
Advanced Research & Development
Center

Project S014
Automatic Formal Verification of

Smart-Contracts

TON Merge Smart-Contracts Audit

Authors

Evgeny Shishkin

evgeny.shishkin@infotecs.ru

Moscow

July, 2021

Contents

1 Introduction 1

2 TON Merger System 1
2.1 System Purpose . 1
2.2 Terms . 2
2.3 System Architecture 3
2.4 Usage Scenario . 4
2.5 User Capabilities . 6
2.6 Relay Capabilities . 6
2.7 DuneRootSwap Owner Capabilities 7
2.8 Implementation . 7
2.9 Usage Contexts . 8

3 Discovered Defects 8
3.1 Balance draining using proposeChange 9
3.2 Balance draining using updateRelays 10
3.3 Balance draining using deployUserSwap 10
3.4 Imprecise balance check 11
3.5 Harmful onBounce handler 12
3.6 DuneUserSwap insufficient balance 13
3.7 Incorrect DePool address check 13
3.8 No duneUserSwapCode sanity check 14
3.9 Redundant accept() . 15
3.10 Huge OrderId malfunction 15

4 Conclusion 16

A Swap Order Processing Diagram 16

2

1 Introduction

The document contains the program code audit report for the TON
Merger project. The report consists of two parts. The first part
describes the high-level architecture of the system. The second part
containts the list of discovered defects. The list is sorted in the order
of defects severity level.

We found several critical vulnerabilities that were able to break the
system logic and drain smart-contract funds.

All discovered vulnerabilities were reported to the developers and re-
ceived their acknowledgement. Some of them were fixed immediately,
but some of them still not fixed1

The repository with smart-contracts source code is located at:
https://gitlab.com/dune-network/ton-merge/-/tree/

3341333052c303e6e316d5cc8107ea465d4964ac/contracts/free-

ton

2 TON Merger System

In this section, we describe the purpose and the overall architecture
of the system, together with roles of participants.

2.1 System Purpose

The TON Merger system is designed to perform account swaps
from Dune Network blockchain into FreeTON blockchain, unidi-
rectionally.

During the swap, the coins of a user get blocked in one network and
get funded on another network, using some fixed exchange rate.

The more long-standing goal of this project is to propose some typi-
cal scalable solution for merging exterior blockchains into FreeTON
blockchain.

1Partially mitigated by the fact that those defects are not that relevant to the ongoing Dune-
FreeTON merge process

1

https://gitlab.com/dune-network/ton-merge/-/tree/3341333052c303e6e316d5cc8107ea465d4964ac/contracts/free-ton
https://gitlab.com/dune-network/ton-merge/-/tree/3341333052c303e6e316d5cc8107ea465d4964ac/contracts/free-ton
https://gitlab.com/dune-network/ton-merge/-/tree/3341333052c303e6e316d5cc8107ea465d4964ac/contracts/free-ton

2.2 Terms

2.2 Terms

In the document, we use several terms that are defined below.

Term Description

User

A party that has an account within the
blockchain. This party is able to transfer coins
to other users, call smart-contract functions by
sending messages and observing the blockchain
state. Here, we assume, that the user has an ac-
count on both, Dune Network and FreeTON
blockchains.

Coins Native blockchain tokens.

Swap request

User intention to perform the swap of DUN to-
kens for TON Crystal tokens using the fixed ex-
changed rate. The intent is issued in a form of
blockchain transaction that get sent by a user ac-
count into the Swap contract of Dune blockchain.

Relay owner
A participant with exclusive rights to manage the
relay node.

DuneRootSwap
owner

A participant with exclusive rights for Dune-
RootSwap smart-contract management.

Swap period

A time period during which a single swap request
has to be executed. If the swap operation is not
completed within the stated period, then it may
be cancelled.

Merge period

A time period during which all swap requests
must be completed. No transfers are possible af-
ter this period, except returning remaining funds
into the giver smart-contract - the origin of fund-
ing coins.

Secret

A data string that is used as a cross-chain au-
thentication mechanism for the user to both ac-
knowledge swap operation on FreeTON side and
verify that the operation is completed on Dune
Network side.

2

2.3 System Architecture

Destination
address

An account identifier within FreeTON
blockchain that receives swap funds in case of a
successful swap request processing.

2.3 System Architecture

The principal scheme of interaction between different system compo-
nents is depicted on Fig.1.

Swap
Contract

AccountAccountAccount

Dune Network

Relay1

Relay2

RelayN
Root Swap

Contract

FreeTON Network

AccountAccountAccount

User Swap
Contract

User

Figure 1: TON Merger System Architecture

We distinguish the following system components:

• User. Initiates a swap request, putting the destination address,
tokens amount and secret hash inside the request among other
things.

• Account. A blockchain account that is used either to initiate a
swap request on Dune side, or to receive swap coins on Free-
TON side.

3

2.4 Usage Scenario

• Swap Contract. The smart-contract in Dune Network re-
sponsible for receiving swap requests from Dune users. Requests
have to contain enough coins for the swap operation to complete
successfully. The sent coins will be blocked forever in the con-
tract once the swap operation is successfully completed.

• Relay. A network node that acts as a retranslator between
two blockchains. In particular, it tracks user swap requests on
Dune side and translates them into swap request in FreeTON
blockchain, sending a message into the DuneRootSwap contract.

• Root Swap Contract. FreeTON smart-contract that pro-
cesses user swap requests from the relay nodes. It is the main
storage and manager of the swap coins. A single swap request
is issued in a form of DuneUserSwap smart-contract originating
from DuneRootSwap contract.

• User Swap Contract. A smart-contract responsible for man-
aging user swap request. After a successful confirmed deploy-
ment, it receives coins from the DuneRootSwap contract, and
eventually sends them to the destination address.

• Secret. A data string that is used as a cross-chain authentica-
tion mechanism. User approves the swap operation by revealing
it to the FreeTON smart-contract. This secret value get trans-
lated back into the Dune Network, proving the fact that the
user accepted the swap on FreeTON network.

2.4 Usage Scenario

Here, we describe the main usage scenario.

In the beginning, interested parties, that is main stakeholders of both
blockchains, do the following:

1. Deploy Swap contract on Dune Network.

2. Deploy DuneRootSwap contract on FreeTON blockchain. The
contract is initially deployed with enough coins to cover all ex-
pected swap operations and user swap contract’s management.

4

2.4 Usage Scenario

3. Deploy several relay nodes that will retranslate events between
two blockchains. Relay nodes play the crucial role in the system,
so, for greater reliability, it is expected to have several nodes
working in parallel.

After the initial steps completed, the process works as follows:

1. The user issues a swap request in Dune Network by sending
the transaction into the Swap contract. Among other things,
they put destination address, swap coins amount, hash value of
the secret into the request data.

2. Relay node tracks the issued swap request on the Dune Net-
work and translates it into FreeTON: it sends the deployUser-
Swap transaction into the DuneRootSwap contract. As a result,
new DuneUserSwap smart-contract get created. While working
in ensemble with DuneRootSwap, it is responsible for managing
the swap request.

3. Other Relay nodes also track the request. As far as they are
not the first to discover the request, they have to acknowledge
it instead of creating new swap request. It is done by sending
confirmOrder transaction into the newly created DuneUserSwap
contract.

4. After receiving enough confirmations from other relays2, the
DuneUserSwap requests funds from DuneRootSwap to cover the
swap operation expenses.

5. The DuneRootSwap sends coins into the DuneUserSwap for the
requested amount plus some coins to cover operational expenses.

6. The user, i.e. the swap request issuer, checks that the transfer
amount matches their expected amount. If everything is correct,
they reveal their secret value by sending revealOrderSecret into
DuneUserSwap contract. The contract compares the hash value
of the secret with the actual hash that was originally supplied
in the request. If they match, the contract transfer coins to the
destination address.

2This is a parameter of the system

5

2.5 User Capabilities

7. Relay node discovers the secret revelation event on FreeTON
blockchain and translates it back into Dune Network, into
the Swap contract. As a result, the initial DUN coins get blocked
forever in the Swap contract, preventing double spending.

The result of this whole operation is that DUN tokens get swapped
for TON Crystals. The swap in other direction is not possible.

The diagram of this process is partially depicted in Appendix A.

2.5 User Capabilities

Users of the system may perform the following actions:

• Issue swap requests to exchange DUN tokens for TON Crystal
tokens using the fixed exchange rate. The entry point is the
Swap smart-contract on Dune Network.

• Acknowledge the swap request after its issuance on the Free-
TON side by revealing the secret. As a result, swap coins get
sent to the destination address of the swap request.

• Cancel the swap operation in case the operation is not completed
within the swap period interval. In this case, the DUN coins are
returned to the user.

2.6 Relay Capabilities

It is expected that relay nodes act according to some algorithm. How-
ever, if a manual intervention is required, the relay node owner could
perform the following actions on behalf of its node:

• Confirm the swap request issued on Dune Network, on Free-
TON side.

• Cancel the issued swap request with expired swap period.

• Initiate the swap coins transfer from the DuneUserSwap to the
destination address.

6

2.7 DuneRootSwap Owner Capabilities

• Reveal the swap request secret. By doing that, the swap request
get the final approval. In this case, funds get transferred to the
destination address. This scenario assume that the user gives
their secret to the relay node owner.

• Inform the DuneRootSwap contract about the status of the node.

• Issue a Swap operation options change request. New options
may contain: identifiers of new relay nodes, identifiers of relay
node for removal, number of expected confirmations from relay
nodes, the swap period and the merge period, etc.

• Vote for or against the proposed options change.

• Cancel the change request if the request was not processed in a
timely manner.

2.7 DuneRootSwap Owner Capabilities

DuneRootSwap owner is capable in doing the following:

• Delete the DuneRootSwap contract, transferring all the remain-
ing funds to the giver address, if the merge period is expired.

• Update swap options in the DuneUserSwap contracts in case
they were changed recently.

2.8 Implementation

The whole system consists of the following components:

• Swap smart-contract, residing in Dune Network

• Relay node. It has several sub-modules we do not consider here.

• DuneUserSwap and DuneRootSwap smart-contracts of FreeTON
blockchain.

7

2.9 Usage Contexts

2.9 Usage Contexts

The TON Merge system was designed as a typical solution for merging
exterior blockchains into FreeTON.

In the proposed architecture, relay nodes play the crucial role of oracles
between two blockchains. In case those nodes act maliciously, the
whole merge process may be compromised.

To enhance the overall system reliability, the current TON Merger
architecture supports up to 64 relay nodes working in parallel. At the
same time, it is assumed that some number of those nodes may act
maliciously, but the majority act honestly and correctly.

Regarding the Dune Network and FreeTON merge, the setting
is more relaxed. There will be only 3 relay nodes and all of them are
considered trusted.

We especially emphasize this fact, because some of founded defects
may manifest itself only in the presence of malicious relays, and,
hence, not that harmful to the ongoing Dune Network-FreeTON
merge process.

3 Discovered Defects

We limit our audit work only with DuneUserSwap and DuneRootSwap
contracts, leaving Dune Swap code and Relay nodes code aside.

The following severity ranking for defects is used:

1. Critical. The coins of smart-contracts could be stolen/spent in
unexpected way. The whole merge process may be compromised.

2. Medium. Moderate coins loss and system malfunction, but
with possibility of relatively quick recovery.

3. Low. Does not manifest itself in any way, but may lead to users
or developers confusion.

Please note that in this ranking, we do not rely on probabilities of
events, only on severity of their expected outcomes.

Below we list the discovered defects sorted in the order of their severity.

8

3.1 Balance draining using proposeChange

3.1 Balance draining using proposeChange

In DuneRootSwap.sol, within the proposeChange function, there is the
following code:

1 function proposeChange (
2 uint8 nreqs ,
3 uint256 [] add re lays ,
4 uint256 [] d e l r e l a y s , . . .) public returns (uint64)
5 {
6 uint8 index = i s R e l a y (msg . pubkey ()) ;
7 require (uint64 (now) < g merge exp i ra t i on date ,
8 EXN SWAP EXPIRED) ;
9

10 tvm . accept () ;
11

12 op t i ona l (Change) opt prev = getChange (g change counter)
;

13 require (! opt prev . hasValue () ,
EXN CHANGE ALREADY PROPOSED) ;

14 // ...

15 }

Severity:Critical.

Problem: The balance of the DuneRootSwap could be quickly drained
in case of consecutive calls of this function together with passing long
lists into add relays and del relays.

Explanation: The main vulnerability here is in the possible excep-
tion through require() occurring after the tvm.accept() call.
The proposeChange method is executed by an external message, and,
hence, is paid from the balance of the contract.

If such call aborts with an error, the block validator will not put the
call into the block. However, validator will withdraw the coins from
the balance for the performed execution. Other validators will do the
same thing after receiving this message: external messages processing
is not coordinated in any way in FreeTON. This results in balance
draining.

In case of small amount of computation steps and data cells, the loss
is not that considerable. But if we pass large lists into the add relays
and del relays, the balance draining tempo will be considerable: ≈ 5

9

3.2 Balance draining using updateRelays

TON Crystal for each call. If we let at least 1 malicious send requests
into the DuneRootContract, its funds could be drained dramatically.

Status: Fixed. 3

3.2 Balance draining using updateRelays

In DuneRootSwap.sol, there is the updateRelays function with the fol-
lowing code:

1 function updateRelays (address addr)
2 public view AuthOwnerOrRelay () {
3 tvm . accept () ;
4

5 (uint8 nreqs , uint256 [] r e l ay s , uint8 [] indexes) =
g e t S t a t e () ;

6 IDuneUserSwap (addr) . updateAfterChange
7 (r e l ay s , indexes , nreqs , g merge exp i r a t i on da t e) ;
8 }

Severity:Critical.

Problem: The balance of DuneRootSwap could be drained if the
function updateRelays get called with an empty address.

Explanation: The nature of this vulnerability is the same as in 3.1,
i.e. exception after the contract accepts the message.
However, in this particular case, the situation is even worse because
the getState call consumes a lot of gas and hence the speed of balance
draining is even higher.

Status: Fixed. 3

3.3 Balance draining using deployUserSwap

1 function deployUserSwap (uint256 pubkey , uint256 swap hash)
public returns (address newSwap)

2 {
3 require (g p r ev u s e r k ey != pubkey | |
4 g prev swap hash != swap hash ,
5 EXN ALREADY DEPLOYED) ;
6 uint8 r e l a y i n d e x = i s R e l a y (msg . pubkey ()) ;
7 require (uint64 (now) < g merge exp i ra t i on date ,

EXN SWAP EXPIRED) ;

10

3.4 Imprecise balance check

8 tvm . accept () ;
9 // ...

10 }

Severity:Critical.

Problem: The DuneRootSwap balance may be drained if the function
deployUserSwap get called with the same parameters in an interleaving
fashion, like:

(deploy(pk1, sh1), deploy(pk2, sh2), deploy(pk1, sh1))
∗...

Explanation: The function deployUserSwap is responsible for issuing
new user swap requests. For this purpose, it creates new instance of
DuneUserSwap with the passed parameters each time it is called.

To create a single instance of a contract, you need to spend a relatively
big amount of coins. Besides check on line 3, there is no mechanism in
the code that prevents from redeploying DuneUserSwap several times.
In case of second deployment, the coins attached to a constructor mes-
sage will be returned to the DuneRootSwap in the bounce message.
However, the gas spent on constructing such message will not be re-
turned. This gives the ability to drain the balance by consecutive calls
emitted in such a way to bypass the check on line 3.

Status: Not fixed. 7

3.4 Imprecise balance check

1 function c red i tOrder (. . .) public o v e r r i d e RootSet ()
2 {
3 // ...

4 tvm . accept () ;
5 // ...

6 i f (address (this) . balance >= ton amount) {
7 IDuneUserSwap (computed addr) . r e c e i v e C r e d i t
8 {value : ton amount + (1 ton) ,
9 bounce : true ,

10 f l a g : 0 } () ;
11 c r e d i t e d = true ;
12 } else {
13 IDuneUserSwap (msg . sender) . c r ed i tDen i ed () ;
14 }

11

3.5 Harmful onBounce handler

15 emit CreditOrder (o rde r id , c r ed i t ed , ton amount) ;
16 }

Severity:Critical.

Problem: In case of DuneUserSwap insufficient balance, the excep-
tion may be thrown after accept(), leading to balance draining.

Explanation: The check on line 6 does not count the scenario, when
the following inequality holds

ton amount + 1TON > balance > ton amount

In this case, the exception will be thrown: the contract tries to send
more than it possesses. It is thrown after accept(), so the draining
scenario takes place.

Status: Fixed. 3

3.5 Harmful onBounce handler

1 onBounce (TvmSlice s l i c e) external {
2 uint32 f unc t i on Id = s l i c e . decode (uint32) ;
3 i f (f unc t i on Id == tvm . func t i on Id (DuneUserSwap)){
4 uint8 r e l a y i n d e x = s l i c e . decode (uint8) ;
5 deployedConfirmed (r e l a y i n d e x) ;
6 }
7 }

Severity:Critical.

Problem: The unintentionally inserted onBounce handler distorts
the swap order acknowledgement logic, potentially leading to draining
scenario.

Explanation: Originally, there was the onBounce handler in DuneRoot-
Swap, that was later commented out. In the process of fixing found
defects, the author mistakenly uncommented the handler. The pres-
ence of this handler distorts the swaps acknowledgement logic: a ma-
licious relay may decrease the number of unconfirmed deploys, and,
by doing many swap requests, drain the DuneRootSwap balance.

Status: Fixed. 3

12

3.6 DuneUserSwap insufficient balance

3.6 DuneUserSwap insufficient balance

1 function conf irmOrder (. . .) public
2 {
3 // ...

4 IDuneRootSwap (s r o o t a d d r e s s)
5 . orderConfirmedByRelay{ value : ROOT MSG FEE }
6 (tvm . pubkey () , s swap hash , o rde r id , msg . pubkey ()) ;
7 // ...

Severity:Medium.

Problem: Due to insufficient balance of the newly created DuneUser-
Swap contract, the swap process may stop until the manual user in-
tervention.

Explanation: The DuneUserSwap contract get created with 1 TON
balance. After each confirmation from relay node, the contract sends
acknowledgement message into DuneRootSwap attaching 0.1 TONs
value to it.
Now, you need only 9 confirmations to drain the balance of the con-
tract. After that, it will stop working. The system is designed to
support up to 64 relays, thus, the provided balance is insufficient and
may lead to unintended stop of operation.

Status: Not fixed. 7

3.7 Incorrect DePool address check

1 function maybeTransferOrder () private {
2 i f (g depoo l == address (0)){
3 orderStateChanged (STATE TRANSFERRED) ;
4 g de s t . transfer ({value : g ton amount , bounce : false , f l a g

: 1}) ;
5 } else { /* ... */ }
6 // ...

7 }

Severity:Medium.

Problem: In the code, there is a check that tries to distinguish empty
address value. However, the check is not complete. This may lead to
distortion of coins transfer process that is hard to recover.

13

3.8 No duneUserSwapCode sanity check

Explanation: At the end of swap operation, the DuneUserSwap con-
tract transfers the expected amount of coins to the destination address.
At the same time, if the user specified the DePool address, the funds
will be tranfered into the DePool instead.

The problem arises at line 2 - the check for empty DePool address .
In TON Solidity programming language, the address may be equal to
address(0), but also it could be undefined, and equal to addr none
value in this case. 3 The check ignores this fact. Now, if you put
empty DePool address in the swap parameters like {depool addr:“ ”},
then the check will not be able to distinguish it, and will try to send
coins to the empty address, leading to exception.
The funds will not leave the balance of the contract, however, it may
be challenging to fix this situation in a running system.

The correct check is done like this:

1 i f (g depoo l == address (0) | | g depoo l == address .
makeAddrNone ()) { . . . }

Status: Not fixed. 7

3.8 No duneUserSwapCode sanity check

1 constructor (
2 address f r e e t o n g i v e r ,
3 uint256 [] r e l ay s ,
4 uint8 nreqs ,
5 TvmCell duneUserSwapCode ,
6 uint64 merge exp i ra t i on date ,
7 uint64 swap exp i rat ion t ime ,
8 bool t e s t i n g
9) OwnerSet () AuthOwner () public

10 {
11 // ...

12 }

Severity:Low.

Problem: The DuneRootSwap may be deployed with incorrect dune-
UserSwapCode field passed. In this case, this may not be obvious why
the system does not work as expected.

3In contrast to Ethereum Solidity

14

3.9 Redundant accept()

Explanation: Due to absence of duneUserSwapCode sanity check,
there is a scenario, when the DuneRootSwap contract deploys DuneUser-
Swap contract, but with different, unexpected code.

In our case, we were struggling to found out what is wrong with the
system while it was deploying empty DuneUserSwap contracts. All
calls were successful up to some point, but messages were not get
transferred. A lot of time passed until we discovered the cause. This
situation could have been avoided, if the sanity check was in place.

Status: Not fixed. 7

3.9 Redundant accept()

1 function userSwapDeployed (. . .) public o v e r r i d e
2 AuthUser (pubkey , swap hash)
3 {
4 tvm . accept () ;
5 // ...

6 }

Severity:Low.

Problem: There are several places in the code with redundant ac-
cept() call: it is not needed there, and leads to confusion.

Explanation: Several methods in DuneRootSwap could be called
only by internal message from the DuneUserSwap contract. How-
ever, in some of those functions, there is the tvm.accept() present.
The effect of this call is achieved only for external messages, thus, it
is redundant, and leads to confusion of developers.

Redundant calls are to be found in DuneRootSwap.sol, on lines
358, 412, 432, 450, in DuneUserSwap.sol on line 436.

Status: Not fixed. 7

3.10 Huge OrderId malfunction

1 function conf irmOrder (string orderId , . . .) public {
2 // ...

3 }

Severity:Low.

15

Problem: When huge OrderId string is used as a swap identifier, the
system silently stops working.

Explanation: To distinguish orders on the Dune side, each swap
request is numbered with the unique orderId identifier. In the Dune-
RootSwap and the DuneUserSwap contracts, the OrderId identifier has
a type string. It allows to write huge strings into this field. If you
try to use huge identifiers (10Kb), the system stops working without
any visible reasons. For example, the confirmOrder call successfully
computes, but no messages are sent between contracts due to some
reason.

We had no chance to investigate this issue further, however, we estab-
lished the mere fact of a malfunction.

This whole issue could have been avoided if the OrderId had the type
uint.

Status: Not fixed. 7

4 Conclusion

During the audit, we discovered 5 critical, 2 medium, 3 - low severity
vulnerabilities. All those issues were discussed with corresponding
authors and received their acknowledgement.

The defects we were able to find were seen for the first time by the au-
thors. This allows us to conclude that we were the first who discovered
it among other audit attempts, if any.

A Swap Order Processing Diagram

Dune Merge Process

Relay DuneRootSwap DuneUserSwap Dest

1. Swap Deployment

deployUserSwap(pubkey,
swap_hash)

constructor(root_addr, swap_hash,
...)

state =
STATE_WAITING_FOR_CONFIRMATION

userSwapDeployed(pubkey,
swap_hash, addr, ...)

2. Swap Order Confirmation

confirmOrder(orderId, Hsecret, ton_amount, dest, ...)

Check that passed variables are hashed
into swap_hash value. If true, proceed.

orderConfirmedByRelay(pubkey,
swap_hash, orderId)

state =
STATE_WAITING_FOR_CONFIRMATION

 After confirmations from all relays received, we proceed further

state =
STATE_FULLY_CONFIRMED

3. Funds Transfer

deployedConfirmed(pubkey,
swap_hash)

MADE WITH swimlanes.io

Relay DuneRootSwap DuneUserSwap Dest

creditOrder(swap_hash,
ton_amount, pubkey)

state =
STATE_WAITING_FOR_CREDIT

receiveCredit{value: ton_amount +
1 TON}

state =
STATE_CREDITED

4. Funds Unlock

revealOrderSecret(secret)

state =
STATE_REVEALED

transfer{value:ton_amount,
bounce: false}(dest)

state =
STATE_TRANSFERED

	Introduction
	TON Merger System
	System Purpose
	Terms
	System Architecture
	Usage Scenario
	User Capabilities
	Relay Capabilities
	DuneRootSwap Owner Capabilities
	Implementation
	Usage Contexts

	Discovered Defects
	Balance draining using proposeChange
	Balance draining using updateRelays
	Balance draining using deployUserSwap
	Imprecise balance check
	Harmful onBounce handler
	DuneUserSwap insufficient balance
	Incorrect DePool address check
	No duneUserSwapCode sanity check
	Redundant accept()
	Huge OrderId malfunction

	Conclusion
	Swap Order Processing Diagram

