
Dune-FreeTON Swap Implementation

1 Abstract
This is a submission for proposal #169 Contest: Dune → FreeTON Swap Implementation Stage
1 [13], the first phase of the implementation of proposal #117 Dune Network Merger [2] voted on
Feb 1, 2021, following the proposed architecture in the contest #149 Contest: Dune → FreeTON
Swap Architecture [14]. This implementation contains the full implementation of the bridge,
including smart contracts for Free TON and Dune Network, and relays in OCaml watching both
blockchains and transmitting information between them.

Wallet
Contact on Telegram: @fabrice_dune
Surf wallet: 0:60a74bf0a86b3ab44de42b8ccac944ff8fa95745add04b2505cb84fd42265783
Public Key: 0x97d1ac029229af5c5e7196932106186a4a085fe988562409803b3c4508da5475

2 Description
This implementation follows the architecture provided in the previous contest [14].
We only emphasis here the differences with the initially proposed architecture:

● Smart contracts on Free TON have been simplified, as the DuneGiver, the
DuneRootSwap and the DuneEvents contracts have been merged into a single contract,
providing the interfaces of the 3 initial contracts. This change simplifies the
implementation without changing the abstract architecture:

○ The deployment is easier, as there is only one contract to deploy on the FreeTON
side

○ The configuration is easier, as all abstract contracts know immediately the
address of the other ones, it’s only one contract

○ Gas management is easier: provisioning DuneRootSwap was complex, and
DuneEvents would keep some unused gas until the end of the merge. On the
contrary, having a unique contract means that extra gas from DuneEvents can be
used by DuneRootSwap immediately.

● Instead of having a per-user contract managing multiple swaps by this user, the
DuneUserSwap contract is used only for one swap. It is deployed after computation of
the hash of the swap fields. Again, it simplifies the implementation as there is no need to
manage a map within the contract.

3 Implementation Code
The implementation code is available here in open-source:
https://gitlab.com/dune-network/ton-merge/

3.1 Repository Content
The repository contains:

● The Free TON smart contracts in Solidity in contracts/free-ton/
● The Dune Network smart contracts in Love in contracts/dune-network/
● The Free TON part of the relay in src/free-ton/
● The Dune Network part of the relay in src/dune-network
● The Webapp for users to deposit their tokens and follow the swaps in webapp/

3.2 Build Instructions
● Install a recent Rust version:

curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh
. ~/.cargo/env

● Install a recent ft version (freeton_wallet):
opam repo add ocp
git+https://github.com/OCamlPro/ocp-opam-repository --set-default
--all
opam update
opam switch create 4.10.0
sudo apt-get install libssl-dev
opam install ssl.0.5.9 # 0.5.10 fails to compile
opam install ft
eval $(opam env)
ft init

● Prepare the project
git clone https://gitlab.com/dune-network/ton-merge.git
cd ton-merge
opam switch link 4.10.0
eval $(opam env)
make build-deps
make submodule

● Configure PostgresQL (replace <user> by your login):
sudo -i -u postgres
$ psql
CREATE USER <user>;

https://gitlab.com/dune-network/ton-merge/
https://github.com/OCamlPro/ocp-opam-repository

ALTER ROLE <user> CREATEDB;

● Build
make init-db
make
make ft-import

● Check binaries: the following binaries should be available in the bin/ subdirectory:
○ ton-merge-init : executable to setup the Dune part of the bridge
○ ton-merge-api-server: API server for the webapp
○ ton-merge-dune-crawler: crawls the Dune blockchain for new swaps
○ ton-merge-dune-injector: injects secrets revealed on Free TON on Dune
○ ton-merge-freeton: crawls Free TON and injects new swaps

Testing
The sub-directory test/free-ton/ contains a sequence of scripts that can be run either
locally (TONOS SE) or on the testnet to check the Free TON part of the bridge.

Test Deployment
This implementation has been deployed on the Testnet networks with the following
configuration:

● Website: https://freeton.dune.network/
● Contract address on Dune Network: KT1WukqbELKWtgsLADo49rNXFUopGScFcDHF
● DuneRootSwap contract on Free TON:

0:31c23d599cacfe7e2216874984a66a285b788eee8ee1f1dac442f1096286c9e0
● Configuration:

○ Relays public keys: Origin Labs:
0xf55e101690d6ee2fd9cd52e1a76f9fff67dee5688adfecb7b828709b703b7011

○ A swap must be observed by 1 relay
○ Minimal swap of 1000 DUN
○ Merge Period:

■ Last date for deposit on Dune Network: 2021-06-17T00:00:00Z
■ Last date for revelation on Free TON: 2021-06-21T00:00:00Z

○ Swap Period:
■ Time to reveal on Free TON: 2 days
■ Time before cancellation on Dune Network: 4 weeks

Deployment Instructions

Contract Deployment
The following steps should be performed to deploy the contracts:

● Initialize the database
$MERGEDIR/ton-merge/bin/ton-merge-init --config config.json
Where config.json contains:
{

"nodes" : [
"https://n.testnet.b3.nude.ovh",
"https://testnet-node.dunscan.io/"
],
"block_time" : 30,
"crawler_sleep" : 5,
"confirmations" : 3,
"api_port" : 7777

}
For Testnet

● You should have an account on Dune Network with tokens, known by dune-client
Create a file contract.json with:
{

"deployer_alias" : "dn1MTYYVnyMzC4y3U4oTa8a3B2zY7KkWf3Di",
"delegate": "dn1GgDxNZeGF3vr91EjrGyYrWuoX62iPvsn2",
"admin": "dn1MTYYVnyMzC4y3U4oTa8a3B2zY7KkWf3Di",
"swap_start": "2021-06-01T00:00:00Z",
"swap_end": "2021-06-10T00:00:00Z",
"swap_span": 345600,
"vested_threshold": "0.",
"total_exchangeable": "463000000.0000"

}
The deployer_alias and admin fields should point to the address of your account.

● Run the Dune deployer:
export DUNE_CONFIG=testnet
$MERGEDIR/ton-merge/bin/ton-merge-init --deploy contract.json
This should create a file setup.json that will be shared with other relays.

● Deploy the contract on Free TON using ft :
ft contract --create root_address --sign admin --deploy
DuneRootSwap --params '{ "relays": [
"0x%{account:pubkey:relay}"], "nreqs": %{env:TON_NREQS},
"duneUserSwapCode": "%{get-code:contract:tvc:DuneUserSwap}",
"merge_expiration_date": %{env:TON_END_DATE},

"swap_expiration_time": %{env:TON_EXPIRE_TIME}, "testing": true
}'
Which makes the following assumptions:

● An admin account has been created with enough tokens for the deployment
● The following env variables have been set:

○ TON_NREQS=1 number of required relay confirmation
○ TON_END_DATE=1623283200 unix time for merge end

(use $MERGEDIR/ton-merge/bin/ton-merge-init to print
this value)

● TON_EXPIRE_TIME=172800 revelation time on Free TON
The command will define an account root_address with the address of the contract, you
can print it with:
ft account root_address --info

Relay Deployment
The instructions to run a relay are described in the repository in the file:
https://gitlab.com/dune-network/ton-merge/-/blob/master/README.relay

These instructions make the following assumptions:
● The relay holds a Dune network account with about 1000 DUN for gas of revelation

transactions
● The relay holds an account with a keypair on the Free TON network. The corresponding

pubkey key has been transmitted to the deployer for initial configuration (though it is
possible to add or remove a relay at anytime)

● The deployer of the infrastructure sent the following information to the relay:
○ The contract.json file describing the Dune Network configuration
○ The setup.json file describing the initial state of the Dune Network contract
○ The address of the DuneRootSwap contract on Free TON

User interface
The user interface can be tested on https://freeton.dune.network/
The user can check all the swaps corresponding to his address, and create new deposits to
initiate new swaps. A deposit can either be made on the interface using the Metal browser
extension or manually using dune-client in a terminal. The revelation of the corresponding
secret can either be done automatically by the relays, or using either the Extraton browser
extension or tonos-cli in a terminal.
For every deposit, the user must set:

● The amount of DUN transferred (1000 minimum)
● The destination address on Free TON
● The public key on Free TON (for revelation)
● A refund address in case of swap cancellation

https://gitlab.com/dune-network/ton-merge/-/blob/master/README.relay
https://freeton.dune.network/

● A secret that will be revealed on Free TON, either manually or automatically

4 Links
[1] #149 Contest: Dune → FreeTON Swap Architecture:
https://gov.freeton.org/proposal?proposalAddress=0:cf1c6cbd204093c1a21ae5d384d47091020
244da814f3c799dc346363ccc1afe
[2] #117 Dune Network Merger
https://gov.freeton.org/proposal?proposalAddress=0:0136a706eaf305dc824058dd942dad99826
64bd2a7ca03b2143b247a220eff00
[3] the OCaml language https://ocaml.org/
[4] the js_of_ocaml OCaml to Javascript compiler
https://ocsigen.org/js_of_ocaml/latest/manual/overview
[5] OCaml Postgres Binding pgocaml https://github.com/darioteixeira/pgocaml
[6] ez_api API Server Library https://github.com/OCamlPro/ez_api
[7] Dune Network: Liquidity smart contract language for Love https://liquidity-lang.org
[8] Spice testing framework https://gitlab.com/o-labs/dune-spice
[9] Dune Metal browser extension https://gitlab.com/dune-network/dune-metal
[10] FreeTON : Solidity compiler https://github.com/tonlabs/TON-Solidity-Compiler/
[11] OCaml FreeTON Wallet and SDK https://github.com/OCamlPro/freeton-ocaml-sdk
[12] ExtraTON browser extension https://github.com/extraton/freeton
[13] #169 Contest: Dune->FreeTON Swap Implementation Stage 1 Proposal
https://gov.freeton.org/proposal?proposalAddress=0%3A766a2a6143151f09333cdd6ccf45ee6a
e7bcac6ce4c35d5b8f0d68c3ff01dab9
[14] Architecture Submission
https://gov.freeton.org/submission?proposalAddress=0%3Acf1c6cbd204093c1a21ae5d384d470
91020244da814f3c799dc346363ccc1afe&submissionId=1

https://gov.freeton.org/proposal?proposalAddress=0:cf1c6cbd204093c1a21ae5d384d47091020244da814f3c799dc346363ccc1afe
https://gov.freeton.org/proposal?proposalAddress=0:cf1c6cbd204093c1a21ae5d384d47091020244da814f3c799dc346363ccc1afe
https://gov.freeton.org/proposal?proposalAddress=0:0136a706eaf305dc824058dd942dad9982664bd2a7ca03b2143b247a220eff00
https://gov.freeton.org/proposal?proposalAddress=0:0136a706eaf305dc824058dd942dad9982664bd2a7ca03b2143b247a220eff00
https://ocaml.org/
https://ocsigen.org/js_of_ocaml/latest/manual/overview
https://github.com/darioteixeira/pgocaml
https://github.com/OCamlPro/ez_api
https://liquidity-lang.org
https://gitlab.com/o-labs/dune-spice
https://gitlab.com/dune-network/dune-metal
https://github.com/tonlabs/TON-Solidity-Compiler/
https://github.com/OCamlPro/freeton-ocaml-sdk
https://github.com/extraton/freeton
https://gov.freeton.org/proposal?proposalAddress=0%3A766a2a6143151f09333cdd6ccf45ee6ae7bcac6ce4c35d5b8f0d68c3ff01dab9
https://gov.freeton.org/proposal?proposalAddress=0%3A766a2a6143151f09333cdd6ccf45ee6ae7bcac6ce4c35d5b8f0d68c3ff01dab9
https://gov.freeton.org/submission?proposalAddress=0%3Acf1c6cbd204093c1a21ae5d384d47091020244da814f3c799dc346363ccc1afe&submissionId=1
https://gov.freeton.org/submission?proposalAddress=0%3Acf1c6cbd204093c1a21ae5d384d47091020244da814f3c799dc346363ccc1afe&submissionId=1

