Contest «DGO SMV Smart Contract

System»

SMV Smart Contract Description

Authors: RSquad Blockchain Lab

Table of Contents

-—
.

Aow N

7.

8.

Y o Y o1 U) PP 4
L o= =T=1 o TSSOSO 4
OV EIVIBW.......ceetei ettt ettt e e e E e sE e e A e A s Ae e e e e b e b nEeE e e e R e R e e e e et e eenenenananasaeaenn 4
SYStemM’s SMArt CONTIACTES.......coccc et 8
4.1. The main smart contracts of the SYStem ... s 8
4.1.1. (D 2= 0 110 o 1= PP STTTRT 8
41,2, PAdAVAN ...t e e e e A 9
4.1.3. PrOPOSAL..... ettt e 1"
4.1.4. Demiurge Debot....... e 12
4.1.5. VOtING DEDOT........e e e 12
4.2. External smart contracts used by voting SYSteM.....coiiccrcrcrcncnrrrreeee e 12
4.2.1. NSEGIVET ...ttt et et 12
4.2.2. RootTokenContract & TONTokenWallet............ e 12
L e TR B 1= o o Y o Y T 12
4.2.4. PriCEPIOVIEN ...ttt ettt 12
4.3. Smart contracts used by test SYySteM ... 12
4.3.1. USErWallet...... e 12
4.3.2. BAtCRGIVET ...ttt et e 12
HOW O USE@ DEBOLS ... 13
Deploy and initialize the SYStem ... 18
6.1. Manual SYStemM STart ... e 18
6.2. System start UsSing DEBOtS ... 18
USEI SCEONATIOS ...ttt ettt e s e se e e s s ae e e e et eE et et e e s e se e e e e tn e 19
7. Proposal creation SCENATIOS ...t 19
F2% R €T U] oI =Tot=T o = o o= T 20
7.3. Base VOting SCENAIIOS. ... s 21
LI 1.0V TP 22
£ 28 O [oy oY=y d UL (U PSSR 23
8.1.1. LeT Tt eT ol =T o =T TR 24
8.1.2. tON-PACKAGES.ES ...t e 25

£ D T-Y=T ot g oY T o] g I ik (== =TT 25

8.2.1.

8.2.2.

8.2.3.

8.2.4.

8.2.5.

8.2.6.

K== A < = 1= T 25
Test “base-agaiNst” ... 26
B =T i o =TT T o = o o Y o T 26
TeSt “DasS@-tOKEN ...t 27
TSt “MAJOriti@S ... e 27
TeSt “WHI@IIST” ...t e 28

1. About

This document represents RSquad's submission for the DGO SMV Smart Contract System

contest.

The code of the developed system of smart contracts SMV can be found at the following
link: https://github.com/RSquad/smv

The document contains:

e an overview of the statuses of competition requirements in relation to the solution
developed by RSquad;

e description of the main smart contracts of the SMV smart contract system;

e description of third-party smart contracts used by the SMV smart contract system;

e description of smart contracts used for testing;

e DeBots description;

e description of basic user scenarios;

e description of the test environment and infrastructure;

e description of test cases.

The SMV smart contract system was developed based on the requirements provided in the
contest description and in accordance with the architectural specifications developed as

part of the Developers Contest: Soft Majority Voting system.
Limitations:

e in accordance with the terms of the contest, the SMV smart contract system must
be deployed and tested on the DevNet network. However, the specified network has
been inoperative since at least January 4, 2021, which makes it impossible to comply
with this competitive requirement;

e due to the point above, Node SE was used for development and testing;

e the developed solution will be deployed by RSquad in the DevNet network as soon as
possible after its return to a working state.

2. Glossary

e smc — smart-contract

System — DGO SMV smart-contract system

3. Overview
The purpose of the System is to automate the decentralized governance for Free TON

communities through voting.

The following figure shows the top-level diagram that describes the System:

https://github.com/RSquad/smv

TIP-3

TONTokenWallet

RootTokenContract

PriceProvider R

DePool

\ 4

UserWallet ‘

Voting Deboat

DemiurgeDebot

“" (DemiurgeStore)

I

Padavan

Third party smart contracts

used by the system

|
l

f Givers
Demiurge !
\—l BatchGiver
Proposal NSEGiver

| Smart contracts used to
| lestthe system

The main smart contracts
of the system [

Figure 1— High-level System Architecture

The implementation of the System requirements from the conditions of the contest is

described in the table below:

Collect votes for it

Feature Status Comment
Should support the ability to vote | Fully The system fully supports voting by TONs,
with TON Crystal tokens as well supported all TIP-3 tokens and DePools. The scenarios
as any other TIP-3 Token or are described in the section "Basic Voting
DePool Stakes. Scenarios"
Should be able to grant voting Partially The System fully supports specifying the
rights to a subset of users supported white list of voting users, but does not
identified with another token or support token identification.
PubKeys.
Should notify voting results by Fully The System emits a ProposalFinalized with
emitting both external and supported | full info about Proposal results.
internal events
Should generate “Voting Fully The System emits a ProposalFinalized event
Finished” events if voting is supported when the timed / premature proposal ends.
finished early with these votes
Should be able to deploy Fully The System deploys Proposals and collects
Proposal Smart Contract and supported all the necessary data in the Demiurge

contract.

Feature Status Comment

Should support a voting for Fully The System allows you to vote with TONs, a

Multiple Proposals using same supported DePool stake and any TIP-3 token for all

TON Crystal or other TIP-3 Proposals within the System an unlimited

Tokens number of times

Should support Soft Majority, Fully The System supports Soft Majority, Super

Super Majority settings of the supported Majority and Majority voting models.

SMV

Should include Group Fully The System has a group contract that allows

membership smart contract with | supported you to use them as sets of whitelists

user rights

Should support the ability to Add, | Full The System allows you to create new

Exclude New member, change support groups, add/remove members from groups

rights of an existing member by by Proposal result.

Proposal result event

Should be able to Deploy a Partially There is some way to give Proposal a

Contest from the Proposal if the | supported message, which will be executed after

Proposal is approved Proposal is accepted, but, to do this
requirement in the rightest way need more
time for tests.

Should be able to change Fully As previous point, there are many ways to

parameters of the Contest (such | supported change the parameters of Contests.

as Voting period, Jury Groups

etc.)

Contest should include: Start of Fully As previous point, there are many ways to

the contest time; End of the supported change the parameters of Contests.

contest time; Time for jury

voting; Set of jurors or Juror

Groups pubkeys and addresses

Should include a Contract that Partially All data stored on the System, except

can store a list of some SMV supported Contests results data.

Proposals, Contests and their

voting results

Should include DeBots for all Fully All System functionality can be controlled by

system user interfaces supported written DeBots

Should include auto-tests

Fully

The System main functionality is fully tested.

Feature Status Comment

designed as a smart contract or a | supported See more at the Testing section.
script to test scenarios

A solution should have a Free Fully There is Apache-2.0 License
Software license supported

A system should be deployed and | Temporary | See Limitations at the About section

tested on the DevNet and Jury not
should be able to access it for supported
testing

Some additional features that are not described in the contest conditions are shown in the

table below:

Additional Features Status
The System supports multiple voting by one user for one message, in Fully
different ways. supported
The System supports voting with a part of users' votes. Fully
supported

The System supports a third-party PriceProvider for converting TIP-3 tokens | Fully

into votes. supported
The architecture of the deposits of the System allows the withdrawal of Fully
Type-3 tokens at the rate that is current at the time of entering the TIP-3 supported

tokens into the system.

The System implements mechanisms for integration with different third- Fully

party smart contractsio supported

The system mainly works on internal messages. Fully
supported

DePools in the System are set by an array, which allows accepting stakes not | Fully
from one previously specified DePool during initialization, but from any supported
DePools of the network.

4. System’s Smart contracts

4.1. The main smart contracts of the System

4.1.1. Demiurge

It is a central smart contract in a voting system. It is a ledger that creates and stores
proposals and user padavan addresses. After deployment demiurge requests Demiurge
Store smart contract to gain proposal and padavan images (tvc), list of depool addresses

and address of vote price provider.

Demiurge starts in preworking mode in which it has several checks that must be passed
before it will accept requests to deploy proposals and padavans. Checks contains the

following:

e Check that the demiurge contains a proposal image.

e Check that the demiurge contains a padavan image.

e Check that demiurge contains a list of depools.

e Check that demiurge contains the address of a price provider.

When the check mask becomes equal to O Demiurge is ready to work.
PUBLIC API
constructor(address store)

store - address of Demiurge Store that stores all ABls and TVCs of the voting

system.
Remark: Demiurge Debot is a Demiurge Store as well.

Called on demiurge deployment. Calls Demiurge Store to acquire necessary

parameters.
deployPadavan(uint userKey)

Called by internal message only and paid by caller. Allows to deploy Padavan smart

contract.

userKey - public key sent by user that is inserted into an instance of Padavan before

deployment.

deployProposal(uint32 totalVotes, uint32 start, uint32 end, string description, string
text, VoteCountModel model)

Called by internal message only and paid by caller. Allows to create and deploy

Proposal smart contract.

totalVotes - total number of votes for proposal.

start - unixtime when proposal starts accepting votes.

end - unixtime when proposal finishes accepting votes.

description - short name of the proposal.

text - any information about the proposal.

model - voting model, can be soft majority, super majority or simple majority.

deployProposalWithWhitelist(uint32 totalVotes, uint32 start, uint32 end, string

description, string text, VoteCountModel model, address[] voters)

Called by internal message only and paid by caller. Allows to create and deploy

Proposal that accepts votes only from Padavans from voters list.

All parameters are the same as in deployProposal.

voters - white list of Padavan addresses that can vote for proposal.
function onStateUpdate(ProposalState state)

Called by any proposal (created previously by this demiurge) to notify about his new
status.

4.1.2. Padavan
Padavan smart contract is a user ballot that allows users to vote for proposals. Padavan

accepts deposits of different types (tons, tip3 tokens, depool stakes), converts them to
votes and sends votes to proposals. Votes cannot be converted into deposits and received
back until all the proposals that the Padavan voted for are completed. The User can vote for
different proposals with a different number of votes, but a number of locked votes in

padavan is always the maximum number of votes spent for one proposal.

At any time a user can ask to reclaim some deposits equivalent to a number of votes. When
it happens Padavan starts to query the status of all voted proposals. If any of them is
already completed Padavan removes it from the active proposals list and updates the value
of locked votes. If the required number of votes becomes less or equal to unlocked votes
then Padavan converts the requested number of votes into a deposit (tons, tokens or

stake) and sends it back to the user.

Padavan is controlled by a user contract that requested deployPadavan from Demiurge.
PUBLIC API

function voteFor(address proposal, bool choice, uint32 votes)

Called by internal message only and paid by caller. Allows to vote for the proposal

with certain votes (yes or no).

proposal - address of proposal to vote for.

choice - ‘yes’ or ‘no’.

votes - number of votes to send for proposal.
function depositTons(uint32 tons)

Called by internal message only and paid by caller. Allows to deposit tons into
Padavan. Deposit is converted to votes using the vote price requested from PriceProvider

smart contract.
tons - number of tons to deposit and lock in Padavan.
function depositTokens(address returnTo, uint256 tokenlid, uint64 tokens)

Called by internal message only and paid by caller. Allows to deposit and lock tip3
tokens into Padavan. Tokens must be already transferred to Padavan’s tip3 token account
(wallet) before this function is called. This function checks that the balance of Padavan’s
token wallet must be bigger then tokens argument. If so then the deposit is accepted and

locked in a token account and converted into votes.

returnTo - address of user token wallet to which return tokens when they will be

unlocked.

tokenld - ID of tip3 token. It is an address of the root token wallet without workchain

tokens - number tip3 tokens to deposit into Padavan.
function reclaimDeposit(uint32 deposit)

Called by internal message only and paid by caller. Allows to return deposits (tons,

tip3 tokens, depool stake) back to the user.

deposit - number of votes that must be converted to deposits and returned to the

user.

function confirmVote(uint64 pid, uint32 deposit)
Called by Proposal to notify Padavan that votes are accepted.
pid - proposal id.
deposit - number of accepted votes.

function rejectVote(uint64 pid, uint32 deposit, uint16 ec)

Called by Proposal to notify Padavan that votes are rejected.

10

pid - proposal id.
deposit - number of rejected votes.
ec - reason of rejection (exit code).
function updateStatus(uint64 pid, ProposalState state)
Called by Proposal to response on Padavan’s queryStatus request.

state - proposal current state (can be New, onVoting, FInalized, Ended, Passed,
Failed).

function createTokenAccount(address tokenRoot)

Allows user to create tip3 token wallet controlled by Padavan. Created token wallet

can be used to deposit tip3 tokens to it.

tokenRoot - address of token root smart contract that emits tip3 tokens.
function onTransfer(address source, uint128 amount)

Called by DePool to transfer ownership of user stake to Padavan.

source - address of user wallet that transfers ownership to Padavan.

amount - number of transferred nanotons.

4.1.3. Proposal
Smart contract that accumulates votes from Padavans. Deployed by Demiurge by user

request (deployProposal) Notifies about its state to Demiurge.

Can be optionally instantiated with a white list of Padavan addresses. In that case Proposal

accepts votes only from addressed from this list.
PUBLIC API
voteFor(uint256 key, bool choice, uint32 deposit)

Called by Padavans to vote for the proposal. Proposal makes a verification check

(see TIP3 spec) to be sure that the sender is a Padavan smc.
key - Padavan public key. Used in a verification check.
choice - “yes” or “no”.
deposit - number of votes.

queryStatus()
"

Called by Padavan to query Proposal status.
wrapUp()

Can be called by any smart contract by internal message. Asks Proposal to update

its status.

4.1.4. Demiurge Debot
An entry point to an onchain voting system. Allows to deploy new Demiurge to blockchain

or to attach to existing Demiurge. Also deploys Voting Debot for users.

Debot implements the interface of Demiurge Store and stores all images (tvc) and ABls of

voting system contracts.

4.1.5. Voting Debot

Debot that works on behalf of the user. Deploys Padavan and allows to create new

proposals, deposit tons, convert them to votes and vote for existing proposals.

4.2. External smart contracts used by voting system

4.2.1. NSEGiver

Builtin giver of NodeSE. Used to deploy contracts in local node tests.

4.2.2. RootTokenContract & TONTokenWallet
TIP3 smart contracts. Can be found here:

https://github.com/tonlabs/ton-labs-contracts/tree/master/cpp/tokens-fungible

4.2.3. DePool

DePool smart contract. Used to transfer ownership of user stake to Padavan. Can be found

here:

https://github.com/tonlabs/ton-labs-contracts/tree/master/cpp/solidity/depool

4.2.4. PriceProvider

Simple smart contract that implements an interface of converting tons and tokens to
votes.
4.3. Smart contracts used by test system

4.3.1. UserWallet
Test user wallet used to send requests to Demiurge and control Padavan.

4.3.2. BatchGiver
Giver smart contract that allows to make several transfers in one transaction. Used to

increase speed of contracts deployment.

12

https://github.com/tonlabs/ton-labs-contracts/tree/master/cpp/tokens-fungible
https://github.com/tonlabs/ton-labs-contracts/tree/master/cpp/solidity/depool

5. How to use DeBots

1. Run nodeSE locally.
2. Put tonos-cli (ver >= 0.2.0) into directory ./bin in the root of repo.

3. Deploy and init Demiurge Debot. Go to the root of project repo. Then change the
current directory to sbin and run bash script deploy_debot.sh.

4. Important: set variable price_provider in script to actual price provider.

5. After Debot starts you will see the main menu.
Demiurge DeBot, version 0.1.0
Hello, user, i'm a Demiurge Debot! What do you want to do?
Current Demiurge: 0:000AOO0OANOORAAAEOOA
1) Attach another demiurge
2) Deploy new demiurge - start new voting platform onchain
3) Deploy user voting debot
4) Quit

debashs [j

6. Choose item 2. Generate a new seed phrase and generate a public key from the

phrase. Enter the public key to debot.
Deploy new demiurge:
Please, generate seed phrase for new demiurge.
Enter public key generated from this phrase:
> Oxd16572a3d454113535a5f29ef8b70539fcee26b3bl57ee3321efcaff4cfar728
Generated demiurge address: 0:eae5546502e3137fdcB®199ale498d1598e4bc948c9f4b3d9ecOc78e80
3bdf856
Now, sign message with keypair used to deploy me.
1) Sign and deploy
2) Exit

debashs |

7. Choose “sign and deploy”. Then enter the path to DemiurgeDebot.keys.json as you

see in the screenshot.
enter seed phrase or path to keypair file > ../src/DemiurgeDebot.keys.json
Sending message 6cB2d099%edeaf3Baef0e9442fb250dbd4bdcd21cB8fdbc9aadfeeceaabs5t44d676
Transaction succeeded.
Succeeded!
Please, restart debot.
1) Exit

debashs JJ

8. Demiurge is deployed. Restart the debot.
Demiurge DeBot, version 0.1.0

Hello, user, i'm a Demiurge Debot! What do you want to do?

Current Demiurge: O:EAE5546502E3137FDCO199A1E498D1598E4BC948COF4B3D9ECOC7BEBO3BDF8B56
1) Attach another demiurge

2) Deploy new demiurge - start new voting platform onchain

3) Deploy user voting debot
4) Quit

debash%

9. Now the debot attached to deployed Demiurge. Choose item 3 to deploy the Voting
Debot for the user. Follow the instructions of debot.

13

Deploy User Voting Debot:

I will guide you step by step to deploy your personal debot for voting.

This debot will help you create proposals, vote for proposals and also deposit and recl
aim funds for voting

1) ok, continue

2) Quit

debash$ 1

Step 1 of 4:

Important: generate master keypair for user debot. Keep it in secret because you will u
se it to control debot.

For security reasons debot cannot do it for you. Please, use external tool for this and
come back with generated keypair.

1) I already generated keypair. Continue

2) I will generate keypair and come back later

debash$ 1

Step 2 of 4:

ok, now you have to enter public key from generated keypair.
1) Enter public key

debashs

10. Then you will see the generated address of your future Voting Debot. Send some tons
to this address. Use bash script ./sbin/nsegiver.sh <address> <nanotons>. Then

continue with item 1.

> Ox801fe857364d946a0bsb7aB88510aa49feb5341e1080c10986367876475b1bf10

Step 3 of 4:
Voting Debot address: 0:e85282978fcab3f15e5b17796e0e96f9b8bd340729481f71c25356b667e79f0
4
Voting Debot public key: 0x801fe857364d946a0b6b7a88510aa49feb5341e1080c10986367876475b1
bfie

Please, send at least 10 tons to debot address before i will be able to deploy voting d
ebot at this address.

1) I have sent tons to this address. Continue

2) Transfer tons from user multisig

3) Quit

debashs |

11. Sign deploy message with seed phrase of Voting Debot.

debash$ 1

'Step 4 of 4:

I'm ready for deploy. Please, sign deploy message with generated keypair (at step 1).
1) Sign and deploy

2) Quit

debashs
12. Your Voting Debot is deployed.

enter seed phrase or path to keypair file > pluck attitude fashion earn fashion shoulde
r solid basic rebel jewel tenant spirit

Sending message 7ba2a683256ca7feB8576050T9b1c79528bf3edal8ffofafezb645bbangaff3e
Transaction succeeded.

13. Exit Demiurge DEbot and start Voting Debot.

14. ../bin/tonos-cli debot fetch <address_of_voting_debot> You don’t have a Padavan
yet. Choose item 1 to deploy it.

14

Voting DeBot, version 0.1.2

Hello, i'm your personal Voting Debot!

You don't have a padavan contract yet. Ready to deploy?
1) Yes, deploy

Deploy Padavan:
Deploy fee is 3.50000000 tons

enter seed phrase or path to keypair file = pluck attitude fashion earn fashion shoulde
r solid basic rebel jewel tenant spirit

Sending message a5caezb6b5771d8466167240c99ed25f0b1cf85473d8faafd137ce30841bf52c
Transaction succeeded.

Deploy succeeded!

Please, restart debot.

1) Exit

debashs JJ

16. Padavan deployed. Restart the debot and you will see the extended menu of Voting

Debot.
Voting DeBot, version ©.1.2
Hello, i'm your personal Voting Debot!
Active proposals: @
Total votes: @
Locked votes: ©
Available votes: @
Ballot address: 8:3celba707be780722d7cdeff9f55edeb22f2e3d67b4de89bobeef95299984483
Acquire votes
Reclaim votes
Vote for proposal
View my proposals
View all proposals
Create new proposal
Quit

debashs |

17. Choose item 6 to create a new proposal. Follow the instructions to set proposal
parameters. Sign request with Voting Debot.

15

debash$ 6
Create Proposal:
Enter total votes:
> 20
Enter start time (unixtime):
> 1610143714
Enter end time (unixtime):
> 1610144700
Enter description:
= very important proposal 1
Enter text:
= some comments about this proposal
Choose wvoting model:
1) Super majority
2) Soft majority

debash$ 2

1) sign and create

18. You will return to the main menu. Choose item 5 to view a list of all proposals.
Sending message 1a4669c4f5c59663d82a282700d8a%82eT44a71c8433e0c879457304cae007el
Transaction succeeded.

Hello, i'm your personal Voting Debot!

Active proposals: @

Total votes: @

Locked votes: @

Available votes: @

Ballot address: 0:3celba707be780722d7cdeff9f55edeb22f2e3d67b4d@89bfbeef95299984483

Acquire votes

Reclaim votes

Vote for proposal

View my proposals

View all proposals

Create new proposal

Quit

19. You will see your created proposal. Return to main menu.
View proposals:
List of proposals
ID @ very important proposal 1
Start: sat, 09 Jan 2021 ©1:08:34 +0300, End: Sat, 09 Jan 2021 01:25:00 +0300
State: New, Total votes: 20, options: "soft majority", Address: 0:03c1274a6e78e32690043

438057331d15c1448e93dc04228b6874020030df4f2, creator: ©:e85282970fcab3f15e5b17796e0e96T
9b8bd340729481f71c25356b667e79T04

1) Return

20. Choose item 1 to deposit tons into Padavan and receive votes.

Deposit menu:
1) Deposit tons
2) Return

debash$ 1

Deposit tons:

Enter an integer number of tons:
= 20

1) Sign and deposit

2) Exit

debash$ 1

21. After returning to the main menu you will see updated voting stats. You have 20
available votes.

Hello, i'm your personal Voting Debot!

Active proposals: @

Total votes: 20

Locked votes: @

Available votes: 20

Ballot address: ©:3celba707be780722d7cdeffof55edeb22f2e3d67b4d089bObeef95299984483
1) Acquire votes

Reclaim votes

Vote for proposal
View my proposals
View all proposals
Create new proposal
Quit

debash$

22. Choose item 3 to vote for the proposal. Enter the number of votes to send. Sign
request with seed phrase of Voting Debot.

Follow the instruction:
Enter proposal id:

=0

Enter votes count:

> 15

1) Vote Yes
2) Vote No

debash$ 1

enter seed phrase or path to keypair file > pluck attitude fashion earn fashion shoulde
r solid basic rebel jewel tenant spirit

Ssending message df7blc4ac574ce5d192b5c70e9e933b619759698105af88436250af0bcozb4of
Transaction succeeded.

23. Return to the main menu. Now you have 1active proposal and 15 locked votes.
Hello, i'm your personal Voting Debot!
Active proposals: 1
Total votes: 20
Locked votes: 15
Available votes: 5
Ballot address: 8:3celba707be780722d7cdeff9f55edeb22f2e3d67b4d089bObeef95299984483
Acquire votes
Reclaim votes
Vote for proposal
View my proposals
View all proposals
Create new proposal

24. Choose 4 to see a list of active proposals.
List of voted proposals:
ID @ very important proposal 1
Start: Sat, 09 Jan 2021 01:08:34 +0300, End: Sat, 092 Jan 2021 01:25:00 +0300
State: Passed, Total votes: 20, options: "soft majority", Address: 8:03c1274a6e78e32690
043438057331d15c1448e93dc04228b6874020030df4f2, creator: 0:e85282978fcab3f15e5b17796e0e

9679b8bd340729481771c25356b667e79704

Sent votes: 15
1) Return

25. Return to main and choose 2 to reclaim some votes.

17

Enter number of votes:
= 16
1) Sign and reclaim

debash$ 1

enter seed phrase or path to keypair file > pluck attitude fashion earn fashion shoulde
r solid basic rebel jewel tenant spirit

Sending message 94b2a9bc31474a33304addfd5al146f1df46a32ff1bdaf6069306c87F82959fb8
Transaction succeeded.

26. Restart debot to update vote statistics. Now you have only 10 votes.
Hello, i'm your personal Voting Debot!
Active proposals: @
Total votes: 10
Locked votes: @
Available votes: 10
Ballot address: 0:3celba707be780722d7cdeff9f55edeb2272e3d67b4d089b0beef95299984483
Acquire votes
Reclaim votes
Vote for proposal
View my proposals
View all proposals
Create new proposal
Quit

debashs |

Experiment more, for example, you can deposit more tons or reclaim all available votes.

6. Deploy and initialize the System

There are two ways to initialize the system - manual and through DeBot.

6.1. Manual system start
To start the system manually, you need to prepare:

e Demiurge contract

e Padavan contract

e PriceProvider contract
e Proposal

System deployment script:

e Deploy Demiurge

e Deploy PriceProvider

e Point Demiurge Proposal’s tvc

e Point Demiurge Padavan’s tvc

e Point Demiurge address of PriceProvider
e Point Demiurge addresses of DePools

e The System is ready to use

A more detailed example can be found at ./tests/parts/deploy-system.ts

6.2. System start using DeBots
The voting system can be configured and used with debots. There are 2 debots:

18

1. Demiurge Debot - central debot. One for the whole voting system. Deploys Demiurge
and Voting Debot for each user.

2. Voting Debot. One debot per user. Deploy Padavan and allow users to vote.
See section ‘How to use Debots’ that describes how these debots are working.

7. User Scenarios

71. Proposal creation scenarios
Proposal can be created by any user after deploying and initializing the system.
Importantly, Proposal accepts only internal messages, therefore, to deploy and work with

Proposal, you should use Multisig, UserWallet from the example or analogs.

The main parameters and functions of the Proposal are described in System’s Smart
Contracts paragraph.

To create a Proposal, you need to specify:

e Voting period — the start and end time of voting after which the results are summed
up

e The voting model is Majority, Soft Majotiry or Super Majority, below are the formulas
for calculating the model, where y - votes for, n - votes against, t - total votes
according to the picture:

o Y=100%
SOFT SUPER
MAJORITY O Y=66%+1
APPROVAL
O Y=50%+1
SOFT SIMPLE
MAJORITY
APPROVAL
Y=33% O
¥Y=10% O

OY=0%

O Majority (y > n)
O Soft Majority (y *t*10>=t*t+n* (8 *t + 20))
O Super Majority (y*t*3>=t*t+n* (t + 6))

More details can be found here — https://forum.freeton.org/t/developers-contest-

soft-majority-voting-system-finished/65

19

https://forum.freeton.org/t/developers-contest-soft-majority-voting-system-finished/65
https://forum.freeton.org/t/developers-contest-soft-majority-voting-system-finished/65

An example of using all models can be found in the majorities test

e Description
e Accompanying text

¢ White sheet of voters:

©)
©)

©)

Not specified, in which case all Padavan owners can vote

Specified, in this case, only those Padavans whose identifier is indicated in
the sheet vote

Alink to the group is specified - in this case, only Padavans members of the

specified group vote

e Appointment proclaimed

©)
©)
®)
®)
®)

No final result handler

To create a contest

To add to the group

To remove from the group

To create a group

Please, see proposal creation examples here ./tests/parts/deploy-proposal.ts

7.2. Group scenarios

1. Adding a new member to the group

a.

invoke applyFor(string name) function of the Group contract, as specified in
the IGroup interface. Address of the sender is considered to be applying for
the group membership. NB: Padavan contract can be efficiently used for the
submission process. The corresponding function is applyToGroup(address
group, string name) from the IPadavan interface.

Provided the input data is valid, a proposal to include a new member to the
group is automatically created and put to voting.

Upon voting completion, the results are evaluated.

If the proposal passes, the applicant is added to the list of group members,
and becomes eligible (and responsible) to vote for the proposals in scope of

this group from now on.

2. Removing a member from the group

e.

invoke unseat(uint32 id, address addr) function of the Group contract, as
specified in the /IGroup interface. The respective helper in the IPadavan
interface is removeFromGroup(address group, uint32 id, address addr).
Provided the input data is valid, a proposal to remove the specified member
from the group is automatically created and put to voting.

Upon voting completion, the results are evaluated.

If the proposal passes, the specified member is removed from the group,

thus revoking voting rights for the proposals deployed subsequently.

3. Voting using groups (whitelist)

20

proposals deployed by a group are put to voting in a very special fashion,
enabling only a selected list of individual contracts to vote for them. This
voting model is sometimes referred to as “whitelist”. Proposals with this

feature disregard any votes cast from the addresses not on the list.

7.3. Base Voting Scenarios

1. Voting with TON

©)

OO OO0 O0O0

©)

User deploys Padavan, or requests previously deployed Padavan

User sends TONs to Padavan

Padavan "converts" TONs into voices

User sends votes from Padavan to Proposal

The volume of sent votes in tokens is frozen

Proposal ends on time, or prematurely, if the result is unambiguous
The volume of votes sent by all users is unfrozen

Proposal informs Demiurge of the voting result

The Demiurge performs an action if it was described and the result was
accepted

User withdraws deposited TONs

Base and base-against test (to check voting for and against, respectively)

2. Voting with DePool:

O
O

OO O0OO0OO0OO0OO0

©)

User deploys Padavan, or requests previously deployed Padavan

The user transfers the stake from the DePool specified in the Demiurge to
the Padavan

Padavan "converts" stake into votes

User sends votes from Padavan to Proposal

The volume of sent votes is frozen

Proposal ends on time, or prematurely, if the result is unambiguous
The volume of votes sent by all users is unfrozen

Proposal informs Demiurge of the voting result

The Demiurge performs an action if it was described and the result was
accepted

User withdraws stake

3. Voting using TIP-3

©)

O O OO OO0

User deploys Padavan, or requests previously deployed Padavan

User creates a token account for Padavan

User transfers tokens to Padavan

Padavan "converts" tokens into votes at the rate given by PriceProvider
User sends votes from Padavan to Proposal

The volume of sent votes in tokens is frozen

Proposal ends on time, or prematurely, if the result is unambiguous

The volume of votes sent by all users is unfrozen

21

O Proposal informs Demiurge of the voting result
O The Demiurge performs an action if it was described and the result was
accepted

O User withdraws sent tokens

4. Basic voting scenario with combined votes. Combines the first three scenarios and
combines ways to get votes.

8. Testing

All tests of the System are located in the tests directory.

For tests used:

"chai": ""4.2.0",

"mocha": "*8.2.1",

"typescript": "*4.1.3",

"Qtonclient/core"™: "~1.5.

"Qtonclient/lib-node": "

To run tests, it is proposed to use Node in the package ton-dev-cli

(https://github.com/tonlabs/ton-dev-cli). Important! Docker is required for correct work of

tondev.

1. Install node.js (https://nodejs.org/en/)

Install docker (https://www.docker.com)

Install tondev. JINIBEIRRLLREVR [f you encounter problems during installation,

read the instructions in the official repository
4. Go to the project folder and install the dependencies
5. Create file at the root of the project and fill it in. Available variables (this example

can be used to work with Node SE):

NSE GIVER ADDRESS=0:841288ed3b55d9cdafa806807f02a0aelcl69aabedfe88a789a64824297

NETWORK=LOCAL

Run Node SE I

7. Run tests:

a. will run all available tests

22

https://github.com/tonlabs/ton-dev-cli
https://nodejs.org/en/
https://www.docker.com/

b. will run the specified test, where the is the

name of the test (see “Description of tests”)

8.1. Infrastructure
The project infrastructure consists of the following directories:

F— index.ts

— package-lock.json
— package.json

F— src

F—— tests

— base-against.test.ts
base-depool.test.ts
base-token.test.ts
base.test.ts
majorities.test.ts
whitelist.test.ts
contracts
F—— ton-contract.ts
L ton-packages

alt-giver.package.ts

batch-giver.package.ts
console.package.ts
demiurge.package.ts
depool.package.ts
dev-giver.package.ts
group.package.ts
nse-giver.package.ts

padavan.package.ts

rrrrrrrr 11717 7T T

priceprovider.package.ts

proposal.package.ts

roottokencontract.package.ts

tontokenwallet.package.ts

userwallet.package.ts

e}
Q
=
t
0]

check-proposal-results.ts

deploy-padavan.ts

deploy-proposal.ts

deploy-system.ts

deposit-to-padavan.ts

reclaim.ts

reclaimTokens.ts

.
.
.
.
.
.
.
.

F—— common. ts
L— convert.ts

L— tsconfig.json

8.1.1. ton-contracts.ts
Class for working with TON contracts. It provides a convenient interface for deploying,

calling, getting balance, and so on. Used in tests everywhere.
Interface:
export TonContract {

client: TonClient;

name: string;

tonPackage: TonPackage;

keys?: KeyPair;

address?: string;

init (params?: any) :

calllocal ({ functionName, input : { functionName: string; input?:

call ({ functionName, input }: { functionName: string; input?: any }):

Promise<ResultOfPr

calcAddress ({ initialData } = { initialData: {} }): Promise<string> {}

deploy({ initialData, input }: { initialData?: any; input?: any } = {}):

Promis 1tO

getBalance () : number {}

8.1.2. ton-packages.ts
Package which consists of ABl and tvc.

Interface:

8.2. Description of tests

8.2.1. Test “base”
It tests the Basic Voting Scenario # 1, where voting takes place by depositing TONs. The

test demonstrates:

e the acceptance of the Proposal,

e the ability to vote several times using the same Padavan with a different number of
votes,

e premature completion of Proposal with an obvious result,

e sending an event about the completion of voting

25

Test case:

e deploys and initializes the System;

e creates a Soft Majority Proposal with maximum of 10 votes;

e creates Padavan;

e deposits 10 TONs to padavan from DePool;

e sends 4 votes for Proposal;

e sends 2 more votes for Proposal to check for premature completion and the
possibility of multiple sending of votes;

e checks the voting result that Proposal:

O has been finished,
O has been accepted,
O tokens on Padavan are no longer frozen for reclaim;

e reclaim TONSs.

8.2.2. Test “base-against”
It tests the Basic Voting Scenario # 1, where voting takes place by depositing TONSs, like

test “base”, but tests against scenario
Test case:

¢ deploys and initializes the system;

e creates a Soft Majority Proposal with maximum of 10 votes;
e creates Padavan;

e deposits 10 TONs to padavan from DePool;

e sends 6 votes against Proposal;

e checks the voting result that Proposal:

O has been finished,
O has been declined,
O tokens on Padavan are no longer frozen for reclaim;

e reclaim TONSs.

8.2.3. Test “base-depool”
It tests the Basic Voting Scenario # 2, where voting takes place by DePool staking. The test

demonstrates:

e the acceptance of the Proposal,
e work with DePool within the system, deposit of stakes.

Test case:

e deploys and initializes the system;
e creates a Soft Majority Proposal with maximum of 10 votes;
e creates Padavan;
e transfers 10 TONs to padavan from DePool;
e sends 6 votes for Proposal;
e checks the voting result that Proposal:
26

O has been finished,
O has been passed,
O tokens on Padavan are no longer frozen for reclaim;

e reclaim stake.

8.2.4. Test“base-token”
Testing the Basic Voting Scenario # 3.

This test verifies the correctness of voting using TIP-3 tokens. For the test, a new token is
created, wallets for the user and Padavan. The user transfers tokens to the Padavan's
wallet, the Padavan contacts the PriceProvider and converts the tokens into votes at the

provided rate.

Test case:

¢ deploys and initializes the system;

e creates a Soft Majority Proposal with maximum of 10 votes;

e creates Padavan;

e creates test TIP-3 token. Deploys test RootTokenContract (rootToken) and
TonTokenWallet (userToken) for user;

e creates token account for Padavan;

e deposit tokens from user account to Padavan account;

e padavan calculates votes count using PriceProvider;

e sends 10 votes for Proposal;

e checks the voting result that Proposal:

O has been finished,
O has been passed,
O tokens on Padavan are no longer frozen for reclaim;

e reclaim tokens;

8.2.5. Test“majorities”
Testing different majorities Proposals.

This test verifies the correctness of the vote counting models. Six Proposals with different
models are deployed and when the votes are transferred to them, they work out in different

ways, according to the above formulas in the section “Proposal creation scenarios”.
Test case:

¢ deploys and initializes the system;

e creates a Soft Majority Proposal (proposal) with maximum of 10 votes;

e creates a Soft Majority Proposal (proposal2) with maximum of 10 votes;

e creates a Super Majority Proposal (proposal3) with maximum of 10 votes;
e creates a Super Majority Proposal (proposal4) with maximum of 10 votes;
e creates a Majority Proposal (proposal5) with maximum of 10 votes;

27

e creates a Majority Proposal (proposal6) with maximum of 10 votes;
e creates Padavan;

e deposit TONs to Padavan;

e sends 5 votes for proposal;

e sends 5 votes against proposal;

e checks that proposal has been finished and declined;

e sends 5 votes for proposal2;

e sends 4 votes against proposal2;

e checks that proposal2 has been finished and accepted;
e sends 7 votes for proposal3;

e sends 3 votes against proposal3;

e checks that proposal3 has been finished and accepted;
e sends 5 votes for proposal4;

e sends 4 votes against proposal4;

e checks that proposal4 has been finished and declined;
e sends 5 votes for proposal5;

e sends 5 votes against proposal5;

e checks that proposal5 has been finished and declined;
e sends 5 votes for proposal6;

e sends 4 votes against proposal6;

e checks that proposal6 has been finished and accepted;
e reclaim tokens.

8.2.6. Test “whitelist”
Testing whitelist functionalities.

This test verifies that the whitelist is working correctly. Two Padavans are created, one of
which is added to the white list and checked so that the one who does not have the right to

vote could not vote.
Test case:

e deploys and initializes the system;

e deploys first Padavan (padavan);

¢ deploys second Padavan (padavan?2);

e creates a Soft Majority Proposal (proposal) with maximum of 10 votes and add
padavanZ2 to whitelist;

e deposits 10 TONs to padavan;

e deposits 10 TONs to padavan2;

¢ sends 10 votes for proposal from padavan, expects error;

e sends 10 votes for proposal from padavan2, checks that the votes are counted;

e checks that proposal2 has been finished and accepted;

e padavan reclaim TONs.

e padavan2 reclaim TONs.

28

