
My TON wallet submission for #137 Contest: Free

TON wallet as a Chrome extension

(March 10 - May 12, 2021, 22:59 UTC)

Our team with unshadowed pleasure wants to present our web-extension

on judges review. We called it “My TON wallet” that describes that all our

aspirations were directed to the best user experience. We have used only

the best practises in security area for the web extension developing

process, that can be found on the official chrome website for developers

As we all know the most important thing that can hold back all

cryptocurrencies innovations are - user experience and security. People

don’t want to trust any external tools or wallet if they can’t have human

support for them with incidents. By this reason all cryptocurrencies

software must have the highest security level. The risks can appear from

external libraries. For this reason we have reduced the use of any external

libraries that could have any vulnerability source code in the future. In the

near feature we will remove all dependencies completely. For now we use

only 11 (exclude @tonclient).

We use practise when the wallet password is stored as a single variable in

browser memory. This in-memory approach allows minimizing the chance

to grab access for restoring passwords for the wallet. Later we want to try

to apply a technique for time encryption password in memory.

The password checking for the unlock operation is provided by the

comparison of a random hex key with length 256 that is stored in

indexedDb and its encrypted hash that was obtained by AES-GCM with

password inclusion. In this case to receive the master password needs to

decrypt encrypted data that must be equal to the hex string by 256 length.

Also, IndexedDb stores only common information, like transaction history,

etc. key pair is encrypted with AES-GCM

https://developer.chrome.com/docs/extensions/mv3/security/

Let’s review the second point that holds mass propagation of decentralized

software - the user experience.

Here we can see user flows that are possible to the web extension.

Everything is extremely simple and concise. We will add additional flows as

we evolve.

Here is the common architecture:

The web extension

contains two main UI

points. Popup for

common operation and

the page that allow

providing multisteps

operations, like

backup/restore, etc.

Later we plan to

integrate to the page ABI

interaction by html

forms and smart

contract composing in a

rich code editor. All

communications happen

by standard messages

mechanism with strong

origin source checking. The content script can’t reach to the popup or to

the page bypass the background script. This script manages all operations

between the free TON blockchain and web extension. The background

script has the one main controller and all operations are split on several

sub controllers that run specific functions that relate with certain areas

(account methods, network methods, token methods, etc.) The local

storage has a custom wrapper and doesn’t store any secure information.

The storages between the popup/page and background script are isolated

during interaction, but have the common browser local storage. This

approach allows synchronizing preference for theme between the popup

and the page, for example. The vault is the indexedDb storage that contains

several dbs that store accounts/networks, etc. Each account record

contains encrypted keys that can be decrypted by in-memory password

when they are needed for signing or another operation, after this operation

they wipe from the browser memory.

Common review of technical stack

For building processes we use https://rollupjs.org/guide/en/, because it

allows saving time on compilation drastically.

For javascript framework we use https://svelte.dev/ that was developed in

the main idea working on devices with low memory, such as salepoint

terminals, etc.

For UI style we use a low size library https://alexxnb.github.io/svelte-chota,

that we plan to integrate into web extension source code to reach

zero-dependency aim.

To work easily with indexedDb that allow storing data up to 80% of disk

space we uses a low size wrapper https://www.npmjs.com/package/idb

For interaction with Free TON blockchain we use the official ton-client-js

library.

For multisig wallet smart contract uses the most recommended and most

tested variant

https://rollupjs.org/guide/en/
https://svelte.dev/
https://alexxnb.github.io/svelte-chota
https://www.npmjs.com/package/idb

https://github.com/tonlabs/ton-labs-contracts/tree/master/solidity/safem

ultisig

https://github.com/mozilla/webextension-polyfill allows supporting cross

browser buildings

We use https://gulpjs.com/ for building distributives for browsers

Checklist by the criterias

Hard criteria

● Generic

○ English language of the interface;

Support english/russian languages (initially depends on PC locales

settings)

○ Support of Google Chrome;

We use Chrome as the main browser for developing, but also web

extension works in IE, Firefox, Opera, Brave.

○ Absence of analytical trackers (Google Analytics, Yandex Metrika, etc.);

We don’t track any user activities, we don't collect any user actions

even anonymized data, like Metamask does.

○ Support of mainnet and testnet(s);

These both + local network for developers, that is based on

tonlabs/local-node docker container. Port 7777

○ On-chain activity history (transactions, messages, contract interactions,

etc.);

https://github.com/tonlabs/ton-labs-contracts/tree/master/solidity/safemultisig
https://github.com/tonlabs/ton-labs-contracts/tree/master/solidity/safemultisig
https://github.com/mozilla/webextension-polyfill
https://gulpjs.com/
https://hub.docker.com/r/tonlabs/local-node

Each account has transaction history, that contains information about

deploy/transfer actions (another type can be added during evolution

process)

○ Any calls that require the user’s keys must ask for the password input to

decrypt them from the local storage.

To reduce any annoying experiences we have the master password

that stores by in-memory approach and uses it for the decryption process.

All the time before and after signing operation all keys are encrypted. We

have added the auto sign out feature, that allows adjusting a time when

web extension will wipe the master password from the browser memory

and by this moment will lock the wallet.

● Wallet features

○ Native support of any open-sourced non-custodial Free TON wallets, e.g.:

■ Original TON wallets (Wallet v. 3);

■ TON Labs’ wallets (SafeMultisig, SetCodeMultisig);

We have selected the most tested and recommended wallet

SafeMultisig

○ Random seed phrase generation;

A user can see this phrase on the initial step of adding a new account

in the wallet, can download in the file or print. We avoid any additional

checking like a game in memorizing , etc. in consensus that it is annoying

for the user. But instead in this case the user must confirm that the seed

phrase is saved by checkbox checking.

○ 12 or 24 words wallet initialization (based on wallet contract);

We decided that 12 words will be well enough for SafeMultisig smart

contract

○ Wallet seed phrase backup and restoration;

A user has several options how to backup and restore access to the

wallet. We have the seed phrase backup process (where the user must

confirm that the phrase is saved) on the initial step and keys/keystore(full

or limited) backups by demand. For the restoration process the user can

use any of these backup types. But we recommend using the keystore

backup type as it is more comfortable. This backup type is encrypted by

password and has a hint that allows saving some memorable phrase to

remind the password after a long time when the wallet is unused.

○ Public and private keys generation, backup, and restoration;

This step is the second after seed phrase generation. All keys are

generated by seed phrase.

○ Encrypted local key storage;

We use AES-GCM encrypted keys that store into indexDb, not in the

browser local storage. All additional information that is useful for better UI,

caches, transaction histories, balances stores without any encryption to

improve performance. This information can’t give any access to user

assets. But later we plan to provide “paranoid mode” in settings.

○ Password protection;

Web extension has the master password that gives access to the

wallet information. This password is used to access for any wallet

functionally and for keys decrypting/encrypting.

○ Support of sending a memo with messages (or encoded payload).

A user can send a transaction with some amount and message to

another address that supports SafeMultisig smart contract

Soft criteria

● Multilanguage support;

Supporting English/Russian languages from the box, any other

languages can be added in quick mode. Just need to translate the one file.

The browser independent i18n implementation which is not hard bound

with PC locale.

● The extension is published in the Chrome store;

The link can be found on forum or by searching in chrome web store

(we can’t be sure, on the moment of evaluation, about that the web

extension will be available, because there is inject.js content script (dummy

layer for further web3 like library) that inserts itself on each page). Archives

for manual installation are available from this page.

● Support of additional browsers (Firefox, Brave, Edge, Safari, Opera);

The common build process.

● Browser notifications on events;

Notifications happen when transaction adds to the local db

● Detailed and easily understandable charts explaining the architecture and

business processes;

In judges taste. The all additional documentation is available on the

official website https://mytonwallet.com

● Brevity;

To be involved in the development process you don't need to learn

any special libraries, just read a code and documentation.

● Mostly everyday English to facilitate understanding;

We have tried to use simple English, because our team includes

people from all world and not all read English classic literature.

https://chrome.google.com/webstore/
https://github.com/mytonwallet/web-extension/releases
https://mytonwallet.com

● Readiness to participate in the implementation of the solution in the next

stage;

We have a big list of requested features and desires to implement

them all. Check below.

● Verifiable extension security along with the process to verify the equality

of published version with source code.

We use

https://developer.chrome.com/docs/extensions/mv3/security/ guide.

Performance

Among aims that were set up for developers by themself was the

performance. We had the strong understanding that good user experience

will demand speed and quick response for the product. That’s why we have

selected a svelte.js that compiles into vanilla javascript code. This decision

allowed our team create web extension with size around 6.7 Mb, where

tonclient.wasm library takes place 3.95Mb. In comparison with Metamask,

where there is no big external library, the size is 28.4Mb and our web

extension is smaller at 76%. This fact will allow us to implement a small

sized mobile application or even create a version for the salepoint terminal

some.

User flows

For every page can be applied a light or dark theme. The dark theme is set

by default.

https://developer.chrome.com/docs/extensions/mv3/security/

First run

After web-extension installation , the user can select what a process must

be invoked - create a wallet or restore a wallet.

Here we show the creating process.

The user also can select “restore a wallet”. This process to allow restoring

a wallet from the keystore file, that can store full exported data (address,

keys, contacts list, contracts list, transactions, etc.) or limited (address,

keys) for all accounts. The user can’t restore from seed phrase or keys pair

on the initial step, because these are legacy methods that must be avoided.

As soon as the user will have at least one account in the wallet, there will

be available to restore from seed phrase, keys pair.

Backup

The user can do the backup procedure for own wallet by several ways:

1. Keystore

2. Keys

Below shows the keystore creating process:

If the user wants to see own kyes, then it is possible to do via the second

way:

Restore

Web extension allow restoring wallet by 3 ways:

1. From the keystore

2. From the seed phrase

3. From the key pair

UI for restoring by first method (from the keystore) is the same as on the

first run step.

UI for restoring by second method (from the seed phrase):

UI for restoring by third method (from the key pair):

Transaction sending

Abou us

License

The source code provides by Apache License 2.0

Documentation

All documentation you can find by this link (https://mytonwallet.com)

Requested features

1. Dapp connector for the signing transactions, the signing messages,

the encrypt/decrypt messages

2. Creating multisign wallet (many owners, requirement count more than

0)

3. Adding tokens and interactions with them

4. DePools supporting

5. Loading ABI for the smart contract interaction

https://mytonwallet.com

6. Smart contract editing/compiling/deploying right from the web

extension

7. Mobile version for IOS/Android platforms with the same functionality

as in browsers

8. Qr codes for the payment system via the mobile version (the payment

sending, ask payment, the deep link)

9. Onboarding library for Dapp for the quick installation of the web

extension or the mobile version

10. Swipe operations

11. DEX supporting

12. Buying on external exchanges

13. Supporting of easy conversion between currencies

Source code

https://github.com/mytonwallet/web-extension

https://github.com/mytonwallet/mytonwallet.github.io

Contacts

Telegram: @telepulos (not corporate account, just the coordinator of the

team members)

Email: support@mytonwallet.com

https://github.com/mytonwallet/web-extension
https://github.com/mytonwallet/mytonwallet.github.io

