
ForMet SG proposal

Summary
We hereby propose the creation of a Formal Methods Sub-governance (ForMet SG) for Free
TON.

Mission and Vision
The mission is to facilitate the improvement of the software used on the FreeTON network by
using formal verification methods thus dramatically reducing the risk .

The vision is to make FreeTON more secure and robust, and thus to enhance the FreeTON
ecosystem and expand the FreeTON community.

Rationale

The world of blockchain and crypto-currencies is a wonderful world for hackers looking for easy
targets : smart contracts are small pieces of code managing huge amounts of crypto-currencies,
and their automated behavior and immutability make them easy targets. The short history of
blockchains is already full of stories of millions of USD stolen or lost in many smart contracts,
starting from the DAO and ERC20 awful stories. Most of these contracts had been tested by
developers (using frameworks like Truffle, etc.) and many of them were audited by “security
experts”. Despite these efforts, there were still bugs to be exploited in them. This is due to the
limited nature of such verification techniques.
On the other hand, formal methods provide much more bullet-proof verification techniques: they
show that a smart contract code satisfies a formal specification, not for a few tested cases, but
for all possible executions. This is a very strong property to get, that gives much more trust in
the smart contracts than just testing or auditing. Yet, formal methods are limited by the expertise
and skills required to deploy them on real life smart contracts.
The goal of this new sub-governance is to build a team of strong experts from various
companies and to apply their expertise in formal methods to secure the Free TON ecosystem
and its most important smart contracts.

Scope of Activities
The proposed sub-governance shall perform the following activities:

● Organization and running of formal verification contests
● Distribution of funds to contest winners
● Developing and improving the Free TON community guidelines on formal verification

● Facilitating the development and application of open source tooling for formal verification
purposes

● Encouraging the creation of further formal verification teams

Formal verification is intended to be applied to the following software:
● Smart contracts (especially those essential to the Free TON infrastructure)
● TON compiler and other essential software
● Other software related to the Free TON blockchain with critically important behaviour

Subgovernance Organization and Management

Membership

Initial Members

Name Telegram Background Public Key

Fabrice LE
FESSANT

Telegram Former Researcher in Prog. Lang.
and Distr. Systems, CEO at Origin
Labs, CTO at OCamlPro

4aca372ed9695ab42
cc8ba7fd7f56d11c24
01611c2d513bbc28b
eb5c7f4363a1

Sergey
EGOROV

Telegram Software manager/director with ~20
years of experience, Cofounder of
Pruvendo

67dd20b9a760ae538
a7f24ebfbaaf09a7075
b4617a7ad09c19503
c2551f57d81

Thomas
SIBUT-PINOTE

Telegram PhD. in Formal Proof
(https://www.theses.fr/2017SACLX0
86) using Coq. Engineer at
OCamlPro/Origin Labs. Initial author
of the Tezos Michelson formal proof
framework in Coq and F*.

50384ec36bee19914
526f436a0adf57d0c3
5389934b5aaca15db
5b5e89f42aa0

Evgeniy
SHISHKIN

Telegram Researcher in the field of Formal
Methods in Software. Pursuing PhD
in Institute of Systems Programming
(ISP RAS). Senior Researcher at
InfoTeCS R&D (software
security/reliability group). See my
homepage.

6ff61c1a7bb09795f7
b5d5514dd710efb72
e9557654d362ef208f
de545ba7a33

Sergey
TYURIN

Telegram Programmer 30+ years of
experience

2c0ec55a109eb466d
9db5ee7c3adb075e7
7627ade83ae17cea8
47671ab8f0a85

https://t.me/fabrice_dune
http://t.me/sergeyegorovspb
http://t.me/ThomasSibutPinote
https://www.theses.fr/2017SACLX086
https://www.theses.fr/2017SACLX086
http://t.me/unboxedtype
https://unboxedtype.bitbucket.io
http://t.me/Custler

Andrey
LYASHIN

Telegram Entrepreneur. Mathematician,
Coq-programmer with 10+ years of
experience. Co-founder of Pruvendo
and consensusresearch.org.

cec27f6cfdadadc5da
135875d5988019bd8
a760fe6e16fe1f49459
cf6d18f9e7

Nickolay
VASILEV

Telegram Formal Verification Engineer, 8+
years of experience in Coq

b722871cc1210196
63e982eaf24958b2c
a9ffad4472d8d0a98
110d5eb5082004

Boris
IVANOVSKY

Telegram 25 years in system programming,
half of them in compiler dev.
Product owner of TON dev tools
as a job, doing smart-contracts for
FreeTON as a hobby.

1a99622e54b4e87d
603dd87c9cc936b38
8b2a0e1979bb56d4
039cfad0fbadc8c

Mitja
GOROSHEVSKY

Telegram CTO of TONLabs, the leading
ideologist of FreeTON

6ff322ad669dfad2f3
96b98bdc8690cc499
26f6a10cd7f10d07f0
31841cf09ef

The initial members shall oversee the efforts related to building the SG. They will also act as
jurors until the SG jury is assembled.

Member Admission
Membership is open to everyone with proven experience in the field of formal verification,
provided that a simple majority of the SG members approves the prospective member via
on-chain voting during the specific contests being run at least twice a year. The election shall be
made by a simple majority.

Membership Termination / Dismissal

The Membership in the SG can be terminated at any time by submitting a special on-chain
proposal that must be supported at least by ⅔ of SG members. In case of voluntary resignation,
the resigning member is supposed to initiate the proposal by herself, or, in case of impossibility
to do so, such a proposal can be initiated by any SG member.

Communication

The communication on the matters related to the activities of the SG shall happen through the
following channels:

http://t.me/andruiman
https://consensusresearch.org/
http://t.me/hyrax11
http://t.me/bivanovsky
http://t.me/Futurizt

● Website on gov.freeton.org (publication of contest proposals, information on membership
etc).

● Forum on gov.freeton.org
● Telegram group (open membership)
● Regular (weekly/biweekly) call

Formal Verification Workflow

We hereby propose a workflow for formal verification. It comprises four phases, and each of
them can be the subject of a separate contest. It’s illustrated at the next page and discussed
further later.

Phase 1

1. On the basis of information obtained from smart contract developers and architects
(interviews, specifications, and source code), a semi-formalized specification in a
controlled natural language is created.

2. On the basis of the semi-formalized specification, a business-level specification is
created so that:

a. It is written in a natural language
b. It contains a set of common-sense logical statements
c. It is accompanied by diagrams and flowcharts
d. It includes role-action matrices (optional)
e. It includes a table of possible attacks and malfunctions prioritized by severity

3. The business-level specification shall be reviewed and approved in due course by smart
contract developers and architects.

Phase 2

1. On the basis of smart contract source code, a formal specification should be provided in
a language that allows smart verification to be formally described. This language can be
either the own language of the verification tool (proof assistant, Prolog etc.) being used
or be a specific formal logic language such as:

a. First-Order Logic
b. Temporal logic of different kinds
c. Separation Logic
d. TLA+ family languages
e. Reachability Logic
f. Event-B
g. …

If need be, the source code can be translated to an embedded domain-specific language
(eDSL).

2. Using the formal specification, the functional verification is performed in one of the
following ways:

a. Semi-mechanical deductive reasoning (Coq, Agda, etc)
b. Automated theorem provers (Vampire, etc)
c. SAT/SMT solvers (Z3, AltErgo)
d. Symbolic/Explicit Model-Checkers

3. After review against the source code, the outcome is the code verified by a trusted proof
checker so that:

a. It proves the specification
b. It is verifiable by an external trusted proof checker (e.g. Coq, Agda, Isabelle,

Idris, K, whyML, Z3, AltErgo)

c. The list of externally required specifications is kept separately for the sake of
quick checkups

d. The internal specifications and proofs are provided and fully pass the build chain
e. All axioms (not proved assumptions) are kept in a separate file

Phase 3

1. On the basis of the source code, the formal specification and functional proofs, the
following artifacts are created:

a. Scenario specifications
b. Proofs of functional correctness

2. The following verification is performed:
a. Scenario-level verification
b. Gas consumption verification
c. Safety verification
d. Liveness verification
e. Verification of other requirements from Phase 1

Phase 4 (optional)

The goal of Phase 4 is to verify that the TVM code generated for the particular contract works
identically to the source code verified at the former stages. Thus, the compiler will be verified
but for the particular contract only. The kind of verification can be achieved, for example, by the
following workflow:

1. TVM bytecode is translated to an eDSL allowing for formal verification if needed
2. Mapping between high-level state and TVM-level stated must be described
3. The eDSL code is run
4. The resulting state is translated to a form comparable with the initial state
5. The states are compared, and the TVM bytecode is proved identical to the source code

Formal Verification Contest Organization

The SG shall follow the established Free TON practices when organizing contests.

The Jury
Contests are managed by the elected Jury. At the inception stage of the SG, the Initial Members
shall organize the Jury Selection Contest; before the Jury is elected, the Initial Members shall
act as jurors.

Selection Criteria
The Jury is elected from members with proven expertise in formal verification. Further
requirements shall be described separately in the proposal for the Jury selection contest.

Some samples of Jury selection contest proposals for reference:
● https://forum.freeton.org/t/free-ton-web-design-jury-selection-contest-1-0/4511
● https://forum.freeton.org/t/contest-global-community-subgov-jury-selection/6914
● https://blog.freeton.org/en/analytics-support-jury-selection-contest-results/

Functions of the Jury
The Jury shall perform the following functions:

● Ensuring the smooth operation of the SG
● Developing and reviewing contest proposals (CPs)
● Accepting and reviewing contest proposals
● Assessing contest submissions from participants
● Choosing contest winners
● Distributing funds between contest winners

Term of office of the Jury

Jurors are elected indefinitely; if a juror leaves the Jury, a new by-election contest shall be held
by creating a proposal and voting on it.

Remuneration to the Jury

The matter is covered in the following section. Further details shall be included in specific
contest proposals as they are on a contest-by-contest basis and described in each contest,
because depending on the contest, terms may vary.

Budget and Remuneration

The contest budget

The budget distribution for each type of the contest is described in the table below. It’s important
to note that this budget is proposed for each contest, not for the whole bunch of them.

Contest 1st place
prize

Total budget Details

https://forum.freeton.org/t/free-ton-web-design-jury-selection-contest-1-0/4511
https://forum.freeton.org/t/contest-global-community-subgov-jury-selection/6914
https://blog.freeton.org/en/analytics-support-jury-selection-contest-results/

Smart Contract
Verification
Contests

As described above these
contests are splitted into the
phases and each stage is judged
separately

Phase 1 50 kTON 100 kTON

Phase 2 350 kTON 900 kTON

Phase 3 350 kTON 900 kTON

Phase 4 350 kTON 900 kTON This phase is optional as
discussed above

Open Source Tooling
Contest

500 kTON 1 MTON Tooling to improve the quality of
smart contracts in the ecosystem

TVM Verification
Contests

500 kTON 1 MTON 2 contests planned: TVM formal
definition and program logic for
TVM bytecode

Bug Bounty Contest 500 kTON 550 kTON
(50 kTON for
jury, the
contest is
opened for
each
appropriate
bug claim)

Incentives for bug finders. As the
bugs are not expected for the
formally verified code it should be
a big bounty for chasers who dare
to question the overall technology
and approaches used by ForMet
teams

TVM Audit Contest 300 kTON 700 kTON Audit of the TVM Execution
Engine in Rust prior to later formal
verification

Specification contest 500 kTON 1 MTON Contests for those parts of the
system that are not planned to be
formally verified in the near-term
but still useful for the audit and
other activities such as blockchain
model, node model, consensus
etc.

Bug Bounty

This contest opened only when somebody claims he/she found a serious bug inside the code
that is claimed as verified and at least one jury member believes it’s a true claim. Only one
submission per contest that can be either accepted or rejected. If the claim is finally accepted
it’s considered as an exception and some explanations and plans for improvement are expected
from the team.

Jury Bounty

Normally, the jury bounty is 5% of the overall budget, but for phases 2, 3 and 4 of Smart
Contract Verification Contests it’s planned to raise it to 20% as it requires extremely serious
efforts.

This amount will be distributed among jurors who vote and provide feedback. This percentage
will be awarded on the following basis:

The percentage of tokens awarded to the jury will be distributed based on the number of votes
each juror casts. For example, if one juror votes 20 times and another juror votes 5 times, the
juror who votes 20 times will get 4 times more tokens than the juror who votes 5 times.
Detailed feedback is mandatory in order to collect any rewards.

Runner-up places award distribution

The award distribution for the places lower than the first will be defined inside the proposal for
each contest and discussed and accepted inside the subgov, but normally, the total award for
lower places should roughly exceed the 1st place award, staying inside the overall contest
budget.

The global budget

The global budget of the ForMet SubGov for 2021 is split into the six stages, where each stage
implies contributions approximately twice per quarter. The budgeting for each next stage is
approximate and may be corrected. It should be provided upon the specific inquiryto the main
governance and through the regular process of approval. The plan for each stage (including the
first one) is the best guess so the subgov may add, modify or remove some articles without
looking for additional approval. However, before asking for the next asking of contributions, the
subgov must report both about all the finished contests as well as about deferred or canceled,
also providing the information about the remaining balance that has to be taken into account
while counting the amount of tokens to be provided for the next stage.

The contributions for each next stage is asked when all contests for the previous stage are
completed and approved by the jury. In case some of the contests require more time or are
canceled, the subgov has a right to issue an on-chain voted proposal to move it to the next
stage. This decision must be explicitly noted in the request for the next stage of contributions.

In case the particular contest is long and takes more than one stage, the contributions for it will
be asked only at the last stage. All the participants are supposed to understand and accept the
risk of rejecting the corresponding financing.

The Bug Bounty contest is assumed for each second stage but if it doesn’t happen (as
supposed), its budget is automatically transferred to the next second stage without the
additional request from the main governance.

Contest type Quantity Budget (TON) Details

Stage Ia, Q2CY21

Phase 1 2 200 000 SMV, Elector

Phase 2 1 900 000 TIP-3

Specification Contest 1 1 000 000 To be discussed, but the Solidity
formal interpreter is the best
candidate

Total (Stage 1a) 1 100 000

Stage Ib, Q2CY21

Phase 1 1 100 000 PBTG (or another contract)

Phase 2 1 900 000 SMV

Open Source Tooling 1 1 000 000 To be discussed

Bug Bounty Contest 1 550 000 One contest is budgeted for each
stage while it’s hoped this contest
never happens

Specification Contest 1 1 000 000 To be discussed, but the Solidity
formal interpreter is the best
candidate

Total (Stage 1b) 3 550 000

Stage IIa, Q3CY21

Phase 1 1 100 000 Multisig 2

Phase 2 1 900 000 Elector

Phase 3 1 900 000 TIP-3

Total (Stage 2a) 1 900 000

Stage IIb, Q3CY21

Phase 1 1 100 000 DePool 2

Phase 2 1 900 000 PBTG

Phase 3 1 900 000 SMV

Open Source Tooling 1 1 000 000 To be discussed

TVM Verification
Contests

1 1 000 000 TVM formal definition

Bug Bounty Contest 1 550 000 One contest is budgeted for each
stage while it’s hoped this contest
never happens

Specification Contest 1 1 000 000 To be discussed, but the blockchain
model is the best candidate

Total (Stage 2b) 5 450 000

Stage IIIa, Q4CY21

Phase 1 2 200 000 Some new contracts

Phase 2 1 900 000 Multisig 2

Phase 3 1 900 000 Elector

Phase 4 1 900 000 TIP-3

Total (Stage IIIa) 2 900 000

Stage IIIb, Q4CY21

Phase 1 2 200 000 Some new contracts

Phase 2 1 900 000 DePool 2

Phase 3 1 900 000 PBTG

Phase 4 1 900 000 SMV

Open Source Tooling 1 1 000 000 To be discussed

TVM Verification
Contests

1 1 000 000 Program logic for TVM bytecode

Bug Bounty Contest 1 550 000 One contest is budgeted for each
stage, while it’s hoped this contest
never happens

TVM Audit Contest 1 700 000

Specification Contest 1 1 000 000 To be discussed, but the node

model is the best candidate

Total (Stage IIIb) 7 150 000

For the CY22 and upcoming years, another budgeting shall be conducted.

Subgov wallet

The subgov wallet is placed upon the experimental SMV contract (developed by RSquad - the
winner of the corresponding contest) with the address
0:1ec958fd022ab1d479dd722283fe5fd1d9de7196ee7f09f96b68e435776548c1.

First stage investment

If the present proposal is accepted by the main governance, the transfer of 1 100 000 TON is
expected to the address
0:1ec958fd022ab1d479dd722283fe5fd1d9de7196ee7f09f96b68e435776548c1. As
mentioned above, the address is owned by the SMV smart contract, and its security is checked
by the whole team.

https://github.com/RSquad/smv
https://forum.freeton.org/t/contest-proposal-dgo-smv-smart-contract-system/5481

