Message

6.4 Operator Return is a Message

In many FLeX methods, you may run into familiar return operator.

Keep in mind that in TON C++ this construct generates message that
is sent to the contract with the address specified by the return addr
value, and put it in the function specified by return func id value.

It is allowed to specify the number of coins that is sent together with
this message.

All of this can be customized by calling set int return * functions fam-
ily. Default values for those is set by the runtime.

Keep this in mind, because in TVF, we model the return operator by
a special method call TON CPP return(), while the return keyword
of Dafny is used for a different purpose.

7 TVF Framework

In this section, we give a brief overview of the TVF - TON Verification
Framework, a set of libraries written to boost the verification engineer
productivity in his verification attempts.

7.1 Domain-Specific Logic

The Dafny language allows to write imperative richly-typed code,
cover this code with specifications and nearly automatically prove the
correspondence between the code and the specifications, for all possi-
ble inputs.

However, the TON blockchain has its own domain specifics, such as:

• Domain specific functions, such as: message sending, coins reser-
vation, some runtime parameters tuning, etc. The side-effect of
those functions may affect on the further execution process.

• Smart-contracts get executed using transactional semantics : the
method either succeeds, and the new state variables get stored
in the state, or, if error happens, the state variables rolled back
to its original value.
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• The smart-contract can not be dissected from the account it
belongs to, but this tight link is not visible in the code. The
account entity is hidden from the developer, but its state may
influence the outcome of the message processing, hence the call
result.

• Node message processor that is called before running the SmC
method, has rather complicated logic and defines the way the
account state changes. It is highly undesirable to exclude it
from the executing chain, otherwise the reasoning accuracy may
suffer significantly.

• There are set of specific types typical for the TON blockchain,
and operations on those types have its specifics.

From the above, it follows, that you can’t just take the smart-contract
code and rewrite it in pure Dafny. You will not gain anything useful
this way.

Behold! This is where TVF comes in.

7.2 TVF. The Purpose.

The logic layer that is described above is represented by a big volume
of code. It affects the outcome of message processing and can not be
ignored, it has to be included in the final verification model.

As was stated before, the visible part of the code is only nearly a half
of what is actually going on when the message is processed. There is
Action phase that has to be considered.

The TVF framework hides most of this complexity into handful ab-
stractions, allowing the verification engineer to build soundly reason
about TON contract behavior without ignoring all the complexities of
the protocol.

Besides, TVF tries to stay syntactically close to the original smart-
contract program code: the form of the code should not change con-
siderably, otherwise it becomes difficult to trace the correspondence
between the two.
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1 {
2 require(msg_pubkey() == owner_,
3 error_code::message_sender_is_not_my_owner);
4 tvm_accept();
5 ext_wallet_code_ = ext_wallet_code;
6 }

Figure 2: Body of setExtWalletCode from FlexClient.cpp

1 {
2 :- require(msg_pubkey() == st.owner_,
3 error_code_message_sender_is_not_my_owner);
4 tvm_accept();
5 st.ext_wallet_code_ := Value(ext_wallet_code);
6 return Success;
7 }

Figure 3: Body setExtWalletCode from TVF

The TVF framework strives to give the following advantages to the
user:

1. The translated code stay syntactically close to the original TON
C++ program text.

2. Hide most of message handling protocol complexities from the
engineer, leaving visible only those parts that are needed to build
proofs.

3. Hide Compute and Action phase complexities.

4. Give an engineer a way to specify the outcome of different SmC
execution phases.

5. Give the engineer all the TON execution environment related
primitives, and types.

7.3 TVF Internals

Here, we briefly describe the framework device from the engineering
user perspective.
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7.3.1 Package Contents

Currently, TVF consist of the following files:

• BaseTypes.dfy - common type definitions used in TON C++.
Besides, types option¡T¿ that corresponds to std::optional¡T¿
and Status types for emulating exceptions.

• Queue.dfy - Queue container definition. Functions defined in
a way to closely reflect what is used in FLeX.

• TONTypes.dfy - TON specific types for Messages and Actions.

• TONContract.dfy - The module that is refined by all smart-
contracts. Contains all the message and phases execution logic.
Besides, it contains all needed TON C++ runtime functions. It
is a core of the framework.

• ErrorCodes.dfy - Numeric error codes. Right now, the values
do not correspond to the real Rust-node error values.

• MapToSeq.dfy - Handful function that converts map into a
set. Sometimes, it is needed for specifications and proofs.

7.3.2 Smart-Contract Programming

To embed the smart-contract into TVF/Dafny, the engineer has to do
the following:

1. Define the module Module that refines the module TONModule.
Refinement mechanism is not documented here, please refer to
Dafny documentation 6.

2. Within the Module, refine the ContractStateVariables class, putting
all the contract state variables inside it. They may use any types
here, including TON-specific types defined in BaseTypes.dfy

3. Inside the ContractStateVariables class, refine the constructor.
Constructor here set variable values to their default values, de-
fined by the compiler or, if the type is an object, by its construc-
tor, even before the smart-contract constructor gets called.

6https://github.com/dafny-lang/dafny/blob/master/docs/DafnyRef/out/DafnyRef.pdf
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You better be careful here, and relate the value initialization
logic with your language. For example, in C++ it is common
to have undefined values for variables. In Dafny, this is denoted
with ’*’ symbol.

4. Inside the ContractStateVariables class, refine the initial values()
predicate. This predicate state what values are in the contract
variables right after the constructor gets called. It is a construc-
tor specification.

5. Within the Module, refine the TONContract class. Here, you
start program your contract methods. We elaborate on it in
Section 7.3.3.

6. Within the TONContract, refine methods

• execute constructor() - smart-contract constructor body goes
here

• execute external method() - external messages handler

• execute internal method() - internal messages handler

7. If you need to reason about the overall message execution cor-
rectness, i.e. not only Compute phase, but also Action and
Bounce phases, you will also need to refine the following:

• msg dispatcher() - main message entry point

• tvm compute phase() - compute phase handler

Regarding points 6, 7. Please note, that you do not need to program
anything inside those methods! You only need to put specifications
regarding possible messages for your smart-contract and expected out-
comes. Everything else is taken care by TVF.

7.3.3 Smart-contracts Methods Encoding

We now look at how the methods of a smart-contract gets encoded
relatively to how it is done in TON C++. Lets look at the example.

On Fig.4 and Fig.5 the same method FlexClient::setExtWalletCode is
encoded both in TON C++ and TVF/Dafny.
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1 __always_inline
2 void setFlexWalletCode(cell flex_wallet_code) {
3 require(msg_pubkey() == owner_, error_code::

message_sender_is_not_my_owner);
4 tvm_accept();
5 flex_wallet_code_ = flex_wallet_code;
6 }

Figure 4: FlexClient::setExtWalletCode method from FlexClient.cpp

1 // [[external, noaccept]]
2 method setExtWalletCode(ext_wallet_code: cell) returns (s:

Status)
3 requires external_message()
4 modifies st
5 ensures setExtWalletCode_pre() <==> s == Success
6 ensures s == Success ==> setExtWalletCode_comp()
7 {
8 :- require(msg_pubkey() == st.owner_,

error_code_message_sender_is_not_my_owner);
9 tvm_accept();
10 st.ext_wallet_code_ := Value(ext_wallet_code);
11 return Success;
12 }

Figure 5: setExtWalletCode method from FlexClient.dfy
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Return value. Note the difference between return types of two meth-
ods. In TON C++, the return type is void. But in TVF, the return
type is specified as Status. Why it is done this way?

All methods that potentially may throw an exception have to be
equipped with output parameter of failure-compatible type: it is the
Status type in our case. In case of an exception, this return value
signals the calling party that the method execution was aborted, re-
turning value Failure(n:nat), or Success in case everything is fine. It
does not prevent us from returning other values if needed: Dafny sup-
ports returning multiple values in a single statement.

So, in TVF version, the method does the return Success at the end,
while the TON C++ version contains no return operator at all (though,
it implicitly presents there).

Method Attributes While it is not reflected in the method defini-
tion, the declaration of the setExtWalletCode in the header file Flex-
Client.hpp is tagged with the attribute external, noaccept. It means,
this method may be called only by an external message.

In Dafny, the method attributes mean something different and can
not be customized. That is why, in our case, attributes are encoded
as pre-conditions for the method, located in the requires block. On
line 3, it is required that method be executed only by en external
message.

Operator require. On line 8, the require call is made using the
failure propagation operator, like ”:- require(cond, error);”.
If the failure happens, the execution immediately returns with an er-
ror. Contrary to that, the tvm accept() call on line 9 is done in a usual
way. This is because tvm accept() may not throw, by definition.

Contract State Variables Update. In TVF, smart-contract vari-
ables are stored within st object. This is why, all the updates must be
done for fields inside this object. If the method itself or any method
that gets called by the former mutate state variables, the extra modi-
fies st annotation must present.
If a method do some TON-specific, action inducing operations, like
message sending, modifies block must be extended accordingly.
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Optional Type. On line 10, the value
Value(ext wallet code) is assigned to the st.ext wallet code variable.
In FlexClient.cpp, and in FlexClient.dfy this variable has a type op-
tional¡T¿. But in C++ value packing inside the type optional¡T¿
happens automatically, at type resolution phase. In Dafny, you have
to explicitly specify the proper type constructor, that is Value(v) 7.
Those discrepancies appear in some places. Let those who read the
source code will not be afraid of it!

Ensures block. On line 5 and 6, the specification for setExtWallet-
Code is given.
The first one tells that if the method gets called from a state respecting
the setExtWalletCode pre() predicate, then the method will succeed
(r == Success). And in the opposite direction: if the method succeeds,
it must be the case that initial state respected the predicate. So, the
predicate define necessary and sufficient condition for the method to
succeed. We call such condition the weakest precondition8

The second one, on line 6, states that if method succeeds, then the
predicate setExtWalletCode comp() will hold. The predicate describe
the expected state after the Compute phase succeeded.
Usually, we put a description of what contents has to be in the ac-
tion queue after the method succeeds, but for the method setExtWal-
letCode it is not that interesting - it generates no actions at all.

7.3.4 Writing Specs for Smart-Contracts

The TVF specifications may be put in several places, depending on
what is the verification purpose.

• Annotations inside the ensures block, within the smart-contract
method definition. The example was shown recently. This type
of specification may only assert things about smart-contract
state after the Compute phase.

• Specifications inside the ensures block of the msg dispatcher.
This type of spec is needed to prove final properties: properties
that hold after all phases get executed.

7There is a co-variance type mechanism in Dafny that allows to do things similar to what happens
in C++, but we do not use it currently

8This term was coined by E.W.Dijkstra in his famous ”A Discipline of Programming” book
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First and foremost, those proofs are needed when you reason
about message exchange between several smart-contracts (see,
PROP SEC01.dfy, for example)

• Specifications inside the ensures block in execute external method(),
execute internal method(), tvm compute phase().

It is required to annotate those methods in case you domsg dispatcher
annotations.

At this point, we have to stop our clumsy shallow description of the
TVF framework, with the hope that if a question arises then you may
try to inspect sources by yourself, or ask the author directly.

8 FLeX Formal Verification

In this section, we give some details regarding our FLeX verification
effort.

8.1 Mapping TON C++ into TVF/Dafny

Any imperative programming language, including TON C++, may
be separated into two parts: effectful (create objects on the heap,
mutate state variables, exceptions, message sending, etc) and pure
(if/then/else, some arithmetic, basic types allocation, evaluating func-
tions without side effects, etc).

Besides, from TON C++ language, we may extract even more narrow
sub-language that is used in the FLeX development. From now on,
we use TON C++ to denote this sub-language.

Pure fragment of TON C++ includes:

• Conditional operator if/then/else.

• Comparison operators applied to some elementary types and
some non-elementary types, for example uint t and bool t.

• Construction of objects std::tuple and std::optional, from the
already evaluated values .
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• Calculating the std::min()

Effectful part contains the following:

• All action-inducing calls, including message sending, coins reser-
vation, etc.

• Integer arithmetic operations due to its overflow and underflow
potential (remind you that TVM throws exception in this case).
Increment also goes here.

• Working with queue and dictionary. It may throw in several
places.

• Working with iterators

• Passing reference arguments into functions

• Calling TON-specific functions that may throw (require, for ex-
ample)

• etc.

Precise semantics of C++ language is still not defined. The best thing
we have is a description of the C++ standard 9. We used it extensively
through out our whole modeling adventure.
Modeling the pure part of TON C++ is relatively easy.
For modeling the effectful part, we did the following:

• For queues: we equip the methods that may throw with FC type.
So we could track exceptions.

• For passing reference arguments into functions, we defined the
type Ref¡T¿, that creates an object initialized with the passing
value. In every place that reference this value, we use the value
from this object.

1 var sell:Ref<OrderInfo> := new Ref(sellOrderInfo); //
In C++, OrderInfo& sell = sellOrderInfo;

2 // ...
3 sell.st := sell.st.(account + v); // In C++, sell +=

v;

9https://en.cppreference.com/w/
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4 // ...
5 make_deal(sell, buy);
6 // ...

• TON specific methods that may throw exception are equipped
with FC type, all of them are called using the failure propagation
operator ”:-”. The Dafny itself forces those methods to be called
this way.

• Working with iterators - we decided not to model classic C++
iterator with all the methods like begin(), end(), next(), etc.
Instead of that, we carefully rewritten the code without using
iterators. In FLeX, there are only 2 such places - it is Price and
PriceXchg, cancel order impl() method.

• Integer arithmetic - Dafny has the built-in overflow and under-
flow checks. In other words, each arith operation + / - / * /
div has to be accompanied with the proof of overflow/under-
flow safety, or the assumption that it never happens. In sev-
eral places, when we are sure that the overflow/underflow is
highly improbably, we use overflow-resistant add(X1,X2) and
addL([X1,X2,X3..]) functions to sum several integers.

• There are some more of TON C++ nuances that we modeled
in an ad-hoc way, because they appear only in single places
throughout the project.

8.2 Properties and Proofs

Here, we list all properties and scenarios we addressed in our verifica-
tion effort, relying on the formal apparatus and methodology described
above.

• Arithmetic exception safety: all contracts

• Successful methods invocation on the Compute phase in case the
initial state respects the weakest precondition predicate: Price
(partially), FlexClient, TradingPair, XchgPair.

The weakest precondition predicates are named using the scheme
”method name pre”.
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• Successful method invocation on the Action phase in case the
initial state respects the given predicate: FlexClient, Trading-
Pair, XchgPair

• We implemented several interaction scenarios that arise in for-
malization of properties from the SEC section of FLeX specifica-
tion. Those scenarios, together with its formalization, provided
in the files:PROP SEC01.dfy, PROP SEC02.dfy, PROP SEC03.dfy,
PROP SEC04.dfy. We also started to prove scenario PROP ORD01.dfy,
but during building proofs, we ran into an error in the Price, and
this is why we failed to prove it.

• The strict lower and upper bound on the number of gener-
ated messages for the method Price::buyTip3 has been derived.
Thanks for this proof, we were able to catch an issue with un-
controlled queue growth potentially leading to deadlock.

8.3 Assumptions

In our work, we relied on several assumptions to make the proof effort
manageable.

• The marshalling functions build(), parse(), etc work correctly.
We use high-level algebraic datatypes to encode structures, even
if it is passed in a message.

• There are several places where they add several values. It is clear
from the domain knowledge that those values are tiny relatively
to datatype uint128. So we use exception-safe add() and addL()
in those places.

• We assume that the queue size will never exceed MAX UINT64.
It is clearly the case, because the smart-contract is incapable of
storing that much data.

• In several places, we rely on the fact that tvm balance() is
greater or equal that int value(). It is indeed the case, because
int value() (message coins) get added to the balance before ex-
ecuting a method.
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• We assume that timestamp value will never exceed MAX UINT32
value. This corresponds to year 2038. Before this date, we
should not worry.

• Assumption regarding the hash(smc.state init) == smc.account id,
it is by definition of an SmC address.

8.4 Found Defects

In this section, we present our findings that we discovered during the
verification process, we also explain how exactly the defect was found.
We think that this experience may be very beneficial to other FV
engineers.

1. In Price.cpp, dealer::make deal(), arithmetic overflow may hap-
pen, leading to creation of an empty std::optional object. When
dereferencing such object using operator *, the compiler may
put an arbitrary value. In this case, we calculate the deal
price, so, potentially, this may be very serious issue. https:
//github.com/tonlabs/flex/issues/20

The error was found during inspecting the semantics of operator
* for an empty optional type, while translating TON C++ into
TFV/Dafny.

2. In Price.cpp, dealer::process queue() the uncontrolled message
queue growth may happen. It works this way, because, in-
side the cycle, the break operator is placed not quite accu-
rate. Potentially, this could lead to a smart-contract deadlock.
https://github.com/tonlabs/flex/issues/22

The error was found during the building proofs on the message
queue size bounds for the method dealer::process queue().

3. In Price.cpp, extract active order(), the out-of-gas exception may
happen. It works this way, because the iteration over cycle is not
bounded, so if the collection has a significant size, the gas will
be eventually exhausted. https://github.com/tonlabs/
flex/issues/23
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The error was found during building the proofs for action queue
size bounds.

4. In Price.cpp, dealer::process queue() the out-of-tons notification
get sent with incorrect value of processed tokens. https://
github.com/tonlabs/flex/issues/25

The error was spotted by the FLeX developer himself while ex-
plaining some tricky question related to C++ references me-
chanics, and the code was near this place.

5. In PriceXchg.cpp, the function minor cost() performs the call
builtin tvm muldivr(a,b,c). This function may throw in case c
= 0.

This case is not considered in the code, so, theoretically, is pos-
sible.

https://github.com/tonlabs/flex/issues/26

The error was found during building proof of successful method
invocation on Compute phase.

6. In PriceXchg.cpp, cancelBuy() there is an error in how the value
of the fee is calculated when buy orders get canceled.

https://github.com/tonlabs/flex/issues/27

The error was spotted due to familiarity with the Price.cpp, that
contains very similar code, but without this error. The memory
told us that there was a different logic in this place.

7. In TONTokenWallet.cpp the dictionary lend ownership may
grow in uncontrolled fashion, leading to out-of-gas, and later
to a deadlock.

https://github.com/tonlabs/flex/issues/28

The error was spotted analytically while we worked on some
proofs for the code that calls this method.
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8.5 Statistics

8. In RootTokenContract.cpp, deployWallet() when the value wal-
let code is not set, the exception may happen after the tvm.accept()
was called, a scenario that leads to excessive coins loss due to
charges applied by all validators running this code.

https://github.com/tonlabs/flex/issues/29

The error was spotted while deriving precondition for some method
that is called within this method.

9. In PriceXchg.cpp, dealer::process queue() there is a condition
that contains a typo. Instead of checking the account value for
buy order, it is checked for the sell order. https://github.
com/tonlabs/flex/issues/30

The error was found during manual translation of TON C++
into TVF/Dafny, with critical comprehension. We also noted
that in similar code inside Price.cpp, the check looks different.

8.5 Statistics

Now, we have the following statistics: totally, from 9 found defects,
5 defects were found during proof building, 3 defects - by manual
translation of the code, and 1 defect was spotted by the developer
himself while answering some technical question of ours.

9 Conclusion

The TON blockchain gives provides rich smart-contract functionality
capabilities.
From one hand, this increases the expressivity of programs. On the
other hand, it increases program complexity that may lead to logic and
implementation errors. So, we consider formal verification a viable
way to ensure correctness of such programs.

A considerable amount of our time was spent on recovering details of
message execution inside the TON node. It is not described anywhere,
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and, still, some questions are not resolved10. To overcome this diffi-
culty, we hope that from some time, the TVF may become a reference
model for the TON node, at least in the message processing part.

While doing the verification of FLeX, we were able to find several
non-trivial errors that could lead to a hazard situation. Previously,
when doing manual code audit, we did not find those errors, but they
were there.

In our opinion, the functional-level formal verification method of find-
ing bugs demonstrated its efficiency.

A Artifacts Evaluation Instruction

1. Install Dafny version 3.3.0. Building and Installation manual is
here:
https://github.com/dafny-lang/dafny/wiki/INSTALL

2. Download the repo with Flex models and proofs: https://
bitbucket.org/unboxed_type/flexphase2/src/master/

3. Run the check by executing make command

4. Depending on how powerful your CPU is, the check may take
up to 5 minutes. If there are any timeout errors, the timeout
value may be increased in the Makefile.

10see our issues in https://github.com/tonlabs/ton-labs-executor/issues

35

https://github.com/dafny-lang/dafny/wiki/INSTALL
https://bitbucket.org/unboxed_type/flexphase2/src/master/
https://bitbucket.org/unboxed_type/flexphase2/src/master/
https://github.com/tonlabs/ton-labs-executor/issues

	Introduction
	Overview
	Acknowledgments
	Artifacts
	Warning

	FLeX System Overview
	About FLeX
	FLeX Architecture
	FLeX Smart-Contracts
	FLeX Implementation

	Formal Verification Methodology
	Methodology Overview
	Problem Statement
	Background
	Function-level Predicates
	Methodology Soundness

	Dafny Tool
	Execution Environment Model
	Accounts
	Messages
	Message Processing
	Actions

	TON C++ Language
	TON C++ Features
	Header Files
	TON C++ Runtime
	Operator Return is a Message

	TVF Framework
	Domain-Specific Logic
	TVF. The Purpose.
	TVF Internals
	Package Contents
	Smart-Contract Programming
	Smart-contracts Methods Encoding
	Writing Specs for Smart-Contracts


	FLeX Formal Verification
	Mapping TON C++ into TVF/Dafny
	Properties and Proofs
	Assumptions
	Found Defects
	Statistics

	Conclusion
	Artifacts Evaluation Instruction

