

Contest «DGO SMV Smart Contract
System»

SMV Smart Contract Description

Authors: RSquad Blockchain Lab

2

Table of Contents
1. About .. 4

2. Glossary .. 4

3. Overview ... 4

4. System’s Smart contracts .. 8

4.1. The main smart contracts of the System .. 8

4.1.1. Demiurge ... 8

4.1.2. Padavan ... 9

4.1.3. Proposal .. 11

4.1.4. Demiurge Debot ... 12

4.1.5. Voting Debot .. 12

4.2. External smart contracts used by voting system ..12

4.2.1. NSEGiver .. 12

4.2.2. RootTokenContract & TONTokenWallet .. 12

4.2.3. DePool... 12

4.2.4. PriceProvider .. 12

4.3. Smart contracts used by test system ..12

4.3.1. UserWallet .. 12

4.3.2. BatchGiver .. 12

5. How to use DeBots ... 13

6. Deploy and initialize the System ... 18

6.1. Manual system start .. 18

6.2. System start using DeBots .. 18

7. User Scenarios ... 19

7.1. Proposal creation scenarios ... 19

7.2. Group scenarios .. 20

7.3. Base Voting Scenarios ..21

8. Testing ... 22

8.1. Infrastructure .. 23

8.1.1. ton-contracts.ts... 24

8.1.2. ton-packages.ts ... 25

3

8.2. Description of tests .. 25

8.2.1. Test “base” ... 25

8.2.2. Test “base-against” ... 26

8.2.3. Test “base-depool” ... 26

8.2.4. Test “base-token” ... 27

8.2.5. Test “majorities” .. 27

8.2.6. Test “whitelist” ..28

4

1. About
This document represents RSquad's submission for the DGO SMV Smart Contract System
contest.

The code of the developed system of smart contracts SMV can be found at the following
link: https://github.com/RSquad/smv

The document contains:

• an overview of the statuses of competition requirements in relation to the solution
developed by RSquad;

• description of the main smart contracts of the SMV smart contract system;
• description of third-party smart contracts used by the SMV smart contract system;
• description of smart contracts used for testing;
• DeBots description;
• description of basic user scenarios;
• description of the test environment and infrastructure;
• description of test cases.

The SMV smart contract system was developed based on the requirements provided in the
contest description and in accordance with the architectural specifications developed as
part of the Developers Contest: Soft Majority Voting system.

Limitations:

• in accordance with the terms of the contest, the SMV smart contract system must
be deployed and tested on the DevNet network. However, the specified network has
been inoperative since at least January 4, 2021, which makes it impossible to comply
with this competitive requirement;

• due to the point above, Node SE was used for development and testing;
• the developed solution will be deployed by RSquad in the DevNet network as soon as

possible after its return to a working state.

2. Glossary
• smc — smart-contract
• System — DGO SMV smart-contract system

3. Overview
The purpose of the System is to automate the decentralized governance for Free TON
communities through voting.

The following figure shows the top-level diagram that describes the System:

https://github.com/RSquad/smv

5

Figure 1 — High-level System Architecture

The implementation of the System requirements from the conditions of the contest is
described in the table below:

Feature Status Comment

Should support the ability to vote
with TON Crystal tokens as well
as any other TIP-3 Token or
DePool Stakes.

Fully
supported

The system fully supports voting by TONs,
all TIP-3 tokens and DePools. The scenarios
are described in the section "Basic Voting
Scenarios"

Should be able to grant voting
rights to a subset of users
identified with another token or
PubKeys.

Partially
supported

The System fully supports specifying the
white list of voting users, but does not
support token identification.

Should notify voting results by
emitting both external and
internal events

Fully
supported

The System emits a ProposalFinalized with
full info about Proposal results.

Should generate “Voting
Finished” events if voting is
finished early with these votes

Fully
supported

The System emits a ProposalFinalized event
when the timed / premature proposal ends.

Should be able to deploy
Proposal Smart Contract and
Collect votes for it

Fully
supported

The System deploys Proposals and collects
all the necessary data in the Demiurge
contract.

6

Feature Status Comment

Should support a voting for
Multiple Proposals using same
TON Crystal or other TIP-3
Tokens

Fully
supported

The System allows you to vote with TONs, a
DePool stake and any TIP-3 token for all
Proposals within the System an unlimited
number of times

Should support Soft Majority,
Super Majority settings of the
SMV

Fully
supported

The System supports Soft Majority, Super
Majority and Majority voting models.

Should include Group
membership smart contract with
user rights

Fully
supported

The System has a group contract that allows
you to use them as sets of whitelists

Should support the ability to Add,
Exclude New member, change
rights of an existing member by
Proposal result event

Full
support

The System allows you to create new
groups, add/remove members from groups
by Proposal result.

Should be able to Deploy a
Contest from the Proposal if the
Proposal is approved

Partially
supported

There is some way to give Proposal a
message, which will be executed after
Proposal is accepted, but, to do this
requirement in the rightest way need more
time for tests.

Should be able to change
parameters of the Contest (such
as Voting period, Jury Groups
etc.)

Fully
supported

As previous point, there are many ways to
change the parameters of Contests.

Contest should include: Start of
the contest time; End of the
contest time; Time for jury
voting; Set of jurors or Juror
Groups pubkeys and addresses

Fully
supported

As previous point, there are many ways to
change the parameters of Contests.

Should include a Contract that
can store a list of some SMV
Proposals, Contests and their
voting results

Partially
supported

All data stored on the System, except
Contests results data.

Should include DeBots for all
system user interfaces

Fully
supported

All System functionality can be controlled by
written DeBots

Should include auto-tests Fully The System main functionality is fully tested.

7

Feature Status Comment

designed as a smart contract or a
script to test scenarios

supported See more at the Testing section.

A solution should have a Free
Software license

Fully
supported

There is Apache-2.0 License

A system should be deployed and
tested on the DevNet and Jury
should be able to access it for
testing

Temporary
not
supported

See Limitations at the About section

Some additional features that are not described in the contest conditions are shown in the
table below:

Additional Features Status

The System supports multiple voting by one user for one message, in
different ways.

Fully
supported

The System supports voting with a part of users' votes. Fully
supported

The System supports a third-party PriceProvider for converting TIP-3 tokens
into votes.

Fully
supported

The architecture of the deposits of the System allows the withdrawal of
Type-3 tokens at the rate that is current at the time of entering the TIP-3
tokens into the system.

Fully
supported

The System implements mechanisms for integration with different third-
party smart contractsю

Fully
supported

The system mainly works on internal messages. Fully
supported

DePools in the System are set by an array, which allows accepting stakes not
from one previously specified DePool during initialization, but from any
DePools of the network.

Fully
supported

8

4. System’s Smart contracts
4.1. The main smart contracts of the System

4.1.1. Demiurge
It is a central smart contract in a voting system. It is a ledger that creates and stores
proposals and user padavan addresses. After deployment demiurge requests Demiurge
Store smart contract to gain proposal and padavan images (tvc), list of depool addresses
and address of vote price provider.

Demiurge starts in preworking mode in which it has several checks that must be passed
before it will accept requests to deploy proposals and padavans. Checks contains the
following:

• Check that the demiurge contains a proposal image.
• Check that the demiurge contains a padavan image.
• Check that demiurge contains a list of depools.
• Check that demiurge contains the address of a price provider.

When the check mask becomes equal to 0 Demiurge is ready to work.

PUBLIC API

constructor(address store)

store - address of Demiurge Store that stores all ABIs and TVCs of the voting
system.

Remark: Demiurge Debot is a Demiurge Store as well.

Called on demiurge deployment. Calls Demiurge Store to acquire necessary
parameters.

deployPadavan(uint userKey)

 Called by internal message only and paid by caller. Allows to deploy Padavan smart
contract.

userKey - public key sent by user that is inserted into an instance of Padavan before
deployment.

deployProposal(uint32 totalVotes, uint32 start, uint32 end, string description, string
text, VoteCountModel model)

 Called by internal message only and paid by caller. Allows to create and deploy
Proposal smart contract.

 totalVotes - total number of votes for proposal.

9

 start - unixtime when proposal starts accepting votes.

 end - unixtime when proposal finishes accepting votes.

 description - short name of the proposal.

 text - any information about the proposal.

 model - voting model, can be soft majority, super majority or simple majority.

deployProposalWithWhitelist(uint32 totalVotes, uint32 start, uint32 end, string
description, string text, VoteCountModel model, address[] voters)

 Called by internal message only and paid by caller. Allows to create and deploy
Proposal that accepts votes only from Padavans from voters list.

 All parameters are the same as in deployProposal.

 voters - white list of Padavan addresses that can vote for proposal.

function onStateUpdate(ProposalState state)

 Called by any proposal (created previously by this demiurge) to notify about his new
status.

4.1.2. Padavan
Padavan smart contract is a user ballot that allows users to vote for proposals. Padavan
accepts deposits of different types (tons, tip3 tokens, depool stakes), converts them to
votes and sends votes to proposals. Votes cannot be converted into deposits and received
back until all the proposals that the Padavan voted for are completed. The User can vote for
different proposals with a different number of votes, but a number of locked votes in
padavan is always the maximum number of votes spent for one proposal.

At any time a user can ask to reclaim some deposits equivalent to a number of votes. When
it happens Padavan starts to query the status of all voted proposals. If any of them is
already completed Padavan removes it from the active proposals list and updates the value
of locked votes. If the required number of votes becomes less or equal to unlocked votes
then Padavan converts the requested number of votes into a deposit (tons, tokens or
stake) and sends it back to the user.

Padavan is controlled by a user contract that requested deployPadavan from Demiurge.

PUBLIC API

function voteFor(address proposal, bool choice, uint32 votes)

 Called by internal message only and paid by caller. Allows to vote for the proposal
with certain votes (yes or no).

10

 proposal - address of proposal to vote for.

 choice - ‘yes’ or ‘no’.

 votes - number of votes to send for proposal.

function depositTons(uint32 tons)

 Called by internal message only and paid by caller. Allows to deposit tons into
Padavan. Deposit is converted to votes using the vote price requested from PriceProvider
smart contract.

 tons - number of tons to deposit and lock in Padavan.

function depositTokens(address returnTo, uint256 tokenId, uint64 tokens)

 Called by internal message only and paid by caller. Allows to deposit and lock tip3
tokens into Padavan. Tokens must be already transferred to Padavan’s tip3 token account
(wallet) before this function is called. This function checks that the balance of Padavan’s
token wallet must be bigger then tokens argument. If so then the deposit is accepted and
locked in a token account and converted into votes.

 returnTo - address of user token wallet to which return tokens when they will be
unlocked.

 tokenId - ID of tip3 token. It is an address of the root token wallet without workchain
id.

 tokens - number tip3 tokens to deposit into Padavan.

function reclaimDeposit(uint32 deposit)

 Called by internal message only and paid by caller. Allows to return deposits (tons,
tip3 tokens, depool stake) back to the user.

 deposit - number of votes that must be converted to deposits and returned to the
user.

function confirmVote(uint64 pid, uint32 deposit)

 Called by Proposal to notify Padavan that votes are accepted.

 pid - proposal id.

 deposit - number of accepted votes.

function rejectVote(uint64 pid, uint32 deposit, uint16 ec)

 Called by Proposal to notify Padavan that votes are rejected.

11

 pid - proposal id.

 deposit - number of rejected votes.

 ec - reason of rejection (exit code).

function updateStatus(uint64 pid, ProposalState state)

Called by Proposal to response on Padavan’s queryStatus request.

 state - proposal current state (can be New, onVoting, FInalized, Ended, Passed,
Failed).

function createTokenAccount(address tokenRoot)

 Allows user to create tip3 token wallet controlled by Padavan. Created token wallet
can be used to deposit tip3 tokens to it.

 tokenRoot - address of token root smart contract that emits tip3 tokens.

function onTransfer(address source, uint128 amount)

 Called by DePool to transfer ownership of user stake to Padavan.

 source - address of user wallet that transfers ownership to Padavan.

 amount - number of transferred nanotons.

4.1.3. Proposal
Smart contract that accumulates votes from Padavans. Deployed by Demiurge by user
request (deployProposal) Notifies about its state to Demiurge.

Can be optionally instantiated with a white list of Padavan addresses. In that case Proposal
accepts votes only from addressed from this list.

PUBLIC API

voteFor(uint256 key, bool choice, uint32 deposit)

 Called by Padavans to vote for the proposal. Proposal makes a verification check
(see TIP3 spec) to be sure that the sender is a Padavan smc.

 key - Padavan public key. Used in a verification check.

 choice - “yes” or “no”.

 deposit - number of votes.

queryStatus()

12

 Called by Padavan to query Proposal status.

wrapUp()

 Can be called by any smart contract by internal message. Asks Proposal to update
its status.

4.1.4. Demiurge Debot
An entry point to an onchain voting system. Allows to deploy new Demiurge to blockchain
or to attach to existing Demiurge. Also deploys Voting Debot for users.

Debot implements the interface of Demiurge Store and stores all images (tvc) and ABIs of
voting system contracts.

4.1.5. Voting Debot
Debot that works on behalf of the user. Deploys Padavan and allows to create new
proposals, deposit tons, convert them to votes and vote for existing proposals.

4.2. External smart contracts used by voting system

4.2.1. NSEGiver
Builtin giver of NodeSE. Used to deploy contracts in local node tests.

4.2.2. RootTokenContract & TONTokenWallet
TIP3 smart contracts. Can be found here:

https://github.com/tonlabs/ton-labs-contracts/tree/master/cpp/tokens-fungible

4.2.3. DePool
DePool smart contract. Used to transfer ownership of user stake to Padavan. Can be found
here:

https://github.com/tonlabs/ton-labs-contracts/tree/master/cpp/solidity/depool

4.2.4. PriceProvider
Simple smart contract that implements an interface of converting tons and tokens to
votes.

4.3. Smart contracts used by test system

4.3.1. UserWallet
Test user wallet used to send requests to Demiurge and control Padavan.

4.3.2. BatchGiver
Giver smart contract that allows to make several transfers in one transaction. Used to
increase speed of contracts deployment.

https://github.com/tonlabs/ton-labs-contracts/tree/master/cpp/tokens-fungible
https://github.com/tonlabs/ton-labs-contracts/tree/master/cpp/solidity/depool

13

5. How to use DeBots
1. Run nodeSE locally.

2. Put tonos-cli (ver >= 0.2.0) into directory ./bin in the root of repo.

3. Deploy and init Demiurge Debot. Go to the root of project repo. Then change the
current directory to sbin and run bash script deploy_debot.sh.

4. Important: set variable price_provider in script to actual price provider.

5. After Debot starts you will see the main menu.

6. Choose item 2. Generate a new seed phrase and generate a public key from the
phrase. Enter the public key to debot.

7. Choose “sign and deploy”. Then enter the path to DemiurgeDebot.keys.json as you
see in the screenshot.

8. Demiurge is deployed. Restart the debot.

9. Now the debot attached to deployed Demiurge. Choose item 3 to deploy the Voting
Debot for the user. Follow the instructions of debot.

14

10. Then you will see the generated address of your future Voting Debot. Send some tons
to this address. Use bash script ./sbin/nsegiver.sh <address> <nanotons>. Then
continue with item 1.

11. Sign deploy message with seed phrase of Voting Debot.

12. Your Voting Debot is deployed.

13. Exit Demiurge DEbot and start Voting Debot.

14. ../bin/tonos-cli debot fetch <address_of_voting_debot> You don’t have a Padavan
yet. Choose item 1 to deploy it.

15

15. Enter the seed phrase of Voting Debot to sign deploy request.

16. Padavan deployed. Restart the debot and you will see the extended menu of Voting
Debot.

17. Choose item 6 to create a new proposal. Follow the instructions to set proposal
parameters. Sign request with Voting Debot.

16

18. You will return to the main menu. Choose item 5 to view a list of all proposals.

19. You will see your created proposal. Return to main menu.

20. Choose item 1 to deposit tons into Padavan and receive votes.

17

21. After returning to the main menu you will see updated voting stats. You have 20
available votes.

22. Choose item 3 to vote for the proposal. Enter the number of votes to send. Sign
request with seed phrase of Voting Debot .

23. Return to the main menu. Now you have 1 active proposal and 15 locked votes.

24. Choose 4 to see a list of active proposals.

25. Return to main and choose 2 to reclaim some votes.

18

26. Restart debot to update vote statistics. Now you have only 10 votes.

Experiment more, for example, you can deposit more tons or reclaim all available votes.

6. Deploy and initialize the System
There are two ways to initialize the system - manual and through DeBot.

6.1. Manual system start
To start the system manually, you need to prepare:

• Demiurge contract
• Padavan contract
• PriceProvider contract
• Proposal

System deployment script:

• Deploy Demiurge
• Deploy PriceProvider
• Point Demiurge Proposal’s tvc
• Point Demiurge Padavan’s tvc
• Point Demiurge address of PriceProvider
• Point Demiurge addresses of DePools
• The System is ready to use

A more detailed example can be found at ./tests/parts/deploy-system.ts

6.2. System start using DeBots
The voting system can be configured and used with debots. There are 2 debots:

19

1. Demiurge Debot - central debot. One for the whole voting system. Deploys Demiurge
and Voting Debot for each user.

2. Voting Debot. One debot per user. Deploy Padavan and allow users to vote.
See section ‘How to use Debots’ that describes how these debots are working.

7. User Scenarios
7.1. Proposal creation scenarios
Proposal can be created by any user after deploying and initializing the system.
Importantly, Proposal accepts only internal messages, therefore, to deploy and work with
Proposal, you should use Multisig, UserWallet from the example or analogs.

The main parameters and functions of the Proposal are described in System’s Smart
Contracts paragraph.

To create a Proposal, you need to specify:

• Voting period — the start and end time of voting after which the results are summed
up

• The voting model is Majority, Soft Majotiry or Super Majority, below are the formulas
for calculating the model, where y - votes for, n - votes against, t - total votes
according to the picture:

○ Majority (y > n)
○ Soft Majority (y * t * 10 >= t * t + n * (8 * t + 20))
○ Super Majority (y * t * 3 >= t * t + n * (t + 6))

More details can be found here — https://forum.freeton.org/t/developers-contest-
soft-majority-voting-system-finished/65

https://forum.freeton.org/t/developers-contest-soft-majority-voting-system-finished/65
https://forum.freeton.org/t/developers-contest-soft-majority-voting-system-finished/65

20

An example of using all models can be found in the majorities test

• Description
• Accompanying text
• White sheet of voters:

○ Not specified, in which case all Padavan owners can vote
○ Specified, in this case, only those Padavans whose identifier is indicated in

the sheet vote
○ A link to the group is specified - in this case, only Padavans members of the

specified group vote
• Appointment proclaimed

○ No final result handler
○ To create a contest
○ To add to the group
○ To remove from the group
○ To create a group

Please, see proposal creation examples here ./tests/parts/deploy-proposal.ts

7.2. Group scenarios
1. Adding a new member to the group

a. invoke applyFor(string name) function of the Group contract, as specified in
the IGroup interface. Address of the sender is considered to be applying for
the group membership. NB: Padavan contract can be efficiently used for the
submission process. The corresponding function is applyToGroup(address
group, string name) from the IPadavan interface.

b. Provided the input data is valid, a proposal to include a new member to the
group is automatically created and put to voting.

c. Upon voting completion, the results are evaluated.
d. If the proposal passes, the applicant is added to the list of group members,

and becomes eligible (and responsible) to vote for the proposals in scope of
this group from now on.

2. Removing a member from the group
e. invoke unseat(uint32 id, address addr) function of the Group contract, as

specified in the IGroup interface. The respective helper in the IPadavan
interface is removeFromGroup(address group, uint32 id, address addr).

f. Provided the input data is valid, a proposal to remove the specified member
from the group is automatically created and put to voting.

g. Upon voting completion, the results are evaluated.
h. If the proposal passes, the specified member is removed from the group,

thus revoking voting rights for the proposals deployed subsequently.

3. Voting using groups (whitelist)

21

i. proposals deployed by a group are put to voting in a very special fashion,
enabling only a selected list of individual contracts to vote for them. This
voting model is sometimes referred to as “whitelist”. Proposals with this
feature disregard any votes cast from the addresses not on the list.

7.3. Base Voting Scenarios
1. Voting with TON

○ User deploys Padavan, or requests previously deployed Padavan
○ User sends TONs to Padavan
○ Padavan "converts" TONs into voices
○ User sends votes from Padavan to Proposal
○ The volume of sent votes in tokens is frozen
○ Proposal ends on time, or prematurely, if the result is unambiguous
○ The volume of votes sent by all users is unfrozen
○ Proposal informs Demiurge of the voting result
○ The Demiurge performs an action if it was described and the result was

accepted
○ User withdraws deposited TONs

Base and base-against test (to check voting for and against, respectively)

2. Voting with DePool:
○ User deploys Padavan, or requests previously deployed Padavan
○ The user transfers the stake from the DePool specified in the Demiurge to

the Padavan
○ Padavan "converts" stake into votes
○ User sends votes from Padavan to Proposal
○ The volume of sent votes is frozen
○ Proposal ends on time, or prematurely, if the result is unambiguous
○ The volume of votes sent by all users is unfrozen
○ Proposal informs Demiurge of the voting result
○ The Demiurge performs an action if it was described and the result was

accepted
○ User withdraws stake

3. Voting using TIP-3
○ User deploys Padavan, or requests previously deployed Padavan
○ User creates a token account for Padavan
○ User transfers tokens to Padavan
○ Padavan "converts" tokens into votes at the rate given by PriceProvider
○ User sends votes from Padavan to Proposal
○ The volume of sent votes in tokens is frozen
○ Proposal ends on time, or prematurely, if the result is unambiguous
○ The volume of votes sent by all users is unfrozen

22

○ Proposal informs Demiurge of the voting result
○ The Demiurge performs an action if it was described and the result was

accepted
○ User withdraws sent tokens

4. Basic voting scenario with combined votes. Combines the first three scenarios and
combines ways to get votes.

8. Testing
All tests of the System are located in the tests directory.

For tests used:

"chai": "^4.2.0",

"mocha": "^8.2.1",

"typescript": "^4.1.3",

"@tonclient/core": "^1.5.0",

"@tonclient/lib-node": "^1.5.0"

To run tests, it is proposed to use Node in the package ton-dev-cli
(https://github.com/tonlabs/ton-dev-cli). Important! Docker is required for correct work of
tondev.

1. Install node.js (https://nodejs.org/en/)
2. Install docker (https://www.docker.com)
3. Install tondev. npm install -g ton-dev-cli If you encounter problems during installation,

read the instructions in the official repository
4. Go to the project folder and install the dependencies npm install
5. Create .env file at the root of the project and fill it in. Available variables (this example

can be used to work with Node SE):

NSE_GIVER_ADDRESS=0:841288ed3b55d9cdafa806807f02a0ae0c169aa5edfe88a789a64824297

56a94

NETWORK=LOCAL

6. Run Node SE tondev start
7. Run tests:

a. npm run test will run all available tests

https://github.com/tonlabs/ton-dev-cli
https://nodejs.org/en/
https://www.docker.com/

23

b. npm run test:TEST_NAME will run the specified test, where the TEST_NAME is the
name of the test (see “Description of tests”)

8.1. Infrastructure
The project infrastructure consists of the following directories:

├── index.ts

├── package-lock.json

├── package.json

├── src // smart-contracts source code

├── tests // tests dir

│ ├── base-against.test.ts // base voting scenario #1 (against)

│ ├── base-depool.test.ts // base voting scenario #2

│ ├── base-token.test.ts // base voting scenario #3

│ ├── base.test.ts // base voting scenario #1

│ ├── majorities.test.ts // test different majorities

│ └── whitelist.test.ts // test whitelist

│ ├── contracts // ton contracts packages dir

│ │ ├── ton-contract.ts // class for ton-contracts

│ │ └── ton-packages // ton-contracts packages with tvc and abi

│ │ ├── alt-giver.package.ts

│ │ ├── batch-giver.package.ts

│ │ ├── console.package.ts

│ │ ├── demiurge.package.ts

│ │ ├── depool.package.ts

│ │ ├── dev-giver.package.ts

│ │ ├── group.package.ts

│ │ ├── nse-giver.package.ts

│ │ ├── padavan.package.ts

│ │ ├── priceprovider.package.ts

24

│ │ ├── proposal.package.ts

│ │ ├── roottokencontract.package.ts

│ │ ├── tontokenwallet.package.ts

│ │ └── userwallet.package.ts

│ ├── parts // test parts dir

│ │ ├── check-proposal-results.ts

│ │ ├── deploy-padavan.ts

│ │ ├── deploy-proposal.ts

│ │ ├── deploy-system.ts

│ │ ├── deposit-to-padavan.ts

│ │ ├── reclaim.ts

│ │ ├── reclaimTokens.ts

│ │ └── vote.ts

│ ├── utils // test utils dir

│ │ ├── code.ts

│ │ ├── common.ts

│ │ └── convert.ts

└── tsconfig.json

8.1.1. ton-contracts.ts
Class for working with TON contracts. It provides a convenient interface for deploying,
calling, getting balance, and so on. Used in tests everywhere.

Interface:

export class TonContract {

 client: TonClient;

 name: string;

 tonPackage: TonPackage;

 keys?: KeyPair;

 address?: string;

25

 async init(params?: any): Promise<void> {}

 async callLocal({ functionName, input = {} }: { functionName: string; input?: {} }):

Promise<DecodedMessageBody> {}

 async call({ functionName, input }: { functionName: string; input?: any }):

Promise<ResultOfProcessMessage> {}

 async calcAddress({ initialData } = { initialData: {} }): Promise<string> {}

 async deploy({ initialData, input }: { initialData?: any; input?: any } = {}):

Promise<ResultOfSendMessage> {}

 async getBalance(): number {}

}

8.1.2. ton-packages.ts
Package which consists of ABI and tvc.

Interface:

type TonPackage = {

 image: string;

 abi: {};

};

8.2. Description of tests

8.2.1. Test “base”
It tests the Basic Voting Scenario # 1, where voting takes place by depositing TONs. The
test demonstrates:

• the acceptance of the Proposal,
• the ability to vote several times using the same Padavan with a different number of

votes,
• premature completion of Proposal with an obvious result,
• sending an event about the completion of voting

26

Test case:

• deploys and initializes the System;
• creates a Soft Majority Proposal with maximum of 10 votes;
• creates Padavan;
• deposits 10 TONs to padavan from DePool;
• sends 4 votes for Proposal;
• sends 2 more votes for Proposal to check for premature completion and the

possibility of multiple sending of votes;
• checks the voting result that Proposal:

○ has been finished,
○ has been accepted,
○ tokens on Padavan are no longer frozen for reclaim;

• reclaim TONs.

8.2.2. Test “base-against”
It tests the Basic Voting Scenario # 1, where voting takes place by depositing TONs, like
test “base”, but tests against scenario

Test case:

• deploys and initializes the system;
• creates a Soft Majority Proposal with maximum of 10 votes;
• creates Padavan;
• deposits 10 TONs to padavan from DePool;
• sends 6 votes against Proposal;
• checks the voting result that Proposal:

○ has been finished,
○ has been declined,
○ tokens on Padavan are no longer frozen for reclaim;

• reclaim TONs.

8.2.3. Test “base-depool”
It tests the Basic Voting Scenario # 2, where voting takes place by DePool staking. The test
demonstrates:

• the acceptance of the Proposal,
• work with DePool within the system, deposit of stakes.

Test case:

• deploys and initializes the system;
• creates a Soft Majority Proposal with maximum of 10 votes;
• creates Padavan;
• transfers 10 TONs to padavan from DePool;
• sends 6 votes for Proposal;
• checks the voting result that Proposal:

27

○ has been finished,
○ has been passed,
○ tokens on Padavan are no longer frozen for reclaim;

• reclaim stake.

8.2.4. Test “base-token”
Testing the Basic Voting Scenario # 3.

This test verifies the correctness of voting using TIP-3 tokens. For the test, a new token is
created, wallets for the user and Padavan. The user transfers tokens to the Padavan's
wallet, the Padavan contacts the PriceProvider and converts the tokens into votes at the
provided rate.

Test case:

• deploys and initializes the system;
• creates a Soft Majority Proposal with maximum of 10 votes;
• creates Padavan;
• creates test TIP-3 token. Deploys test RootTokenContract (rootToken) and

TonTokenWallet (userToken) for user;
• creates token account for Padavan;
• deposit tokens from user account to Padavan account;
• padavan calculates votes count using PriceProvider;
• sends 10 votes for Proposal;
• checks the voting result that Proposal:

○ has been finished,
○ has been passed,
○ tokens on Padavan are no longer frozen for reclaim;

• reclaim tokens;

8.2.5. Test “majorities”
Testing different majorities Proposals.

This test verifies the correctness of the vote counting models. Six Proposals with different
models are deployed and when the votes are transferred to them, they work out in different
ways, according to the above formulas in the section “Proposal creation scenarios”.

Test case:

• deploys and initializes the system;
• creates a Soft Majority Proposal (proposal) with maximum of 10 votes;
• creates a Soft Majority Proposal (proposal2) with maximum of 10 votes;
• creates a Super Majority Proposal (proposal3) with maximum of 10 votes;
• creates a Super Majority Proposal (proposal4) with maximum of 10 votes;
• creates a Majority Proposal (proposal5) with maximum of 10 votes;

28

• creates a Majority Proposal (proposal6) with maximum of 10 votes;
• creates Padavan;
• deposit TONs to Padavan;
• sends 5 votes for proposal;
• sends 5 votes against proposal;
• checks that proposal has been finished and declined;
• sends 5 votes for proposal2;
• sends 4 votes against proposal2;
• checks that proposal2 has been finished and accepted;
• sends 7 votes for proposal3;
• sends 3 votes against proposal3;
• checks that proposal3 has been finished and accepted;
• sends 5 votes for proposal4;
• sends 4 votes against proposal4;
• checks that proposal4 has been finished and declined;
• sends 5 votes for proposal5;
• sends 5 votes against proposal5;
• checks that proposal5 has been finished and declined;
• sends 5 votes for proposal6;
• sends 4 votes against proposal6;
• checks that proposal6 has been finished and accepted;
• reclaim tokens.

8.2.6. Test “whitelist”
Testing whitelist functionalities.

This test verifies that the whitelist is working correctly. Two Padavans are created, one of
which is added to the white list and checked so that the one who does not have the right to
vote could not vote.

Test case:

• deploys and initializes the system;
• deploys first Padavan (padavan);
• deploys second Padavan (padavan2);
• creates a Soft Majority Proposal (proposal) with maximum of 10 votes and add

padavan2 to whitelist;
• deposits 10 TONs to padavan;
• deposits 10 TONs to padavan2;
• sends 10 votes for proposal from padavan, expects error;
• sends 10 votes for proposal from padavan2, checks that the votes are counted;
• checks that proposal2 has been finished and accepted;
• padavan reclaim TONs.
• padavan2 reclaim TONs.

