
Advanced Research & Development
Center

Project S014
Automatic Formal Verification of

Smart-Contracts

Flex System Functional Specification
and Smart-Contracts Audit

Authors
Evgeny Shishkin

evgeny.shishkin@infotecs.ru

with assistance of
Sergey Tyurin (FreeTON Foundation)

Pavel Ivanov (Moscow State University)

Moscow

June, 2021

Contents
1 Introduction 1

1.1 Document Scope . 1

2 FLEX System 1
2.1 System Purpose . 2
2.2 Terms . 2
2.3 System Architecture . 3
2.4 Difference between FlexToken and TIP3 4
2.5 Usage Scenario . 5
2.6 Flex vs. Other Exchanges 7
2.7 User Capabilities . 7

3 Flex System Properties 8
3.1 System Layers Decomposition 8
3.2 Flex System Layers . 9
3.3 Execution Layer . 10
3.4 Replay Protection Layer 11
3.5 Binary Parsing Layer . 11
3.6 Processing Fee Layer . 11

3.6.1 Storage Fee . 12
3.6.2 Execution Fee . 13
3.6.3 Execution Limits 13

3.7 Business Logic Layer . 14
3.7.1 Trading Pair Management 14
3.7.2 Order Management 15
3.7.3 Tokens Management 16
3.7.4 Wallets Management 18
3.7.5 Orders Matching 19

4 Sequence Diagrams 19
4.1 Securities List Aggregation 20
4.2 Order Book Aggregation 20
4.3 Sell Order Processing . 20
4.4 Buy Order Processing . 20
4.5 Cancel Order Processing 20

2

5 Code Audit Report 20
5.1 Wallet Code Replacement 24
5.2 Price Queue Overflow . 24
5.3 Wallet Deployment Error 24
5.4 Unlimited Tokens Emission 25
5.5 Trading Pairs Duplicate 25

6 FlexToken Smart Contract. API Description 26
6.1 Trading Pair Creation . 26
6.2 Exchange Pair Creation 27
6.3 Sell Order Placement . 28
6.4 Buy Order Placement . 29
6.5 Sell Order Cancellation 30
6.6 Buy Order Cancellation 31
6.7 Exchange Order Cancellation 32
6.8 Coins Transfer . 33
6.9 Token Exchange Order 33
6.10 Get Contract Owner Address 35
6.11 Get Flex Contract Address 35

7 RootTokenContract Smart Contract. API Description 35
7.1 Root Contract Deployment 35
7.2 Wallet Creation . 36
7.3 Empty Wallet Creation 37
7.4 Tokens Transfer . 38
7.5 Tokens Emission . 39
7.6 Set Wallet Code . 39
7.7 Get Token Information 40
7.8 Get Wallet Address . 40
7.9 Get Wallet Hashcode . 40

8 TONTokenWallet Smart Contract. API Description 41
8.1 Tokens Transfer . 41
8.2 Get Wallet Balance . 42
8.3 Acceptance of Tokens . 42
8.4 Internal Tokens Transfer 43
8.5 Deleting a Wallet . 44
8.6 Wallet Lending . 44

3

8.7 Revoking Wallet Lending 45
8.8 Get wallet information 45

4

1 Introduction
The document consists of two independent parts. The first part defines
the functional specification for Flex, a single implementation of Distri-
buted Exchange for Free TON blockchain. The second part contains the
smart-contracts program code reliability audit report.

The functional specification is written using the natural language, with
very little mathematics, yet it is precise enough to be translated into
formal statements within the chosen smart-contracts execution mathe-
matical model and a specification language.

The program code audit was conducted using the code review approach,
with sporadic testing in the blockchain development network.

During the code audit, we found at least 3 critical vulnerabilities. One of
them represents the erroneous pattern, used in several places in the code.
Besides, we found several others vulnerabilities that are of lower severity
yet they have to be fixed before the system release. All vulnerabilities
were presented to the authors of FLeX and received their acknowledge-
ment.

1.1 Document Scope
In this document, we consider the Flex system, published in https://
github.com/tonlabs/flex, commit record 283e6a89.

The scope of our work was limited by the following smart-contracts: Flex,
FlexClient, Price, TradingPair, RootTokenContract, TONTokenWallet as
was stated within the contest text.

We did not cover flexDebot, flexHelperDebot, PriceXchg, XchgPair, be-
cause they were not requested within the contest text.

2 FLEX System
In this section, we give a high-level overview of the system, together with
its architecture description.

1

https://github.com/tonlabs/flex
https://github.com/tonlabs/flex

2.1 System Purpose

2.1 System Purpose
Users of Free TON blockchain are able to create different digital ass-
ests, such as NFT- and Fungible- tokens. If a token has a potential for
monetization, the question of reliable token trading and token exchange
arises.

Traditionally, this problem is solved by Distributed Exchange (DEX) sys-
tems. FLeX system is a single implementation of DEX for the Free TON
blockchain. It is based on an Order Book processing.

FLeX let its users to buy, sell tokens for the native digital currency of
FreeTON, or exchange one type of tokens for an other in a given ratio.

In our specification effort, we try to stay on a rather high level of ab-
straction, not to get drawn into the implementation details where it is not
needed.

2.2 Terms
In the document, we use several terms that are defined below.

Term Definition

Trading System An Information System that helps organise assets
trading or exchange between asset owners.

Decentralized
Exchange (DEX)

A trading system implemented using a blockchain
protocol. It gives extra guarantees such as trans-
parency, censorship-resistance and operation dura-
bility for its users.

Token
A digital asset implemented in a form of smart-
contract compatible with FlexToken standard.

User

A party that has an account within the blockchain.
This party is able to transfer coins to other users,
call smart-contract functions by sending messages
and observing the blockchain state.

Token creator
A user with exclusive rights for the root token
smart-contract operation. See FlexToken descrip-
tion for details.

2

2.3 System Architecture

Wallet owner
A user with exclusive rights for token wallet smart-
contract operation.

Deal An event of token exchange or token trade between
two users.

Order
An intent to buy/sell/exchange tokens of the user or
cancel previous order that is declared as a message
sent into a Trading System.

Order direction A direction of a trade: buy or sell.

Counter order
An order direction that is the opposite to the given
one. For buy - it is sell, and vice versa. In case of
exchange, an exchange order X/Y is a counter for
the exchange order Y/X.

Trading Pair A token that is compatible with FlexToken standard
and that gets traded for Crystals in Flex.

Exchange Pair
A pair of tokens that are both compatible with Flex-
Token standard and that could be exchanged one
for the other in Flex.

Security Sometimes we use this term interchangeably with
Trading Pair term.

2.3 System Architecture
The whole system consists of a client (off-chain) and smart-contracts
(on-chain) parts.

The principal scheme of the system is depicated in Fig.1
The system consist of two parts: Debot - a client program running on
the client’s computing device, sending messages into smart-contracts
and retrieving data from the blockchain, and several smart-contracts:
TradingPair, Price, Flex, FlexClient, FlexToken - these get created and
operate within the blockchain.

Debot is a user interface for the system. It aggregates data for available
trading pairs, forms an order book for trading pairs and assists the user
in the orders management.

The TradingPair smart-contract contains data for some trading pair. A
separate TradingPair smart-contract is created for each token traded in
Flex.

3

2.4 Difference between FlexToken and TIP3

DeBot

Securities List

Order Book

Order Creation

Blockchain

TradingPairTradingPairTradingPair

PricePricePrice

TIP3TIP3Root

DeBot

Securities List

Order Book

Order Creation

User A

User B

TONToken
Wallet A

TONToken
Wallet B

Orders

Trading Data

Order status
FlexAFlexClientA

Orders

Trading Data

Order status

FlexClientB

FlexB

Figure 1: FLEX architecture

Each TradingPair corresponds to one and only one RootTokenContract
smart-contract. The information regarding the token is stored in this
contract (it is called Root on the scheme).

The Price smart-contract implements an order book for some trading pair
at a fixed price level. It means that for different prices there will be a
distinguished Price smart contract. The deal making logic (also known
as the Matching Engine) is implemented there.

The TONTokenWallet smart-contract implements a user token wallet that
are used to operate tokens during the trade or exchange.

The FlexClient smart-contract is a module implementing order creation,
order cancelling and adding new trading pairs logic. It is a front-end that
operate on other smart-contracts.

The Flex smart-contract contains some trading system options, such as
commissions size.

2.4 Difference between FlexToken and TIP3
In the Free TON blockchain ecosystem, there is a known token standard
called TIP3.

4

2.5 Usage Scenario

The token that is used in Flex has some difference in functionality com-
paring to TIP3, that is why we call it FlexToken despite the fact that it is
mistakenly called TIP3 in the implementation code.

One of the major difference between the two is that FlexToken allows
to temporarily promote some user into the token owner with limited
capabilities.
This mechanism is needed to implement decentralized token transfer
mechanism between the buyer and the seller wallets in case of a deal.

2.5 Usage Scenario
Here, we describe the main usage scenarios together with a little walk-
through on how it is implemented to shed some light on internals of
FleX.
We have two users - a buyer and a seller - that would like to make a deal.
Both users have wallets compatible with FlexToken.

The scenario of their interaction may look as follows:

1. Using DeBot, the buyer receive a list of trading pairs.

The list of trading pairs is formed by scanning the blockchain state
for the presence of smart-contracts with the given Code Hash. The
hash should correspond to the hash of TradingPair code.

For each TradingPair found, it reads the TIP3Root address. It then
gets all relevant token information, such as: token description and
token symbol from it.

The diagram depicting this process is in Fig.3.

2. If a token found in the list, and DeBot receives the order book for
this token.

The order book consists of a set of values in a form (price, buy, sell).
It is a list of available buy and sell orders for different price levels.

5

2.5 Usage Scenario

The Order Book is formed by scanning the blockchain state for
the presence of smart-contracts with a given Code Hash. The
hash should correspond to the hash of Price code, constructed with
parameters of TIP3Root address equal to TIP3Root address of the
token under consideration.

DeBot retrives data of the from (price, buy, sell) from each Price
contract found this way. The data is a price in nano TONS per
token, the amount of tokens available to be bought or sold. The
diagram that depicts this process is in Fig.4.

3. The seller sends the order to sell their tokens, by putting the price
and amount1 among other things, using their DeBot. The crucial
thing here is that the seller lends ownership for his FlexToken
wallet to the Price smart-contract at this step. Using this lending
mechanism, Price will be able to trade tokens on behalf of the seller
when the buyer comes up.

4. The buyer sends the order to buy the same token, by putting the
price and amount2 among other things, using their DeBot. It equips
its message with coins v that should be enough to make the deal,
i.e. v ≥ price× amount2

5. If prices of buy and sell match, both orders end up in the same Price
smart-contract, in its order book.

6. The user counter orders will be matched and further processed ei-
ther partly (amount1 6= amount2) or in full (amount1 = amount2).

7. The buyer receives amount1 tokens on his wallet, and the seller
receives amount1 × price coins.

8. After the deal is done for the seller, the Price contract returns
ownership to the original wallet owner.

9. In case of partial matching, unprocessed part will be left in the
order queue for further buying (amount2 > amount1) or selling
(amount1 > amount2).

The diagram depicting the process of selling tokens is in Fig.5.

6

2.6 Flex vs. Other Exchanges

2.6 Flex vs. Other Exchanges
Usually, when someone mentions a Trading System, they assume a system
that is able to reliably process buy, sell or exchange orders of different
types.

Traditionally, there are several specific orders types available in such
systems, such as: Market Order and Limit Order with an optional life-
time (GTC, FOK, etc).

Right now, there are only two types of orders available in Flex: the Limit
Order with a fixed price to buy, sell, exchange tokens, with the Good-Till-
Canceled lifetime, and a Cancel Order.
At the same time, the cancellation operation cancels all orders of the given
direction, price level and token type. Partial cancellation is not supported
right now.

Authors state that it is feasible to implement different types of orders,
such as Market Order, using this architecture. At the moment of writing,
this is not implemented, so we can not evaluate it.

2.7 User Capabilities
The end-user interacts with the system using the user interface imple-
mented in Flex DeBot. This DeBot program aggregates trading data for
the user and transfers its orders into the FlexClient contract.

The main enternace point of the system on the blockchain side is the
FlexClient smart-contract. This smart-contract is able to perform the
following actions:

1. Create trading or exchange pairs

2. Send buy, sell or exchange order

3. Cancel the orders

4. Transfer funds from the smart-contract to some chosen address

5. Get the system settings information

The API of this smart-contract is thoroughly described in 6.

7

3 Flex System Properties
In this section, we state the functional requirements that has to be met
by different parts of Flex. Non-functional requirements, such as system
performance, is not considered here.

3.1 System Layers Decomposition
To systematically cover the system with properties, we use the approach
called System Layers Decomposition. We used this approach previously to
formally specify and verify smart-contracts and it proved itself useful.

The approach is in the following:

The whole system gets separated into functional layers, see Fig.2. In this
scheme, the layers located above rely on reliability of the layers located
below.

Separation of the logic into layers gives us ability to specify and verify
properties of different system parts either fully independently or above
layer is verified with an assumption of reliability of all below layers. This
approach considerably narrows the state space of the system that has to
be checked.

The independence of different layers between each other could be checked
formally. To do that, for each layer one has to write down all variables
that are used to specify its behaviour in the formal specification - the
initial set.
Next, we calculate a set of variables that are influenced by the variables
from the initial set, for each layer. We call those sets as reachable sets.
Two layers are indepented of each other if their reachable sets do not
intersect.

If it turns out that reachable sets have intersections, we ensure that this
intersection happens in a single assignment manner, meaning that the
value from the layer below goes into the layer above strictly in one
direction, once. In this case, if the layer below is considered reliable, the
layer above it could be verified with this assumption.

8

3.2 Flex System Layers

Business Logic Layer

Processing Fee Layer

Binary Parsing Layer

Replay Protection Layer

Exectution Layer

Figure 2: Layers of FLEX. Layers from above rely on reliability of layers
from below. Green layers are to be verified. Grey layer is considered
reliable.

3.2 Flex System Layers
We define the following layers for Flex:

1. BusinessLogicLayer. The main business logic layer of the system:
orders management, trading pair management, order cancelation,
order matching.

2. Processing Fee Layer. The layer that controls sufficiency of funds
on smart-contract balance or user message value to process mes-
sages and store data within the blockchain.

3. Binary Parsing Layer. The logic of encoding and decoding the
binary structures into structures of C++ programming language.

4. Replay Protection Layer. The logic protecting a smart-contract
from processing of external previously sent messages.

5. Execution Layer. This layer contains all other functionality that
has to be reliable to let the blockchain application function properly,
including: the Virtual Machine, the blockchain protocol, network-
ing protocol, blockchain node software, etc.

We now consider each layer, starting from the lowest one.

For each layer, we formulate statements in a natural language that must
hold for this layer. The link between those statements and the program
code state variables are to be established on the formal specification and
verification phase.

9

3.3 Execution Layer

3.3 Execution Layer
The whole system software stack required for running blockchain appli-
cation goes into this layer.

1. C++ wrappers1, that provide C++ TON primitives.

2. TON C++ Compiler

3. TVM Virtual Machine

4. Message delivery protocols Hypercube Routing, IHR

5. Distributed consensus protocol Catchain

6. TON Blockchain protocol

7. Blockchain node software (“the Node”)

8. Operation System and all relevant drivers

9. CPU and Network processors
We assume this whole stack to be reliable.

In particular, we rely on the following properties of the TON blockchain
and TVM:

EXEC01. Internal messages between every pair of smart-contracts get
delivered in the FIFO order, with the guarantee on delivery and uniqueness
of delivery, when the IHR mode is turned off 2.

EXEC02. During delivery, some external messages from users to smart-
contracts may be lost, but with repeated sending, eventually, external
message gets delivered to the contract.

EXEC03. All delivered external messages are processed in FIFO order.

EXEC04. If a message gets delivered to the smart-contract inbound mes-
sage queue, then, eventually, it will be processed by the smart-contract.

EXEC05. There is an upper bound on the number of permited computing
operations allowed to be performed during processing of a single message,
no matter how much coins you attach to it.
1Excluding Replay Protection, it is also provided in the form of wrapper
2see Durov - TVM Virtual Machine manual

10

3.4 Replay Protection Layer

3.4 Replay Protection Layer
This layer guarantees the uniqueness of external messages delivery. 3

Uniqueness of delivery means that if an external message with the given
body was previously delivered to the contract, the second delivery of the
same message is either not allowed or allowed after some specified time
period. 4.

Errors in this layer may lead to the violation of the whole system business
logic. For example, it may be possible to repeatedly send previously sent
buy order without actual user consent.

REPLAY01. If a message with the body b was delivered into the smart-
contract once, then the next delivery of the same message bwill be possible
after no less than T seconds.

3.5 Binary Parsing Layer
In some FLeX smart-contracts, the authors resort to passing function
input parameters in a form of data blob (so called bag of cells), with
subsequent decoding it into programming language variables.

An error in this layer may lead to a complete distortion of data in contracts.

BINARY01. Encoding and decoding functions work correctly with re-
spect to every possible permitted input, i.e. decoding some previously
encoded value gives the same value for every possible input value.

3.6 Processing Fee Layer
Free TON blockchain collects fees for storing smart-contract code and
data on a regular basis. That is why, to guarantee the durability of data
stored inside the blockchain, we need to ensure that the balance of the
contracts are always greater than some value needed to pay those fees.

Besides, each function call into the contract also has to be payed. The fee
is collected either from the smart-contract balance, or from the coins that
were attached to the message.
3The uniqueness of internal messages are guaranteed by the blockchain itself.
4If this interval is set big enough, almost all replay attacks become meaningless.

11

3.6 Processing Fee Layer

This layer specifies the balance of a smart-contract or of a message that
is needed to process its business logic.

This layer IS NOT responsible for correct coins management that emerges
during tokens buying or selling: the letter is not related to the platform
fees.

Errors in this layer may lead to excessive coins loss, higher transaction
processing times, and even deadlocks: it may be the case that smart-
contract reach a state where no amount of attached tokens is enough to
process its execution needs.

3.6.1 Storage Fee

Here we formulate basic storage fee properties.

STOR01. For smart-contracts with the fixed size of its state, such as
FlexClient, TradingPair, XchgPair, Flex, RootTokenClient (if we do not
change wallet_code), TONTokenWallet, it is required that they have got
at least

storage_fee(D) ∗ (T1 − T2)
amount of coins at the end of each call, where storage_fee(D) - the
function evaluates the amount of coins needed to be payed for keeping
D code and data (in Kb) inside blockchain for 1 second, T1 - expected life
time of the contract, T2 - actual life time of the contract starting from the
deployment moment.

Note that T2 value keeps monotonically increasing with each smart-
contract call. WhereT1 is set during the deployment and may be increased
afterwards.

STOR02. For smart-contracts that have variable state size, such as: Price,
PriceXchg, they have to possess at least the following amount of coins
after each call:

max_storage_fee(D) ∗ (T1 − T2)

Here,max_storage_fee(D) denotes the greatest amount of coins needed
to store code and data D.

12

3.6 Processing Fee Layer

It may be problematic to calculate the exact upper bound for storage fee
in the variable data size case. This is why we over approximate it with the
greatest fee that has to be paid for maximum allowed data.

3.6.2 Execution Fee

We now consider fees that are collected during the execution phase of a
message processing (also called as a call).

EXEC01. If a smart-contract have to pay for the call f , its balance must
contain no less than:

processing_fee(f, d)

Here, processing_fee(f, d) denotes the amount of coins needed cover
fees for executing function f in a state d.
The processing_fee amount of coins cover fees that are taken for pro-
cessing inbound messages, mere execution costs, outbound message for-
warding fees.

EXEC02. If the call has to be paid from the coins attached to a message,
its value has to be no less than:

processing_fee(f, d)

Again, it may be problematic to calculate exact upper bound on fees that
are needed to execute f in a state d. In this case, we can consider the
following:

processing_fee(D) = max_processing_fee(D)

Here, max_processing_fee(f, d) denotes the amount of coins that guar-
antee any feasible execution of f . Please recall that executions in TVM
are bounded, that is why this value is probably a constant.

3.6.3 Execution Limits

The TVM virtual machine allows to spend no more than Gmax coins to
pay for processing of a single call.

13

3.7 Business Logic Layer

We have to guarantee that any call f with allowed parameters and reach-
able state variables will spend no more thanGmax amount of coins during
its execution. Otherwise, the smart-contract may step into a deadlock
state: no amount of coins could help it make any further progress.

LIM01. For each smart-contract function f , for any tuple of valid argu-
ments p, for every reachable state s, the execution cost of f(p) within the
state s takes no more than Gmax coins to execute.

3.7 Business Logic Layer
In this layer, we focus on the higher business logic of the system, without
considering low level details of other layers discussed above. 5

The front-end API of the system is placed into two modules: FlexClient
and FlexToken (consists of two smart-contracts).
Let us consider each of them.

BUS01. The trading pair management and order management calls are
processed only if they are cryptographically signed with the private key
of the FlexClient contract’s owner. Otherwise, the call is aborted with the
error message_sender_is_not_my_owner. This property holds for all calls
from sections 3.7.1, 3.7.2

3.7.1 Trading Pair Management

In this section we state the functional capabilities of a FLeX user regarding
the Trading Pair management. Here, the term request denotes an external
message that gets sent into the FlexClient smart-contract by the user.

SEC01. If a user sends request to create a Trading Pair P attaching M
coins to their request, then the trading pair P will be added into the
securities list and the user will be provided the identifier of this trading
pair. The following inequality must hold

M ≥ DeployV alue

where DeployV alue is a special parameter that is provided into the
Trading Pair depending on the life time chosen for this trading pair.
5Note that this approach allows us to be both precise and concise. By doing it this way, we avoid having
huge incomprehensible specifications where all details are put into a single statement.

14

3.7 Business Logic Layer

SEC02. If an error happens during the trading pair creation, the user is
provided with the error code and the remaining coins initially sent with
the request.

SEC03. For every token that is traded, there must be only one item in
the security list.

SEC04. The securities list can change over time: trading pairs may come
and go, depending on their life time.

3.7.2 Order Management

In this section we state the functional capabilities of a FLeX user regarding
the buy/sell/exchange orders management. The phrase send the order
denotes a request containing the order that is sent into the FlexClient
smart-contract.

ORD01. If a user sends an order to buy (or sell) n tokens with the price p
and a lifetime T , supplying all necessary parameters, then such an order
will either be processed immediately or will be placed in the queue after
partial processing or will be placed in the queue without processing.

ORD02. The order gets placed into the queue without any fulfilment if,
at the moment of processing, there were no counter orders in the queue
that could match it.

ORD03. For the order placed inside the queue, if the counter order
will emerge within the time frame of T , then the original order will be
matched and processed into a deal, partially or fully.

ORD04. For the order placed inside the queue, if no counter order
emerges within the time frame of T , then there will be no deal with this
order. It will expire and get removed from the queue.

ORD05. If an order gets fully matched and processed into a deal, then the
buyer receives n tokens on his FlexToken wallet, and the seller receives
n× v coins on his FlexToken wallet.

ORD06. If the order gets partially matched, then the buyer will receive
n1 tokens on his wallet, where n1 < n - the matched part of the original
order, and the seller receives n1 × v coins on his wallet.

15

3.7 Business Logic Layer

ORD07. In case of a partial deal, the unprocessed order part with an
amount n− n1 stays inside the queue, awaiting counter orders.

ORD08. In case the buy order is sent, the user temporarily lends owner-
ship to the corresponding Price smart-contract. It is guaranteed that the
lending will expire within lend_finish_time seconds, and the ownership
will return to the user within lend_finish_time + δ seconds. Here, δ
denotes the time needed to process messages sent to return the ownership
to the owner.

ORD09. Trading orders of the same direction that are delivered into the
system get processed using the FIFO ordering.

ORD10. Upon sending the cancel order request, there are several possi-
bilities:

• All buy (or sell) user orders with the specified price level will be
canceled.

• Some buy (or sell) user orders will be processed, and unprocessed
part will be canceled.

• All buy (or sell) orders with the specified price level will be cancelled
The outcome of this operation depends on the counter orders emergence
within the order queue before the cancel order gets delivered into the
system.

Please note that the user is not able to cancel their order partially..

ORD11. The user is always able to transfer the remaining coins from
FlexClient smart-contract to any other address.

3.7.3 Tokens Management

Here we consider a FlexToken-compatible token smart-contract that is
composed of two parts: the token creator part - RootTokenContract and
a user wallet smart-contract - TONTokenWallet.

TOK01. The user is always able to create their own token. After the
creation, the user becomes the token creator. To create a token, user
specifies the following parameters: token name, token symbol, decimals,
and total emission. After the token gets created, the token creator receives
its unique identifier.

16

3.7 Business Logic Layer

TOK02. For every ordered collection of parameters

1. name

2. symbol

3. decimals

4. totalSupply

5. rootPubKey

6. rootAddr

there is always not more than 1 root token contract RootTokenContract
available.

TOK03. The token creator is always able to add a token wallet for some
user together with nominating it with some amount of tokens, unless all
emitted tokens are already nominated. The user that is a receiver of the
wallet becomes the wallet owner.

The token creator specifies the amount of tokens to be nominated to the
newly created wallet and amount of coins that get transfered to the wallet.
As a result, the token creator receives an identifier for the newly created
wallet, and the user - wallet owner - obtains access to his wallet.

TOK04. Token creator is always able to create new wallet for a user
without nominating him any tokens.

TOK05. A user is always able to create an empty wallet for the token of
his choice. They have to provide address for its root contract in this case.
Tokens may be received only from token creator contract or other token
wallets.

TOK06. Token creator is always able to nominate some tokens to token
wallet if the following inequality holds:

TotalGranted+ T ≤ TotalSupply

where TotalGranted - the number of tokens already nominated to other
wallets, TotalSupply - the total tokens emission.

17

3.7 Business Logic Layer

TOK07. The following inequality always hold for the Root token:

totalGranted ≤ totalSupply

totalSupply ≥
∑

w∈Wallets

getBalance(w)

where Wallets - a set of existing token wallets

3.7.4 Wallets Management

The term token wallet denotes the TONTokenWallet smart-contract of
FlexToken.

WAL01. Any mutating token operations are permitted only for the token
owner or the token wallet lender if the lending period is not expired.

WAL02. The wallet lender has limited capabilities. In particular, they are
not able to set other lenders, to transfer tokens above the lending amount,
to change the lending period.

WAL03. The wallet owner is always able to transfer v tokens from their
wallet to some other wallet of the same token if its balance is not less than
v tokens. The destination wallet will receive exactly v tokens afterwards.

WAL04. The wallet owner is always able to delete their wallet if it
contains 0 tokens. In this case, the remaining coins get transfered from
the wallet balance to the balance of the specified address. After the wallet
is deleted, it is no longer available to the wallet owner.

WAL05. The wallet owner W is able to lend their ownership to some
other user by providing the user identifier U - the lender, lending amount
of tokens V , lending time interval T .
At the same time, it is guaranteed that:

1. The wallet management will not be available for the lender after
the interval T has elapsed.

2. The lender U may transfer tokens of amount not greater than V

3. The lender U is not able to set another lender

4. The lender U is not able to prolong the lending period T

18

5. The wallet owner W is not allowed to operate on their wallet until
the lending period expires or the lender deliberately returns the
rights to the original owner.

WAL06. The wallet owner is not able to prematurely stop the lender
ownership before his lending period expires.

3.7.5 Orders Matching

The FleX system has its own matching engine mechanism. It operates in
the following way: when the order gets delivered into the system, it is
put in the speically distinguished queue, for each order direction there is
a separate queue. Next, the matching engine gets executed. It matches
orders of opposite directions with each other producing deals.

We now state some requirements for the Matching Engine to ensure its
operation reliability.

MTE01. In case of successful matching of the counter orders into a full
deal, both the buyer and the seller get notified about this event. If the
order is matched only partially, the corresponding party will not receive
the notification.

MTE02. The deal notification is sent exactly once.

MTE03. The order has a life time that is defined by the lending period
field. The orders with expired lending period will not be matched.

MTE04. The full order may be matched into the deal no more than once.
Partial matching may happen several times.

MTE05. If the order is put into the queue, but never matched despite
the incoming counter orders, it means that its life time has expired or the
user cancelled the order.

4 Sequence Diagrams
In this section, we present several UML-sequence diagrams that shed
some light on how different system components interact in different
usage scenarios.

We assume that each user has a FlexToken wallet.

19

4.1 Securities List Aggregation

4.1 Securities List Aggregation
To work with the Trading System, the user has to be equipped with the
securities list and order books.
How securities list gets aggregated is depicted on Fig.3

4.2 Order Book Aggregation
In the previous step, the trading pairs were conducted together with cor-
responding RootTokenContract addresses (which we call tip3Addr here).
Having this in hand, the order book is conducted as depicted in Fig. 4

4.3 Sell Order Processing
Sell order is processed as depicted on Fig.5

4.4 Buy Order Processing
Buy order is processed as depicted on Fig.6

4.5 Cancel Order Processing
All user buy (or sell) orders of a given price get cancelled with this request.

The request is processed as depicted on Fig.7

5 Code Audit Report
The program code audit was conducted using the code review approach,
with sporadic testing in the blockchain development network.

The list of found vulnerabilities is presented below. All of them were
confirmed by the FleX authors.

20

MADE WITH swimlanes.io

Securites List Aggregation

User BlockchainSDK TradePair TP TIP3 Root

User BlockchainSDK TradePair TP TIP3 Root

h = HASH(Flex TradePair SmC Code)

getAccountsByHashCode(h)

TradePair accounts

Each TradePair account is connected to
some TIP3 Wallet.

For each TradePair a, do the following:

getTip3Root(a)

TIP3 Root address

getSymbol

Symbol

store Symbol &
Address

Securities List is ready

Figure 3: Securities list aggregation.

21

MADE WITH swimlanes.io

OrderBook Aggregation

User Flex BlockchainSDK

User Flex BlockchainSDK

getSellPriceCode(tip3Addr)

h = cell {PriceCode, FlexAddr, tip3Addr}

getAccountsDataByHash(h)

Price Accounts

For each Price account a, do the
following:

Decode Price data

OrderBook is ready

Figure 4: Order book aggregation for a trading pair.

MADE WITH swimlanes.io

Sell Limit Order

User Price TIP3

User Price TIP3

Calculate
PriceAddr(symbol='X',amount=100)

deploy PriceAddr

lendOwnership(PriceAddr)

onTip3LandOwnership

At this point, smart contract Price is deployed and
allowed to operate with the TIP3 wallet on behalf of the
user in case of a deal.

Figure 5: Sell order processing diagram

22

MADE WITH swimlanes.io

Buy Limit Order

User Price

User Price

ulate PriceAddr(symbol='X',amount=100)

deploy PriceAddr

buyTip3(amount, TIP3_BuyAddr)

wait for Sell Orders

Figure 6: Buy order processing diagram

MADE WITH swimlanes.io

Cancel Sell Order

User Price FlexToken

User Price FlexToken

p =
Price(symbol,PriveLevel)

cancelSell()

For each User sell order, do the
following:

remove the order from
Queue

returnOwnership()

onOrderFinished()

Figure 7: Cancel order processing diagram.

23

5.1 Wallet Code Replacement

5.1 Wallet Code Replacement
The following method in RootTokenContract allows to set the wallet code.
void setWalletCode (c e l l wal let_code)

It was added as a separate entity in order to facilitate the constructor in
terms of gas usage.

A check preventing from reinstallation of the code is erroneously com-
mented out. Due to this fact, token creator can arbitrarily change the
program code of user’s wallets, and, potentially, issuing incompatible
tokens.

5.2 Price Queue Overflow
Users orders get into the Price smart contract. They are stored in two
queues there: one is for buy orders, the other is for sell order.
s t r u c t DPrice {
// . . .
queue<OrderInfo> s e l l s_ ;
queue<OrderInfo> buys_ ;

} ;

There may be a scenario when one of the queues become bigger than the
smart contract could store. This scenario is not processed in any way.

It would be possible to specify an upper limit on the number of orders in
the queue, and return an error if the queue is full. So, at least, the contract
will not enter some an undefined state.

5.3 Wallet Deployment Error
There is a method in RootTokenContract contract that creates a new wallet
for the user with a simultaneous nomination of tokens.

address deployWallet (i n t8 workchain_id ,
u int256 pubkey ,
u int256 internal_owner ,
TokensType tokens ,
WalletGramsType grams)

The tokens tokens are nominated to the user’s wallet at the moment of
creation wherein the amount of reserved tokens totalGranted increases
by the same number.

24

5.4 Unlimited Tokens Emission

The deployment of the wallet as well as the simultaneous accept method
is called for the newly created wallet. This call forms a message send
action and requires some significant amount of gas.

The standard flags for sending a message include the option IGNORE_-
ACTION_ERRORS in this case. It means that if there is not enough funds
on the root contract balance, then the transaction will be considered
successful anyway.

It leads to the case when the number of issued tokens total_granted will
be incorrectly increased by tokens, while the user wallet receives nothing.

Similar error is also found at the RootTokenWallet.cpp:108.

5.4 Unlimited Tokens Emission
Themintmethod is implemented in the smart-contract RootTokenWallet.
It allows for additional, not limited by any constraint, emission of tokens
which leads to its devaluation.

void mint (TokensType tokens)

In our discussion with the author, we found out that this code is a template
and users are expected to adjust it to their business logic. But we didn’t
find any mentioning of this, and it is not obvious for us because, despite
this method, the whole token contract seems to be self-sufficient.

In our opinion, this code should be removed.

5.5 Trading Pairs Duplicate
To introduce a trading pair, a user calls the function

address deployTradingPair (address t ip3_root ,
u int128 deploy_min_value ,
u int128 deploy_value) ;

In this case, the smart contract TradingPair is created. It consists of such
variables:

s t r u c t DTradingPair {
address flex_addr_ ;
address tip3_root_ ;
uint128 deploy_value_ ;

}

25

By specifying the same values flex_addr_ and tip3_root_ for different
values of deploy_value_ the list of traded pairs can be filled with a lot
of duplicates. These duplicates will point to the same token, but, at the
same time, there will be a redundant list of traded tokens on the client
side.

6 FlexToken Smart Contract. API Descrip-
tion

Let us take a closer look at each FlexToken function.

6.1 Trading Pair Creation
A trading pair is understood as a unique binding of the RootTokenCon-
tract address and the trade system settings, stored in FlexAddress with
which this token is ready to work with.

address deployTradingPair (address t ip3_root ,
u int128 deploy_min_value ,
u int128 deploy_value) ;

Method parameters:

1. tip3_root - A token root contract address

2. deploy_min_value - A number of coins reserved on the balance of
TradingPair smart contract to ensure payment of storage fees on
the blockchain

3. deploy_value - A number of coins the user attached

Limitations:

1. Method call is possible only by external message

2. The message must be signed with the owner’s key

Return value:

• The function returns the address of the smart contract of the created
pair

26

6.2 Exchange Pair Creation

Possible errors:

• message_sender_is_not_owner the message is not signed by the
owner of the contract

• not_enough_tons - the attached coins are not enough to deploy a
pair

6.2 Exchange Pair Creation
Deploy Exchange Pair contract. It contains the root token contract ad-
dresses of the exchange pair (A - called major root / B - called minor
root).

address deployXchgPair (address tip3_major_root ,
address tip3_minor_root ,
u int128 deploy_min_value ,
u int128 deploy_value)

Method parameters:

1. tip3_major_root - Major Token Currency Root contract address

2. tip3_minor_root - Minor Token Currency Root contract address

3. deploy_min_value - The number of coins reserved on the balance
of the pair’s contract

4. deploy_value - The number of coins the user attached

Limitations:

1. Method call is possible only by an external message

2. The message must be signed with the owner’s key

Return value:

• The function returns the smart contract address of the created pair

Possible errors:

• message_sender_is_not_owner - the message is not signed by the
owner of the contract

• not_enough_tons - the attached coins are not enough to deploy a
pair

27

6.3 Sell Order Placement

6.3 Sell Order Placement
A sell order is formalized in the form of smart contract Price with specified
parameters.

address dep loyPr iceWithSe l l (c e l l args_cl)

Method parameters encoded in cell args_cl:

1. price - A token sale price measured in nano TON

2. amount - An amount of tokens for sale

3. lend_finish_time - A time given to complete a transaction. After
this time the order is considered to be expired and removed from
the queue.

4. min_amount - The minimum number of tokens the user is willing
to sell

5. deals_limit - A maximum number of deals that could be matched in
one call to the the matching engine

6. tons_value - A number of coins transferred to the contract Price

7. price_code - Price.tvc smart contract code in the Base64 encoding

8. addrs - reference to the address structure of TIP3 token currency
send and receive wallets

9. tip3_code - TIP3 Wallet smart contract code in the Base64 encoding

10. tip3cfg - a reference to the structure of TIP3 Root configuration
(name, symbol, decimals, root_public_key, root_address)

Limitations:

1. Method call is possible only by external message

2. The message must be signed with the owner’s key

Return value:

• The function returns the address of the pair’s smart contract.

28

6.4 Buy Order Placement

Possible errors:

• message_sender_is_not_owner - the message is not signed by the
owner of the contract

• not_enough_balance

6.4 Buy Order Placement
A sell order is formalized in the form of smart contract Price with specified
parameters.

address deployPriceWithBuy (c e l l args_cl)

Method parameters encoded in cell args_cl:

1. price - A token sale price

2. amount - An amount of tokens for sale

3. order_finish_time - A time given to complete an order. After this
time the order is considered to be expired and removed from the
queue.

4. min_amount - A minimum number of tokens the user is willing to
trade

5. deals_limit - A maximum number of transactions for an instrument
that can be matched in one cycle of the Order Execution Machine

6. tons_value - An amount of TONs to deploy the contract

7. price_code - Price.tvc smart contract code in the Base64 encoding

8. my_tip3_addr - An address of TIP3 wallet

9. tip3_code - TIP3 Wallet smart contract code in the Base64 encoding

10. ref<Tip3Config> tip3cfg - a reference to the structure of TIP3 Root
configuration (name, symbol, decimals, root_public_key, root_address)

Limitations:

1. Method call is possible only by external message

29

6.5 Sell Order Cancellation

2. The message must be signed with the owner’s key
Return value:

• The function returns the address of the pair’s smart contract.
Possible errors:

• message_sender_is_not_owner - the message is not signed by the
owner of the contract

• not_enough_tokens_amount -

• too_big_tokens_amount

• not_enough_tons_to_process

6.5 Sell Order Cancellation
Cancel the order to sell tokens.

void cance l S e l lOrde r (c e l l args_cl)

Method parameters encoded in cell args_cl:
1. price - A token sale price

2. min_amount - A minimum number of tokens the user is willing to
sell

3. deals_limit - A maximum number of transactions for an instrument
that can be matched in one cycle of the Order Execution Machine

4. value - An amount of TONs to deploy the contract

5. price_code - Price.tvc smart contract code in the Base64 encoding

6. tip3_code - TIP3 Wallet smart contract code in the Base64 encoding

7. ref<Tip3Config> tip3cfg - a reference to the structure of TIP3 Root
configuration (name, symbol, decimals, root_public_key, root_address)

Limitations:
1. Method call is possible only by external message

2. The message must be signed with the owner’s key
Return value: Returns no values.

30

6.6 Buy Order Cancellation

Possible errors:

• message_sender_is_not_owner - the message is not signed by the
owner of the contract

6.6 Buy Order Cancellation
Cancel the order to buy tokens.

void cancelBuyOrder (c e l l args_cl)

Method parameters encoded in cell args_cl:

1. price - A token sale price

2. min_amount - A minimum number of tokens the user is willing to
trade

3. deals_limit -A maximum number of transactions for an instrument
that can be matched in one cycle of the Order Execution Machine

4. value - An amount of TONs to deploy the contract

5. price_code - Price.tvc smart contract code in the Base64 encoding

6. tip3_code - TIP3 Wallet smart contract code in the Base64 encoding

7. ref<Tip3Config> tip3cfg - a reference to the structure of TIP3 Root
configuration (name, symbol, decimals, root_public_key, root_address)

Limitations:

1. Method call is possible only by external message

2. The message must be signed with the owner’s key

Return value: Returns no values.

Possible errors:

• message_sender_is_not_owner - the message is not signed by the
owner of the contract

31

6.7 Exchange Order Cancellation

6.7 Exchange Order Cancellation
Cancel the order for the exchange of tokens.

void cancelXchgOrder (c e l l args_cl)

Method parameters encoded in cell args_cl:

1. sell - false for sell, true for buy – direction of an order

2. price_num - a nominator of exchange price

3. price_denum - a denominator of exchange price

4. min_amount - A minimum number of tokens the user is willing to
trade

5. deals_limit - A maximum number of transactions for an instrument
that can be matched in one cycle of the Order Execution Machine

6. value - An amount of TONs to deploy the contract

7. xchg_price_code - Price.tvc smart contract code in the Base64 en-
coding

8. tip3_code - TIP3 Wallet smart contract code in the Base64 encoding

9. ref<Tip3Config> tip3cfg - a reference to the structure of TIP3 Root
configuration (name, symbol, decimals, root_public_key, root_address)

Limitations:

1. Method call is possible only by external message

2. The message must be signed with the owner’s key

Return value: Returns no values.

Possible errors:

• message_sender_is_not_owner the message is not signed by the
owner of the contract

32

6.8 Coins Transfer

6.8 Coins Transfer
It is allowed to transfer the leftover coins from the contract balance to the
selected address.

void t r a n s f e r (address dest , u int128 value , bool_t bounce)

Method parameters encoded in cell args_cl:

1. dest - A destination address

2. value - A amount of nanoTONs to transfer

3. bounce - should the bounce message be generated

Limitations:

1. Method call is possible only by external message

2. The message must be signed with the owner’s key

Return value: Returns no values.

Possible errors:

• message_sender_is_not_owner - the message is not signed by the
owner of the contract

6.9 Token Exchange Order
Place an order for the exchange of tokens with specified parameters

void deployPriceXchg (c e l l args_cl)

Method parameters encoded in cell args_cl:

1. sell - false for sell, true for buy – direction of an order

2. price_num - nominator of exchange price

3. price_denum - denominator of exchange price

4. min_amount - minimum number of tokens the user is willing to
trade

33

6.9 Token Exchange Order

5. deals_limit - maximum number of transactions for an instrument
that can be matched in one cycle of the Order Execution Machine

6. value - An amount of TONs to deploy the contract

7. xchg_price_code - Price.tvc smart contract code in the Base64 en-
coding

8. tip3_code - TIP3 Wallet smart contract code in the Base64 encoding

9. ref<Tip3Config> tip3cfg - a reference to the structure of TIP3 Root
configuration (name, symbol, decimals, root_public_key, root_address)

Limitations:

1. Method call is possible only by external message

2. The message must be signed with the owner’s key

Return value: Returns no values.

Possible errors:

• message_sender_is_not_owner the message is not signed by the
owner of the contract

• not_enough_balance - an error when land_amount is more than
wallet balance

• not_enough_tons_to_process - an error when the sum of the total
cost for operation and tokens cost in TON is more than TON balance

• unverified_tip3_wallet - in case pubkey or/and internal owner ad-
dress doesn’t own this wallet

• not_enough_tokens_amount - an error when an amount of tokens
is less than permitted amount of tokens for one deal

• too_big_tokens_amount - in case amount then wallet balance of
tokens or amount*price > 128 bit

34

6.10 Get Contract Owner Address

6.10 Get Contract Owner Address
Place an order for the exchange of tokens with specified parameters.

address getOwner ()

Limitations: No limitations.
Return value: Returns the FlexClient contract owner adress.

6.11 Get Flex Contract Address
The Flex contract contains important settings for the execution of trans-
actions, such as the amount of commissions for transactions.

address getFleX ()

Limitations: No limitations.
Return value: Returns the FlexClient contract owner adress.

7 RootTokenContract Smart Contract. API
Description

The FlexToken token is architecturally similar to the TIP3 token. There
is a root smart contract RootTokenContract, which is also involved in
issuing tokens and transferring tokens to users’ wallets.

User wallets are implemented as a smart contract TONTokenWallet. Wal-
lets can accept tokens from RootTokenContract and other similar wallets.
At the acceptance stage, it is checked that the tokens came from the user
wallet of the same token as the receiving one.

7.1 Root Contract Deployment

void con s t ruc to r (bytes name ,
bytes symbol ,
u int8 decimals ,
u int256 root_public_key ,
u int256 root_owner ,
TokensType tota l_supply)

Constructor parameters:

35

7.2 Wallet Creation

1. name - A full name of the issued token

2. symbol - A symbolic name of the issued token

3. decimals - A number of decimals positions

4. root_public_key - A public key of the contract owner

5. root_owner - An address of the contract owner without workchain
index

6. total_supply - A total amount of tokens issued into circulation (max
128 bit)

Limitations:

1. Method call is possible only by external message

2. The message must be signed with the owner’s key

Return value: Returns no values.

Possible errors:

• define_pubkey_or_internal_owner - should be set owner public key
or address only. Others should be set to 0

7.2 Wallet Creation
Creates a user wallet and transfers the specified number of tokens.

address deployWallet (i n t8 workchain_id ,
u int256 pubkey ,
u int256 internal_owner ,
TokensType tokens ,
WalletGramsType grams)

Parameters:

1. workchain_id - A workchain index

2. pubkey - A public key of the wallet owner

3. internal_owner - An address of the wallet owner without workchain
index

36

7.3 Empty Wallet Creation

4. tokens - An amount of tokens transfered to the wallet

5. grams - An amount of TONs to deploy the wallet

Limitations:

1. Method call is possible only by external message

2. The message must be signed with the owner’s key

Return value: The address of the token wallet contract deployed to the
blockchain.

Possible errors:

• message_sender_is_not_owner - the message is not signed by the
owner of the contract

• not_enough_balance - an error when the sum of granted Tokens
and an amount of Tokens planning to grant to the wallet is more
than total Tokens amount settled in the Constructor

7.3 Empty Wallet Creation
Creates an empty wallet for the user.

address deployEmptyWallet (i n t8 workchain_id ,
u int256 pubkey ,
u int256 internal_owner ,
WalletGramsType grams)

Parameters:

1. workchain_id - A workchain index

2. pubkey - A public key of the wallet owner

3. internal_owner - An address of the wallet owner without workchain
index

4. grams - An amount of TONs to deploy the wallet

Limitations:

1. Method call is possible only by external message

37

7.4 Tokens Transfer

2. The message must be signed with the owner’s key

Return value: The address of the token wallet contract deployed to the
blockchain.

Possible errors:

• message_sender_is_not_owner - the message is not signed by the
owner of the contract

7.4 Tokens Transfer
The function transfers tokens to the destination token wallet.

void grant (address dest , TokensType tokens , WalletGramsType grams)

Parameters:

1. dest - A destination address of the token wallet

2. tokens - An amount of tokens transfered to the wallet

3. grams - An amount of TONs to deploy the wallet

Limitations:

1. The message must be signed with the owner’s key

Return value: The address of the token wallet contract deployed to the
blockchain.

Possible errors:

• message_sender_is_not_owner - the message is not signed by the
owner of the contract

• not_enough_balance - an error when the sum of granted Tokens
and an amount of Tokens planning to grant to the wallet is more
than total Tokens amount settled in the Constructor

38

7.5 Tokens Emission

7.5 Tokens Emission
Increases total amount of the tokens.

void mint (TokensType tokens)

Parameters:

1. tokens - An amount of tokens to increase the total number of tokens

Limitations:

1. The message must be signed with the owner’s key

Return value: Returns no values.

Possible errors:

• message_sender_is_not_owner - the message is not signed by the
owner of the contract

7.6 Set Wallet Code
The function loads token wallet code for the future deploying of the Token
owners wallets.

void setWalletCode (c e l l wal let_code)

Parameters:

1. wallet_code - The token wallet smart contract code in the Base64
encoding

Limitations:

1. The message must be signed with the owner’s key

Return value: Returns no values.

Possible errors:

• message_sender_is_not_owner - the message is not signed by the
owner of the contract

39

7.7 Get Token Information

7.7 Get Token Information
It is possible to get various information about the token through functions
with self-explanatory name.

s t r i n g getName () ;
s t r i n g getSymbol () ;
u int8 getDecimals () ;
u int256 getRootKey () ;
u int128 getTotalSupply () ;
u int128 getTotalGranted () ;
c e l l getWalletCode () ;

7.8 Get Wallet Address
Getting the wallet address based on the owner public key or address.

address getWal letAddress (i n t8 workchain_id , u int256 pubkey , u int256
internal_owner)

Parameters:

1. workchain_id - A workchain index

2. pubkey - A public key of the wallet owner

3. internal_owner - An address of the wallet owner without workchain
index

Limitations: No limitations.
Return value:
The calculated address of the token wallet contract.

Possible errors:
No errors.

7.9 Get Wallet Hashcode
Getting the wallet address based on owner public key or address.

uint256 getWalletCodeHash ()

Limitations: No limitations.

Return value:
The hashcode of the wallet code loaded into root contract.

40

Possible errors:
No errors.

8 TONTokenWallet SmartContract. APIDe-
scription

Here we provide a description of the API of custom wallets implemented
as smart contract TONTokenWallet.

8.1 Tokens Transfer
Transfer Tokens from balance or granted balance by internal or granted
owner.

void t r a n s f e r (address dest ,
TokensType tokens ,
bool_t return_ownership ,
address answer_addr)

Parameters:

1. dest - A destination address of the token wallet

2. tokens - An amount of tokens to transfer

3. return_ownership - A flag to revoke the granted ownership

4. answer_addr - An address to send an answer message

Limitations:
This function can be called by current (internal or granted) owner only.

Return value:
No return value

Possible errors:

• internal_owner_disabled - an error when the internal owner ad-
dress is set to 0 for the internal messages

41

8.2 Get Wallet Balance

• message_sender_is_not_my_owner - an error when the caller is not
current owner (internal or granted)

• not_enough_balance - an error when the token balance is less than
an amount to transfer or destination address is 0

• not_enough_tons_to_process - an error when the contract balance
is less than an amount needed to process

8.2 Get Wallet Balance
Get the wallet token balance. This function can be called by internal
owner or granted owner only. A result message will be sent to the caller
contract function.
TokensType getBalance_InternalOwner ()

Return value:
In case lend not granted, Tokens amount on the wallet. Otherwise, the
minimum of the Tokens wallet balance or the lended balance
Possible Errors:

• internal_owner_disabled - an error when the internal owner ad-
dress is set to 0 for the internal messages

• message_sender_is_not_my_owner - an error when the caller is not
current owner (internal or granted)

8.3 Acceptance of Tokens
Accepts tokens from the root TIP3 contract only. This function can be
called by root token contract only.
void accept (TokensType tokens)

Parameters:

1. tokens - An amount of tokens to accept from the root TIP3 contract

Limitations:
This function can be called by current (internal or granted) owner only.

42

8.4 Internal Tokens Transfer

Return value:
No return value.

Possible errors:

• message_sender_is_not_my_owner - an error when the caller is not
current owner (internal or granted)

8.4 Internal Tokens Transfer
Transfers the tokens that are available only through sending a message
from another smart contract.
void i n t e r na lT r an s f e r (TokensType tokens ,

u int256 pubkey ,
u int256 my_owner_addr ,
address answer_addr)

Parameters:

1. tokens - An amount of tokens to transfer

2. pubkey - A public key of the wallet owner

3. my_owner_addr - An owner address

4. answer_addr - An address to send an answer message

Limitations:
This function can be called by current (internal or granted) owner only.

Return value:
No return value.

Possible errors:

• message_sender_is_not_good_wallet - an error when the sender is
not TIP3 wallet

43

8.5 Deleting a Wallet

8.5 Deleting a Wallet
Deleting an empty wallet.
void des t roy (address des t)

Parameters:

1. dest - An address to send the remaining coins from the wallet
balance

Limitations:
This function can be called by the original internal owner only.
The wallet must not contain any tokens to proceed.

Return value:
No return value.

Possible errors:

• message_sender_is_not_good_wallet - an error when the sender is
not the original wallet owner

• internal_owner_disabled - an error when the internal owner ad-
dress is set to 0 for the internal messages

• destroy_non_empty_wallet - an error when balance of TIP3 tokens
is non-zero

• only_original_owner_allowed - an error when the granted owner
tries to destroy the wallet

8.6 Wallet Lending
Grants limited ownership of the wallet to the other user.
bool_t lendOwnership (uint256 std_dest ,

TokensType lend_balance ,
u int32 lend_finish_time ,
c e l l deploy_init_cl ,
c e l l payload)

Parameters:

1. std_dest - An address hashcode to grant permission to Price contract

44

8.7 Revoking Wallet Lending

2. lend_balance - An amount of tokens transferred ownership

3. lend_finish_time - Unix time of the end of transferred ownership

4. deploy_init_cl - A structure of deploy parametrs packed in cells to
make an order

5. payload - A structure of the order parameters packed in cells for
the order

Return value:
True.

Possible errors:

• not_enough_balance - an error when the token balance is less than
amount to transfer ownership

8.7 Revoking Wallet Lending
Revokes lended ownership.
void returnOwnership ()

Possible errors:

• internal_owner_disabled - an error when the internal owner ad-
dress is set to 0 for the internal messages

• message_sender_is_not_my_owner - an error when the caller is not
current owner (internal or granted)

8.8 Get wallet information
Get detailed information about the wallet.
d e t a i l s_ i n f o g e tDe t a i l s ()

Return value:

• name - The name of the token

45

8.8 Get wallet information

• symbol - The symbolic name (abbreviation) of the token

• decimals - The number of decimals positions of the token

• balance - The tokens balance on the wallet

• root_public_key - The public key of the TIP3 root contract owner

• root_address - The address of the token root contract

• owner_address - The address of the owner of the wallet contract

• lend_ownership structure:

1. owner - The address of the lend ownership owner of the tokens
2. lend_balance - The amount of tokens granted into lend own-

ership
3. lend_finish_time - Unix time of the end of transfered owner-

ship

• code - TIP3 Token wallet code

• allowance structure

1. spender - The address of the lend ownership owner of the
Tokens

2. remainingTokens - The amount of tokens granted into lend
ownership

• workchain_id - The workchain index

46

	Introduction
	Document Scope

	FLEX System
	System Purpose
	Terms
	System Architecture
	Difference between FlexToken and TIP3
	Usage Scenario
	Flex vs. Other Exchanges
	User Capabilities

	Flex System Properties
	System Layers Decomposition
	Flex System Layers
	Execution Layer
	Replay Protection Layer
	Binary Parsing Layer
	Processing Fee Layer
	Storage Fee
	Execution Fee
	Execution Limits

	Business Logic Layer
	Trading Pair Management
	Order Management
	Tokens Management
	Wallets Management
	Orders Matching

	Sequence Diagrams
	Securities List Aggregation
	Order Book Aggregation
	Sell Order Processing
	Buy Order Processing
	Cancel Order Processing

	Code Audit Report
	Wallet Code Replacement
	Price Queue Overflow
	Wallet Deployment Error
	Unlimited Tokens Emission
	Trading Pairs Duplicate

	FlexToken Smart Contract. API Description
	Trading Pair Creation
	Exchange Pair Creation
	Sell Order Placement
	Buy Order Placement
	Sell Order Cancellation
	Buy Order Cancellation
	Exchange Order Cancellation
	Coins Transfer
	Token Exchange Order
	Get Contract Owner Address
	Get Flex Contract Address

	RootTokenContract Smart Contract. API Description
	Root Contract Deployment
	Wallet Creation
	Empty Wallet Creation
	Tokens Transfer
	Tokens Emission
	Set Wallet Code
	Get Token Information
	Get Wallet Address
	Get Wallet Hashcode

	TONTokenWallet Smart Contract. API Description
	Tokens Transfer
	Get Wallet Balance
	Acceptance of Tokens
	Internal Tokens Transfer
	Deleting a Wallet
	Wallet Lending
	Revoking Wallet Lending
	Get wallet information

