
Short description
Develop smart contracts to recurring payments ('subscriptions') on the Free TON, both
(1) for TIP-3 tokens, and (2) for TON Crystal.

Contest dates
July 16, 2021 00:00 UTC — August 31, 2021 23:59 UTC

Voting cycle
15 days

Motivation
Monthly subscriptions are a key monetization channel for legacy web, and arguably they
are the most healthy monetization channel for businesses (especially when compared to
ad/surveillance) based models. But in the blockchain world there haven't been any
successful full-featured crypto subscription payment systems yet. For these reasons, I
think it's worth creating smart contracts to do 'subscriptions' on Free TON to facilitate
user experience in crypto for both users and product owners (service providers).

● Users don’t have to read a complex whitepapers to assess service in Free TON
(as opposed to utility tokens)

● Users should have ability to subscribe and cancel anytime, without having to own
any specific tokens

● Don’t have to understand the product owners vesting schedules,
crypto-economics, or anything more complex than the DeBot/Smart Contracts
use case.

● Product owners can get a consistent, ongoing stream of cash flow while
assessing the health of their business (subscribers, churn, growth)

● Product owners can focus on making customers happy, as opposed to splitting
time between speculators and users

● Product owners utilize a proven, time-tested business model

Task
Implement on-chain Recurring Payments ('Subscriptions') smart contract system by
which FreeTON users will be able to pay to unlock access to special DeBots/Smart
Contracts/Off-chain service for a certain amount of time. Users must be able to recurly
pay by TON Crystal or TIP-3 token (e.q. USDT) to subscribe for DeBots/Smart Contracts

and be able to cancel or pause subscription anytime. In turn, DeBots/Smart Contracts
owners must be able to track subscribers to unlock DeBots/Smart Contracts usage or
some of its features. Existing examples:
Solc:
https://github.com/tonlabs/ton-client-js/blob/master/packages/tests/contracts/abi_v2/Sub
scription.sol
C++: https://github.com/tonlabs/samples/tree/master/cpp/Wallet

Also some kind of validation (for off-chain services) and verification (for on-chain
services) should be introduced also. It’s necessary to ensure that the end user receives
the service which he subscribed to. In the case of subscribing to on-chain services,
some special contract can collect metrics about service and determine the subscription
agreement fulfilled. In case of off-chain service, the system should be able to receive this
information from external messages and validate it.

Requirements
● To develop a Recurring Subscription smart contract system using either Solidity

or C++ languages
● Distributed smart contracts are always preferable, the participants should avoid

operations on large data sets as much as possible (distributed programming
paradigm) (github, youtube)

● Should allow product owners (service providers) to deploy a smart contract on
FreeTON with parameters for a subscription including destination address, TIP-3
token address (if necessary), token amount, and period of recurrence.

● The subscriber should be able to control subscription status (starting, stopping,
pausing, etc)

● Product owners should be able supply a link to the subscriber that is presented
with the terms of the subscription to sign an transaction that is replayed on the
defined period

● Should support the ability to subscribe with TON Crystal tokens as well as any
other TIP-3 Token

● Should include DeBots for all system user interfaces
● Some kind of validation (for off-chain services) and verification (on-chain

services) should be implemented
● A system should be deployed and tested on any test network(net.ton.dev,

fld.ton.dev) and Jury should be able to access it for testing
● Solution should be committed to the Free TON community repo in accordance

with the following document - https://github.com/freeton-org/readme
● Should include auto-tests designed as a smart contract or a script to test

scenarios
● A solution should have a Free Software license

(https://www.gnu.org/licenses/license-list.html 1)
● Your repo should include README with introduction and usage manual and

deploy instructions

https://github.com/tonlabs/ton-client-js/blob/master/packages/tests/contracts/abi_v2/Subscription.sol
https://github.com/tonlabs/ton-client-js/blob/master/packages/tests/contracts/abi_v2/Subscription.sol
https://github.com/tonlabs/samples/tree/master/cpp/Wallet
https://github.com/tonlabs/debots/tree/accman/accman
https://www.youtube.com/watch?v=wAAhv1VtVKk&t=10s
https://github.com/freeton-org/readme
https://www.gnu.org/licenses/license-list.html

*any TIP-3 realisation allowed to use

Evaluation criteria
● Safety first. If the architecture is not able to keep user funds secure, it is a

non-starter
● Minimize UX Complexity. A user should have closest as possible experience to

legacy web but with all blockchain benefits
● Opt-Out First. A user should not need to perform actions on an on-going basis. It

should be a “set it and forget it” experience. A subscriber performs one
transaction to set the subscription in motion and transactions should happen
“automatically” between the parties

● Minimizes Gas Use: The smart contract(s) should be as efficient of a consumer
of on-chain resources as possible

● No Staking. A user should not have to stake funds. i.e. lock 1200 TON for a
subscription that pays out 100 TON per month.

● Bonus: Extensibility. It’d be great if the smart contract could be extended to any
recurring action (not just TIP3/TON Crystal transfers)

● Bonus: Notifications. It’d be great if the smart contract could notify users
regarding payment date or insufficient balance on the wallet, send bills (e.q. with
TON Surf)

Submission format
Submission must be published to a public FreeTON org github repository
(https://github.com/freeton-org/readme)

PDF should be attached to the submission with the link to the repository’s contest
branch along with the telegram id of the participant so that jury members can access the
participant and ask questions.

Voting
● The juror must have a solid understanding of the described technology to provide

a score and feedback. If not, the juror should choose to “Abstain”.
● Jurors or whose team(s) intend to participate in this contest by providing

submissions lose their right to vote in this contest.
● Each juror will vote by rating each submission on a scale of 1 to 10 or can choose

to reject it if it does not meet requirements or vote “Abstain” if they feel
unqualified to judge.

● Jurors must provide feedback on submissions or lose their reward.
● The Jury will reject duplicate, sub-par, incomplete, or inappropriate submissions.
● The number of days for jury voting is hereby set at 10 day.

https://github.com/freeton-org/readme

Contest Rewards
1. 100’000

2. 80’000

3. 70’000

4. 40’000

5. 20’000

participants who receive 6th-10th place, receive points and do not have “rejected” votes

will receive a consolation prize from 10000 to 2000 (with step equal to 2000)

Minimum score to receive reward for 1 - 5 places is 6.

Total prizes: 350,000

Note: If the number of winning submissions is less than the number of rewards available,
any remaining rewards are not subject to distribution and are considered void.

Jury Rewards
An amount equal to 5% of the total sum of all total tokens awarded to contest winners
will be distributed among jurors who vote and provide feedback. This percentage will be
awarded on the following basis:

● The percentage of tokens awarded to the jury will be distributed based on the
number of votes each juror casts. For example, if one juror votes 50 times and
another juror votes 5 times, the juror who votes 50 times will get 10 times more
tokens than the juror who votes 5 times.

● Feedback is mandatory to collect any rewards.

Contest announcement and attracting new
members rewards
An amount equal to 5% of the prize fund will be allocated to announcing partners who
participates in announcing the contest in different media according with the following
table: media list for technical contests announcements , to be distributed equally among
them:
@renatSK
0:a2c66fbd01f0193c39127d1dd825e6d144d0581ca82a72a747d0af343b2c0b0b
@anovi
0:70759025778f37fd98ddb2b22aa8f6c54708a2917902cb3929e354d290b41d6a

@Alex770
0:ffc7897f7d234cb24f958aac097e59e16dad3e5ea147b4a214807f9274369be2
@moqub
0:a19bb3f75057490fd24c79f23c784db573bdf17dd75c955565b9ba3d439b5c3a
@lesnik13utsa
0:75a60f6c9aff6ecb6e2ce52ab16924248b09e3e11d5b4adb98893b7967591047
@Kronchs
0:a8b73825ef947fe5cc004761dc2eaf6400b23068df6c68859b7e7263dd7c02c5

Each participant of the contest, when submitting an application, will be asked through
which announcing partner he/she learned about the contest. After the end of the contest,
for each participant who won a reward, an amount equal to 5% of his/her reward will
additionally be distributed:

● To the announcing partner who attracted him, if the referral was given during
work submission;

● Or equally to all aforementioned partners of the announcement program, if the
referral was not specified.

Procedural requirements
Accessibility. All submissions must be accessible for the jury to open and view, so
please double-check your submission. If the submission is inaccessible or does not fit
the criteria described, jurors may reject the submission.

Timing. Contestants must submit their work before the closing of the filing of
applications. If not submitted on time, the submission will not count.

Contact. Each submission must have an identifiable contact that can be matched with
your description. If you have not provided a forum description for discussion, then your
application should contain links to your online persona, for example, a Telegram ID
(preferred) or other direct contact information that can confirm that the submitted work is
yours. In the absence of confirmation by the contestant of the authorship of the
submitted work, the submission may be rejected.

Multiple submissions.

● Each contestant has the right to provide several submissions if they are all
different from one another. If they are too similar, or in any way appear to be
partially the same work done twice, or if they appear to be one whole body of
work divided into parts to create the illusion of several submissions, jurors have
the right to reject such submissions.

● If the contestant wants to make an additional submission to replace a previously
published submission, the contestant must inform the jury about this fact and
indicate which submission is the one to be judged. In this case, only the indicated

work will count. If the contestant fails to indicate which submission to judge, only
the first submission that is uploaded by timestamp will count. The Jury will reject
all others.

