
Implementation Phase of Decentralized Voting Audit Solution for
Latin America

Contest

March 15, 2021 – Jul 14, 2021 at 23:59 UTC. There will be a 24-hour
countdown clock on the last day of possible entry.

Voting cycle:

20 days

Background:

The auditing process of Guatemala’s voting results has off-chain flaws
that require a comprehensive on-chain solution. The authors of the current
Guatemalan volunteer-based voting audit process have partners in other
countries such as El Salvador, Ecuador, Honduras, and several other
Latin American countries where voting audits face similar problems.
Those problems are based on an old system where the paper is trusted
Acta#4. Pictures of this Acta#4 are given to volunteers on a flash drive,
which means potential manipulation before this information is provided to
volunteers. To combat this issue, Carlos Toriello Herrerias, a Guatemalan
activist and blockchain enthusiast and an avid proponent of blockchain
technology, created an app to help mitigate this problem; however, it is still
an imperfect system since the incoming information is potentially
compromised. All of the details are described here.

In November-December 2020, the first phase of a “Decentralized Solution
for Voting Audit for Latin America” contest took place, aiming at
crowdsourcing solution ideas.

Base on the contest’s first phase winner’s submission 3, a more formal
specification was developed to be implemented by contestants (see
Addendum).

Requirements:

https://gov.freeton.org/proposal?proposalAddress=0:e4cdeb29d95d940ead30fd7ce93db4c6f6397c4ae1bd6ee6814b5c07612839ec
https://gov.freeton.org/submission?proposalAddress=0:e4cdeb29d95d940ead30fd7ce93db4c6f6397c4ae1bd6ee6814b5c07612839ec&submissionId=14

To develop a DeAudit smart contract system based on the specification in
Addendum.

DeAudit web-based explorer should be developed following the
specification.

Should include DeBots for all system user interfaces.

Should include auto-tests designed as a smart contract or a script to test
scenarios.

A solution should have a Free Software license. (Various Licenses and
Comments about Them - GNU Project - Free Software Foundation 1).

A system should be deployed and tested on the DevNet, and Jury should
be able to access it for testing.

Evaluation criteria and winning conditions:

All actions inside a solution should be easily accessible via DeBots
interfaces.

A solution should pass the attached tests.

If a test does not cover some scenarios from requirements, then jurors
can develop their own tests, but it should reduce such a submission
score.

The solution should be scalable to millions of participants.

Voting:

Jurors whose team(s) intend to participate in this contest by providing
submissions lose their right to vote in this contest.

A jury from other sub-governance groups could be added to this contest to
provide additional technical expertise.

Each juror will vote by rating each submission on a scale of 1 to 10.

https://www.gnu.org/licenses/license-list.html
https://www.gnu.org/licenses/license-list.html

Jurors should provide feedback on each submission.

The jury will reject duplicate, subpar, incomplete, or inappropriate
submissions.

Reward:

Only submissions with an average score equal to or more than 4.0 can
get a reward.

1st prize…………………………………………200,000 TONs

2nd prize………………………………………… 150,000 TONs

3rd prize………………………………………… 100,000 TONs

4th place ………………………………………… 75,000 TONs

5th place ………………………………………… 50,000 TONs

6th-10th place …………………………………25,000 TONs

Total prizes: 700,000

Note: If the number of winning submissions is less than the number of
rewards available, any remaining rewards are not subject to distribution
and are considered void.

Jury rewards:

An amount equal to 7% of all total tokens actually awarded will be
distributed equally between all jurors who vote and provide feedback.
Both voting and feedback are mandatory in order to collect the reward.

Governance rewards:

An amount equal to 2 % of the prize fund will be allocated to members
who participated in organizing the contest, to be distributed equally among
them:

@prigolovko

@chuck_bogorad

@Ronmillow

@Futurizt

@blazingangels

@emmorozov

@gdache

@carlosguate

@noBapnymuHa

Procedural remarks:

Participants must upload their work correctly so it can be viewed and
accessible in the formats described. If work is inaccessible or does not fit
the criteria described, the submission may be rejected by jurors.

Participants must submit their work before the closing of the filing of
applications. If not submitted on time, the submission will not count.

Addendum: Specification of a decentralized solution for voting audit
for Latin America

NOTE: A participant can make implementation changes against the
specification below, but they must support all described user functionality.

Glossary

DeAudit – decentralized elections audit, the process described in this
specification.

DeAudit library (DAL) – a unique smart contract containing all code for
all DeAudit system smart contracts, used purely for the client-side
application’s convenience to get the required code to deploy.

AuditDapp – a web-based and/or mobile application (at contestant’s
choice) designed to perform specific actions in the DeAudit process,
which is inconvenient or impossible to perform using DeBots interfaces.
AuditDapp should include DeAudit explorer functionality described in
section 12 below.

Action Team (AT) – a reputable group of people from a country that
initiates an DeAudit.

SMV – soft majority voting, see Declaration of Decentralization 1.

AT smart contract (ATSC) – an SMV-based smart contract system (see
link 1to the reference implementation), which has additional specific
functionality described in this specification. ATSC represents AT and could
be a root for several DeAudit smart contracts. Details of its deployment
are presented below.

ATSC should have a DeBot interface in parallel with AuditDapp.

Participant’s smart contract (partSC) – main “user interface” smart
contract for participation in DeAudit. Should have a DeBot interface with
maximum possible functionality in parallel with AuditDapp.

Act4 – a paper form called Acta#4 filled by hand by election officials and
volunteers.

Act4 collation smart contract (A4SC) – a smart contract deployed from
partSC representing some reference to Act4 and data from it, including
List of candidates(LoC), the number of votes, and additional Act4
information. A4SC sends results to DASC after the end of DeAudit, only if
validators approved data. Any AT member should be able to trigger that
transaction.

https://freeton.org/dod
https://github.com/tonlabs/ton-labs-contracts/tree/master/governance/SMV
https://github.com/tonlabs/ton-labs-contracts/tree/master/governance/SMV

DeAudit smart contract (DASC) – DASCs are deployed from ATSC
after AT voting in multiple instances.

DeAudit data smart contract (dataSC) – a smart contract which
contains all parameters for DeAudit and deployed by ATSC. Also, this
smart contract receives messages from A4SCs and sums them up into the
election results. It calculates % of Act4 received and % where consensus
was reached, which affects rewards calculation based on data collected
from A4SCs and centSCs.

Democracy Token (DT) – the main reward token for participants in
DeAudit.

Voting center (VC) – any location where citizens can come to vote, with
the issuance of Acta#4 at the end of voting.

Voting center smart contract (centSC) – a contract which acts as a root
for A4SC deployment. Anyone can initiate centSC deployment at an
address calculated as a hash a centSC code and VC number from a
DASC VC ledger.

Collator – anyone who initiated new Act4 verification and locked a stake
for it.

List of candidates (LoC) – the list of election candidates approved by
AT prior to deployment of DASC.

Validator – any randomly selected person deployed a validator’s smart
contract and registered it in DASC following the process described in this
specification.

Collator-validator cycle (C-V cycle) – one cycle of Act4 collation and
subsequent validation.

SMV base – several validators allocated to a VC. For s series of C-V
cycles, SMV base is calculated as a number of all active validators (those
who voted) during previous cycles and several validators allocated during
the current cycle.

Pre-audit process

First of all, an Action Team (AT) should appear and deploy an AT smart
contract (ATSC). In addition to standard SMV smart contract system
functionality, i.e. allowing adding/removal of members, ATSC should allow:

Vote on DeAudit initiation following SMV principles. Any AT member
should be able to initiate such voting.

Send trigger transactions to A4SC by any AT member.

Technically there could be several ATs, and they will be able to decide
which group to support depending on its public reputation.

DeAudit initialization

DeAudit process could be launched by ATs voting. As a result there will be
DASCs (see below) and dataSC deployed with the following fields:

Sequential number of DeAudit initiated by ATSC;

List of candidates (LoC);

List of voting centers (LoVC);

Time of audit start;

Validation period, collation period;

Collation base reward in Democracy Tokens (CBRwd);

Validator’s base reward in Democracy Tokens (VBRwd);

Collator’s min stake in TONs (ColStake);

Validator’s min stake in TONs (ValStake);

Additional data fields in Act4. It should be extremely strict and clear format
to prevent misunderstanding of collators and validators.

Max allowed number of C-V cycles;

Number of bits used to address DASCs from partSC.

DASCs are deployed in multiple instances: number of times equal
2^number of bits in (l)=DAN. This is required for the sharding partSC
registration process.

Each DASC will contain at deploy only the following parameters (Stateint):

Address of dataSC;

Address of ATSC.

A sequential number from 1 to DAN

Address of dataSC is also should be added into ATSC ledger (DeAudit
ledger), thus for each DeAudit it is possible to calculate all DASC
addresses knowing only ATSC address.

Additional decisions about new C-V cycles for a specific DeAudit should
be written to DeAudit ledger of ATSC and into dataSC.

Democracy Token

TIP-3 ‘Democracy Token’ (DT) should be the main reward issued based
on the principles described below.

AT can be the same for many election cycles. Issuance of DTs is not
limited, but it is tied to some real work to be done by people, i.e. its supply
is limited and it could have monetary value.

Validators and Collators should get 2 types of tokens a reward:
transferable (DT1) and nontransferable (DT2). Names could be offered by
a contestant.

If society supports DeAudit then merchants can accept DT1 as payment
to show off their civil position.

DT2 could be used later in future applications where reputation based on
participation in DeAudits can have some value.

Participants

Anyone can become a participant of DeAudit. For this purpose, a smart
contract (partSC) should be deployed.

PartSC can collate Act4 or register as a validator by sending messages to
one of DASC with address calculated based on first XX bits of partSC
address (as stated in dataSC).

PartSC should have a DeBot interface to be accessible inside any front-
end supporting DeBots. At the same time if a contestant believes that
there are no required DeBot interfaces available for some described
functionality, then this part can be developed only in AuditDapp. A
contestant will be required to push request for missed interfaces to DeBot
consortium (link 1)

The collation phase

Any participant can collate Act4. It could be people on the ground in
Guatemala, at voting centers who will be able to take a photo of an
original Acta#4; volunteers, temporary workers, and witnesses.

To do a collation a participant should send a message from partSC to
centSC with min ColStake. The address of centSC could be calculated
based on a voting center number and centSC code. If centSC is not
deployed partSC should deploy it first.

Prior to the collation of Act4 a collator should upload a picture of Act4 and
all other photo evidence that Act4 is original (voting site photo, on premise
witnesses photo) in any standard format using an AuditDapp/DeBot into
any decentralized storage (at a choice of a contestant).

CentSC deploys A4SC and writes inside its ledger partSC’s address as a
collator.

https://github.com/tonlabs/DeBot-IS-consortium

Deploy message should contain:

Min ColStake;

Hash and a reference of Act4;

Candidates numbers of votes from Act4;

Additional mandatory information from Act4 as required by DataSC.

Prior to deployment AuditApp/DeBot should check previously collated
Acta4 for this centSC and notify a user that her collation will be the
number X.

If a collator will upload a new “Act4 evidence”, then she must supply a
comment detailing the incorrect information in the previously uploaded
form.

CentSC should not accept a new collation if input data (votes per
candidates and other required supplementary numbers) is identical to one
of existing collated Act4. The idea is that a collator should provide
alternative evidence only if previously collated information is incorrect.

A contestant can propose and develop in her solution a mechanics for
adding more evidence to previously collated Act4 (co-collation).

The validation phase

Registration

Registration is required for several purposes:

To prevent an attack where someone could try to calculate and deploy
partSCs to be linked to a particular centSC (address mining).

To have an exact number of validators to calculate SMV base for each
A4SC.

Anyone can participate in DeAudit as a validator. To be registered as a
validator, a user should send from partSC a message with ValStake to a
corresponding DASC (based of first bits of partSC address), which
triggers the following:

DASC deploys ValSC with the following statInit = ValSC code + seqno.

DASC send to new ValSC address a message setting up a parSC
address as an owner.

DASC returns back to partSC its seqno, thus partSC will be able to
calculate its ValSC address.

DASC increases seqno.

This functionality should be accessible from AuditApp and/or DeBot.

Validator registration is available any time during the collation phase but
stops when the validation phase starts.

Validation

When the validation phase begins centSCs should stop accepting new
collations.

A contestant should provide justification of a statistically reliable number of
validations per 1 centSC, which should depend on the number of
registered validators.

Anyway, any registered validator should have a possibility to participate in
not less than 3 validations to promote involvement and trust in DeAudit.

When a validation phase of DeAudit starts ATSC should publish a cycle
random number (CRN), which should be used for the calculation of
attribution of registered validators to centSCs.

ATSC gets the number of all registered validators for a particular C-V
cycle by receiving all seqno from all DASCs = cycle validators number
(CVN). Using CRN and CVN everyone should be able to calculate this

voting center – validator link. The exact algorithm should be proposed by
a contestant, but all validators should be divided between centSCs in an
equal, deterministic, but random way.

AuditDapp (and DeBot if it will be supported) should be able to calculate it
and notify the user that she has the ability to start validation. AuditDapp/
DeBot should provide the functionality to view Act4 any registered data
from A4SC to users. During the validation cycle a user can select one
valid collated Act4 and confirm that data in A4SC is corresponds to a
photo or select to reject all collated Act4.

When centSC receives a message from partSC it should check first that
this partSC is a validator linked to this voting center by calculation based
on CRN and CVN. Then centSC sends received votes for and against into
A4SCs.

Interim slashing phase

Collators interim slashing

If for any cumulative number of C-V cycles number of votes against some
collated Act4 more than a SMV supermajority threshold then A4SC should
be destroyed, its address should be excluded from the ledger in centSC
and collator’s stake will be slashed, i.e. should be sent to ATSC balance.

Validators interim slashing

When the validation phase begins, all validators’ stakes should be
transferred from DASCs to corresponding centSCs in amount roundup for
total number of registered validators/number of VCs. It could be a bit more
than stakes provided by validators, thus DASCs should have a reserve.

At the end of the validation phase stakes should be sent back to all
validators who voted. Other stakes should be slashed, i.e. should be sent
to ATSC balance.

Collation-validation cycles

The purpose of DeAudit is to select in a decentralized way one Act4 for
each VC and confirm the correctness of input of election data. The
ultimate success of DeAudit is achieved if for all voting centers (VCs)
Act4s were collated and for all VCs validators come to a consensus and
selected 1 Act4 in terms of SMV.

In reality, there could be gaps in Act4 collation as well as there could be
insufficient validators activity. In such a case AT can vote to run a new
collation-validation cycle.

Amendment of SMV base

If AT decided to have another C-V cycle, then a SMV base for all A4SCs
should be reduced by a number of non-active validators during the
previous round. So for the next round the total SMV base will be
calculated and the sum of all previously active validators and the current
number of allocated validators.

Reward phase

If AT does not vote for a next C-V cycle or the maximum number of C-V
cycles have been reached, then DeAudit is over and the reward phase is
started.

Collators who were not slashed get rewards in DTs in the amount equal to
CBRew ^ (1+rounddown((% of Act4 received – 50%)/10%).

Validators who were not slashed get rewards in DTs in the amount equal
to VBRew ^ (1+rounddown((% of Act4, where consensus was reached –
50%)/10%).

The idea is to provide extra rewards for a joint community effort to get
maximum Act4 uploaded and verified.

Audit slashing

This section describes a process called Audit slashing. This is not a
normal process for a DeAudit, but it should exist as a protection measure

from “buying of a DeAudit”. The existence of such an outcome should
make “buying of a DeAudit” useless and a costly venture, which by itself
reduces the likelihood that someone will try to spoil DeAudit.

But still, there will be a chance that some wealthy group will decide to
collate and validate the wrong set of Act4s. To do so this group will
require, on average, 50% of all validation power.

If it becomes obvious for and AT that this what happening, AT can vote to
initiate a DeAudit slashing.

This decision should freeze all stakes and processes in centSCs. After
that, a trusted verification should happen.

ATs will vote for a closed list of trusted validators. Such validators will
have to vote for and against A4SCs. Results of such vote should be used
to return back of stakes of those collators/ordinary validators who
provided/voted for correct Act4s. The rest stakes will be slashed, but not
transferred to IDSC as in other sections slashing but should be distributed
among honest collators and honest ordinary validators based on their
staked amounts.

Audit explorer

The following minimal visualization capabilities should be a part of
AuditDapp and/or DeBot:

List of ATSCs (searched by the hash of a code)

For an ATSC:

All started and passed DeAudits

DTs issued

Locked in stakes in TONs

For a DeAudit:

Start and finish time

Stats of a current DeAudit:

Number of centerVSs where Act4 was collated even once and % of all
VCs;

Total number of collated Act4;

Number of validated Act4 and % of total VCs;

Current voting calculation results.

Number of registered and slashed validators and

Number of collators and number slashed collators

Audit slashing process indicator

For Audit slashing:

Metrics related to Audit slashing

There should be a search string for an address. If that address belongs to
any DeAudit smart contract system, it should be displayed with related
information.

