
DePool Phase 2 report 
 

1. Common part 
a. Overview 

 
The activity described and discussed at the present report is a continuation of initial              
preparations for DePool provided described in the Phase-1 specification document (see           
Submission 2). While Phase-1 was concentrated on descriptions in the form of natural             
language and different kinds of diagrams the most important part of the current Phase-2 is a                
code written in Coq language while the present report limits its value to supporting              
documentation. 
 
The main goal of Phase-2 is to prepare the specification in the form of the formal computer                 
language (such as Coq) as well as to provide proofs at functional level leaving all the                
cross-functional (business) level proofs to Phase-3. 
 
The present report describes and discusses the complete workflow of the Phase-2 providing             
code examples as illustrations, however it’s just an auxiliary part of the Phase-2 keeping the               
codebase provided as the main part of the delivery.  
 

b. Code acquiring and usage 
 
The code developed for Phase-2 may be found and acquired from the following three              
repositories: https://github.com/Pruvendo/depool_contract.git ,   
https://github.com/Pruvendo/depool_contract_scenarios.git and the binary submodule     
https://github.com/Pruvendo/coq-finproof-base.git. The code was developed and tested       
under Ubuntu and MacOS, other operating systems such as Windows were not tested and              
ability to be compiled under those OS is not guaranteed. 
 
As a prerequisite Coq 8.12.0 must be installed and properly configured. To build the              
project:  

● Clone both source repositories 
● Enter the modules subdirectory of each repository and clone the binary submodule 
● At the root dir of each repository just type make. Please allow 15-30 minutes for the                

scenario repository and a few hours for the main repository to build 
● Proofs have its own Makefile and should be build separately or using `make proofs` from                             

the root 

 
c. Underlying technologies 

 
The proposed solution is based on Coq Proof Assistant1. This tool is primarily designed to               
make an environment for proving mathematical theorems and for this purpose it provides             

1 https://coq.inria.fr/ 
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OCaml2-like language (named Gallina) for specifying the entities to be proved, specific            
language for proves (that is roughly the sequence of so called tactics (that stand for a step in                  
terms of traditional proving3) as well as a specific language ltac for defining custom tactics. 
 
In addition Coq provides its own comprehensive IDE as well as API to be integrated with                
other development environments such as Microsoft Visual Studio Code. 
 
Coq itself is based on a pure mathematical paradigm called Calculus of constructions4 (and              
its extension called Calculus of Inductive Constructions5) that allows to use mathematical            
induction6 in addition to pure formal logic7. 
 
Coq was initially introduced in 1989, was dramatically developed since that time, used for              
many theoretical and practical applications and, as an outcome, the authors of the present              
document suggest to consider it as a reliable tool that means: 

● If Coq states that some statement is proved it’s considered as proved 
● At the same time Coq may have any number of bugs not related to the statement                

written above 
 
According to Curry–Howard isomorphism8 all the mathematical proofs can be applied to the             
computer programs that is essential for the approach presented in the current document.             
Thus this proof assistant may be applied to the computer programs using the approaches              
described in the following sections. 
 

d. Basic principles 
 
The basic principles used to verify smart contracts implemented using imperative languages            
on Coq are: 

● imperative languages eDSL implemented on pure functional languages using state          
monads9 as it’s a conventional way to represent imperative sequences in functional            
environment 

● Types of imperative languages are represented not by specific Coq types but rather             
by type classes (isotypes) that correspond to some preconditions that allows to select             
a wide range of instantiations to, for example: 

○ Get a basic proof environment using Coq Z type 
○ Get an advanced proof environment using native TVM types 
○ Prepare the code for extraction into Haskell or other general purpose           

languages 

2 https://ocaml.org/ 
3 For example, apply tactic roughly means usage of some already known theorem or symmetry tactic 
utilizes the axiom that a=b is equivalent to b=a 
4 https://hal.inria.fr/file/index/docid/76024/filename/RR-0530.pdf 
5 https://coq.inria.fr/distrib/current/refman/language/cic.html 
6 https://encyclopediaofmath.org/index.php?title=Mathematical_induction 
7 http://www.collegepublications.co.uk/logic/mlf/?00029 
8 Howard, William A. (September 1980), "The formulae-as-types notion of construction", in Seldin, 
Jonathan P.; Hindley, J. Roger (eds.), To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus 
and Formalism, Academic Press, pp. 479–490, ISBN 978-0-12-349050-6. 
9 https://wiki.haskell.org/State_Monad 
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● Actively use custom tactics to identify areas that can be selected for autoproving in              
future 

● For the purposes of verification of the present contract isotyping to classic Coq Z,              
bool and similar types was selected. Maps are isotyped to list of key-value pairs              
rather than to Patricia tree as for the original TVM. Using of Z type allows to apply                 
such powerful tactics as lia or psatz. 

 
e. Preassumptions and limitations 

 
The following presumptions are suggested for the verification of the present smart contract: 

● Blockchain and TVM work strictly according to the specifications mentioned above 
● Coq Proof Assistant or any other tool being used works correctly 
● If something is not specified the assumptions based on common sense logic are             

applied 
● Infinite sequences of similar elements (arrays) may exist 
● Each cycle has fixed precalculated number of loops 
● Elector system-level smart contract works correctly 
● No inline recursions allowed 
● Each recursion (direct or mutual) has fix precalculated number of reentrances 

 
f. Deep vs. shallow embedding 

 
There are two main approaches implementing DSL: deep and shallow embedding10. The            
former technology keeps all the domain-specific elements as abstract leaving the           
implementation to the external “observer” while the latter one immediately unfolds           
domain-specific parts and then operates with them as with simple values. 
 
Generally speaking each of these technologies has some advantages and disadvantages.           
However, for the isotyping approach described above deep embedding looks more           
applicable as it keeps all the semantics abstract before the specific isotyping instance is              
selected. As a result deep embedding was selected for Pruvendo technology. 
 

g. Syntactically equivalent programs 
 
Ideally embedded DSL should achieve exactly the same syntax as a standalone program.             
However, practically achieving such an exact identity may be rather difficult or even             
impossible (due to syntax restrictions of the GPL where DSL is embedded). In this case it’s                
possible to introduce such relationships as syntactically equivalent programs. Roughly          
speaking, the programs are syntactically equivalent if: 

● They can be translated into each other without losing any data (but comments ,              
spaces, tabulation symbols etc.) 

● At least one direction of translation may be done by “simple” tools such as regular               
expressions to illustrate that the generic syntax structure remains unchanged 

10 https://www.cs.ox.ac.uk/people/jeremy.gibbons/publications/embedding-short.pdf 
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● The both programs should look close to each other and have the similar structure              
from human point of view 

 
The approach selected for the contract being verified uses Coq eDSL code that is              
syntactically equivalent to the original Solidity source. All the details are discussed in the              
corresponding section in the Specification part. 
 

2. Specification part 
a. General notes 

 
The present part is intended to provide formal specifications and function-level proofs for the              
DePool contract. The description of the DePool contract as well as a high level specification               
in the natural language provided in the Phase-1 specification document (see Submission 2). 
 
All the issues that are not covered in the present document are to be discussed in the                 
Phase-3 document to be developed within the incoming weeks.  
 
All the specifications and proofs are based on the DePool commit           
94bff38f9826a19a8ae55d5b48528912f21b3919 from 12/07/20.  
 

b. Code structure 
 
In the present section the key files and directories mentioned and briefly described (most of               
them are thoroughly discussed in the following sections): 
 

File/Directory Brief description 

Main repository 

src/DePoolClass.v Ledger definition 

src/DePoolFunc.v Translation of all the Solidity functions into 
Coq DSL 

src/SolidityNotations.vo Notations used by DSL (binary only) 

src/Lib/Proofs eval and exec functions with corresponding 
proofs as described in the corresponding 
section  

src/Scenarios/Scenario*.v direct scenarios 

reverse_translator/ Script of the reverse “translator” (in Python) 
as well as results of the translation 

Scenario repository 

src/Scenarios/Projections states, conditions and moves as described 
in the corresponding section (related to 
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c. DePool ledger 
 
Ledger represents the full state of the system. Physically Ledger is a record of LedgerC type                
class that contains the following fields (some obsolete and deprecated fields are not             
mentioned): 
 

 
Each of these fields is also a record and their fields may be accessed the shortcut as this:                  
↑12 ε DePoolContract_ι_m_poolClosed . The example above gives access to the             
m_poolClosed field of the DePool contract, 12 is a number of the corresponding field in the                
table above and a construction ↑12 ε states for monadic lifting of the underlying               
subcontract. It's worth mentioning that the field accessed in such a way is still wrapped into a                 
monad. To unwrap it the following construction has to be used: 
 
eval_state (↑12 ε DePoolContract_ι_m_poolClosed) l 

 
The full description of Ledger is provided in the src/DePoolClass.v file. 

projection approach) 

src/Scenarios/Correctness correctness predicates and corresponding 
proofs 

src/Scenarios/Common common complex predicates with some 
corresponding proofs 

№ Field Description 

2  Ledger_ι_ValidatorBase  ValidatorBase supercontract 

3  Ledger_ι_ProxyBase  ProxyBase supercontract 

5  Ledger_ι_ParticipantBase  ParticinantBase supercontract 

7  Ledger_ι_Errors  “Named” errors such as 
Errors_ι_IS_NOT_PROXY 

8  Ledger_ι_InternalErrors  “Unnamed” errors referenced by their 
index such as 
InternalErrors_ι_ERROR511 

9  Ledger_ι_DePoolLib  DePoolLib supercontract 

12  Ledger_ι_DePoolContract  DePool contract described by the present 
Ledger 

16  Ledger_ι_VMState  Internal TVM variables 

17  Ledger_ι_LocalState  Local variables state 



 
Many underlying elements of the Ledger may be accessed through the getters defined in              
src/DePoolFunc.v file and discussed in the corresponding section. Roughly speaking they           
repeat corresponding getters in the Solidity source and may be used after the proving. For               
example, ConfigParamsBase_Ф_getCurValidatorData returns information about the      
current validator (wrapped inside a monad). 
 
Another important way to alter fields is to use with and With notations as in the example                 
below: 
 
$ r2 with 
    RoundsBase_ι_Round_ι_handledStakesAndRewards := 
    _returnOrReinvestNonValidatorRound l 

_returnOrReinvestForParticipant_round2_handledStakesAndRewards   
r2 $} 
    (RoundsBase_ι_Round_ι_handledStakesAndRewards r2) 
    $} 

 
or 
 
{$ l With VMState_ι_messages := newMessage :: oldMessages $} 

 
In the former example the value of the RoundsBase_ι_Round_ι_handledStakesAndRewards         
altered while usage of With notation allows to modify a field hidden inside a tree of records. 
 

d. Specific Coq notations 
 
To achieve maximum similarity between the contract code written in Coq DSL and Solidity a               
number of Coq notations applied. For the for simple local variable assignment the following              
notation is used: 
Notation " 'U0!' l ':=' x ; t" := (do l ← x; t) (at level 33, right                                   

associativity, t at level 50): solidity_scope. 

 
Here do l ← x ; t is another notation that may be unfolded as (x >>= fun l => t)                                
where >>= is a classic monadic operations (bind). As a result we get a pure functional                
construction on a rather imperative form such as: 
 
U0! Л_timer := ↑ε6 DePoolHelper_ι_m_timer ; 

 
In the expression above the local variable timer is assigned by the field timer of the                
DePoolHelper contract. Semantically this code corresponds to the following code in Solidity: 
 
address timer = m_timer; 

 
At the right side of the Coq statement above another example of notation was used - ↑ε6                 
that lifts subcontract №6 (DePoolHelper) and thus gives access to its fields. 



 
Notations cover virtually all the syntaxic cases of Solidity. The following example shows quite              
a complex notation  
 
Notation " lift 'U2!' f ^^ p '[[' i ']]' '!+=' x" := (do x' ← x; do                                   
i' ← i ; lift (do f' ← ε f; let p' := xIntPlus ((f' ->> p) [ i' ])                                       
x' in modify (fun r => {$ r with f := {$ f' with p := (f' ->> p) [                                       

i' ] ← p' $} $} )); void!) (at level 35, right associativity, f at                             
level 50): solidity_scope. 

 
The notation above states for f.p[ i ] := x Solidity expression. 
 
Thus the set of notations allows to create DSL code that looks rather close (and human                
readable) to Solidity code. However, these codes are not identical to each other and this               
issue is discussed below. 
 
The full list of notations is available in src/SolidityNotations.v and partially in            
src/DePoolFunc.v . 
 

e. Translation from Solidity to Coq 
 
As it was discussed above the usage of notations helps to create a Coq program that is                 
syntactically equivalent (and semantically identical, with some limitations) to the          
corresponding Solidity program. To automate this task a special translator has been            
developed (not published at the current stage). The example of the translation is provided              
below: 
 
Solidity source: 
function checkPureDePoolBalance() private returns (bool) { 
        uint stakes = totalParticipantFunds(0); 

        uint64 msgValue = uint64(msg.value); 
        uint sum = CRITICAL_THRESHOLD + stakes + msgValue; 
        if (address(this).balance < sum) { 
            uint replenishment = sum - address(this).balance; 

            emit TooLowDePoolBalance(replenishment); 
            return false; 
        } 
        return true; 

}  

 
Coq DSL equivalent: 
Definition DePoolContract_Ф_checkPureDePoolBalance' : LedgerT       
(XValueValue XBool) :=  

U0! Л_stakes := DePoolContract_Ф_totalParticipantFunds (!           
$xInt0 !) ; 

    U0! Л_msgValue := msg_value ; 



U0! Л_sum := ↑ε12 DePoolContract_ι_CRITICAL_THRESHOLD !+ $               
Л_stakes !+ $ Л_msgValue; 

    If! ( tvm_balance () ?< $ Л_sum ) then { 
        U0! Л_replenishment := $ Л_sum !- tvm_balance (); 
        (->emit  TooLowDePoolBalance (!! $ Л_replenishment !!)) >> 
        $ (xError xBoolFalse)   

    }; $ xBoolTrue. 

 
As one can see Solidity and Coq DSL versions are not identical but close to each other from                  
human point of view. To verify that they are syntactically equivalent the reverse “translation”              
is required as it was discussed in the Common part. 
 
The process of the reverse “translation” is described in the following section while the              
ultimate result of the direct translation may be found in src/DePoolFunc.v file where all the               
sources of the smart contract being verified were translated. 
 

f. Reverse “translation” from Coq to Solidity 
 
As it was discussed before the reverse translation is needed to ensure that Solidity and Coq                
DSL code received after the direct translation are the same. At the same time the “reverse”                
translation must be easily understandable and must not contain any complicated           
transformations to be confident that the original syntax and grammar is kept. To achieve this               
goal the reverse translation was implemented exclusively via regular expressions. Example           
of such a regular expression (using Python syntax) is below: 
 
sub(r'XHMap ([a-zA-Z0-9ι_]*) ([a-zA-Z0-9ι_]*)', r'mapping (\1 =>           
\2)') 

 
The example above translates XHMap Coq structure into Solidity mapping. The full set of the               
regular expressions is provided in the Appendix A as well as at /reverse_translator directory              
of the main repository. 
 

g. Eval/Exec functions 
 
Each function when called does two things : modifies a Ledger and returns some value.               
Talking about return value it may be a regular value, void, exception (it’s considered as a                
return value) or ‘no exception’ entity. The latter two are described by XErrorValue type (that               
has two constructors - one for success (with some regular value as a parameter) and one for                 
exception (with ErrorsP or InternalErrorsP type class as a parameter)) while void is             
described by special type True that has only one constructor without any parameters. 
 
The return value of the function f may be calculated as eval_state f l (unwrapped from                  
monad) while the modified Ledger may be received as exec_state f l (unwrapped from                
monad as well). 
 



The function eval_state f l is called eval function while the function exec_state f l                   
is called as exec function. 
 
The internal structure of the eval and exec functions may be pretty much complicated so               
their direct usage may be rather difficult. The provided solution is to prove equivalence of the                
eval and exec functions to their manually created “twins” thus converting calculations into a              
formula. This process is thoroughly discussed in the next section. 
 

h. Proves of Eval/Exec functions 
 
The lemma of equivalence has been created for each eval and for each exec function. The                
example of such lemmas is provided below: 
 
Lemma DePoolContract_Ф_withdrawAll_eval : forall (l : Ledger), 
let sender := eval_state msg_sender l in 
let isInternalMessage : bool := negb (sender =? 0) in 

let isPoolClosed : bool := eval_state (↑ε12             
DePoolContract_ι_m_poolClosed) l in 
let optParticipant := eval_state (↓         
ParticipantBase_Ф_fetchParticipant sender) l in 

let isEmptyParticipant : bool := negb (isSome optParticipant) in 
 
eval_state DePoolContract_Ф_withdrawAll' l = 
if isInternalMessage then  

    if isPoolClosed then Value (Error I) else 
        if isEmptyParticipant then Value (Error I) 
    else Value (Value I) 
else  Error (eval_state ( ↑7 ε Errors_ι_IS_EXT_MSG) l). 

 
Lemma DePoolContract_Ф_withdrawAll_exec : forall (l : Ledger), 
let sender := eval_state msg_sender l in 
let isInternalMessage : bool := negb (sender =? 0) in 

let isPoolClosed : bool := eval_state (↑ε12             
DePoolContract_ι_m_poolClosed) l in 
let optParticipant := eval_state (↓         
ParticipantBase_Ф_fetchParticipant sender) l in 
let isEmptyParticipant : bool := negb (isSome optParticipant) in 

let participant := maybeGet optParticipant in 
let newParticipant := {$ participant with           
(DePoolLib_ι_Participant_ι_reinvest, false) $} in 
let l_set := exec_state (↓         

ParticipantBase_Ф__setOrDeleteParticipant sender newParticipant) l       
in 
let l_send := exec_state (↓         
DePoolContract_Ф_sendAcceptAndReturnChange) l_set in 



let statusDepoolClosed := eval_state (↑12 ε           
DePoolContract_ι_STATUS_DEPOOL_CLOSED) l in 

let statusNoParticipant := eval_state (↑12 ε           
DePoolContract_ι_STATUS_NO_PARTICIPANT) l in 
exec_state DePoolContract_Ф_withdrawAll' l = 
 

if isInternalMessage then  
if isPoolClosed then exec_state (↓ DePoolContract_Ф__sendError             

statusDepoolClosed 0) l else 
if isEmptyParticipant then exec_state (↓           

DePoolContract_Ф__sendError statusNoParticipant 0) l 
        else l_send 
else l. 

 
The strategy of proving such lemmas is based on the compute tactic that makes the deepest                
reduction of the term thus ideally automatically achieving the equivalence of the both terms.              
However, it virtually never happens in real life and requires as wide usage of auxiliary tactics                
as well as to perform state-of-the-art activity to make some terms opaque to avoid overflow               
or inacceptable long calculations.  
 
All the eval and exec functions may be found in the src/Proofs directory. Please note that the                 
full compilation of all the files from this directory may take up to a few hours. 
 

i. Projection approach 
 
A finite state machine with (in some cases) temporal additions was selected as a basic tool                
for scenario building. However, the full set of states is too huge for any kind of handling so                  
the projections of states to a rather small set of hypersurfaces is used for forming the                
scenarios. It’s important to ensure that the selected set of hypersurfaces is full and covers all                
the dimensions of the original state. Thus the overall number of scenarios is a sum of                
scenarios for each hypersurface rather than multiplication as it would be for the complete              
state. 
 
For each hypersurface the conventional way of finite state machine representation is used             
where squares illustrate the different state, arrows - possible transitions between states and             
titles for these arrows - conditions for transitions. It is worth noting that conditions have               
heterogeneous form and consist of an external event (in most cases) as well as a logical                
condition (also, in most cases). 
 
Additionally some states have attributes (such as “balance”) and its evolution during            
transitions may be represented as the second title for arrows. 
 
Temporal epochs (for example, divided by a round switch) are separated by a vertical              
dashed line while the corresponding transitions of attributes are illustrated by a dotted arrow. 
 



Example of such a projection (“round step” projection) is provided below while the full list of                
them is available in Appendix B: 

 
The projection approach suggests a way to describe a complete set of business-level             
scenarios using a following methodology: 

● Each way without loops from the beginning to any dead end is a scenario 
● Each loop is a scenario itself, one round only 

 
For a full list of scenarios please refer to the Depool contract verification report (Phase-1)               
(see Submission 2). 
 
When the projections are created the next steps to prove the contract at the business level                
are: 

● Formally specify conditions/moves (arrows in projections) (see below) 
● Prove that all the scenarios are reachable (see below) 
● Prove that no other ways to change the state of each projection is possible (Phase 3) 
● Define correct state (see below) 
● Prove that any move from correct state goes into correct state (see below) 
● Prove that the program can not stuck in any state but the terminal one 

 
j. Direct scenarios 

 
For the subset of scenarios discussed in the previous section the formal definitions were              
implemented, the list of such scenarios is provided below: 

● Scenario 1: victory scenario, ordinary stake from validator that is the only participant,             
one full round loop (4 round jumps) after constructor 

● Scenario 2: defeat scenario, ordinary stake from validator that is the only participant,             
one full round loop after constructor 
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● Scenario 3: victory scenario, ordinary and vesting stake from validator that is the only              
participant, one full round loop after constructor 

● Scenario 4: defeat scenario, ordinary and vesting stake from validator that is the only              
participant, one full round loop after constructor 

● Scenario 5: victory scenario, ordinary stake from validator + ordinary stake from            
participant, one full round loop after constructor 

● Scenario 6: defeat scenario, ordinary stake from validator + ordinary stake from            
participant, one full round loop after constructor 

● Scenario 7: victory scenario, ordinary stake from validator + vesting stake from            
participant, one full round loop after constructor 

● Scenario 8: defeat scenario, ordinary stake from validator + vesting stake from            
participant, one full round loop after constructor 

● Scenario 9: too low ordinary stake from validator + ordinary stake from participant,             
one full round loop after constructor 

 
The described scenarios roughly follow the paradigm described above, as an example            
Scenario 1 may be illustrated by the following diagram: 
 

 
 
Examples of the formal definitions of the scenarios can not be included into the present               
document because all them are too large but all the scenarios may be found at the root                 
directory under src/Scenarios. 
 

k. Formal specification for condition/moves 
 
State - all the possible values of the projections is a set that is a union of states. States don’t                    
intersect with each other. Usually state is determined by the value of one of the variables                



with a finite possible number of values (not only finite but also rather small, less than 15 or                  
so). At the diagrams changes are drawn as rectangles. 
Conditions - are conditions that have to be met to change the projection (with or without                
changing the state). At the diagrams changes sometimes drawn as titles for the arrows              
(moves) 
Moves - changes of the projection that happen when the certain condition is met. At the                
diagrams moves are drawn as arrows. 
 
All the states, conditions and moves are located at the src/Projections directory. Each             
projection has its own subdirectory. States are usually located in the States.v file while              
conditions and moves may be found in Conditions.v . Below the examples of formal              
specifications of states, conditions and moves are provided: 
 
Definition getProjectionRoundCompletionReasonState (r :       

RoundsBase_ι_Round) := 
    RoundsBase_ι_Round_ι_completionReason r. 

 
It’s a quite typical definition of state - with simple binding of state to the value of the specific                   
variable. Now let’s move to the example of condition: 
 
Definition 
projection_round_steps_waiting_validator_request_waiting_if_stake_ac
cepted_condition 
    (l : Ledger) (r : RoundsBase_ι_Round) := 

    participateInElectionsCalled /\ 
    onlyValidatorContract l /\ 
    poolClosed l = false /\ 
    checkDePoolBalance l (msgValue l) (balance l) /\ 

    stakeAt = RoundsBase_ι_Round_ι_supposedElectedAt r /\ 
    r = round1 l /\ 
  getProjectionRoundStepState r = 
RoundsBase_ι_RoundStepP_ι_WaitingValidatorRequest. 

 
It should be noted that condition typically is a conjunction of a few predicates that can be                 
roughly splitted into three types: 

● simple predicates - such as poolClosed l = false 
● complex predicates - such as checkDePoolBalance. Such predicates may have          

pretty much complicated internal structure. For example, checkDePoolBalance        
discussed here is defined by the following expression: 

 
Definition checkDePoolBalance (l : Ledger)(msgValue balance : Z) := 

(CRITICAL_THRESHOLD l + totalParticipantsStake l + msgValue <=                 
balance)%Z. 

 
At the same time totalParticipantStake is also a complex predicate that in its turn contains a                
complex predicate totalStake. 
 



● caller predicates - equal to True when and only when the calling message (internal or               
external) equals to some function. As an example participateInElectionsCalled         
predicate equals to True when participateInElection message is being handled.          
During Phase-3 such predicates will be defined through the VMState_ι_messages          
field of the Ledger_ι_VMState (field №16) of the Ledger. 

Taking into account complex predicates may be quite complicated and consequently contain            
some errors proving that they are reasonable and non-contradictory becomes necessary.           
Example of such a lemma is provided below: 
 
Lemma cutWithdrawalValueMove_lastWithdrawalTime_strictly_later:   
forall l i, 
    investParamsCorrectLocally l i -> 

    0 < withdrawal l i -> 
RoundsBase_ι_InvestParams_ι_lastWithdrawalTime i <       

newLastWithdrawalTime l i. 

 
The lemma above states that under certain circumstances lastWithdrawalTime of          
InvestParams object is increased after each partial withdrawal that is definitely reasonable.            
Such proofs and internal complex predicates are mostly located in src/Scenarios/Common           
directory. 
 
Specification of moves is very similar to the specification of conditions. The typical example              
is below: 
 
Definition 
projection_round_completion_reason_validator_stake_is_too_small_move 
    (ol nl : Ledger) (or nr : RoundsBase_ι_Round) := 

 
projection_round_completion_reason_validator_stake_is_too_small_cond
ition ol or /\ 
    roundIn nl nr /\ 
    roundsSame or nr /\ 

getProjectionRoundCompletionReasonState nr =       
RoundsBase_ι_CompletionReasonP_ι_ValidatorStakeIsTooSmall. 

 
It worth mentioning that the typical move predicate consists on: 

● condition predicate 
● move itself - changes in the projection 
● additional requirements - in this particular case they are: 

○ round should stay in the ledger (be one of four active rounds) 
○ modified round should have the same id as the original one (roughly            

speaking, should be the “same” round as long as “same” is applicable for             
immutable objects of functional languages) 

 
l. Invariants and correctness 

 



Many popular technologies of formal verification use invariants as a key entity they build              
their approach around. It’s not a case for Pruvendo approach, at least, explicitly but              
invariants, in the form of conjunction of predicates that must be always equal to True, still are                 
very important as it’s necessary to verify that any move (described above) from the correct               
state comes into the correct state. 
 
The correctness predicate is a tree of predicates (mostly joined by conjunction). Such a root               
predicate looks as follows: 
 
Definition ledgerCorrectGlobally (l : Ledger) := 
    ledgerCorrectLocally l /\ 
    (forall r, roundIn l r -> roundCorrectGlobally l) /\ 

    (forall p, participantIn l p -> participantCorrectGlobally l). 

 
At this point it’s worth mentioning that correctness may be local and global. Local              
correctness must be kept at any point of execution while global correctness must be kept               
only before and after handling of any message and may be violated inside the handling               
(including points of execution before and after calling of inline functions as well as TVM               
subroutines introduced by EXECUTE or similar primitives). Local correctness should always           
be a subset of global correctness. An example of a local correctness statement is below: 
 
Definition roundCorrectLocally (l : Ledger)(r : RoundsBase_ι_Round)             
:=  
    _roundCorrectNonNegative r /\ 

    _roundCorrectStakeIsTheMost r /\ 
    _roundCorrectStakeSum r /\ 
    _roundCorrectStakes l r /\ 
    _roundValidatorRemainingStake r /\ 

    _roundNoDupStakes r /\ 
    _roundValidatorRemainingStakeLessOrEqualValidatorStake l r /\ 
    ledgerCorrectLocally l /\ 
    _roundCorrectStepsAndCompletionReasons l r. 

 
As one can see the correctness predicates may contain complex predicates and so such              
statements can contain errors and require proving. An example of such a theorem (with              
proof, as in this particular case it’s short enough and may be included into the present                
document) is provided below: 
 
Theorem notValidator_vaidator_remaining_stake_less_stake : 
    forall l r , 
    roundCorrectLocally l r -> 

    allStakesAreNotEmpty l r -> 
    isNotValidatorInRound l r -> 
    RoundsBase_ι_Round_ι_validatorRemainingStake r < 
RoundsBase_ι_Round_ι_stake r. 

Proof. 



intros. remember H as RCL. clear HeqRCL. unfold roundCorrectLocally 
in H. decompose [and] H. 

clear H. unfold 
_roundValidatorRemainingStakeLessOrEqualValidatorStake in H8. 
assert (stakeSum (validatorStake l r) < RoundsBase_ι_Round_ι_stake 
r). 

apply not_validator_stake_less_stakes ; assumption. lia. 
Qed. 

 
All the files related to correctness as well as required lemmas (with their proofs) may be                
found at src/Scenarios/Correctness directory. 
 

m. Call tree 
 
A possible issue is that at some point a sequence of sent messages will lead to infinite direct                  
or mutual recursion. To investigate this possibility the following call graph that describes the              
calling of all the messages has been created: 



The next steps in this investigation (to be done at Phase-3) are: 
● prove that the provided call graph is correct 
● ensure and prove that messages sent to external contracts (their handling may be             

arbitrary and even, in some cases, those external contracts can turn to be internal              
contract (so internal address may be used for external contract)) 
 

n. Axioms 
 
The axioms represent the relationships that can not be described using correctness            
predicates such as time-related ones. Example of such an axiom is that validator hashes              
never repeat themself (strictly speaking, it’s not true but probability of such a repeat is               
extremely low and it’s assumed it never happens). Formally this axiom has been written in               
the following form: 
 



Axiom validatorsNeverSame : forall l1 l2 l3, 
    now l1 < now l2 ->  

    now l2 < now l3 -> 
    currentValidator l2 <> currentValidator l3 -> 
    currentValidator l1 <> currentValidator l3. 

 
 
The full list of axioms may be found in src/Scenarios/Common/Axioms.v file. 
 

3. Summary 
a. Achieved results 

 
As a result of the present Phase-2 the preparation for the final and ultimate proving of the                 
DePool contract has been mostly done with a few exceptions that may be considered as a                
debt for Phase-3. In particular, the following tasks has been completed or almost completed: 

● Solidity -> Coq DSL translator 
● Coq DSL -> Solidity reverse “translator” 
● Generation of Ledger 
● Generation of eval and exec functions with their proofs 
● Modified and corrected projections (initially introduced at the Phase-1) 
● Definition of direct scenarios (almost completed) 
● Formal specification for states, conditions and moves with corresponding proofs          

(almost completed) 
● Formal specification for correctness with corresponding proofs (almost completed) 
● Call tree 

 
The phase outcome can be described as follows: 

● DePool contract has been mapped into Coq DSL 
● As no bugs were found high (but not ultimate yet) level of confidence the current               

implementation if the contract is reliable has been achieved 
● Contract has been proved at the functional level 
● Made all the specification-related preparations to finally prove the contract at Solidity            

cross-functional (business) level as a result of Phase-3 
 

b. Activity for Phase-3 
 
The goal of the Phase-3 is to finally prove the DePool contract at the cross-functional               
(business) level. To achieve this goal the following activity is planned: 

● Complete all the “almost completed” tasks from Phase-2 
● Prove availability and reachability of the direct scenarios  
● Prove that no moves are possible but already declared 
● Prove that correct state moves into correct state 
● Prove that the program can not get stuck inside the non-terminal projection state 
● Prove that no infinite mutual recursion is possible 

 



Gas related and TVM related issues are currently not planned for Phase-3 (they are              
considered for Phase-4) however can be moved there upon governance decision. 
 

c. Company information 
 

Pruvendo team has been actively involved into the formal verification based on Coq for the               
last six years. During this time a number of formal verification projects have been completed,               
mostly in the finance and banking industry. 
 
The team is a pioneer in mathematical justification of the proof-of-stake consensus11,            
implemented the prototype of the blockchain of the formally verified code, many-years active             
participant of different blockchain communities. 
 
For the last year the team has concentrated on the TON project and successfully proved a                
Multisig contract introducing the whole bunch of new technologies and know-hows. 
 
Currently the team obtains a unique set of tools that lets it to quickly formally verify any kind                  
of TON smart contract. 
 
In case of any questions feel free to contact us at team@pruvendo.com . 
  

11https://consensusresearch.org/ 
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Appendix A. Reverse “translation” from Coq eDSL into Solidity 
 
1'. ↑ε[0-9]* -->  
2'. \bε\b -->  
3'. U[0-9]! -->  
4'. D[0-9]! -->  

5'. ↑+[0-9]+ -->  
6'. ς\s+return#.*?\. --> . 
7'. 
\(\s*ξ\$\s+(?:[A-Za-z0-9_]+?_ι_)?([_A-Za-z0-9]*?)P?_ι_([_A-Za-z0-9

]*?)\s\) --> \1__DOT__\2 
8'. 
ξ(?:\s*\$)?\s+(?:[A-Za-z0-9_]+?_ι_)?([_A-Za-z0-9]*?)P?_ι_([_A-Za-z
0-9]*?) --> \1__DOT__\2 

9'. ^\s*initial.*?>> -->  
10'. 
\(\s*LocalState_ι_[_A-Za-z0-9]*?_Л_([_A-Za-z0-9]*?)\s*:=\s*\$\s*Л_
\1\s*\) -->  

11'. LocalState_ι_.*?_Л_(.*?)\b --> \1 
12'. \:\s*[A-Za-z0-9_]+?_ι_([A-Za-z0-9_]+?) --> : \1 
13'. ([A-Za-z0-9]+_И_[A-Za-z0-9]+)F --> \1 
14'. [A-Za-z0-9_]+_ι_([A-Za-z0-9_]+?)P?_ι_([A-Za-z0-9_]+?)\b --> \2 
15'. (?:(?!__DOT__)[A-Za-z0-9_])+_ι_([A-Za-z0-9_]+?) --> \1 

16'. 
declareLocal\s+([a-zA-ZА-Яа-я\'_α-ωΑ-Ω][a-zA-ZА-Яа-я0-9_\'α-ω
Α-Ω]*)\s*:>:\s*([A-Za-z0-9_]+)\s+:=\s*{\|\|((?:.|\n)*?)\|\|} ; -->     
\2 \1 = \2 ( { \3 __RCURLY__ ) __SEMICOLON__ 

17'. 
declareLocal\s+(?!{\()(.*?)\s*(?:\:>\:|::::)\s*\(?(.*?)\)?\s*\?*:= 
--> \2 \1 = 
18'. declareLocal\s+({\(.*?\)})\s*\?*:= --> \1 = 

19'. 
declareLocal\s+([a-zA-ZА-Яа-я\'_α-ωΑ-Ω][a-zA-ZА-Яа-я0-9_\'α-ω
Α-Ω]*) --> \1 
20'. 

\(\s*declareGlobal\!?\s+(?!{\()(.*?)\s*\:>\:\s*\((.*?)\)\s*:=((.|\n)
*?)\)\s*>> --> \2 \1 = \3; 
21'. 
\(\s*declareGlobal\!?\s+(?!{\()(.*?)\s*\:>\:\s*(.*?):=((.|\n)*?)\)\s

*>> --> \2 \1 = \3; 
22'. 
declareGlobal\s+([a-zA-ZА-Яа-я\'_α-ωΑ-Ω][a-zA-ZА-Яа-я0-9_\'α-
ωΑ-Ω]*) --> \1 

23'. \(.*?declareInit.*? >> -->  



24'. 
([a-zA-ZА-Яа-я\'_α-ωΑ-Ω][a-zA-ZА-Яа-я0-9_\'α-ωΑ-Ω]*)\s*(?:\:

>\:|::::)\s*(\([A-Za-z0-9 ]+\)|(?:(?!\)\})[^,;)])*) --> \2 \1 
25'. XHMap ([a-zA-Z0-9ι_]*) ([a-zA-Z0-9ι_]*) --> mapping (\1 => \2) 
26'. XList\s+XInteger8 --> bytes 
27'. 

XMaybe\s+\(([a-zA-ZА-Яа-я\'_α-ωΑ-Ω][a-zA-ZА-Яа-я0-9_\'α-ωΑ-Ω
]*)\) --> optional(\1) 
28'. 
XMaybe\s+([a-zA-ZА-Яа-я\'_α-ωΑ-Ω][a-zA-ZА-Яа-я0-9_\'α-ωΑ-Ω]*

) --> optional(\1) 
29'. XMaybe --> optional 
30'. 
do(?:\s*_)\s*←\s*\(\s*ForIndexedE\s*\(\s*xListCons\s+(.*?)\s*\(xList

Cons\s+xInt1\s*xListNil\s*\)\s*\)\s+do\s*\(\s*fun\s+\((.*?):\s+(.*?)
\)\s+=> --> for ( \3 \2 = \1; \2 < 2; ++ \2) { 
31'. \) >>= fun r => return! \(xProdSnd r\) \) \?\?; --> }                         
__SEMICOLON__ 

32'. 
\(\s*ForIndexed\s*\(\s*xListCons\s+(.*?)\(xListCons\s+xInt1\s*xListN
il\s*\)\s*\)\s+do\s*\(\s*fun\s+\((.*?):\s+(.*?)\)\s+=> --> for ( \3         
\2 = \1; \2 < 2; ++ \2) { 

33'. 
\(\s*([a-zA-ZА-Яа-я\'_α-ωΑ-Ω][a-zA-ZА-Яа-я0-9_\'α-ωΑ-Ω]*)\s*
:\s*(optional\s*\(\s*[a-zA-ZА-Яа-я\'_α-ωΑ-Ω][a-zA-ZА-Яа-я0-9_
\'α-ωΑ-Ω]*\s*\)|mapping\s*\(\s*[a-zA-ZА-Яа-я\'_α-ωΑ-Ω][a-zA-ZА
-Яа-я0-9_\'α-ωΑ-Ω]*\s*=>\s*[a-zA-ZА-Яа-я\'_α-ωΑ-Ω][a-zA-ZА-

Яа-я0-9_\'α-ωΑ-Ω]*\s*\)|[a-zA-ZА-Яа-я\'_α-ωΑ-Ω][a-zA-ZА-Яа-
я0-9_\'α-ωΑ-Ω]*)\s*\) --> \2 \1,  
34'. XInteger --> uint 
35'. XBool --> bool 

36'. XAddress --> address 
37'. \(\s*xValue\s+I\s*\) -->  
38'. [Xx]Value\s+I -->  
39'. XValueValue -->  

40'. XArray\s+([A-Za-z0-9]+) --> \1[] 
41'. ::= --> : 
42'. Definition\s+([_a-zA-Z0-9Ф]*_[Cc]onstructor[0-9]+)   
((?:.|\n)*),\s+:\s+.*?:= (?:\s|\n)*New ([A-Za-z0-9]+)[_ФA-Za-z0-9]+     

(.*?) >> --> constructor (\2) \3 \4 { 
43'. Definition\s+([_a-zA-Z0-9Ф]*_[Cc]onstructor[0-9]+) -->     
constructor ( 
44'. Definition\s+([_a-zA-Z0-9Ф]*)\'? --> function \1 ( 

45'. \. --> ;} 
46'. ,\s*: --> : 



47'. \s*:\s*LedgerT(.*):=(?:\s|\n)*returns\s+(.*)>> --> ) returns \2           
{ 

48'. LedgerT\s+([A-Za-z0-9]+)\s*:= --> LedgerT (\1) := 
49'. :\s*LedgerT --> ) returns 
50'. \s*XErrorValue(.*)uint\s*\) -->  \1 ) 
51'. return# --> return 

52'. # --> , 
53'. function ((?:.|\n)*)returns ((?:[^{]|\n)*?):= --> function \1             
returns \2 { 
54'. \bTrue\b -->  

55'. xBool(True|False) --> \1 
56'. True --> true 
57'. False --> false 
58'. xInt([a-z0-9_]*) --> \1 

59'. [a-zA-Z0-9_]*Ф_([a-zA-Z0-9_]*) --> \1 
60'. xError\s*\( --> ( 
61'. (?<!{)\$\s*I\b -->  
62'. (?<!{)\$(?!}) -->  

63'. Require2? {{\$?\s*((.|\n)*?)\s*}} --> require ( \1 ) 
64'. ->store\s+(.+?)\s+([^\s;]+) --> .store(\1, \2) 
65'. tvm_address\s*\(\s*\) --> address ( this ) 
66'. tvm_now\s*\(\s*\) --> now 

67'. tvm_rawConfigParam_([0-9]+)(\s*\(\s*\))? -->     
tvm.rawConfigParam(\1) 
68'. tvm_configParam_([0-9]+)(\s*\(\s*\))? --> tvm.configParam(\1) 
69'. \(\s*tvm_functionId (.*?)F?\s*\) --> tvm_functionId(\1) 
70'. tvm_revert --> revert 

71'. tvm_exit\s*\(\s*\) --> tvm.exit(); 
72'. tvm_balance\s*\(\s*\) --> address(this).balance 
73'. tvm_([a-zA-Z]+) --> tvm.\1 
74'. \bmessageValue\b --> value 

75'. \bmessageBounce\b --> bounce 
76'. \bmessageFlag\b --> flag 
77'. 
this->sendMessage\s*\(.*?(?:И_)?([A-Za-z0-9_]*?)F?\s+\(\!\!((?:.|\n

)*?)\!\!\)\s*\)\s*with\s*\{\|\|((.|\n)*?)\|\|\} --> this.\1{\3     
__RCURLY__ (\2) 
78'. 
this->sendMessage\s*\(.*?(?:И_)?([A-Za-z0-9_]*?)F?\s+\s*\)\s*with\s

*\{\|\|((.|\n)*?)\|\|\} --> this.\1{\2 __RCURLY__ () 
79'. 
(?:\"(.*?)\"|([A-Za-z0-9]+))\s+of\s+\(\s*(.*?)\)\s+->sendMessage\s*\
(.*?(?:И_)?([A-Za-z0-9_]*?)F?\s+\(\!\!((?:.|\n)*?)\!\!\)\s*\)[\s\n]

*with\s*\{\|\|((?:.|\n)*?)\|\|\} --> \1\2(\3).\4{\6 __RCURLY__ (\5) 
80'. (?<![A-Za-z_9])If2?!* --> if  
81'. then -->  



82'. \?\?:= --> = 
83'. _\s+\?:= -->  

84'. := --> = 
85'. \b_\b -->  
86'. Л_ -->  
87'. \s0\s+!- -->  !- 

88'. \?([!<>=]+) --> \1 
89'. !([+\-*/%]) --> \1 
90'. !¬ --> ! 
91'. !& --> && 

92'. !\| --> || 
93'. ::: --> : 
94'. \[\[ --> [ 
95'. \]\] --> ] 

96'. \[\( --> ( 
97'. \)\] --> ) 
98'. \{\( --> ( 
99'. \)\} --> ) 

100'. \^\^ --> . 
101'. ->min(?![0-9]) --> .min() 
102'. math->min[0-9]+ --> math.min 
103'. \(\s*if\b --> if 

104'. (?<!})}\s*\) --> ; } 
105'. ->set\s*([A-Za-z0-9]+\)) --> ->set (\1 
106'. ->toCell --> .toCell() 
107'. ->set --> .set 
108'. \(\s*->emit ((.|\n)*?)\)(\s|\n)*(;|>>) --> ->emit \1; 

109'. ->emit\s*\(((.|\n)*?)\)\s*; --> ->emit \1; 
110'. ->emit --> emit 
111'. ->selfdestruct --> selfdestruct 
112'. 

->(fetch|next|exists|delete|push)\s+([a-zA-ZА-Яа-я\'_α-ωΑ-Ω][a-z
A-ZА-Яа-я0-9_\'α-ωΑ-Ω]*) --> .\1(\2) 
113'. ->(get|hasValue|empty|reset) --> .\1() 
114'. ->>? --> . 

115'. \bDePoolClosed --> DePoolClosed() 
116'. DePoolLib__DOT__RequestC((\s+[a-zA-Z0-9]+)*) --> Request( \1         
__ENDREQUEST__ 
117'. (?=([A-Za-z ]+)__ENDREQUEST__)([A-Za-z]+) --> \2,  

118'. ,\s*__ENDREQUEST__ --> ) 
119'. msg_sender\s*\(\s*\) --> msg.sender 
120'. msg_value\s*\(\s*\) --> msg.value 
121'. msg_value --> msg.value 

122'. msg_pubkey\s*\(\s*\) --> msg.pubkey () 
123'. \s*\(\s*optional\s*\(([A-Za-z0-9]+)\)\s*\)(?!\s*{) -->     
optional(\1) 



124'. >>=(.|\n)*\?; --> ; 
125'. \(+\s*While ((.|\n)*?)\s+do(\s|\n)+\( --> while \1 { 

126'. do\s+←\s*\(\s*WhileE\s+((?:.|\n)*?)\s+do --> while \1 { 
127'. continue!(\s+I)? -->  
128'. ^\s*(\)\s*)+>> --> ;} 
129'. >> --> ; 

130'. {\|\| --> { 
131'. \|\|} --> __RCURLY__ 
132'. returns\s*\(\s*\((.*?)\)\s*\) --> returns (\1) 
133'. \(\s*delMin(.*?)\) --> \1.delMin().get() 

134'. completionReason2uint --> uint8 
135'. emit\s+round --> emit Round 
136'. \breturns(\s*\(\s*\))?\s*[{=] --> { 
137'. _И_ --> . 

138'. return!{1,3} --> return 
139'. } --> ; } 
140'. ;\s*; --> ; 
141'. \(!+ --> ( 

142'. !+\) --> ) 
143'. }\s*; --> } 
144'. (xError false) --> false 
145'. ([0-9]+)\s*\*\s*x1_day --> (\1 days) 

146'. =\s*default -->  
147'. 
(if\s+\(\s*(isRound[0-9]\s*\(\s*roundId\s*\)|isProcessNewStake)\s*\)
\s*{\s*)\( --> \1 
148'. \(\s*delete\s+([a-zA-Z0-9_\[\]\.\n ]+)\) --> delete \1 

149'. (?<![A-Za-z0-9_   
\t])\s*\(\s*([A-Za-z0-9_]+(\s*\.\s*[A-Za-z0-9_]+)*)\s*\)\s* --> \1  
150'. {\s*(;\s*)+} --> { } 
151'. __DOT__ --> . 

152'. __RCURLY__ --> } 
153'. __SEMICOLON__ --> ; 
154'. \(\s*xError\s+I\s*\) -->  
 

 

  



Appendix B : The diagrams of all the projections 
 
Pool state projection: 

 
This is a projection of the DePool contract into m_closed and m_rounds variables. 
 
Round pool projection: 



 
Evolution of particular round inside a pool 
 
Round steps projection: 

 
Projection of the particular round into step variable. 
 
Round stakes projection: 



 
Projection of the particular round into the following variables: stake, recoveredStake,           
unused, isValidatorStakeCompleted, rewards, validatorStake, handledStakeAndRewards. 
 
Round stake list projection: 

 



Projection of the particular round into stakes variable. 
 
InvestParams projection: 
 

 
Evolution of a single InvestParams within one round. 
 
Participant projection has the same diagram as above and so not redrawn here. 
 
Proxy stateless workflow diagram: 
 



 
 
 
 

 
 


