
Free TON On-line Auctions

Contest submission by OCamlPro

Steven DE OLIVEIRA & Fabrice LE FESSANT
Contact: Fabrice LE FESSANT @fabrice_dune

1 Introduction

This document will describe the submission proposed by the OCamlPro team for
solving the DevEx contest on on-chain auctions. The goal of this contest was to provide
smart-contracts (SC) for deploying and managing different type of auctions (English &
Dutch) with multiple variations (Forward, Reversed & Blind). These SCs must be
compatible with TON’s Crystals, TIP3 & DePools. Also, they must be written in Solidity or
C++, the FreeTON SC’s languages.

The code of our submission is available on Github:

https://github.com/OCamlPro/freeton_auctions/

2 Contributions of this submission
Our submission is in two complementary parts, first-version/ and
second-version/

Note that a “classical error” is to implement reverse auctions as a simple change in the
direction of auctions, i.e. English auctions are moving up, while Reverse English auctions
are moving down. Instead, reverse auctions also reverse the position of buyers and
sellers. We made this error in the first-version/ (so we do not claim correctness of the
reverse auction implementation in that part), but correctly implemented them in the
second-version/ (but we didn’t have enough time to finish that version with debot and
testing).

2.1 Part first-version/

This part contains:
● A set of smart contracts in Solidity implementing various flavors of on-line auctions:

○ An AuctionRoot contract used to easily deploy the different auction flavors
○ An EnglishAuction contract

https://github.com/OCamlPro/freeton_auctions/

○ A DutchAuction contract
○ Bid, ReverseBid and BlindBid contracts to bid in these auctions, either

in direct mode, reverse mode, and blind direct mode
All these auctions work on a generic interface for TIP-3 tokens described in the
IVault interface.

● Deployment scripts using `ft`, our FreeTON wallet for developers, to test the
contracts

● A formal specification of each auction in TLA+ (tla+/)
● A high-level specification in an UML fashion (spec/)

with the following limitations:
● Limited checks on accesses to public methods of contracts
● No debot yet
● No deployment yet

2.2 Part second-version/
This part complements the first-version/ part with a focus on:

● Using direct TON transfers and standard TIP-3 tokens (we used Broxus TIP-3 token
contracts)

● In the “direct” flavor, the winner (buyer) “wins” control over the auction smart
contract, allowing him to control the “merchandise” for the auctioneer (seller),
usually, another TIP-3 token wallet. No specific method is used to bid, a simple
transfer is used to bid both for TONs and TIP-3 tokens.

● In the “reverse” flavor, the winner (seller) receives the tokens (TONs or TIP-3 token)
from the auctioneer (buyer), while the “merchandise” (another TIP-3 token) is
transferred from his bid contract vault to the auctioneer vault. Note that the bidder
can only start bidding after transferring his merchandise to the bid contract vault, so
that the merchandise is in an “escrow”.

● Particular attention has been paid on access control
The following flavors have been implemented in this model:

● English auctions (with min-increment percentage)
● Dutch auctions in automatic mode : the price decreases automatically with time
● Dutch auctions in manual mode : the price is decreased manually by the “auction

house”
● Reverse English auctions as well as Reverse Automatic Dutch auctions

Limitations:
● No debot yet
● No deployment yet

3 Details on the first-version/ part
3.1 Auction specification

We divided the auctions into two categories, English, Dutch, which can either be
Forward or Reverse and Clear (by default) or Blind. The logic behind each auction is
described in the TLA+ files.

 English Forward: the auction is initialized with a starting price, a max tick (time unit) and a
max time (time unit). The auction always end when max time is reached. As long as no bid
is done, nothing happens. When a bid is done, the auction ends after max tick without any
other bid higher than the last one (or if max time is reached).

 English Reverse: same than English Forward, except a new bid must be lower than the
last one.

 Dutch Forward: the auction is initialized with a starting price, a limit price, a price delta and
a time delta (time unit). The bidding price is a function of the time spend since the
beginning of the auction, the price delta and the time delta. After each time delta, the
bidding price is decremented of price delta until it reaches limit price. If the price reaches
limit price, the auction ends after time delta. If anyone bids a value higher than the bidding
price, he automatically wins the auction.

 Dutch Reverse: same than Dutch Reverse, except the bidding price is incremented and
the auction ends when anyone bids a value lower than the bidding price.

Blind auctions work the same way as a Clear auctions, except the commitment is hidden
until validation of the bidder.
These auction definitions hare the pleasant property that they eventually ends, either with
or without a winner. Also note that the difference between a Forward & Reverse auction is
quite small. The SC implementation takes into account this similarities to limit their size.

3.2 Infrastructure

Here is the list of the main contracts (including their interface) with a short
description.

 AuctionRoot: the main contract of the infrastructure ; this contract will deploy the auctions
and the bid managers.

 BidBuilder: the bid manager ; an instance of this contract is built when an auction is
created and will be in charge of creating Bid contracts and validating bids.

 Bid: the bid contract ; when a user wants to bid to an auction, the auction sends a request
to its BidBuilder to create a new Bid – this Bid is in charge of checking the status of a
generic “Vault” contract. If the status of the “Vault” is correct, then the Bid is valid and tells
the BidBuilder that it is correct.

 ReverseBid : the bid for reverse auctions

 BlindBid : the bid for blind auctions

 VEnglishAuction: the logic behind any English auction ; this abstract contract encodes the
bidding process of an English Auction with a virtual function newBidIsBetterThan.

 VDutchAuction: the logic behind any Dutch auction ; this abstract contract encodes the
bidding process of an Dutch Auction with a virtual function betterPriceThanCurrent.

 Constants : defines miscellaneous constants, modifiers and events used through the
project.

The actual Auction contracts are defined in EnglishAuction.sol,
EnglishReverseAuction.sol, DutchAuction.sol and DutchReverseAuction.sol. They inherit
their respective abstract contract (VEnglishAuction or VDutchAuction) and only define the
virtual function (newBidIsBetterThan or betterPriceThanCurrent).

Few more interfaces are defined. These contracts have no static implementation
and must be defined by the Auctioneer.

 IVault: a contract holding the bidding funds. When a bid is done, the user must satisfy the
“Vault” constraint (for example, transferring a given amount of crystals on its balance). The
funds on the “Vault” are locked and managed by the Bid contract ; this last contract will
either send it back to the Bidder if he lost the auction or to the Auctioneer if he won.

 IRootWallet: the manager of Vaults. They define a function getWalletAddress that returns a
Vault address (mostly used for TIP3 compatibility)

 IProcessWinner. a contract that should only be called by an auction. It has two functions:
acknowledgeWinner and acknowledgeNoWinner that are respectively called when there is
a winner / there is no winner.

3.3 Description of the Auction process

The file spec/bid_diagram.pdf describes the different steps of an auction.

3.3.1 Auction deployment

The auctioneer defines a Winner Processor. In Forward auctions, the auctioneer will sell
the contract ownership while in Reverse auctions, he simply provides the contract code he
wants to take control of. Then, he deploys an auction through the AuctionRoot contract.
AuctionRoot deploys 2 contracts : the Auction & its associated BidBuilder. The Auctioneer
then must initialize the BidBuilder with the address of the Auction (this step could be
avoided by calculating in advance the auction address). The Auction can then be started.

3.3.2 Bidding process

Any user can commit a bid by calling the bid function of an Auction. The Auction requests
the BidBuilder to create a Bid contract. This Bid contracts emits the details of its
associated Vault (in Forward, a vault is created for every contract while in Reverse, there
is a single vault containing the auctioneer funds). The user then transfers funds to the
Vault (Forward) or deploys a winner processor contract (Reverse); when this is done, the
bidder asks to check the correctness of the bid. If it is correct with respect to the Bidder’s
commitment, Bid validates its status to BidBuilder, who checks the origin of the validation.
If the validation comes from a correct Bid contract, it transfers the validation to the Auction.

The Auction has now a new bid, the potential old bid transfers back its vault to the
previous bidder.

3.3.3 Ending an auction

3.3.3.1 Auction winner

The function acknowledgeWinner is called with the best bidder information (address,
amount, Bid address & Vault address) by the auction. The Vault content is transferred to
the Auctioneer (Forward) or the buyer (Reverse).

3.3.3.2 No winner

The function acknowledgeNoWinner is called.

4 Details on the second-version/ part
The second-part/ implements on-line auctions with the following properties:

● The merchandise being sold is represented by a quantity of TIP-3 tokens, stored in
vaults during the bidding process. In the “direct” flavors, the ownership of the
auction contract is transferred to the winner, so that other merchandises may be
sold, as long as ownership of the contract grants full access to such merchandises

● The “money” used is either TON crystal, or any TIP-3 token. We used Broxus
contracts in our implementation. During “direct” auctions, a bid is done by simply
transferring the money to the auction contract (or its wallet for TIP-3 tokens).

● For “reverse” auctions, the auctioneer (buyer) transfers his money to the auction
wallet at the beginning of the auction. Bidders create AuctionBidder contracts, a
vault (TIP-3 wallet) is attached to every such AuctionBidder where the bidder must
store his merchandise before being able to bid. In case of win, the merchandise is
transferred to the auctioneer vault, while the auctioneer’s money is transferred to
the winner.

4.1 Example: The Direct English Auction

The next picture represents all the messages sent during a Direct English Auction done
with fiat (TONs):

● In the first part, the auctioneer deploys the auction contract (we plan to simplify this
process by either providing a root contract for auctions, or simply using a debot).

● In the picture, the contract would create a vault where the auctioneer would transfer
the merchandise, however, in the current implementation, we didn’t implement that
step, and just transfer ownership of the auction contract to the winner. Thus, the
contract implements a sendTransaction function, à la Multisig, so that the winner
can forge and send any message originating from that contract, for example to ask
for a transfer of the merchandise. We think this approach is more generic, but will
still implement the vault for merchandise also.

● In the next step, a first bidder transfers TONs to the auction from his multisig. The
bid is accepted (if greater than the minimal price set by the auctioneer)

● In the second step, another bidder transfers TONs to the auction. Since the bid is
bigger (if wanted, the contract can check for a minimal bid increment, like 10%), it is
accepted, and the former bidder is immediately refunded

● Finally, when the auction is finished (the auctioneer can set a maximal time, or a
delay after the last bid), a commit() message can be send by the owner to transfer
the bid money to his account; The winner is now owning the contract and can use it
to send messages to other contracts. In the picture, we propose to implement a
collect() message in the specific case of a TIP-3 merchandise that has been stored
in the auction vault.

Note that, although the picture is for an English Auction, the difference with a Dutch
Auction is minimal: in the case of a Dutch auction, the first bid is the winning bid if it is
greater than the current price, so there would be only one bidder in the scenario, and no
need to refund a previous bidder or wait for the end of the auction.

In the second picture, we present the same Direct English Auction, but using a TIP-3 token
as money. The interactions are a little more complex, because every entity must own a
TIP-3 wallet and use it to transfer/receive the bids.

4.2 Example: The Reverse English Auction
The following pictures depicts the exchange of messages in the Reverse English Auction
using TONs as money:

The following actions happen at the beginning:
● The auctioneer deploys the OCP_ReverseEnglishAuction contract, providing the

address of his merchandise vault (TIP-3)
● The auction contracts recovers the root wallet of the merchandise vault
● The auctioneer transfers his money to the auction contract (the starting price of the

auction)
● The auction is now ready

When a bidder wants to participate:
● The bidder calls the createBidder method of the auction contract. The auction

contract deploys a vault to serve as an escrow for the merchandise to be sold.
● The bidder transfers his merchandise to the bidder contract vault. The bidder

contract receives the notification
● The bidder contract is now ready
● The bidder calls the bid() method, and his bid is sent to the auction contract. At the

same time, the bidder contract “locks” the vault, until either an unbid is received
from the auction (if another bidder sends a better bid), or the bidder wins the bid.
Note that, if another bidder sends a better bid, the vault is unlocked and the bidder
can decide to recover his merchandise (using the empty_vault message), or decide
to bid again.

At the end of the auction (when either the limit time is reached, or a particular delay after
the last bid without further bids):

● The owner sends the commit message. The winner is notified, and his bidder
contract immediately sends the merchandise to the auctioneer vault. In parallel, the
money is sent from the auction contract to the bidder multisig.

Note that it is quite easy to generalize from fiat (TONs) to TIP-3 token as money, exactly in
the same way as done for the Direct English Auction.

4.3 Blind Auctions
Our implementation of blind auctions satisfies the following properties:

● Another user than the bidder cannot guess :
○ That the bidder is going to bid
○ The amount that the bidder is going to bid

● The bidder must choose the bidding amount when creating the bid contract
● The bidder must at least send the auction start price as money (TONs or TIP-3

tokens) to the bid contract BEFORE the end of the blind period
● The bidder can transfer additional money to the bid contract after the end of the

blind period to match the bidding amount
● If the bidder does not reveal the bid contract by calling the ‘bid’ method after the

blind period and before the end of the auction, all the money stored in the contract
is lost, i.e. at least the auction start price.

The process of a blind auction is the following:
● The auctioneer creates an auction contract (English or Dutch), setting up to dates:

the ending date of the blind period, and the ending date of the revelation period. It
also defines a starting price, all bids must be above this price

● During the blind period, nothing happens for the auctioneer, as bidders actions are
not visible

● During the revelation period, bids are received from OCP_BlindAuctionBid
contracts. The auction contract verifies that the address of the bid contract is indeed
an OCP_BlindAuctionBid, and that the blind date in the bid contract is before the
end of the blind period (to verify that the money was sent before) and that the
starting price of the bid contract is above the auction starting price (to verify that the
bidder committed enough money on time). The verification of the address of the bid
contract is also used to verify that the bid parameters did not change since the
creation of the bid: the static hash stored in the contract contains the amount of the
bid, the auction address, the bidder information (address and pubkey), and a nonce.
The nonce is a random number that prevents other users from recovering these
parameters from the hash stored in the contract (otherwise, they would be able to
know the amount that the bidder is going to bid).

● If a winning bid is found at the end of the revelation period, a winner() message is
sent to the bid contract, that should transfer the money to the auctioneer’s wallet.
For non-winning bids, an unbid() message is sent to the bid contract, that should
transfer the money back to the bidder’s wallet.

For bidders, the actions are:
● The bidder notices the start of the blind auction, with a blind period, a revelation

period and a starting price.
● The bidder chooses the amount he wants to bid, and generates a random nonce to

hide the amount in his bid contract
● The bidder creates an OCP_BlindAuctionBid with:

○ a hash computed from the amount of the bid, the nonce, the auction address
and his own information (address and pubkey)

○ a blind period date that should be BEFORE the one of the auction
○ a start price that should be ABOVE the one of the auction

● The bidder sends at least start price money to the bid contract (or its wallet for
TIP-3 tokens) before the end of the blind period. The bidder can still send more
money to the bid contract after the end of the blind period, as long as he had

already sent money equivalent to the starting price BEFORE the end of the blind
period.

● When the revelation period of the auction starts, the bidder sends a bid() message
to the bid contract with the actual amount he wanted to bid, and the auction
address. Before sending the bid() message to the auction, the contract verifies that
(1) the hash of the contract matches the amount and the auction address, (2) the
money stored in the bid contract (or associated wallet) matches the amount sent.

● When receiving a winner() message, it transfers the amount to the auctioneer’s
wallet (and the remaining to the bidder’s wallet)

● When receiving an unbid() message, it transfers all the balance to the bidder’s
wallet

● There is no way to recover the money if no bid() message was sent

We implemented the OCP_BlindAuctionBid contract, but we didn’t have time to implement
the auction counterpart yet.

4.4 Auction Smart contracts
The following pictures describes the inheritance relationship between the different smart
contracts that we implemented:

