NEVER Phase Il Auctions

Resources and Contacts
e Telegram: @laugan

e Wallet: 0:fd080fb5fc9266226ec59b062f0cdde85c818ef1d4ac4939804ee7616ec352f4
e Github: https://github.com/deplant/never2-core

Submission to NEVER Phase Il Auctions Contest.

Features
e Implementation-agnostic Auction & Bank (AuctionManager)
e Implementations of all Bid types (TIP3, CurrencyCollections, EVER)
e Implementations of all DAuction types (TIP3, CurrencyCollections, EVER)
e Distributed programming, no mappings

Technical Requirements Analysis

The solution MUST implement the auctions
for NEVER tokens automatically initiated
upon price reveal as implemented by Defi#24

Done. (Bank contract starts auctions with
startAuctions() method called from NotElector
from Defi#24). Tests use a mock of
NotElector.

The auctions MUST fulfill the requirements
mentioned in the corresponding section

Done. Check corresponding sections.

The D’Auctions MUST be implemented
fulfilling the requirements mentioned in the
corresponding section

Done. Check corresponding sections.

The NEVER Tokens MUST be referred via
the interface (or set of interfaces) that MUST
be applicable, at least, both for NEVER
native tokens (Currency Collections) and for
TIP-3 style NEVER tokens

Done. Implementation provides 2
abstractions that are used by Bank &
Auctions:

e |TokenRoot interface. TIP3 Root
already support it, CC Root/Giver
must follow its rules (at least for mint()
)

e AbstractBid abstract contract. Any
Bid implementation must extend this
abstraction.

Both abstractions are suited for both CC &
TIP3.

The solution MUST be deployed to any test
network (local usage is not enough)

Done. Deployed to dev.net (see
README.MD)

The demonstration of the workable solution

Ready. Explanation video will be posted at

https://t.me/laugan
https://github.com/deplant/never2-core
https://github.com/broxus/ton-eth-bridge-token-contracts/blob/develop/contracts/interfaces/ITokenRoot.sol

MUST be provided (both at AMA session as
well as at the personal environment of each
juror)

forum at submission time or shortly after.
Please, contact @laugan for AMA &
questions.

The manual for verifying the solution MUST
be provided and MUST provide extremely
clear and detailed instruction

Done. Refer to “Resources and Contacts”
section.

In case the implementation of NEVER token
is required for the demonstration its stub
implementation MUST be provided

Done.

All bid/auction logic done & submitted for
BOTH TIP3 and CC.

TIP3 implementation of NEVER token is a
part of submission.

For CC-NEVER token its Bid implementation
is also provided (BidCC contract) with all
extra currency logic, security checks and so
on.

CC-NEVER-Root (source of fresh NEVERS)
implementation can’t be done now as details
of CC mint are yet unclear.

All the contestants MUST provide their
contact information as a Telegram ID

Done. Refer to “Resources and Contacts”
section.

All the participants are strongly encouraged
to reuse the results of Defi#14, otherwise
they MUST provide a strong explanation and
description of their approaches

Done. Implementation follows original design.

Auction Requirements Analysis

Auction is performed on demand with a
minimum lot size. It sells as many NEVERs
as demanded by the winners but filtering
participants by the required amount (one
cannot participate if bids are valued smaller
than predefined).

Done. Minimum bid is implemented and can
be changed by Bank governance.

commit-reveal scheme

It is designed as Vickrey auction (sealed-bid, | Done.
second price).
The bid sealing is performed by the Done.

It has the predefined zero position based on
quoting result, so that the participant has to
submit the bid higher (or same) than quoting
price to get the bid accepted. The quoting
price is taken from NEVER the Elector that
was implemented during the first stage of the

Done. Minimum price goes from Elector as
auction round start parameter. Reverse
auction gets reversed minimum price.

https://t.me/laugan

NEVER set of contests.

The quoting price should not be disclosed
before the auction starts (according to #2).

Done. Auctions are started with undisclosed
price. Minimum (Quoting) Price is disclosed
only on “reveal” phase.

The winner address, winning and paid
(second) price are disclosed at the end of
auction.

Done. See AuctionSucceded() event of
Auction contract and getWinner() method.

If no one wins, the auction is considered as
failed and the lot is not sold.

Done. If auction has failed, a lot is not sold
and participants can’t trade in “trade” phase.

Auction is paid (so the bids must be locked
and predefined fees are supposed to be
taken for storage and winning), and the
payment is to go to NEVER the validators,
and as a payment for larger liquidity (because
of minimum lot value).

Done. Funds are added to Bids on reveal, so
it's impossible to return funds until you lose.
Payments are processed too both to Reserve
Fund and to Validators (still, it's up to Elector
to distribute his % to Validators. As a
validators list can be quite large, it's a bad
idea to send it around auctions).

9. After the auction ends every participant
can buy the desired amount of NEVERSs by
the price determined at the last auction
increased by some factor

Done. After the end of “reveal” phase, winner
bid is traded and other participants can trade
their “loser” bids (as a single amount or in
parts). “Loser factor” that is added to price
can be set in Bank settings prior to Auction.

10. Participants are encouraged to base their
solutions on the existing implementations of
Vickrey auctions (see DevEx SG contests
#26 and #16). However, it's up to participants
to decide if such solutions are applicable or
should be developed from scratch.

Developed from scratch. Explanation:
NEVER Auctions have important differences
from DevEx SG contests #26 and #16:
e Reversed auction (NEVER->EVER)
e Single pair of auctions
e Auction is based not on amount, but
on price.
All these differences are too much to use
previous works.

D’Auction Requirements Analysis

Aggregator (representor). Account which
owns the dAuction contract. It's obligations
include making a proper bid (which should be
not less than a certain percentage of
cumulative buying demand, algorithmical way
to calculate the bid is preferrable), making

a bid in a main auction at proper time.

Offline+Online.

Here’s the reason:

It seems that full online implementation of
algorithmical bid calculation will easily
disclose DAuction’s commit real bid price
much earlier than it's needed. We don’t see a
way to implement it without ZKP, so currently
we decided to stick to offline calculation.

Participant. Account which gives the contract
rights to bid from her name acting together

Done.

with aggregator

Intermediate media. Accumulates the bids in
a proper way, allows the representor to
make a price bid, sends the bid to the auction
contract, pays all correct fees, collects the
results and distributes the won lot between
them all and returns or rebids the original
bids if the contract loses the auction. Should
be implemented in a decentralized way
where the specific implementation of the
items mentioned above is spreaded between
Aggregator and mostly Participant.

Done. To make a distributable DAuction
without extensive use of mappings, it was
decided to make it behave more like
Wrapper/StakedTon. When participant places
bid to DAuction, he receives DAuction tokens
as proof of having a bid.

When bid is traded or unsuccessful, tokens
are burned in exchange of real funds.

The aggregator and participants' buy price is
finally adjusted by their amounts and roles
(aggregator has some additional benefits as
a reward for being a representor) All the
D’Auction constants are subject to be
determined at implementation phase, may
vary

from one contract to another and should
establish adequate incentives for all players.

Offline+Online.

Here’s the reason:

It seems that full online implementation of
algorithmical bid calculation will easily
disclose DAuction’s commit real bid price
much earlier than it's needed. We don’t see a
way to implement it without ZKP, so currently
we decided to stick to offline calculation.

Auctions Architecture

Sends 50%
to Elecior for

Walidator

Valiidator

Valiidator

»{ Elector >«

Valiidator

—

Elector commands
Auction Phases

EVER <::> Bank
Reserve

NEVER
Root
(TIP3.1 Root)

paymenis
EVER-=

NEVER
Auction

—

Root burns NEVERs

from Bidders' wallets
sends 50%

fo EVER Reserve

Root mints NEVERSs

NEVER-=

EVER

to Bidders’ wallets
_ NEVER Bids |
EVER Bids

Auction

Bid Flow consists of:

After the start of Auction cycle (see Phases section below), Bank (AuctionManager.sol)
spawns 2 Auctions (1 for EVER->NEVER auction, 1 for NEVER->EVER auction).

Now, participants can commit their hashes to auctions. For each such commit, Auction
spawns a Bid contract. It stores info about commited hash and some rules of its parent
Auction.

When Elector commands Reveal phase, bidders can send their actual bids to Bid
contracts. Bid contract will check if reveal corresponds to commited hash (price, amount
& salt are checked). Also, Bids are checked that real funds are locked on this step.
Each reveal talks to Auction & tries to win the Auction.

When Trade phase is called by Elector, Auction sends request to winner’s Bid contract
and forcefully exchange his Bid. All other participants can trade (fully or in parts), but
with a loserFactor applied to exchange price.

If a contract is a loser, but doesn’t want to trade, it can apply for a refund of his locked
funds.

Exchange goes through NEVER Root (that can be both TIP3 Root and CC Giver) and
EVER Reserve contracts.

Phases Architecture

Election cycle

Elector stores infe
>QLIOtati0r‘| Commit Phase CQuotation Reveal Phase about previous cycle >
Validators unil the payouts
> Election Phase >>Ouotation Commit F'HEISE> Quotation Reveal Phase

Sends a command
= Sends a command
Sends a command " to start Reveal oh to end Reveal Phase
fo start new round of Aucfions 0 start Heveal phase + and start free Trade
and a Commit phase a revealed quoling price
Sends a command
fo start new round of Aucfions
Winner sends and a Commit phase
Walidator rewards
» Auction Trade Phase >7 { ,_f |_|
> Auction Commit Phasze >> Auction Reveal Phase >> Auction Trade Phasze ;3;
| > Auction Commit Phase >
Auction Cycle

Cycle steps between Elector and Auctions

1. At the end of quotation commit phase Elector sends startAuctions(uint64 dtStart) to
Bank. This request destroys old auctions and starts a new pair of Auctions
(EVER->NEVER and NEVER->EVER).

2. Atthe end of quotation reveal phase Elector sends revealAuctions(uint128 minPrice_) to
Bank. This request reveals minimum price for bids. Now participants can reveal their
bids.

3. Before the start of a new quotation commit phase Elector sends fradeAuctions() request
to Bank. This request spends winner Bid and reward its owner with opposite currency.
Part of EVER bids goes to Elector. This value should be distributed between validators,
so elector should store its info about validators that have taken part in price discovery for
extra cycle.

4. Cycle returns to step 1.

DAuctions Architecture

Bids

3 DAuction places

accumulated total Bid 4 Bid sends total reward

1 Trader
places request
fo take part in bid
accompanied with
cumrency or fokens

Y

DAuction -+ 4 Trader sends request
o receive rewards

5 DAuction TokenRoot
burns Trader tokens and
sand him corresponding par
of total reward

2 Minfs DAuction
fekens to frader, 5o he will be eligible
for rewards or refund

Root of DAuctjon

Trader Trader

Dauction Flow:

e When DAuction owner wants to take part in Auctions, it places one of DAuction contract
implementations and set it up with collateral token root.

e As some trader wants to take part in DAuction, he sends a request placeTraderBid() to
DAuction contract.

e In exchange for his bid, trader receives special DAuction tokens that are used as
proof-of-posession.

e After Bid wins, trader is eligible to receive part of the rewards in exchange for burning his
DAuction tokens.

Limitations

e Current implementation was made with a single Auction pair (EVER->NEVER &
NEVER->EVER) in mind
e CurrencyCollection Root/Giver is not tested or implemented (no network to test)

Thanks for your time!

