
TIP-3 contract verification report (Stage1)

1. The purpose of the present document

The present document describes high level approach, methodology and business-level
scenarios for the formal verification of the Free TON TIP-3 smart contract. Its mission is to
provide the detailed description for items mentioned below:

● Formal description of the contact behaviour in the different cases
● Possible malfunctions and attacks
● Approaches how to formally verify (prove) that the behavior is exactly the same as

described in this articles and that suspected attacks are not possible

2. Brief description of TIP-3 contract

TIP-3 contract allows users to create their own tokens. Unlike ​ERC20​1 ​in ​Ethereum ​the
contract (called as the “Root” contract) does not keep all the balances inside (does not
maintain ledger) but rather creates an individual “Token” contract for each wallet. The
interaction between “Root” and “Token” contracts is illustrated by the following picture
provided by the contest organizers.

1 https://ethereum.org/en/developers/docs/standards/tokens/erc-20/

https://ethereum.org/en/developers/docs/standards/tokens/erc-20/

Both types of contracts have the API provided by the contest organizers. This API as well as
informal specification provided in the natural language may be obtained here​2​.

3. The key underlying solutions

The proposed solution is based on ​Coq Proof Assistant​3​. This tool is primarily designed to
make an environment for proving mathematical theorems and for this purpose it provides
OCaml​4​-like language (named ​Gallina​) for specifying the entities to be proved, specific
language for proves (that is roughly the sequence of so called tactics (that stand for a step in
terms of traditional proving​5​) as well as a specific language ​ltac​ for defining custom tactics.

In addition ​Coq provides its own comprehensive IDE as well as API to be integrated with
other development environments such as ​Microsoft Visual Studio Code​.

Coq itself is based on a pure mathematical paradigm called ​Calculus of constructions​6 (and
its extension called ​Calculus of Inductive Constructions​7​) that allows to use mathematical
induction​8​ in addition to pure formal logic​9​.

Coq was initially introduced in 1989, was dramatically developed since that time, used for
many theoretical and practical applications and, as an outcome, the authors of the present
document suggest to consider it as a reliable tool that means:

● If ​Coq​ states that some statement is proved it’s considered as proved
● At the same time ​Coq may have any number of bugs not related to the statement

written above

According to ​Curry–Howard isomorphism​10 all the mathematical proofs can be applied to the
computer programs that is essential for the approach presented in the current document.
Thus this proof assistant may be applied to the computer programs using the approaches
described in the next section.

4. High-level approaches and methodologies

2 https://forum.freeton.org/t/tip-3-distributed-token-or-ton-cash/64
3 ​https://coq.inria.fr/
4 ​https://ocaml.org/
5 For example, ​apply​ tactic roughly means usage of some already known theorem or ​symmetry​ tactic
utilizes the axiom that ​a=b​ is equivalent to ​b=a
6 ​https://hal.inria.fr/file/index/docid/76024/filename/RR-0530.pdf
7 ​https://coq.inria.fr/distrib/current/refman/language/cic.html
8 ​https://encyclopediaofmath.org/index.php?title=Mathematical_induction
9 ​http://www.collegepublications.co.uk/logic/mlf/?00029
10 Howard, William A. (September 1980), "The formulae-as-types notion of construction", in Seldin,
Jonathan P.; Hindley, J. Roger (eds.), To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus
and Formalism, Academic Press, pp. 479–490, ISBN 978-0-12-349050-6.

https://forum.freeton.org/t/tip-3-distributed-token-or-ton-cash/64
https://coq.inria.fr/
https://ocaml.org/
https://hal.inria.fr/file/index/docid/76024/filename/RR-0530.pdf
https://coq.inria.fr/distrib/current/refman/language/cic.html
https://encyclopediaofmath.org/index.php?title=Mathematical_induction
http://www.collegepublications.co.uk/logic/mlf/?00029

As it was mentioned in the previous section ​Coq uses ​OCaml​-like ​Gallina pure functional
language while the smart contract to be verified is written using ​C++ language​11 that is
imperative.

To convert ​C++ ​code into ​Gallina​ the following stuff is already implemented:

● Gallina​-level ​C++​ DSL​12
● Translator from ​C++​ to ​Gallina​ DSL

As a result the primitive ​C++ operations are explicitly described and, if necessary, proven
using Coq, while some limitations are still in place. The main of them is that all the cycles
must have strong evidence of breaking at some point. This limitation is fundamental and is
based on the ​Turing halting problem​13​. To avoid it developers are highly encouraged to use a
weak normalization (or roughly, with decreasing explicit iterator variable). Otherwise, the
conversion of such a code ceases to be automatic and requires significant (and non-trivial)
manual efforts to turn the ​C++​ code into one acceptable by ​Coq ​(however, it’s still doable).

The resulting behavior ​C++ DSL primitives is implemented by a deep embedding technique
while their imperative interaction by each other is reached by a specially designed monadic​14
model that lets one to implement imperative behavior in a pure functional language.

As an outcome any features of the inspected ​C++ code may be proven using the DSL
conversion described above with help of ​Coq Proof Assistant ​as well with usage of the
specially designed libraries called ​Finproof Base​ (already implemented).

The approach described above allows ones to formally verify the ​C++ code itself assuming
that all the underlying tools work correctly. However, while it’s assumed that ​TON Virtual
Machine​15 and TON Blockchain​16 itself works correctly the compiler still may be considered
as unreliable (upon community request).

While the full formal verification of the compiler is considered beyond the scope of this
project it may be verified using the already developed ​Coq-based TON Reference Virtual
Machine (CTRVM)​. This virtual machine was developed strictly according to the ​TON Virtual
Machine specification, and has proofs for the most of its parts (some parts, as hashmaps are
still in progress but don’t prevent the machine from usage).

A semi-automated runner may run the contract being inspected and ensure that the
compiled TVM code works exactly in the manner as the ​C++​ one.

11 While the original Solidity was developed exclusively for Ethereum the TON-adopted version is
considered here
12 Marjan Mernik, Jan Heering, and Anthony M. Sloane. When and how to develop domain-specific
languages. ACM Computing Surveys, 37(4):316–344, 2005.doi:10.1145/1118890.1118892
13 Alan Turing, On computable numbers, with an application to the Entscheidungsproblem,
Proceedings of the London Mathematical Society, Series 2, Volume 42 (1937), pp 230–265,
doi:10.1112/plms/s2-42.1.230
14 Wadler, Philip (June 1990). Comprehending Monads. ACM Conference on LISP and Functional
Programming. Nice, France. CiteSeerX 10.1.1.33.5381
15 ​https://test.ton.org/tvm.pdf
16 ​https://test.ton.org/tblkch.pdf

https://test.ton.org/tvm.pdf
https://test.ton.org/tblkch.pdf

As an outcome not only the high-level ​C++ code is formally verified but also the compiler
with limitations to its usage exclusively for the contract being inspected.

5. Pre Assumptions

The following presumptions are suggested for the verification of the present smart contract:

● Blockchain and TVM work strictly according to the specifications mentioned above
● Coq Proof Assistant or any other tool being used works correctly
● If something is not specified the assumptions based on common sense logic are

applied
● Infinite sequences of similar elements (arrays) may exist
● Each cycle must exit at some precalculated point
● No direct or indirect recursions (function-based or message-based) allowed

6. Roles and responsibilities

The following roles may be identified for the TIP-3 contract:

● Root owner - the owner and the maintainer of the whole token ecosystem, the only
person who can mint tokens and distribute initial supply. Also can create new
non-empty wallets via Token contract deployment

● Token owner - the owner of the particular wallet (Token contract), may create a new
wallet, accept grants from root contract, transfer tokens to any other contracts,
approve and disapprove allowance

● Token receiver - subrole of a Token owner whose wallet can receive tokens from
other Token contracts (with the same ​name​, ​symbol​, ​decimals​, ​code ​and ​root​)

● Token spender - subrole of Token owner whose wallet received allowance from
some other Token contract. This role includes ability to get the allowed number of
tokens in favor or itself or third-party

● Generic user - may just call getters to get different kinds of information about root
contract or particular wallet

7. State of TIP-3 contract

The full state of the TIP-3 contract may be described by the table below. It’s important to
mention that this state is using the external observer’s point of view (some kind of God
mode) so some elements may not be kept by the real implementation. For example, the real
implementation may not keep the list of the token contracts but for the external observer
such a list is still a part of the state.

Element Description

name Unique name of the root contract

symbol Unique symbol (such as BTC) of the root
contract

17 Cells are the base data objects of TVM and well described by the TVM specification
(​https://test.ton.org/tvm.pdf​)

decimals Decimal logarithm of division of the base
tokens to “displayable” tokens of the same
value

public_key Owner public key

wallet_code Code of the Token contract as cell​17

total_supply The overall number of tokens in the system

granted_supply The overall number of tokens granted to the
Token contracts

owner The address who created the Root contract

token_contracts List of Token contracts attached to this Root
contract (​please note it’s a virtual list that
may not physically exist​)

 workchain_id Workchain id for the Token contract

 root_name Name of the Root contract

 root_symbol Symbol of the Root contract

 root_decimals Decimals of the Root contract

 root_public_key Public key of the Root contract

 wallet_public_key Public key of the Token contract

 root_address Address of the Root contract

 balance Balance of the token contract

 token_address Address of the token contract

 token_owner Address of the token owner

 allowance_info Structure the keeps allowance information

 spender Address allowed to spend tokens

 remaining_tokens Amount of tokens still allowed to spend

world All the entities outside the given Root
contract and the underlying Token contracts

 world_names List of the root contract names other than
given one

 world_symbols List of the root contract symbols other than
given one

https://test.ton.org/tvm.pdf

8. Structure of cell and slices specific for TIP-3 contract

The TIP-3 contract uses one specific cell - the wallet code cell and one specific slice​18 - used
for ​onBounce ​messages. Each of them is discussed in the present section.

The cell with code must be identical to the code generated during compilation of the formally
verified Token contract otherwise fraud is possible. Also before sending deploying the Token
contract the Root contract must include a “boot” section to eliminate the risk of replay attack.
In case of deploying the Token contract by constructor the “boot” section must be already
included into the code. One more limitation for the Token contract code is that it can not
have such instructions as ​SETCODE​, ​SETLIBCODE​ or ​CHANGELIB​.

The correct Token contract to be deployed must be a conjunction of:

● name
● symbol
● decimals
● balance (​0​ for ​deployWallet​)
● root_public_key
● wallet_public_key
● root_address
● owner_address
● wallet_code (with “boot” section described above)
● allowance (must be zero for contract deployment)
● workchain_id

All the data mentioned above is encoded as a cell, while wallet_code is equivalent to the
code of the Token smart contract.

The address of the Token contract must be deployed from the hash of all the data mentioned
above. Any other ways to make a unique and non-reproducible address from the list above
are considered as correct.

msg_body ​slice used for handling bouncing of internal message must have the following
structure to be considered as correct:

18 Slices are mutable objects designed to read cell content chunk by chunk (to some extent they are
close to input streams in traditional languages). For more information refer to ​TVM documentation

 world_public_keys List of the all public keys used in the
blockchain other than public keys of the
given Root contract and the underlying
Token contracts

https://test.ton.org/tvm.pdf

For further details please refer to the ​TVM specification​.

9. Specification of TIP-3 contract in the formalized natural language

Here we provide the specification of the ​TIP-3 contract in the formalized natural language
that means each expression may be literally translated (presumably, manually) to the formal
computer language (such as ​Coq​19 described above). All the state elements (described in
the previous article) are underscored while the parameters are italic. The following meanings
of English words (when capitalized) are used:

● NO - means that the whole statement is always ​True
● POSITIVE - an integer that is greater than 0 and less than maximum value of the

specified type such as 2​64​ or 2​128
● MUST - mandatory requirement, may be translated as an ∀ quantifier for the left

side to the right
● EMPTY - list with no elements
● EQUAL(S) - left part of the expression is fully equivalent to the right one (has the

same type and all the values are structurally EQUAL). As an example ​1 is not
EQUAL to ​1.0​ .

● UNCHANGED - the projection of the state to the hypersurface described by the
element after the completion of the function (or sequence of functions) being
described EQUALS to the corresponding projection before the call

● NO CHANGES OCCUR - the state is UNCHANGED (but gas, balance or any other
non-contract specific states if they considered as a part of the state)

● ARE NOT MET - implication from the negation of the left part to the right part

19 ​https://coq.inria.fr/

https://test.ton.org/tvm.pdf
https://coq.inria.fr/

● ZERO - integer zero
● UNIQUE IN … IN TERMS OF - No element of mapping​20 of the middle statement by

the right statement EQUALS to the left statement
● MUST EXIST IN … IN TERMS OF - Some element of mapping of the middle

statement by the right statement EQUALS to the left statement
● EXISTING IN … IN TERMS OF - The first element of mapping of the middle

statement by the right statement EQUALS to the left statement
● LESS OR EQUAL - corresponds to ​<=
● MINUS - corresponds to the arithmetic subtraction
● BEING ADDED WITH - the right statement is added to the list as the first element,

other elements are UNCHANGED
● AND - conjunction of two statements
● OR - disjunction of two statements
● NON NEGATIVE - ZERO OR POSITIVE
● IN CASE OF SUCCESS … OTHERWISE - if no exceptions occur in the whole tree

of messages as well as no messages are bounced the middle expression MUST be
true, otherwise the right expression MUST be true

● INCREASED BY - After the execution of function or set of functions the left
expression is larger that its value before the execution by the right expression

● OF - the value of the left expression of the structure represented by the right
expression

● IF … THEN … OTHERWISE - self-explained construction
● PROPER CODE CELL - a cell that is a correct code cell as described in the section

above
● BOUNCE FUNCTION - the function that is encoded in the bounce message body as

described in the section above
● BOUNCE VALUE - the value that is encoded in the bounce message body as

described in the section above
● PROPER BOUNCE SLICE - the slice is the correct bounce message slice as

described in the section above
● CORRECT STATE INFO WITH - the correct StateInfo as described in the section

above

1. Function-level specification
a. Root contract functions

i. constructor
1. Access

a. NO access restrictions
2. Parameters

a. name
i. NO constraints

b. symbol
i. NO constraints

c. decimals
i. decimals​ MUST be NON NEGATIVE

20 By ​mapping ​the invocation of list-wide transformation often named as ​map​ (in such languages as
Haskell​ or ​Java​(​java.util.stream.map​)) is considered

ii. decimals ​MUST be LESS OR EQUAL 255
d. root_public_key

i. root_public_key ​MUST be POSITIVE
e. wallet_code

i. wallet_code MUST be a PROPER CODE CELL
f. total_supply

i. total_supply ​MUST be POSITIVE
3. Output

a. name​ EQUALS to ​name
b. symbol​ EQUALS to ​symbol
c. decimals​ EQUAL to ​decimals
d. public_key ​EQUALS to ​root_public_key
e. wallet_code​ EQUALS to ​wallet_code
f. total_supply​ EQUALS to total_supply
g. token_contracts​ MUST be EMPTY
h. world​ is UNCHANGED
i. granted_tokens​ EQUAL to ZERO
j. owner​ MUST be the Caller

4. Exceptions
a. If the constraints for the parameters ARE NOT MET
b. exception must be raised and NO CHANGES OCCUR

ii. deployWallet
1. Access

a. Caller MUST be an ​owner
2. Parameters

a. workchain_id
i. workchain_id​ MUST be NON NEGATIVE

b. pub_key
i. pub_key​ MUST be POSITIVE
ii. pub_key MUST be UNIQUE IN ​token_contracts

IN TERMS OF ​wallet_public_key AND
workchain_id

c. tokens
i. tokens ​MUST be POSITIVE
ii. tokens MUST be LESS OR EQUAL than

total_supply​ MINUS ​granted_supply
d. grams

i. grams​ MUST be POSITIVE
ii. grams MUST be LESS OR EQUAL than the

Root contract balance
3. Output

a. name​ is UNCHANGED
b. symbol​ is UNCHANGED
c. decimals​ are UNCHANGED
d. root_public_key ​is UNCHANGED
e. wallet_code​ is UNCHANGED
f. total_supply​ is UNCHANGED

g. token_contracts MUST be BEING ADDED WITH
new_contract ​where ​new_contract ​has the following
attributes:

i. workchain_id​ EQUALS to ​workchain_id
ii. root_name​ EQUALS to ​name
iii. root_symbol​ EQUALS to ​symbol
iv. root_decimals​ EQUAL to ​decimals
v. root_public_key ​EQUALS to ​public_key
vi. wallet_public_key ​EQUALS to ​pub_key
vii. root_address​ EQUALS to “My Address”
viii. balance​ EQUALS to ​tokens
ix. token_address is the address of the

new_contract ​as described in the section
above

x. spender ​EQUALS to ZERO
xi. remaining_tokens​ EQUAL to ZERO
xii. token_owner​ EQUALS to internal_owner

h. world​ is UNCHANGED
i. granted_tokens​ INCREASED BY ​tokens
j. owner​ is UNCHANGED

4. Exceptions
a. If the constraints for the parameters ARE NOT MET
b. exception must be raised and NO CHANGES OCCUR

5. Return value
a. Address of the ​new_contract

6. Balances
a. grams ​MUST be LESS OR EQUAL than contract

balance
b. IN CASE OF SUCCESS the contract balance is

deducted by ​grams AND the balance of new contract is
increased by grams MINUS fee OTHERWISE balances
are UNCHANGED (but fee)

iii. grant
1. Access

a. Caller MUST be an ​owner
2. Parameters

a. address
i. MUST EXIST in ​token_contracts IN TERMS OF

token_address (​token_contract​)
b. tokens

i. tokens ​MUST be POSITIVE
ii. tokens MUST be LESS OR EQUAL than

total_supply​ MINUS ​granted_supply
c. grams

i. grams​ MUST be POSITIVE
ii. grams MUST be LESS OR EQUAL than the

Root contract balance
3. Output

a. name​ is UNCHANGED
b. symbol​ is UNCHANGED
c. decimals​ are UNCHANGED
d. root_public_key ​is UNCHANGED
e. wallet_code​ is UNCHANGED
f. total_supply​ is UNCHANGED
g. token_contracts are UNCHANGED BUT the contract

that EXIST in ​token_contracts IN TERMS OF
token_address (​token_contract​) that has all the values
UNCHANGED but balance INCREASED BY ​tokens

h. world​ is UNCHANGED
i. granted_tokens​ INCREASED BY ​tokens
j. owner​ is UNCHANGED

4. Exceptions
a. If the constraints for the parameters ARE NOT MET
b. exception must be raised and NO CHANGES OCCUR

5. Balances
a. grams ​MUST be LESS OR EQUAL than balance
b. IN CASE OF SUCCESS the balance is deducted by

grams AND the balance of new contract is increased by
grams MINUS fee OTHERWISE balances are
UNCHANGED (but fee) UNCHANGED

iv. mint
1. Access

a. Caller MUST be an ​owner
2. Parameters

a. tokens
i. tokens ​MUST be POSITIVE

3. Output
a. total_supply ​is increased by ​tokens
b. All the other state variables are UNCHANGED

4. Exceptions
a. If the constraints for the parameters ARE NOT MET
b. exception must be raised and NO CHANGES OCCUR

v. getName
1. Access

a. NO access restrictions
2. Return value

a. name
vi. getSymbols

1. Access
a. NO access restrictions

2. Return value
a. symbol

vii. getDecimals
1. Access

a. NO access restrictions
2. Return value

a. decimals
viii. getRootKey

1. Access
a. NO access restrictions

2. Return value
a. public_key

ix. getTotalSupply
1. Access

a. NO access restrictions
2. Return value

a. total supply
x. getTotalGranted

1. Access
a. NO access restrictions

2. Return value
a. total granted

xi. getWalletCode
1. Access

a. NO access restrictions
2. Return value

a. wallet_code
xii. getWalletAddress

1. Access
a. NO access restrictions

2. Parameters
a. workchain_id

i. workchain_id ​MUST be NON NEGATIVE
b. pub_key

i. pub_key MUST EXIST IN ​token_contracts IN
TERMS OF ​workchain_id AND
wallet_public_key

3. Exceptions
a. If the constraints for the parameters ARE NOT MET
b. exception must be raised and NO CHANGES OCCUR

4. Return value
a. wallet_public_key OF EXISTING token_contracts IN

TERMS OF workchain_id AND wallet_public_key
xiii. onBounce

1. Access
a. Called by the system only in case of failure to deliver

message
2. Parameters

a. msg
i. NO constraints

b. msg_body
i. msg_body MUST be a PROPER BOUNCE

SLICE

ii. BOUNCED FUNCTION from ​msg_body ​MUST
be ​accept

iii. BOUNCED VALUE from ​msg_body MUST BE
LESS OR EQUAL to total_granted

3. Output
a. total_granted is DECREASED BY BOUNCED VALUE

from ​msg_body
b. All other fields ARE UNCHANGED

4. Exceptions
a. If the constraints for the parameters ARE NOT MET
b. exception must be raised and NO CHANGES OCCUR

xiv. fallback
1. Access

a. Called as a handler for all the internal messages other
than explicitly mentioned above

2. Parameters
a. All the parameters have NO constraints

3. Output
a. All the fields are UNCHANGED

b. Token contract functions (​NOTE!!! For this section all the values are

restricted to the Token contract hypersurface unless another explicitly
stated​)

i. constructor
1. Access

a. NO access restrictions
2. Parameters

a. name
i. name ​EQUALS to ​name

b. symbol
i. symbol ​EQUALS to ​symbol

c. decimals
i. decimals ​EQUAL to ​decimals

d. root_public_key
i. root_public_key ​EQUALS to ​public_key

e. wallet_public_key
i. wallet_public_key ​is POSITIVE

f. root_address
i. root_address​ EQUALS to ​root_address

g. code
i. code ​MUST be a PROPER CODE CELL

3. Output
a. workchain_id ​EQUALS to id of the current workchain
b. root_name​ EQUALS to ​name
c. root_symbol​ EQUALS to ​symbol
d. root_decimals​ EQUALS to ​decimals
e. root_public_key​ EQUALS to ​root_public_key
f. wallet_public_key ​EQUALS to ​wallet_public_key

g. root_address​ EQUALS to ​root_address
h. balance ​EQUALS to ZERO
i. token_address ​EQUALS to “My Address”
j. spender ​EQUALS to ZERO
k. remaining_tokens ​EQUAL to ZERO
l. token_owner​ EQUALS to Caller

4. Exceptions
a. If the constraints for the parameters ARE NOT MET
b. exception must be raised and NO CHANGES OCCUR

ii. transfer
1. Access

a. Caller MUST be a token_owner
2. Parameters

a. dest
i. dest​ MUST be a valid address

b. tokens
i. tokens ​MUST be POSITIVE
ii. tokens MUST be LESS OR EQUAL than

balance
c. grams

i. grams​ MUST be POSITIVE
ii. grams MUST be LESS OR EQUAL than the

Token contract balance
3. Output

a. balance​ IS DECREASED BY ​tokens
b. All the other fields are UNCHANGED

4. Exceptions
a. If the constraints for the parameters ARE NOT MET
b. exception must be raised and NO CHANGES OCCUR

5. Balances
a. grams ​MUST be LESS OR EQUAL than Token contract

balance
b. IN CASE OF SUCCESS the Sender contract balance is

deducted by ​grams AND the balance of the Receiver
contract balance is increased by grams MINUS fee
OTHERWISE balances are UNCHANGED (but fee)
UNCHANGED

iii. accept
1. Access

a. Caller MUST be EQUAL to ​root_address
2. Parameters

a. tokens
i. tokens ​MUST be POSITIVE

3. Output
a. balance​ MUST be INCREASED BY ​tokens
b. Other fields are UNCHANGED

4. Exceptions
a. If the constraints for the parameters ARE NOT MET

b. exception must be raised and NO CHANGES OCCUR
iv. internalTransfer

1. Access
a. Caller MUST EXIST IN token_contract IN TERMS OF

token_address
2. Parameters

a. senderKey
i. senderKey ​MUST EXIST IN token_contract IN

TERMS OF ​wallet_public_key
b. tokens

i. tokens ​MUST be POSITIVE
3. Output

a. balance​ MUST be INCREASED BY ​tokens
b. Other fields are UNCHANGED

4. Exceptions
a. If the constraints for the parameters ARE NOT MET
b. exception must be raised and NO CHANGES OCCUR

v. getName
1. Access

a. NO access restrictions
2. Return value

a. name
vi. getSymbols

1. Access
a. NO access restrictions

2. Return value
a. symbol

vii. getDecimals
1. Access

a. NO access restrictions
2. Return value

a. decimals
viii. getBalance

1. Access
a. NO access restrictions

2. Return value
a. balance

ix. getWalletKey
1. Access

a. NO access restrictions
2. Return value

a. wallet_public_key
x. getRootAddress

1. Access
a. NO access restrictions

2. Return value
a. root_address

xi. allowance

1. Access
a. NO access restrictions

2. Return value
a. allowance_info

xii. approve
1. Access

a. Caller MUST be a ​token_owner
2. Parameters

a. spender
i. spender ​MUST be a valid address

b. remainingTokens
i. remainingTokens ​MUST be NON NEGATIVE

c. tokens
i. tokens ​MUST be POSITIVE

3. Output
a. spender​ EQUALS to ​spender
b. IF ​remaining_tokens EQUAL ​remainingTokens ​THEN

remaining_tokens EQUALS to ​tokens ​OTHERWISE
remaining_tokens​ are UNCHANGED

c. Other fields are UNCHANGED
4. Exceptions

a. If the constraints for the parameters ARE NOT MET
b. exception must be raised and NO CHANGES OCCUR

xiii. transferFrom
1. Access

a. Caller MUST be a Token Owner
2. Parameters

a. dest
i. dest ​MUST be a valid address

b. to
i. to​ MUST be a valid address

c. tokens
i. tokens​ MUST be POSITIVE

d. grams
i. grams ​MUST be POSITIVE

3. Output
a. All the fields are UNCHANGED

4. Exceptions
a. If the constraints for the parameters ARE NOT MET
b. exception must be raised and NO CHANGES OCCUR

5. Balances
a. Balance of the Token contract is INCREASED BY

grams (minus fee)
xiv. internalTransferFrom

1. Access
a. Caller MUST be EQUAL to ​spender

2. Parameters
a. to

i. to ​MUST be a valid address
b.

i. tokens​ MUST be POSITIVE
ii. tokens MUST be LESS OR EQUAL to

remaining_tokens
iii. tokens​ MUST be LESS OR EQUAL to ​balance

3. Output
a. balance​ is DECREASED BY ​tokens
b. Other fields are UNCHANGED

4. Exceptions
i. If the constraints for the parameters ARE NOT

MET
ii. exception must be raised and NO CHANGES

OCCUR
xv. disapprove

1. Access
a. Caller MUST be a Token Owner

2. Output
a. spender​ EQUALS to ZERO
b. remaining_tokens ​EQUALS to ZERO

3. Exceptions
i. If the constraints for the parameters ARE NOT

MET
ii. exception must be raised and NO CHANGES

OCCUR
xvi. onBounce

1. Access
a. Called by the system only in case of failure to deliver

message
2. Parameters

a. msg
i. NO constraints

b. msg_body
i. msg_body MUST be a PROPER BOUNCE

SLICE
ii. BOUNCE FUNCTION from ​msg_body ​MUST be

internalTransfer OR internalTransferFrom
3. Output

a. IF BOUNCE FUNCTION from ​msg_body EQUALS
internalTransfer THEN ​balance INCREASED BY
BOUNCED VALUE from ​msg_body ​OTHERWISE
balance​ is UNCHANGED

b. All other fields ARE UNCHANGED
4. Exceptions

a. If the constraints for the parameters ARE NOT MET
b. exception must be raised and NO CHANGES OCCUR

xvii. fallback
1. Access

a. Called as a handler for all the internal messages other
than explicitly mentioned above

2. Parameters
a. All the parameters have NO constraints

3. Output
a. All the fields are UNCHANGED

2. Cross-function specification

a. All the cross-function calls are executed either as internal messages explicitly
sent by origin functions or as internal messages sent by the system

b. Any calls not mentioned in the present specification MUST not exist
c. Recursive calls are not allowed
d. Number of calls made by each function MUST be fixed (no calls in loops)
e. Each message is called with ​bounce​ flag set to ​true
f. In case of ​bounce ​the cumulative effect of the subsequent calling of the

original function and ​onBounce ​is that all fields are UNCHANGED
g. The full list of calls is provided below:

i. deployWallet
1. Message - ​deploy ​(system)
2. Recipient - ​pubkey
3. Parameters (name - value):

a. stateInfo - CORRECT STATE INFO WITH ​workchainId​,
pubKey​, ​internal_owner​, ​name​, ​symbol​, ​decimals​,
wallet_code

4. value​ - ​grams
ii. grant

1. Message - ​accept
2. Recipient - ​dest
3. Parameters

a. tokens ​- ​tokens
4. value​ - ​grams

iii. transfer
1. Message - ​internalTransfer
2. Recipient - dest
3. Parameters

a. tokens​ - ​tokens
4. value​ - ​grams

iv. transferFrom
1. Message - ​internalTransferFrom
2. Recipient - ​from
3. Parameters

a. tokens​ - ​tokens
4. value​ - ​grams

v. internalTransferFrom
1. Message - ​internalTransfer
2. Recipient - ​to
3. Parameters

a. tokens​ - ​tokens

4. value - everything that left from incoming transfer
(​SEND_REST_GAS_FROM_INCOMING​)

h. The diagram below illustrates all the internal and external messages in the
system

3. Gas-related requirements

a. All the functions getters and constructors must invoke ​ACCEPT TVM primitive
immediately after correctness checking. Failure to do this may be acceptable
in some cases but will require special investigation for each case

b. Each function must spend less than​ 10 000​ of gas

10. State machine (projections)

After a set of experiments a finite state machine was selected as a basic tool for scenario
building. However, the full set of states is too huge for any kind of handling so the projections
of states to a rather small set of hypersurfaces is used for forming the scenarios. It’s
important to ensure that the selected set of hypersurfaces is full and covers all the
dimensions of the original state. Thus the overall number of scenarios is a sum of scenarios
for each hypersurface rather than multiplication as it would be for the complete state.

For each hypersurface the conventional way of finite state machine representation is used
where squares illustrate the different state, arrows - possible transitions between states and
titles for these arrows - conditions for transitions. It is worth noting that conditions have
heterogeneous form and consist of an external event (in most cases) as well as a logical
condition (also, in most cases).

This particular contract has degenerate projections only - each of them consists on only one
state with some attributes so all the moves will be to itself (with proper attribute changing).

Additionally some states have attributes (such as “balance”) and its evolution during
transitions may be represented as the second title for arrows.

Below all the hypersurfaces are listed as well as their state-condition diagrams:

Root constant projection​:

This projection represents the immutable attributes of the Root contract and corresponding
diagram illustrates that these attributes can never be altered.

Root granted tokens projection:

granted_supply attribute may be increased during deploying a new contract, granting tokens
and decreased back in case of bouncing.

Root total supply projection:

total_supply ​attribute may be altered exclusively when ​mint​ is invoked.

Root token contracts projection:

This projection represents a list of Token contracts. It’s important to mention that this
projection tracks the list of contracts themselves without considering their internal state
(roughly speaking the list of addresses). One more thing worth noting is that this projection
as well as any other uses virtual entities that can be binded to the real variables in the
implementation or not. Thus the existence of such a projection doesn’t suppose the
existence of the corresponding collection in the implementation.

Token constants projection:

This diagram illustrates that all the immutable attributes of the Token contract can never be
altered.

Token balance projection:

The token balance may be increased during ​accept or ​transferInternal and decreased at
transfer​, ​transferInternalFrom​ and ​onBounce​.

Token allowance projection:

This projection is the only one that has two states: “Allowance Off” and “Allowance On”. Note
that the state may be changed not only at direct ​approve and ​disapprove calls but also when
all the remaining tokens are used and, finally, when usage of all the remaining tokens was
bounced.

11. User scenarios

The following business-level scenarios are suggested upon analysis of state machine
projections described in the previous section. The basic rule is that each route for each
diagram states for one scenario.

In case of cycles the single-loop reduced scenarios (that start from the machine entry point
as well as “regular” scenarios but stop immediately after exiting the loop). These “loop”
scenarios must cover all the possible loop branches but it’s never required to take the
second loop.

Please note that scenarios based on projections are positive. There are also scenarios that
are based on incorrect input data that should be rejected by the corresponding functions.

Such scenarios may be automatically built by subsequent violation of the parameter
requirements described in the “Specification” section and will not be discussed further in the
present document.

The complete list of the projection-based scenarios is below:

1. Root constants
a. Construct Root contract
b. Run Getters sequencently to check if the constants are correct

2. Bounce on deploy
a. Construct Root contract
b. Deploy contract to be bounced (with very low ​grams​)
c. Check ​granted_tokens​ increase
d. Check ​onBounce ​call
e. Check ​granted_tokens ​decrease to the original state

3. Bounce on grant
a. Construct Root contract
b. Deploy contract (with expected amount of ​grams​)
c. Check ​granted_tokens​ increase
d. Grant tokens to be bounced (with very low ​grams​)
e. Check ​granted_tokens​ increase
f. Check ​onBounce ​call
g. Check ​granted_tokens ​decrease to the original state (as after point “c”)

4. Mint
a. Construct Root contract
b. Mint tokens
c. Check total_supply increase

5. Token contract deployment
a. Construct Root contract
b. Deploy contract
c. Construct Token contract
d. Check by Getters that the both contracts are available

6. Deployed token contract constants
a. Construct Root contract
b. Deploy Token contract
c. Run Getters sequencently to check if the constants are correct

7. Constructed token contract constants
a. Construct Root contract
b. Construct Token contract
c. Run Getters sequencently to check if the constants are correct

8. Deployed bounced transfer
a. Construct Root contract
b. Deploy Token contract
c. Deploy second Token contract
d. Check ​balance ​of the first Token contract
e. Grant some tokens to the first Token contract
f. Check if ​balance​ of the first Token contract increased
g. Transfer some tokens to the second contract to be bounced (with very low

grams​)

h. Check if ​balance​ of the first Token contract decreased
i. Ensure ​onBounce​ called
j. Check if ​balance of the first Token contract increased (equal to the balance

after execution “e” point)
9. Constructed bounced transfer

a. Construct Root contract
b. Construct Token contract
c. Construct second Token contract
d. Check ​balance ​of the first Token contract
e. Grant some tokens to the first Token contract
f. Check if ​balance​ of the first Token contract increased
g. Transfer some tokens to the second contract to be bounced (with very low

grams​)
h. Check if ​balance​ of the first Token contract decreased
i. Ensure ​onBounce​ called
j. Check if ​balance of the first Token contract increased (equal to the balance

after execution “e” point)
10. Deployed transfer

a. Construct Root contract
b. Deploy Token contract
c. Deploy second Token contract
d. Check ​balance ​of the first Token contract
e. Grant some tokens to the first Token contract
f. Check if ​balance​ of the first Token contract increased
g. Transfer some tokens to the second contract
h. Check if ​balance​ of the first Token contract decreased
i. Check if balance of the second Token contract increased

11. Constructed transfer
a. Construct Root contract
b. Construct Token contract
c. Construct second Token contract
d. Check ​balance ​of the first Token contract
e. Grant some tokens to the first Token contract
f. Check if ​balance​ of the first Token contract increased
g. Transfer some tokens to the second contract
h. Check if ​balance​ of the first Token contract decreased
i. Check if balance of the second Token contract increased

12. Deployed bounced transfer from
a. Construct Root contract
b. Deploy Token contract
c. Deploy second Token contract
d. Deploy third Token contract
e. Approve correct amount of token to be used by third Token contract from the

first Token contract
f. Check ​balance ​of the first Token contract
g. Send “transfer from” request by the third Token contract to the first Token

contract in favor of the second Token contract to be bounced at the
internalTransfer call (by sending ​grams ​enough to cover internalTransferFrom

call fee but not exceeding amount needed to pay fee for the internalTransfer
call then)

h. Check that after ​transferFrom ​call no balances were changed
i. Check that internalTransferFrom called by the first Token contract
j. Check that after internalTransferFrom balance of the first Token contract

decreased
k. Check ​onBounce​ received
l. Check that after onBounce balance of the first Token contract increased back

and became equal to one after point “b”
13. Constructed bounced transfer from

a. Construct Root contract
b. Construct Token contract
c. Construct second Token contract
d. Construct third Token contract
e. Grant some tokens to the first contract
f. Approve correct amount of token to be used by third Token contract from the

first Token contract
g. Check ​balance ​of the first Token contract
h. Send “transfer from” request by the third Token contract to the first Token

contract in favor of the second Token contract to be bounced at the
internalTransfer call (by sending ​grams ​enough to cover internalTransferFrom
call fee but not exceeding amount needed to pay fee for the internalTransfer
call then)

i. Check that after ​transferFrom ​call no balances were changed
j. Check that internalTransferFrom called by the first Token contract
k. Check that after internalTransferFrom balance of the first Token contract

decreased
l. Check ​onBounce​ received
m. Check that after onBounce balance of the first Token contract increased back

and became equal to one after point “e”
14. Deployed transfer from

a. Construct Root contract
b. Deploy Token contract
c. Deploy second Token contract
d. Deploy third Token contract
e. Approve correct amount of token to be used by third Token contract from the

first Token contract
f. Check ​balance ​of the first Token contract
g. Send “transfer from” request by the third Token contract to the first Token

contract in favor of the second Token contract
h. Check that after ​transferFrom ​call no balances were changed
i. Check that internalTransferFrom called by the first Token contract
j. Check that after internalTransferFrom balance of the first Token contract

decreased
k. Check ​internalTransfer​ called for the second Token contract
l. Check that after internalTransfer balance of the second Token contract

increased
15. Constructed transfer from

a. Construct Root contract
b. Construct Token contract
c. Construct second Token contract
d. Construct third Token contract
e. Grant some tokens to the first Token contract
f. Approve correct amount of token to be used by third Token contract from the

first Token contract
g. Check ​balance ​of the first Token contract
h. Send “transfer from” request by the third Token contract to the first Token

contract in favor of the second Token contract
i. Check that after ​transferFrom ​call no balances were changed
j. Check that internalTransferFrom called by the first Token contract
k. Check that after internalTransferFrom balance of the first Token contract

decreased
l. Check ​internalTransfer​ called for the second Token contract
m. Check that after internalTransfer balance of the second Token contract

increased
16. Deployed disapprove

a. Construct Root contract
b. Deploy Token contract
c. Deploy second Token contract
d. Approve correct amount of token to be used by the second Token contract

from the first Token contract
e. Check ​allowanceInfo​ for the first Token contract
f. Disapprove
g. Check ​allowanceInfo​ for the first Token contract

17. Constructed disapprove
a. Construct Root contract
b. Construct Token contract
c. Construct second Token contract
d. Approve correct amount of token to be used by the second Token contract

from the first Token contract
e. Check ​allowanceInfo​ for the first Token contract
f. Disapprove
g. Check ​allowanceInfo​ for the first Token contract

18. Deployed allowance
a. Construct Root contract
b. Deploy Token contract
c. Deploy second Token contract
d. Approve correct amount of token to be used by the second Token contract

from the first Token contract
e. Check ​allowanceInfo​ for the first Token contract
f. Invoke ​transferFrom ​for the second Token contract from the first Token

contract in favor of the second Token contract to be bounced at the
internalTransfer ​call (by sending ​grams ​enough to cover ​internalTransferFrom
call fee but not exceeding amount needed to pay fee for the ​internalTransfer
call then). The amount requested should be ​less ​than ​remaining_tokens​.

g. Check if ​internalTransferFrom​ called

h. Check ​allowanceInfo ​for the first Token contract
i. Check if ​onBounce​ called
j. Check ​allowanceInfo ​for the first Token contract
k. Invoke ​transferFrom ​for the second Token contract from the first Token

contract in favor of the second Token contract to be bounced at the
internalTransfer ​call (by sending ​grams ​enough to cover ​internalTransferFrom
call fee but not exceeding amount needed to pay fee for the ​internalTransfer
call then). The amount requested should​ be equal​ to ​remaining_tokens​.

l. Check if ​internalTransferFrom​ called
m. Check ​allowanceInfo ​for the first Token contract
n. Check if ​onBounce​ called
o. Check ​allowanceInfo ​for the first Token contract

19. Constructed allowance
a. Construct Root contract
b. Construct Token contract
c. Construct second Token contract
d. Grant some tokens to the first Token contract
e. Approve correct amount of token to be used by the second Token contract

from the first Token contract
f. Check ​allowanceInfo​ for the first Token contract
g. Invoke ​transferFrom ​for the second Token contract from the first Token

contract in favor of the second Token contract to be bounced at the
internalTransfer ​call (by sending ​grams ​enough to cover ​internalTransferFrom
call fee but not exceeding amount needed to pay fee for the ​internalTransfer
call then). The amount requested should be ​less ​than ​remaining_tokens​.

h. Check if ​internalTransferFrom​ called
i. Check ​allowanceInfo ​for the first Token contract
j. Check if ​onBounce​ called
k. Check ​allowanceInfo ​for the first Token contract
l. Invoke ​transferFrom ​for the second Token contract from the first Token

contract in favor of the second Token contract to be bounced at the
internalTransfer ​call (by sending ​grams ​enough to cover ​internalTransferFrom
call fee but not exceeding amount needed to pay fee for the ​internalTransfer
call then). The amount requested should​ be equal​ to ​remaining_tokens​.

m. Check if ​internalTransferFrom​ called
n. Check ​allowanceInfo ​for the first Token contract
o. Check if ​onBounce​ called
p. Check ​allowanceInfo ​for the first Token contract

12. Key security and reliability threats

The key security and reliability threats are:

● Unauthorized actions - ability to call contract functions by parties that are not entitled
to ​(critical)

● Code fraud - attempt to use a frauded code cell thus violating the normal business
login of the Token contract (​critical​)

● Emergency fund freezing - occurs when contract execution stops in the middle due
lack of balance or any kind of exception some funds are frozen in the intermediate
place and never can be released from there ​(severe)

● Improper fund distribution - incorrect fee, incorrect amounts, sending to the wrong
recipient, any kind of intentional or accidental violation of the proper behavior
(critical)

● Limits overflow - occurs when too many actions of a particular kind take place within
one temporal (real or virtual) interval, more than allowed by the system itself and so
fails to complete the action ​(major)

● Gas exhaustion - too much gas was used for the TVM execution, unexpected
exception occurred ​(from major to critical)

● Replay attack - attempt to repeat the intercepted message literally, without even
need to decode it to get it invoked multiple times (​critical​)

● Regular bugs ​(from minor to critical)

Also should be noted that the list above covers exclusively threats internal to the ​TIP-3
ecosystem itself while such external threats as private key stealing, blockchain or TVM
malfunction.

13. Conclusion

The present document clearly describes all the basic scenarios to be verified, explicitly
states all the potential attacks and provides the validated methodology to formally
(mathematically) prove that scenarios will work as intended and attacks are not possible (or
the bugs will be found and issued).

Upon completion of all the stages (not just Stage 1 described in the present document) the
contract being inspected may be considered as fully reliable and safe for practical usage.

14. Company Information

Pruvendo team has been actively involved into the formal verification based on ​Coq for the
last six years. During this time a number of formal verification projects have been completed,
mostly in the finance and banking industry.

The team is a pioneer in mathematical justification of the proof-of-stake consensus​21​,
implemented the prototype of the blockchain of the formally verified code, many-years active
participant of different blockchain communities.

For the last year the team has concentrated on the ​TON project and successfully proved a
Multisig​ contract introducing the whole bunch of new technologies and know-hows.

Currently the team obtains a unique set of tools that lets it to quickly formally verify any kind
of ​TON​ smart contract.

21https://consensusresearch.org/

https://consensusresearch.org/

Appendix A. Specification for Non-Fungible contract

1. General notes

The main difference between Non-Fungible and Fungible versions of the TIP-3 contract is if
the tokens are distinguishable from each other or not. For the former they are - each token
has its unique 128-bit number and each transaction is just a moving or one particular token
that can not be splitted apart or combined with another one.

For the present Appendix we don't repeat any discussions that are common both for
Fungible and Non-Fungible tokens, only differences are provided.

2. State

Element Description

name Unique name of the root contract

symbol Unique symbol (such as BTC) of the root
contract

decimals

public_key

wallet_code Code of the Token contract as cell

total_supply The overall number of tokens in the system

granted_supply The overall number of tokens granted to the
Token contracts

root_token_ids The list of token ids owned by root

owner The address who created the Root contract

token_contracts List of Token contracts attached to this Root
contract

 workchain_id Workchain id for the Token contract

 root_name Name of the Root contract

 root_symbol Symbol of the Root contract

 root_decimals Decimals of the Root contract

 root_public_key Public key of the Root contract

3. Specification in the formalized natural language

1. Function-level specification

a. Root contract functions
i. constructor

1. Access
a. NO access restrictions

2. Parameters
a. name

i. NO constraints
b. symbol

i. NO constraints
c. decimals

i. decimals​ MUST be NON NEGATIVE
ii. decimals ​MUST be LESS OR EQUAL 255

d. root_public_key
i. root_public_key ​MUST be POSITIVE

e. wallet_code
i. wallet_code MUST be a PROPER CODE CELL

3. Output
a. name​ EQUALS to ​name

 wallet_public_key Public key of the Token contract

 root_address Address of the Root contract

 wallet_token_ids List of token ids

 token_address Address of the token contract

 token_owner Address of the token owner

 allowance_info Structure the keeps allowance information

 spender Address allowed to spend tokens

 allowed_token_id Id of token allowed to spend

world All the entities outside the given Root
contract and the underlying Token contracts

 world_names List of the root contract names other than
given one

 world_symbols List of the root contract symbols other than
given one

 world_public_keys List of the all public keys used in the
blockchain other than public keys of the
given Root contract and the underlying
Token contracts

b. symbol​ EQUALS to ​symbol
c. decimals​ EQUAL to ​decimals
d. public_key ​EQUALS to ​root_public_key
e. wallet_code​ EQUALS to ​wallet_code
f. total_supply​ EQUALS to ZERO
g. token_contracts​ MUST be EMPTY
h. root_token_ids​ MUST BE EMPTY
i. world​ is UNCHANGED
j. granted_tokens​ EQUAL to ZERO
k. owner​ MUST be the Caller

4. Exceptions
a. If the constraints for the parameters ARE NOT MET
b. exception must be raised and NO CHANGES OCCUR

ii. deployWallet
1. Access

a. Caller MUST be an ​owner
2. Parameters

a. workchain_id
i. workchain_id​ MUST be NON NEGATIVE

b. pub_key
i. pub_key​ MUST be POSITIVE
ii. pub_key MUST be UNIQUE IN ​token_contracts

IN TERMS OF ​wallet_public_key AND
workchain_id

c. tokenId
i. tokenId ​MUST be EXIST in ​root_token_ids

d. grams
i. grams​ MUST be POSITIVE
ii. grams MUST be LESS OR EQUAL than the

Root contract balance
3. Output

a. name​ is UNCHANGED
b. symbol​ is UNCHANGED
c. decimals​ are UNCHANGED
d. root_public_key ​is UNCHANGED
e. wallet_code​ is UNCHANGED
f. total_supply​ is UNCHANGED
g. token_contracts MUST be BEING ADDED WITH

new_contract ​where ​new_contract ​has the following
attributes:

i. workchain_id​ EQUALS to ​workchain_id
ii. root_name​ EQUALS to ​name
iii. root_symbol​ EQUALS to ​symbol
iv. root_decimals​ EQUAL to ​decimals
v. root_public_key ​EQUALS to ​public_key
vi. wallet_public_key ​EQUALS to ​pub_key
vii. root_address​ EQUALS to “My Address”
viii. balance​ EQUALS to ​tokens

ix. token_address is the address of the
new_contract ​as described in the section
above

x. spender ​EQUALS to ZERO
xi. remaining_tokens​ EQUAL to ZERO
xii. token_owner​ EQUALS to internal_owner

h. world​ is UNCHANGED
i. granted_tokens​ INCREASED BY ONE
j. token_contract_ids are BEING REMOVED BY ​tokenId
k. owner​ is UNCHANGED

4. Exceptions
a. If the constraints for the parameters ARE NOT MET
b. exception must be raised and NO CHANGES OCCUR

5. Return value
a. Address of the ​new_contract

6. Balances
a. grams ​MUST be LESS OR EQUAL than contract

balance
b. IN CASE OF SUCCESS the contract balance is

deducted by ​grams AND the balance of new contract is
increased by grams MINUS fee OTHERWISE balances
are UNCHANGED (but fee)

iii. grant
1. Access

a. Caller MUST be an ​owner
2. Parameters

a. address
i. MUST EXIST in ​token_contracts IN TERMS OF

token_address (​token_contract​)
b. tokenId

i. tokenId ​MUST EXIST in ​root_token_ids
c. grams

i. grams​ MUST be POSITIVE
ii. grams MUST be LESS OR EQUAL than the

Root contract balance
3. Output

a. name​ is UNCHANGED
b. symbol​ is UNCHANGED
c. decimals​ are UNCHANGED
d. root_public_key ​is UNCHANGED
e. wallet_code​ is UNCHANGED
f. total_supply​ is UNCHANGED
g. token_contracts​ are UNCHANGED
h. world​ is UNCHANGED
i. granted_tokens​ INCREASED BY ONE
j. owner​ is UNCHANGED
k. root_token_ids​ HAVE ​tokenId ​REMOVED

4. Exceptions

a. If the constraints for the parameters ARE NOT MET
b. exception must be raised and NO CHANGES OCCUR

5. Balances
a. grams ​MUST be LESS OR EQUAL than balance
b. IN CASE OF SUCCESS the balance is deducted by

grams AND the balance of new contract is increased by
grams MINUS fee OTHERWISE balances are
UNCHANGED (but fee) UNCHANGED

iv. mint
1. Access

a. Caller MUST be an ​owner
2. Parameters

a. tokenID
i. tokenID ​MUST be EQUAL to ​token_supply

PLUS ONE
3. Output

a. total_supply ​is increased by ONE
b. root_token_ids​ IS ADDED BY ​tokenId
c. All the other state variables are UNCHANGED

4. Exceptions
a. If the constraints for the parameters ARE NOT MET
b. exception must be raised and NO CHANGES OCCUR

v. getName
1. Access

a. NO access restrictions
2. Return value

a. name
vi. getSymbols

1. Access
a. NO access restrictions

2. Return value
a. symbol

vii. getDecimals
1. Access

a. NO access restrictions
2. Return value

a. decimals
viii. getRootKey

1. Access
a. NO access restrictions

2. Return value
a. public_key

ix. getTotalSupply
1. Access

a. NO access restrictions
2. Return value

a. total supply
x. getTotalGranted

1. Access
a. NO access restrictions

2. Return value
a. total granted

xi. getWalletCode
1. Access

a. NO access restrictions
2. Return value

a. wallet_code
xii. getLastMintedToken

1. Access
a. NO access restrictions

2. Return value
a. total_supply

xiii. getWalletAddress
1. Access

a. NO access restrictions
2. Parameters

a. workchain_id
i. workchain_id ​MUST be NON NEGATIVE

b. pub_key
i. pub_key MUST EXIST IN ​token_contracts IN

TERMS OF ​workchain_id AND
wallet_public_key

3. Exceptions
a. If the constraints for the parameters ARE NOT MET
b. exception must be raised and NO CHANGES OCCUR

4. Return value
a. wallet_public_key OF EXISTING token_contracts IN

TERMS OF workchain_id AND wallet_public_key
xiv. onBounce

1. Access
a. Called by the system only in case of failure to deliver

message
2. Parameters

a. msg
i. NO constraints

b. msg_body
i. msg_body MUST be a PROPER BOUNCE

SLICE
ii. BOUNCED FUNCTION from ​msg_body ​MUST

be ​accept
iii. BOUNCED VALUE from ​msg_body MUST BE

LESS OR EQUAL to ​total_supply
iv. ZERO MUST BE LESS OR EQUAL THAN

BOUNCED VALUE from msg_body
v. BOUNCED VALUE from ​msg_body MUST BE

UNIQUE IN root_token_ids

3. Output
a. total_granted​ is DECREASED BY ONE
b. root_token_ids IS ADDED BY BOUNCED VALUE from

msg_body
c. All other fields ARE UNCHANGED

4. Exceptions
a. If the constraints for the parameters ARE NOT MET
b. exception must be raised and NO CHANGES OCCUR

xv. fallback
1. Access

a. Called as a handler for all the internal messages other
than explicitly mentioned above

2. Parameters
a. All the parameters have NO constraints

3. Output
a. All the fields are UNCHANGED

c. Token contract functions (​NOTE!!! For this section all the values are

restricted to the Token contract hypersurface unless another explicitly
stated​)

i. constructor
1. Access

a. NO access restrictions
2. Parameters

a. name
i. name ​EQUALS to ​name

b. symbol
i. symbol ​EQUALS to ​symbol

c. decimals
i. decimals ​EQUAL to ​decimals

d. root_public_key
i. root_public_key ​EQUALS to ​public_key

e. wallet_public_key
i. wallet_public_key ​is POSITIVE

f. root_address
i. root_address​ EQUALS to ​root_address

g. code
i. code ​MUST be a PROPER CODE CELL

3. Output
a. workchain_id ​EQUALS to id of the current workchain
b. root_name​ EQUALS to ​name
c. root_symbol​ EQUALS to ​symbol
d. root_decimals​ EQUALS to ​decimals
e. root_public_key​ EQUALS to ​root_public_key
f. wallet_public_key ​EQUALS to ​wallet_public_key
g. root_address​ EQUALS to ​root_address
h. wallet_token_ids ​IS EMPTY
i. token_address ​EQUALS to “My Address”

j. spender ​EQUALS to ZERO
k. remaining_tokens ​EQUAL to ZERO
l. token_owner​ EQUALS to Caller

4. Exceptions
a. If the constraints for the parameters ARE NOT MET
b. exception must be raised and NO CHANGES OCCUR

ii. transfer
1. Access

a. Caller MUST be a token_owner
2. Parameters

a. dest
i. dest​ MUST be a valid address

b. token​Id
i. tokenId ​MUST EXIST IN ​wallet_token_ids

c. grams
i. grams​ MUST be POSITIVE
ii. grams MUST be LESS OR EQUAL than the

Token contract balance
3. Output

a. tokenId ​IS REMOVED from ​wallet_token_ids
b. All other fields are UNCHANGED

4. Exceptions
a. If the constraints for the parameters ARE NOT MET
b. exception must be raised and NO CHANGES OCCUR

5. Balances
a. grams ​MUST be LESS OR EQUAL than Token contract

balance
b. IN CASE OF SUCCESS the Sender contract balance is

deducted by ​grams AND the balance of the Receiver
contract balance is increased by grams MINUS fee
OTHERWISE balances are UNCHANGED (but fee)
UNCHANGED

iii. accept
1. Access

a. Caller MUST be EQUAL to ​root_address
2. Parameters

a. tokenId
i. tokenId ​MUST BE UNIQUE in ​walet_token_ids

3. Output
a. wallet_token_ids​ MUST be ADDED BY ​tokenId
b. Other fields are UNCHANGED

4. Exceptions
a. If the constraints for the parameters ARE NOT MET
b. exception must be raised and NO CHANGES OCCUR

iv. internalTransfer
1. Access

a. Caller MUST EXIST IN token_contract IN TERMS OF
token_address

2. Parameters
a. senderKey

i. senderKey ​MUST EXIST IN token_contract IN
TERMS OF ​wallet_public_key

b. tokenId
i. tokenId ​MUST BE UNIQUE in ​walet_token_ids

3. Output
a. wallet_token_ids​ MUST be ADDED BY ​tokenId
b. Other fields are UNCHANGED

4. Exceptions
a. If the constraints for the parameters ARE NOT MET
b. exception must be raised and NO CHANGES OCCUR

v. getName
1. Access

a. NO access restrictions
2. Return value

a. name
vi. getSymbols

1. Access
a. NO access restrictions

2. Return value
a. symbol

vii. getDecimals
1. Access

a. NO access restrictions
2. Return value

a. decimals
viii. getBalance

1. Access
a. NO access restrictions

2. Return value
a. LENGTH of ​wallet_token_ids

ix. getWalletKey
1. Access

a. NO access restrictions
2. Return value

a. wallet_public_key
x. getRootAddress

1. Access
a. NO access restrictions

2. Return value
a. root_address

xi. allowance
1. Access

a. NO access restrictions
2. Return value

a. allowance_info
xii. getTokenByIndex

1. Access
a. NO access restrictions

2. Parameters
a. index

i. index MUST BE LESS THAN LENGTH of
wallet_token_ids

ii. index​ MUST BE NON NEGATIVE
3. Return value

a. index​-th element of ​wallet_token_ids
xiii. getApproved

1. Access
a. NO access restrictions

2. Parameters
a. tokenId

i. tokenId​ MUST EXIST IN ​wallet_token_ids
ii. tokenId​ MUST be EQUAL to ​allowed_token_id

3. Return value
a. spender

4. Exceptions
a. If the constraints for the parameters ARE NOT MET
b. exception must be raised and NO CHANGES OCCUR

xiv. approve
1. Access

a. Caller MUST be a ​token_owner
2. Parameters

a. spender
i. spender ​MUST be a valid address

b. tokenId
i. tokenId​ MUST EXIST IN ​wallet_token_ids

3. Output
a. spender​ EQUALS to ​spender
b. allowed_token_id​ EQUALS TO ​tokenId
c. Other fields are UNCHANGED

4. Exceptions
a. If the constraints for the parameters ARE NOT MET
b. exception must be raised and NO CHANGES OCCUR

xv. transferFrom
1. Access

a. Caller MUST be a Token Owner
2. Parameters

a. dest
i. dest ​MUST be a valid address

b. to
i. to​ MUST be a valid address

c. tokenId
i. tokenId​ MUST be POSITIVE

d. grams
i. grams ​MUST be POSITIVE

3. Output
a. All the fields are UNCHANGED

4. Exceptions
a. If the constraints for the parameters ARE NOT MET
b. exception must be raised and NO CHANGES OCCUR

5. Balances
a. Balance of the Token contract is INCREASED BY

grams (minus fee)
xvi. internalTransferFrom

1. Access
a. Caller MUST be EQUAL to ​spender

2. Parameters
a. to

i. to ​MUST be a valid address
b.

i. tokenId​ MUST be EQUAL to allowed_token_id
ii. tokenId​ MUST EXIST IN ​wallet_token_ids

3. Output
a. tokenId ​IS REMOVED from ​wallet_token_ids
b. Other fields are UNCHANGED

4. Exceptions
i. If the constraints for the parameters ARE NOT

MET
ii. exception must be raised and NO CHANGES

OCCUR
xvii. disapprove

1. Access
a. Caller MUST be a Token Owner

2. Output
a. spender​ EQUALS to ZERO
b. allowed_token_id​ EQUALS to ZERO

3. Exceptions
i. If the constraints for the parameters ARE NOT

MET
ii. exception must be raised and NO CHANGES

OCCUR
xviii. onBounce

1. Access
a. Called by the system only in case of failure to deliver

message
2. Parameters

a. msg
i. NO constraints

b. msg_body
i. msg_body MUST be a PROPER BOUNCE

SLICE
ii. BOUNCE FUNCTION from ​msg_body ​MUST be

internalTransfer OR internalTransferFrom

3. Output
a. IF BOUNCE FUNCTION from ​msg_body EQUALS

internalTransfer THEN ​wallet_token_ids MUST be
ADDED BY BOUNCED VALUE from ​msg_body
OTHERWISE ​balance​ is UNCHANGED

b. All other fields ARE UNCHANGED
4. Exceptions

a. If the constraints for the parameters ARE NOT MET
b. exception must be raised and NO CHANGES OCCUR

xix. fallback
1. Access

a. Called as a handler for all the internal messages other
than explicitly mentioned above

2. Parameters
a. All the parameters have NO constraints

3. Output
a. All the fields are UNCHANGED

4. Cross-function specification
a. All the cross-function calls are executed either as internal messages explicitly

sent by origin functions or as internal messages sent by the system
b. Any calls not mentioned in the present specification MUST not exist
c. Recursive calls are not allowed
d. Number of calls made by each function MUST be fixed (no calls in loops)
e. Each message is called with ​bounce​ flag set to ​true
f. In case of ​bounce ​the cumulative effect of the subsequent calling of the

original function and ​onBounce ​is that all fields are UNCHANGED
g. The full list of calls is provided below:

i. deployWallet
1. Message - ​deploy ​(system)
2. Recipient - ​pubkey
3. Parameters (name - value):

a. stateInfo - CORRECT STATE INFO WITH ​workchainId​,
pubKey​, ​internal_owner​, ​name​, ​symbol​, ​decimals​,
wallet_code

4. value​ - ​grams
ii. grant

1. Message - ​accept
2. Recipient - ​dest
3. Parameters

a. tokenId ​- ​tokenId
4. value​ - ​grams

iii. transfer
1. Message - ​internalTransfer
2. Recipient - dest
3. Parameters

a. tokenId​ - ​tokenId
4. value​ - ​grams

iv. transferFrom

1. Message - ​internalTransferFrom
2. Recipient - ​from
3. Parameters

a. tokenId​ - ​tokenId
4. value​ - ​grams

v. internalTransferFrom
1. Message - ​internalTransfer
2. Recipient - ​to
3. Parameters

a. tokenId​ - ​tokenId
4. value - everything that left from incoming transfer

(​SEND_REST_GAS_FROM_INCOMING​)
h. The diagram below illustrates all the internal and external messages in the

system

4. Projections

Root constant projection:

Root granted projection:

Root total projection:

Root token ids projection:

Root token contracts projection:

Token constants projection:

Token ids projection:

Token allowance projection:

5. Scenarios

1. Root constants
a. Construct Root contract
b. Run Getters sequencently to check if the constants are correct

2. Bounce on deploy
a. Construct Root contract
b. Mint token
c. Deploy contract to be bounced (with very low ​grams​)
d. Check ​granted_tokens​ increase
e. Check ​onBounce ​call
f. Check ​granted_tokens ​decrease to the original state

3. Bounce on grant
a. Construct Root contract
b. Mint token
c. Deploy contract (with expected amount of ​grams​)
d. Check ​granted_tokens​ increase
e. Grant token to be bounced (with very low ​grams​)
f. Check ​granted_tokens​ increase
g. Check ​onBounce ​call
h. Check ​granted_tokens ​decrease to the original state (as after point “c”)

4. Mint
a. Construct Root contract
b. Mint token
c. Check ​total_supply ​increase

5. Mint, deploy, grant and onBounce
a. Construct Root contract
b. Mint token
c. Check ​root_token_ids
d. Deploy Token contract
e. Check ​root_token_ids
f. Mint token
g. Check ​root_token_ids
h. Grant token providing very low amount of ​grams
i. Check ​root_token_ids
j. Check ​onBounce ​received
k. Check ​root_token_ids

6. Token contract deployment
a. Construct Root contract

b. Mint token
c. Deploy contract
d. Construct Token contract
e. Check by Getters that the both contracts are available

7. Deployed token contract constants
a. Construct Root contract
b. Deploy Token contract
c. Run Getters sequencently to check if the constants are correct

8. Constructed token contract constants
a. Construct Root contract
b. Construct Token contract
c. Run Getters sequencently to check if the constants are correct

9. Deployed bounced transfer
a. Construct Root contract
b. Mint two tokens
c. Deploy Token contract
d. Deploy second Token contract
e. Check ​wallet_token_ids ​of the first Token contract
f. Grant token to the first Token contract
g. Check ​wallet_token_ids ​of the first Token contract
h. Transfer token to the second contract to be bounced (with very low ​grams​)
i. Check ​wallet_token_ids ​of the first Token contract
j. Ensure ​onBounce​ called
k. Check ​wallet_token_ids ​of the first Token contract

10. Constructed bounced transfer
a. Construct Root contract
b. Mint token
c. Construct Token contract
d. Construct second Token contract
e. Check ​wallet_token_ids ​of the first Token contract
f. Grant token to the first Token contract
g. Check ​wallet_token_ids ​of the first Token contract
h. Transfer some tokens to the second contract to be bounced (with very low

grams​)
i. Check ​wallet_token_ids ​of the first Token contract
j. Ensure ​onBounce​ called
k. Check ​wallet_token_ids ​of the first Token contract

11. Deployed transfer
a. Construct Root contract
b. Mint two tokens
c. Deploy Token contract
d. Deploy second Token contract
e. Check ​wallet_token_ids ​of the first Token contract
f. Grant token to the first Token contract
g. Check ​wallet_token_ids ​of the first Token contract
h. Transfer token to the second contract
i. Check ​wallet_token_ids ​of the first Token contract
j. Check ​wallet_token_ids ​of the second Token contract

12. Constructed transfer
a. Construct Root contract
b. Construct Token contract
c. Construct second Token contract
d. Check ​wallet_token_ids ​of the first Token contract
e. Mint token
f. Grant token to the first Token contract
g. Check ​wallet_token_ids ​of the first Token contract
h. Transfer token to the second contract
i. Check ​wallet_token_ids ​of the first Token contract
j. Check ​wallet_token_ids ​of the second Token contract

13. Deployed bounced transfer from
a. Construct Root contract
b. Mint three tokens
c. Deploy Token contract
d. Deploy second Token contract
e. Deploy third Token contract
f. Approve token owned by the first contract to be used by third Token contract

from the first Token contract
g. Check ​wallet_token_ids ​of the first Token contract
h. Send “transfer from” request by the third Token contract to the first Token

contract in favor of the second Token contract to be bounced at the
internalTransfer call (by sending ​grams ​enough to cover internalTransferFrom
call fee but not exceeding amount needed to pay fee for the internalTransfer
call then)

i. Check that after ​transferFrom ​call no ​wallet_token_ids ​were changed
j. Check that internalTransferFrom called by the first Token contract
k. Check ​wallet_token_ids ​of the first Token contract after internalTransferFrom
l. Check ​onBounce​ received
m. Check ​wallet_token_ids ​of the first Token contract after onBounce

14. Constructed bounced transfer from
a. Construct Root contract
b. Construct Token contract
c. Construct second Token contract
d. Construct third Token contract
e. MInt token
f. Grant token to the first contract
g. Approve granted token to be used by third Token contract from the first Token

contract
h. Check ​wallet_token_ids ​of the first Token contract
i. Send “transfer from” request by the third Token contract to the first Token

contract in favor of the second Token contract to be bounced at the
internalTransfer call (by sending ​grams ​enough to cover internalTransferFrom
call fee but not exceeding amount needed to pay fee for the internalTransfer
call then)

j. Check that after ​transferFrom ​call no ​wallet_token_ids​ were changed
k. Check that internalTransferFrom called by the first Token contract
l. Check ​wallet_token_ids ​of the first Token contract

m. Check ​onBounce​ received
n. Check ​wallet_token_ids ​of the first Token contract

15. Deployed transfer from
a. Construct Root contract
b. Mint three tokens
c. Deploy Token contract
d. Deploy second Token contract
e. Deploy third Token contract
f. Approve token owned by the first contract to be used by third Token contract

from the first Token contract
g. Check ​wallet_token_ids ​of the first Token contract
h. Send “transfer from” request by the third Token contract to the first Token

contract in favor of the second Token contract
i. Check that after ​transferFrom ​call no ​wallet_token_ids​ were changed
j. Check that internalTransferFrom called by the first Token contract
k. Check ​wallet_token_ids ​of the first Token contract after internalTransferFrom

call
l. Check ​internalTransfer​ called for the second Token contract
m. Check ​wallet_token_ids ​of the second Token contract

16. Constructed transfer from
a. Construct Root contract
b. Сonstruct Token contract
c. Construct second Token contract
d. Construct third Token contract
e. Approve token owned by the first contract to be used by third Token contract

from the first Token contract
f. Check ​wallet_token_ids ​of the first Token contract
g. Send “transfer from” request by the third Token contract to the first Token

contract in favor of the second Token contract
h. Check that after ​transferFrom ​call no wallet_token_ids were changed
i. Check ​internalTransferFrom ​was called
j. Check ​wallet_token_ids ​of the first Token contract after internalTransferFrom
k. Check ​internalTransfer​ called for the second Token contract
l. Check ​wallet_token_ids ​of the second Token contract

17. Deployed disapprove
a. Construct Root contract
b. Mint two tokens
c. Deploy Token contract
d. Deploy second Token contract
e. Approve token to be used by the second Token contract from the first Token

contract
f. Check ​allowanceInfo​ for the first Token contract
g. Disapprove
h. Check ​allowanceInfo​ for the first Token contract

18. Constructed disapprove
a. Construct Root contract
b. Construct Token contract
c. Construct second Token contract

d. Mint token
e. Approve token to be used by the second Token contract from the first Token

contract
f. Check ​allowanceInfo​ for the first Token contract
g. Disapprove
h. Check ​allowanceInfo​ for the first Token contract

19. Deployed allowance
a. Construct Root contract
b. Mint two tokens
c. Deploy Token contract
d. Deploy second Token contract
e. Approve token owned by the first Token contract to be used by the second

Token contract from the first Token contract
f. Check ​allowanceInfo​ for the first Token contract
g. Invoke ​transferFrom ​for the second Token contract from the first Token

contract in favor of the second Token contract to be bounced at the
internalTransfer ​call (by sending ​grams ​enough to cover ​internalTransferFrom
call fee but not exceeding amount needed to pay fee for the ​internalTransfer
call then).

h. Check if ​internalTransferFrom​ called
i. Check ​allowanceInfo ​for the first Token contract
j. Check if ​onBounce​ called
k. Check ​allowanceInfo ​for the first Token contract

20. Constructed allowance
a. Construct Root contract
b. Construct Token contract
c. Construct second Token contract
d. Mint token
e. Grant token to the first Token contract
f. Approve token to be used by the second Token contract from the first Token

contract
g. Check ​allowanceInfo​ for the first Token contract
h. Invoke ​transferFrom ​for the second Token contract from the first Token

contract in favor of the second Token contract to be bounced at the
internalTransfer ​call (by sending ​grams ​enough to cover ​internalTransferFrom
call fee but not exceeding amount needed to pay fee for the ​internalTransfer
call then).

i. Check if ​internalTransferFrom​ called
j. Check ​allowanceInfo ​for the first Token contract
k. Check if ​onBounce​ called
l. Check ​allowanceInfo ​for the first Token contract

Appendix B. Specification for UTXO contract

1. General notes

UTXO contract is a specific variation of Fungible contract where Token contract is somehow
“immutable”. It can not be topped up (so no equivalent of ​grant is available) as well as it
doesn’t support allowance. In case of transfer the contract is splitted into two - one belongs
to the “new” owner with the transferred amount of tokens and the second one belongs to the
“original” owner with the remaining balance. The original contract is not destroyed but
“retired” with zero balance. The picture below illustrates the business logic of the UTXO
contract.

2. State

Element Description

name Unique name of the root contract

symbol Unique symbol (such as BTC) of the root
contract

decimals

3. Specification in the formalized natural language

1. Function-level specification

a. Root contract functions

public_key

wallet_code Code of the Token contract as cell

total_supply The overall number of tokens in the system

granted_supply The overall number of tokens granted to the
Token contracts

owner The address who created the Root contract

token_contracts List of Token contracts attached to this Root
contract

 workchain_id Workchain id for the Token contract

 root_name Name of the Root contract

 root_symbol Symbol of the Root contract

 root_decimals Decimals of the Root contract

 root_public_key Public key of the Root contract

 wallet_public_key Public key of the Token contract

 root_address Address of the Root contract

 balance Balance of the token contract

 token_address Address of the token contract

 token_owner Address of the token owner

 utxo_received Indicates if UTXO received for the contract

world All the entities outside the given Root
contract and the underlying Token contracts

 world_names List of the root contract names other than
given one

 world_symbols List of the root contract symbols other than
given one

 world_public_keys List of the all public keys used in the
blockchain other than public keys of the
given Root contract and the underlying
Token contracts

i. constructor
1. Access

a. NO access restrictions
2. Parameters

a. name
i. NO constraints

b. symbol
i. NO constraints

c. decimals
i. decimals​ MUST be NON NEGATIVE
ii. decimals ​MUST be LESS OR EQUAL 255

d. root_public_key
i. root_public_key ​MUST be POSITIVE

e. wallet_code
i. wallet_code MUST be a PROPER CODE CELL

f. total_supply
i. total_supply ​MUST be POSITIVE

3. Output
a. name​ EQUALS to ​name
b. symbol​ EQUALS to ​symbol
c. decimals​ EQUAL to ​decimals
d. public_key ​EQUALS to ​root_public_key
e. wallet_code​ EQUALS to ​wallet_code
f. total_supply​ EQUALS to total_supply
g. token_contracts​ MUST be EMPTY
h. world​ is UNCHANGED
i. granted_tokens​ EQUAL to ZERO
j. owner​ MUST be the Caller

4. Exceptions
a. If the constraints for the parameters ARE NOT MET
b. exception must be raised and NO CHANGES OCCUR

ii. deployWallet
1. Access

a. Caller MUST be an ​owner
2. Parameters

a. workchain_id
i. workchain_id​ MUST be NON NEGATIVE

b. pub_key
i. pub_key​ MUST be POSITIVE
ii. pub_key MUST be UNIQUE IN ​token_contracts

IN TERMS OF ​wallet_public_key AND
workchain_id

c. tokens
i. tokens ​MUST be POSITIVE
ii. tokens MUST be LESS OR EQUAL than

total_supply​ MINUS ​granted_supply
d. grams

i. grams​ MUST be POSITIVE

ii. grams MUST be LESS OR EQUAL than the
Root contract balance

3. Output
a. name​ is UNCHANGED
b. symbol​ is UNCHANGED
c. decimals​ are UNCHANGED
d. root_public_key ​is UNCHANGED
e. wallet_code​ is UNCHANGED
f. total_supply​ is UNCHANGED
g. token_contracts MUST be BEING ADDED WITH

new_contract ​where ​new_contract ​has the following
attributes:

i. workchain_id​ EQUALS to ​workchain_id
ii. root_name​ EQUALS to ​name
iii. root_symbol​ EQUALS to ​symbol
iv. root_decimals​ EQUAL to ​decimals
v. root_public_key ​EQUALS to ​public_key
vi. wallet_public_key ​EQUALS to ​pub_key
vii. root_address​ EQUALS to “My Address”
viii. balance​ EQUALS to ​ZERO
ix. token_address is the address of the

new_contract ​as described in the section
above

x. token_owner​ EQUALS to internal_owner
xi. utxo_received​ EQUALS to FALSE

h. world​ is UNCHANGED
i. granted_tokens​ INCREASED BY ​tokens
j. owner​ is UNCHANGED

4. Exceptions
a. If the constraints for the parameters ARE NOT MET
b. exception must be raised and NO CHANGES OCCUR

5. Return value
a. Address of the ​new_contract

6. Balances
a. grams ​MUST be LESS OR EQUAL than contract

balance
b. IN CASE OF SUCCESS the contract balance is

deducted by ​grams AND the balance of new contract is
increased by grams MINUS fee OTHERWISE balances
are UNCHANGED (but fee)

iii. mint
1. Access

a. Caller MUST be an ​owner
2. Parameters

a. tokens
i. tokens ​MUST be POSITIVE

3. Output
a. total_supply ​is increased by ​tokens

b. All the other state variables are UNCHANGED
4. Exceptions

a. If the constraints for the parameters ARE NOT MET
b. exception must be raised and NO CHANGES OCCUR

iv. getName
1. Access

a. NO access restrictions
2. Return value

a. name
v. getSymbols

1. Access
a. NO access restrictions

2. Return value
a. symbol

vi. getDecimals
1. Access

a. NO access restrictions
2. Return value

a. decimals
vii. getRootKey

1. Access
a. NO access restrictions

2. Return value
a. public_key

viii. getTotalSupply
1. Access

a. NO access restrictions
2. Return value

a. total supply
ix. getTotalGranted

1. Access
a. NO access restrictions

2. Return value
a. total granted

x. getWalletCode
1. Access

a. NO access restrictions
2. Return value

a. wallet_code
xi. getWalletAddress

1. Access
a. NO access restrictions

2. Parameters
a. workchain_id

i. workchain_id ​MUST be NON NEGATIVE
b. pub_key

i. pub_key MUST EXIST IN ​token_contracts IN
TERMS OF ​workchain_id AND
wallet_public_key

3. Exceptions
a. If the constraints for the parameters ARE NOT MET
b. exception must be raised and NO CHANGES OCCUR

4. Return value
a. wallet_public_key OF EXISTING token_contracts IN

TERMS OF workchain_id AND wallet_public_key
xii. fallback

1. Access
a. Called as a handler for all the internal messages other

than explicitly mentioned above
2. Parameters

a. All the parameters have NO constraints
3. Output

a. All the fields are UNCHANGED

b. Token contract functions (​NOTE!!! For this section all the values are
restricted to the Token contract hypersurface unless another explicitly
stated​)

i. constructor - ​this method is considered as useless so it’s moved
out the specification

ii. transferUTXO
1. Access

a. Caller MUST be a token_owner
2. Parameters

a. workchain_dest
i. workchain_dest​ MUST be NON NEGATIVE

b. pubkey_dest
i. pubkey_dest ​MUST be POSITIVE

c. workchain_rest
i. workchain_rest​ MUST be NON NEGATIVE

d. pubkey_rest
i. pubkey_rest ​MUST be POSITIVE

e. tokens
i. tokens ​MUST be POSITIVE
ii. tokens MUST be LESS OR EQUAL than

balance
f. grams

i. grams​ MUST be POSITIVE
ii. grams MUST be LESS OR EQUAL than the

Token contract balance
3. Output

a. balance​ EQUALS TO ZERO
b. All the other fields are UNCHANGED

4. Exceptions
a. If the constraints for the parameters ARE NOT MET

b. exception must be raised and NO CHANGES OCCUR
5. Balances

a. grams ​MUST be LESS OR EQUAL than Token contract
balance

b. IN CASE OF SUCCESS the Sender contract balance is
deducted by ​grams AND the balance of the both
Receivers contract balance is spread by grams MINUS
fee OTHERWISE balances are UNCHANGED (but fee)
UNCHANGED

iii. accept
1. Access

a. Caller MUST be EQUAL to ​root_address
2. Parameters

a. tokens
i. tokens ​MUST be POSITIVE

3. Output
a. balance​ MUST be INCREASED BY ​tokens
b. utxo_received​ EQUALS to TRUE
c. Other fields are UNCHANGED

4. Exceptions
a. If the constraints for the parameters ARE NOT MET
b. exception must be raised and NO CHANGES OCCUR

iv. internalTransfer
1. Access

a. Caller MUST EXIST IN token_contract IN TERMS OF
token_address

2. Parameters
a. senderKey

i. senderKey ​MUST EXIST IN token_contract IN
TERMS OF ​wallet_public_key

b. tokens
i. tokens ​MUST be POSITIVE

3. Output
a. balance​ MUST be EQUAL to ​tokens
b. utxo_received​ EQUALS to TRUE
c. Other fields are UNCHANGED

4. Exceptions
a. If the constraints for the parameters ARE NOT MET
b. exception must be raised and NO CHANGES OCCUR

v. getName
1. Access

a. NO access restrictions
2. Return value

a. name
vi. getSymbols

1. Access bb
a. NO access restrictions

2. Return value

a. symbol
vii. getDecimals

1. Access
a. NO access restrictions

2. Return value
a. decimals

viii. getBalance
1. Access

a. NO access restrictions
2. Return value

a. balance
ix. getWalletKey

1. Access
a. NO access restrictions

2. Return value
a. wallet_public_key

x. getRootAddress
1. Access

a. NO access restrictions
2. Return value

a. root_address
xi. onBounce

1. Access
a. Called by the system only in case of failure to deliver

message
2. Parameters

a. msg
i. NO constraints

b. msg_body
i. msg_body MUST be a PROPER BOUNCE

SLICE
ii. BOUNCE FUNCTION from ​msg_body ​MUST be

internalTransfer OR internalTransferFrom
3. Output

a. balance INCREASED BY BOUNCED VALUE from
msg_body

b. All other fields ARE UNCHANGED
4. Exceptions

a. If the constraints for the parameters ARE NOT MET
b. exception must be raised and NO CHANGES OCCUR

xii. fallback
1. Access

a. Called as a handler for all the internal messages other
than explicitly mentioned above

2. Parameters
a. All the parameters have NO constraints

3. Output

a. All the fields are UNCHANGED

2. Cross-function specification
a. All the cross-function calls are executed either as internal messages explicitly

sent by origin functions or as internal messages sent by the system
b. Any calls not mentioned in the present specification MUST not exist
c. Recursive calls are not allowed
d. Number of calls made by each function MUST be fixed (no calls in loops)
e. Each message is called with ​bounce​ flag set to ​true
f. In case of ​bounce ​the cumulative effect of the subsequent calling of the

original function and ​onBounce ​is that all fields are UNCHANGED
g. The full list of calls is provided below:

i. deployWallet
1. Message - ​deploy ​(system)
2. Recipient - ​pubkey
3. Parameters (name - value):

a. stateInfo - CORRECT STATE INFO WITH ​workchainId​,
pubKey​, ​internal_owner​, ​name​, ​symbol​, ​decimals​,
wallet_code

4. value​ - ​grams
ii. transfer

1. Message - ​internalTransfer
2. Recipients - ​dest​ & ​rest
3. Parameters

a. dest
i. tokens​ - ​tokens

b. rest
i. tokens - balance ​MINUS ​tokens

4. value​ - ​grams
h. The diagram below illustrates all the internal and external messages in the

system

4. Projections

Root constants projection:

Root granted projection:

Root total projection:

Root tokens projection:

Token constants projection:

Token balance projection:

Token UTXO projection:

5. Scenarios

1. Root constants
a. Construct Root contract
b. Run Getters sequencently to check if the constants are correct

2. Bounce on deploy
a. Construct Root contract
b. Deploy contract to be bounced (with very low ​grams​)
c. Check ​granted_tokens​ increase
d. Check ​onBounce ​call
e. Check ​granted_tokens ​decrease to the original state

3. Mint
a. Construct Root contract
b. Mint tokens
c. Check ​total_supply ​increase

4. Token contract deployment
a. Construct Root contract
b. Deploy contract

c. Check by Getters that the contract is available
5. Deployed token contract constants

a. Construct Root contract
b. Deploy Token contract
c. Run Getters sequencently to check if the constants are correct

6. Deployed bounced transfer
a. Construct Root contract
b. Deploy Token contract
c. Check ​balance ​of the Token contract
d. Transfer some tokens to the another address to be bounced (with very low

grams​)
e. Check if ​balance​ of the first Token contract is zero
f. Ensure ​onBounce​ called
g. Check if ​balance of the first Token contract increased (equal to the balance

after execution “c” point)
7. Deployed transfer

a. Construct Root contract
b. Deploy Token contract
c. Check ​balance ​of the Token contract
d. Transfer some tokens to the some address
e. Check if ​balance​ of the Token contract is ZERO
f. Check if balance of the Token contract identified by ​dest​ increased
g. Check if balance of the Token contract identified by ​rest​ increased

