
Self-Sovereign Distributed Identity Framework
@laugan

Abstract
This work presents a possible technical solution to Digital Identity problem for the Free TON
ecosystem. This paper’s goal is to describe technical and business aspects of a new
Self-Sovereign Identity solution and present a motivation of made choices.

Introduction
It is known that Internet was made without any mechanism of identification in its core. The
results of this flaw was a creation of lots of different ID systems: vendor-made (as Oracle,
Apple, Google), government-made and many more. The one thing that unite them all - none
of them became a really worldwide solution that can pretend to be your Web Identity. All of
them are too specific or relying on some products and subscriptions.

More to say, the entire concept of each service each time asking for your data, storing all
these data and eventually hacked or sold with all your personal data becoming public -
seems very unintuitive.

Blockchain came with new solutions to this problem. A Self-Sovereign Identity concept
where you can prove your existence and existence of your credentials by means of
cryptographic proofs, without higher authority that should hold and manage all your data.

The overall idea of SSI is that user can not only prove his will to share or not share
something, but also has a control on permissions to his credentials. This control is done by
user deciding what credentials’s issuer can show and what cannot.

When it comes to Free TON, it is obvious that this blockchain also can benefit from having
its own SSI implementation because of its blockchain speed, low fees and overall
decentralization of Governance that makes Free TON a more trusted network than more
centralized ones. This is a crucial part of SSI and will be a good selling point for Free TON.

Also, from the technical side of view, the important thing is a Free TON’s method of address
calculation that was used in TIP-2,3,6,7,21,31 and other proposals. Its benefit is that if,for
example, smart contract code and public key is known to verifier entity, the sole existence of
that smart contract is a proof in itself. No other proofs needed. That makes some proofs in
SSI completely off-chain (or at least free).

Use Cases List
Before talking about implementation, it is useful to imagine use cases that Self-Sovereign
Identity solves. It comes with plenty of use cases, here are only a subset of all applications:



Identity Management SSI can be used for storing reputation,
data, some assets.

Disclosing Data SSI system enable you to control when and
what you permit to disclose to third parties.

Digital Signature Your DID is a signature that can be used for
a secure signing of different transactions,
documents and so on.

On-chain Identity You can sign in to different smart-contracts
through using your DID contract if it’s
supported by smart-contracts.

Know Your Customer You can use Identity to prove your off-chain
credentials to third parties

Access Control Identity can be used to implement some
roles and permisssion.

To fulfill these use cases (or better say objectives) we should design a system where DIDs
(digital identities) are not made only as a certain role but are role-agnostic and can take any
role that they want currently.

System Overview
A proposed SSI system consists of a set of smart contracts in a Free TON blockchain. These
core contracts manage all interactions between entities.

The overall process goes like this:
● Firstly, some request is made between parties in an off-chain environment (for

example, I want new driver license from Department or some Bank wants to check
my Digital ID).

● As request exists, Verifier party goes to Free TON blockchain and through address
resolve via provided keys ensures that such DID exists (can be resolved with
contract code and keys)

● After receiving request and getter checks (for example, request for issuing new
credential), core contracts are making all the work of interacting between DIDs under
the hood and then emit external outbound event to off-chain decision-maker (Issuer
in this example).

● Event is listened by Event Consumer
● As the fact of the external outbound event is the proof in itself that all other checks

are made, decision-maker can make request to issue Credential to some Holder (this
is done by core contracts too) or Prover can give Permission to Verifier.

● If decision should be done in Client App, User should accept Sharing of Credential
● After decision is done, control backs to Free TON blockchain where info is written



● If some Credentials should be shown, they are presented through API on Event
Consumer

That’s the main sequence of actions. The only part that is out of scope of this document is a
secure credential data storage that stores original credential that is shown on API of Event
Consumer.

System Goals
This solution was made with the following goals:

Cheap Usage To achieve this, “proof of address resolve”
is used because it can be done with free
getter methods.

Scalability As all contracts will be made in distributed
way and no large mappings or complex
contract trees are proposed - we believe
that the solution is verys scalable. Also, the
concept of universal Identity contracts for all
parties makes the solution ready for a more
complex approaches.

Interoperability with other SSI solutions We propose to implement a support of W3C
Decentralized Identifier Specification v1.0
standard (as described here:
https://w3c.github.io/did-core/#fragment ).
This will ensure a max interoperability with
client apps that support this standard.

More On-Chain Steps We believe that in the end, all steps of SSI
should be made on-chain. Currently, we
propose to make on-chain all interactions
except Prover-Verifier initial connection and
Issuer-Verifier exchange of permitted
credentials (as credentials are stored
off-chain)

System Parts

Logical Entities
We can divide our system into 5 logic entities:

● Issuer - entity that issues some Credential to Prover
● Verifier - entity that wants to check that Prover exists and have som Credential
● Prover - entity that has Credential and can give Permission to id to Verifier
● Credential - set of personal data or just a signature or Id of personal data that is

issued by Issuer to Prover

https://w3c.github.io/did-core/#fragment


● Permission - an explicit proof issued by Prover to Verifier, that Verifier can view
some Credential in Issuer storage

First three are represented in the SSI as the same contract - Identity, because each Identity
can take not only one role, but all of them or any two.
Credential is represented by Credential contract and an off-chain storage that is a property
of the Issuer.
Permission is represented by Permission contract that can be manually or auto-revoked
(with self-destruct of contract and return of TON funds).

Technical Components
From technical point of view, solution consists of three main layers:

● Smart Contracts - core part that makes all interactions and emits results as
outbound events;

● Event Consumers - servers (or listeners) that handle incoming requests from Free
TON. There requests contain info about credentials that need to be issued or
permission that should be granted;

● Client Apps - end-user apps that are used to grant permissions (and in future to
issue some custom credentials too). They receive info from Event Consumers to
accept requests by calling Free TON smart contracts.

Limitations
We think that this system will be much more anonymous and private with two additional
layers on top of it:

1. ZK-Proofs that will be used to hide interactions between entities.
2. Pseudonym-based DIDs instead of using public key/owner-based DIDs,for example

through the use of Camenisch-Lysyanskaya signature scheme
(https://www.iacr.org/archive/crypto2004/31520055/cl04.pdf)

Still, we don’t see a cheap way to implement this currently as ZKP solution is not yet fully
available in Free TON and Pseudonyms don’t fit to the main benefit of Free TON - address
resolve from initial contract data.
This work is a draft and we plan to work on this aspect more in the next version.

Smart Contracts
There is only three contracts in a proposed SSI system:

1. Identity - this is a contract of DID and there is no difference if it is a User, an Issuer
or Verifier. This contract can be either of these or all-in-one - no difference.

2. Credential - deployed by any Identity by calling issue() method. This contract has
static values of issuerDID, holderDID, attributeName. Also important that aside from
holding attributeValue,

3. Permission - can be deployed only by credential holder Identity by calling permit()
method. This contract has static values of ownerDID, viewerDID, credentialAddress.
The important point is that permit() method accepts (viewerDID, issuerDID,

https://www.iacr.org/archive/crypto2004/31520055/cl04.pdf


attributeName) arguments and resolves Credentials’ address internally, so there is
no way to permit foreign credentials.

DID or Identity Contract
Identity Contract is a contract that is used by all system participants. There is no difference
between identities of Credential issuer or Verifier. All of them are just Identity contracts in SSI
system.
Because of this, there is no artificial separation of roles. Even if you’re student - you can
issue Credentials (perhaps you need them to approve some new guys to your Secret
Illuminati Club in your University, who knows?).
If you’re Issuer (for example, some Government Department) - you still can be Verifier and
ask for credentials of another departments.
So, it’s vital for all Identities to have same Identity contract for all SSI entities.

Static data (Used for address calculation)
● static owner(public key)

Issuance functions and events

● function requestIssue(externalRequestId) // client’s app starts with requesting issuance of

credentials

● function issueRequested(externalRequestId) // checks that sender address resolves with

code+pubkey

● event eventIssueRequested() // makes external outbound message that Issuer’s Event

Consumer listens; uses externalRequestId as external address

● function issue(externalRequestId, DID, attributeName, attributeValue); // if Issuer decides to

issue, he calls this

Permission functions and events

● function requestPermission(externalRequestId) // client’s app starts with requesting

permission for credentials

● function permissionRequested(externalRequestId) // checks that sender address resolves

with code+pubkey

● event eventPermissionRequested() // makes external outbound notification that can be

listened and read by User’s app; uses externalRequestId as external address

● function permit(externalRequestId, DID, attributeName, attributeValue); // if User wants to

permit, he calls this method

Revokation functions and events

● function revoke(externalRequestId) // if User wants to cancel permit, he calls this method



Credential/Claim Contract
Each Credential contract contains “attributeValue” field with a content of credential, but it is
not static (not used for address calculation). Attribute can be modified later by issuer.

The storage and level of cryptography of this value is a wide discussion that we can’t fully
describe in this document. So, most of the time it will store only hash or signature needed to
find corresponding data in Issuers storage, not the credential itself.

Security of this contract made through checks on who can deploy this contract (msg.sender
equals to issuerDid static var).

Content Data Model
To improve interoperability, we need to implement guidelines from:
https://www.w3.org/TR/vc-data-model/#core-data-model

Static data (Used for address calculation)
● static issuerDid // Identity address of Issuer, used to check who can deploy this contract

● static credentialId ; = hash(

● + static holderDid // Identity address of Holder

● + static credentialName // unique name of this credential in the Issuer’s. For example, if one

issuer makes both passports and driver licenses, you should specify here, what credential it

refers to)

Thus, each Credential contract is in fact a Key-Value store that doesn’t specify anything
about real Users that have relation to this Credential. Its Key is hash derivation that can’t
reveal anything if you don’t know who you are verifying in advance.

Issuance functions and events
● event eventIssued() // makes external outbound message that User’s Event Consumer

listens; uses externalRequestId as external address

Permission functions and events
● function permitted()

● event showPermitted() ; uses externalRequestId as external address

●
Revokation functions and events

● function revoked()

● event hideRevoked() ; uses externalRequestId as external address

Permission Contract
Security of this contract made through checks on who can deploy this.

Static data (Used for address calculation)
● static permitterDid // Identity address of Holder, used to check who can deploy this contract



● static permissionId = hash(

● + static issuerDid // Identity address of Holder

● + static verifierDid // Identity address of Holder

● + static credentialName // unique name of this credential in the Issuer’s. For example, if one

issuer makes both passports and driver licenses, you should specify here, what credential it

refers to)

Permission functions and events
● function permitted()

● event showPermitted() ; uses externalRequestId as external address

Revokation functions and events
● function destruct() ; method to destroy this conract and return its balance to Permission

issuer (Prover)

User Journey I - Issuing Credentials

1. Bob (User) browses to some web banking service (Verifier) that requires the User to
show its Dpassport credential, issued by Government.

2. Bob doesn’t even have DID and no Dpassport by Government
3. Firstly, Bob deploys DID with his public key
4. Then, he requests Government to issue him a credentials, calling a method from his

own Identity contract - requestIssue(issuer=GovernmentDID,
credentialName=DPassport);

5. This method calls Government Identity contract
issueRequested(holderPubkey=BobPubkey, holder=BobDID,



credentialName=DPassport) method. It checks if msg.sender is BobDID and it can
be resolved from pubkey.

6. Government Identity contract emits external event -
eventIssueRequested(holder=BobDID, credentialName=DPassport). After
Government service decides that it can issue credentials, service calls
issue(holder=BobDID, credentialName=DPassport) method that deploys a
Credential contract with (Issuer, Holder, credentialName) as data

User Journey II - Veriying and Permitting

7. Bob returns to Bank and asks for passing the KYC, he presents his DID as a
message signed by key pair.

8. Bank’s app resolves DID contract by using public key. That is made off-chain with
offline resolve from contract code and key, then free getter method is called to get
DID info. That is called “proof-of-address-resolve” if such contract exists.

9. Bank then calls requestPermission(issuer=Government,
credentialName=dPassport) on his DID address

10. This method calls Bob’s Identity contract
permissionRequested(credentialName=DPassport) method. It checks if
msg.sender is BobDID and it can be resolved from pubkey.

11. Bob’s Identity contract emits external event -
eventPermissionRequested(issuer=Government, credentialName=DPassport,
verifier=Bank). After User decides that it can permit viewing Credential, his app calls
permit(issuer=Government, credentialName=DPassport, verifier=Bank) method
that deploys a Permission contract with permissionId (hash of all involved) as data.

12. If Bank not only wants to check existence of contract (it can be done off-chain now),
but also wants to see contents of Credential - it calls Permission contract, resolving it
by hash and calls show() method.



Event Consumers
The goal of Event Consumers is to listen to happening events.

Event Consumers is the server application for Issuers and Verifiers. They can be written in a
desired language.
List of mandatory functions:

● handler of eventIssueRequested event

● handler of showPermitted event

● handler of hideRevoked event

● API for credentials presentation with respect to W3C standards on Data Model

● API for sign-on requests with respect to W3C standards on DID requests

Handlers can be automatic or made with additional delegation to manual operators (for some sort of

Issuers).

Also, Event Consumers can be split on Issuer and Verifier implementation to not implement all APIs

in one project.

Client Apps
The draft client app can be made as a DeBot or as a simple web app that make requests to
sign-on API.



GUI of Tykn SSI Mobile & Web App

Mobile App should support:
● Accepting notifications from Event Consumer that someone requested permission
● Opening W3C standard URI links to DID invites from Verifiers
● Opening QR-code images with the same links
● Showing current requests for credentials
● Showing “History of Permissions”
● Showing “Revoke” button

Technical Requirements
● JVM- or JS- based languages
● Support of Push notifications
● Support of TON SDK bindings

Contacts
● Telegram ID: @laugan
● Wallet address:

0:fd080fb5fc9266226ec59b062f0cdde85c818ef1d4ac4939804ee7616ec352f4


