
PolkaDot↔FreeTON Bridge
Design and Architecture

Abstract
There are a lot of public blockchain networks with their own audience, market and products
working in them. Each network has its own advantages and disadvantages that make its use
effective in a particular area, but at the same time limits the rest.

Bitcoin was created as a guarantor of secure transfer of value between people in different
parts of the world, but it is limited in its bandwidth.

Ethereum was created as a platform for running decentralized applications, but inherited both
the problems of Bitcoin and got new scalability problems due to the need to store more
information. Both platforms still have a high entry threshold and the majority of users are
enthusiasts and “cryptogeeks”. Nevertheless, there is already a strong belief that these
networks will not leave the market, they have taken their strong position and have a large user
base.

Ethereum and Bitcoin, for all their publicity, remain closed and incompatible systems, which
prevents users of one network using products from another network and safely exchanging
values between them.

The new generation of blockchains seeks to avoid such problems by design, and at the same
time to solve how to join the old networks to achieve interoperability. We believe that the most
promising networks at the moment in this area are Polkadot and FreeTON. Polkadot is
heterogeneous by design, which means the property of combining things that are initially
incompatible with each other. FreeTON will also occupy its own niche and allow users to use
crypto payments and services en masse as if they were using Visa or Mastercard.

We would like to connect these two promising networks through internetwork interaction and
give users the benefits of both projects.

Summary
A proposal for architecture and design of Bridge Polkadot ↔ FreeTON

Status
The document is a draft and may be changed in the future

Glossary
Polkadot Parachain​ - A blockchain that meets several characteristics that allow it work within
the confines of the Polkadot Host. Also known as “parallelized chain.”

Relay Network​ - A network that relays messages from one blockchain network to another.

Relay Node​ – A node that implements the protocol and works in the Relay Network.

Relayer​ - A role issued to a member of the blockchain network gives them the right to send
messages to the network as a Relay Node.

VRF​ ​(verifiable random function)​ - It is a pseudo-random function that provides publicly
verifiable proofs of its outputs’ correctness.

Distribution of relayer responsibilities​ - A mechanism that determines if a Relayer can
participate in the current vote.

Introduction
The Protocol implies three parties implementing the bridge: Polkadot Parachain, FreeTON
Smart-contracts, and Relay Network.

Developing the protocol, we were guided by the following principles:

● trustless​ - the protocol should not rely on the trustworthiness of participants and be
resistant to attacks.

● non-custodial​ - the protocol should not have access to the funds transferred with its
application.

● censorship resistance​ - the protocol should reward participants who perform the role
of Relayer for transmitting messages and punish those participants who don’t perform
their role as required by the protocol.

● governance​ - the protocol should have mechanisms for managing through the
community.

● generalized​ - the protocol should be sufficiently generalized to cover as many use
cases as possible.

In order to provide the transmission of messages between two parties (Polkadot Parachain
and FreeTON Smart-contracts), we have chosen the most proven and effective mechanism for
today with the addition of an intermediary between them in the form of a Relay Network. This
approach is used in many projects, including ​Polkadot​, where the main connecting network is
the Relay Network.

To ensure stability to censorship, we have added an economic model to the protocol, which
provides a mechanism for slashing for nonfulfillment of the duties of the Relayer role. As well
as a reward mechanism for maintaining the operation of the node in the Relay Network.

The protocol is “trustless” due to the voting mechanism among Relayers, no node or group of
nodes has the ability to commit illegal actions, write off users’ funds, even by collusion. To

provide the decentralization of the Relay Network, we introduce the “distribution of relayer
responsibilities” mechanism via VRF (verifiable random function). This adds an element of
randomness to the selection of those who vote for the next proposal, what makes it necessary
to collude absolutely all network participants to carry out the attack. However, management is
in the hands of the community. If the community sees that one or more Relayers are
systematically trying to attack the network, it’s possible to hold a referendum for removing the
node from the Relayer role, which will not allow the node to participate in the vote.

Technical details

Relay Network
Relay Network listens to events in both networks and transmits messages between them by
means of proposals and votes of Relay Network participants. Relay Network participants are
“authority” nodes chosen by the community through voting mechanisms. Relayers don’t gossip
among themselves.

The Economic incentive for participants is described in the “Economic model” section.

Relayer launches a node that monitors the Polkadot and FreeTON networks for messages that
need to be transmitted. If they are detected, signs and sends a transaction with a proposal to
make changes to the target network. In order for a proposal to be accepted, it must receive
enough votes from the Relay Network to pass the threshold and be executed. Thus, the
protocol is protected from false records of information about transferred data and values and is
also resistant to censorship. If one or more nodes agree not to transmit a message via the
Relay Network, other participants who are not part of the agreement will still send the message
to the network and vote for its acceptance.

https://aws1.discourse-cdn.com/business20/uploads/freeton/original/2X/a/a4f2506942cac136441662b122787d4154060b1c.png

The Relayer node consists of three components:

● Listener​. Listens for events on the network that it is subscribed to and, if they occur,
passes it to the “router”.

● Router​. Receives an event from the Listener and interprets it, determining where to
pass it next.

● Writer​. Accepts the message and information about its purpose, forms, signs, and
sends the transaction with the offer to the target network.

Thus, when the Relayer receives an event about a new message that needs to be transmitted,
it automatically votes for it. The protocol checks if there is already an offer for this message in
the target network, and if there is no such offer, it is created. If a proposal exists, the Relayer
just leaves its vote in that proposal.

The node should be able to listen to events, generate, sign, and send transactions, store
Relayer member keys, and communicate via RPC calls for both networks.

Also, the Relay Node should have a supply of tokens from both networks to pay for transaction
costs, and they will be refunded as a reward for correct operation.

https://aws1.discourse-cdn.com/business20/uploads/freeton/original/2X/4/44b4a1bd14add09e76fb7a123c2509f6174ea689.png
https://aws1.discourse-cdn.com/business20/uploads/freeton/original/2X/2/2a2c8bc2e9849ab5c666518c3556800245e79fe1.png

Polkadot
As mentioned above, Polkadot has mechanisms designed to join networks that are initially
incompatible. One of these mechanisms is “Bridge modules”.

Bridge modules

Receiving messages on Polkadot from an external, non-parachain blockchain can be built as a
parachain module. The parachain module can then be deployed to Polkadot either as a
system-level parachain (native extension to the core Polkadot software) or as a
community-operated parachain

Bridge modules allow for non-parachains to act as a “virtual parachain” and extends the
external chain’s functionality with the interoperability benefits of Polkadot.

Bridge contracts

In the case of Polkadot, it should be possible to have a bridge contract deployed on, say, an
EVM-based standalone chain and a contract deployed on a smart contract capable parachain.
This would not necessarily be the most efficient method of bridging, but given the generality of
a Turing-complete parachain it would be possible to bridge Polkadot and any other smart
contract capable blockchain.

No matter how the “Bridge” component is implemented on the Polkadot side, it should accept
and store messages for transmission to the FreeTON network, as well as suggestions for
adding messages to Polkadot from the FreeTON network.

For this purpose, it implements the protocol described below.

To implement a “bridge” on the Polkadot side, it is proposed to use the bridge modules
approach. It is necessary to write the pallet (a substrate runtime module) in Rust that
implements the protocol described below.

How to develop the pallet for substrate is described in this lesson.

To run a bridge for a specific case, it’s necessary to build a node based on the substrate
framework that will include the developed pallet.

Further implementation depends on the bridge launch strategy and the specific application
case and is beyond the scope of this work.

FreeTON Smart-contracts
A similar role in the FreeTON network is carried out by a set of smart contracts that implement
the same protocol.

Accepts and stores messages for transmission to the Polkadot parachain network, as well as
suggestions for adding messages to FreeTON from the Polkadot network.

On the FreeTON side, it is proposed to deploy a set of smart contracts that meet the described
protocol. Below is an example of the structure of smart contracts for FreeTON, taking into
account the specifics of TVM.

Voting

VoteMainContract​ - stores the code of the VoteWallet contract, deploys a specific
ProposalContract to the network, and stores the proposal ids.

VoteWallet​ - a contract intended for voting in ProposalContract. Must store the address of the
ProposalContract in which it was applied. The implementation of this contract is stored in
VoteMainContract.

ProposalContract​ - provides details of the proposal, allows to vote using VoteWallet. Should
be able to verify the VoteWallet code of the contract accessing it.

RBAC

RootRBAC​ - stores the code of the RBACWallet contract, is formally a bridge between the
caller RBACWallet and the callee (for assigning roles.

RBACWallet​ - stores its own set of roles

Handler

The ​Handler​ contract implements the execution logic of proposal (for example, calling a
non-fungible tokens contract) and stores a list of proposal ids executed through this handler.

Bridge

Facade for working with all parts of the protocol. Stores the addresses of other contracts.

Protocol specification
All bridge components implement a single Protocol described below.

Role-based Access Control
The protocol assumes that there is a Role-based Access Control implementation for
determining access rights to the execution of protocol methods. The protocol has two roles:
Admin and Relayer.

Admin has the right to set and delete the Relayer role for protocol participants. For the first
time, the Admin role is assigned to the participant whose address will be passed during system
deployment. (the Admin role can be assigned to a multisig account to provide decentralized
management.)

The Admin role can only be transferred to another member by a member with the Admin role.
The Admin role can only have one member at a time.

Specification

Reference ​AccessControl.sol

grantRole(bytes32 role, address account) public

Grants ​role​ to ​account​.

revokeRole(bytes32 role, address account) public

Revokes ​role​ from ​account​.

renounceRole(bytes32 role, address account) public

Revokes ​role​ from the calling account.

hasRole(bytes32 role, address account) public view returns (bool)

Returns ​true​ if ​account​ has been granted ​role​.

getRoleMemberCount(bytes32 role) public view returns (uint256)

Returns the number of accounts that have ​role​.

getRoleMember(bytes32 role, uint256 index) public view returns (address)

Returns one of the accounts that have ​role​.

getRoleAdmin(bytes32 role) public view returns (bytes32)

Returns the admin role that controls ​role​.

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/access/AccessControl.sol

Proposals
The protocol implies the existence of a Voting system implementation for the ability to vote for
Proposals.

The Proposal should contain the hash of the message, information about the original network
where the message came from, and the status of the offer.

Statuses: Inactive, Active, Passed, Executed, Cancelled.

Only a member with the Relayer role can create a Proposal. Only a member with the Relayer
role can vote for the Proposal.

Specification

getProposal(uint8 chainID, bytes32 messageType, uint64 nonce, bytes32 dataHash) public
view returns (Proposal)

Returns a proposal.

vote(bool isFor, uint8 chainID, bytes32 messageType, uint64 nonce, bytes32 dataHash) public

If the proposal that the Relayer votes for is not created, the method creates it and votes for or
against the proposal and carries out it if the vote threshold has been reached.

If the proposal exists, it votes for or against the proposal and carries out it if the threshold of
votes has been reached.

Handler
After the Proposal status changes to Passed, the message is transmitted to the Handler and
processed according to its logic. In each particular case, the Handler can have its own logic for
processing the message.

Specification

getMessageRecord(uint8 chainID, uint64 nonce, bytes32 dataHash) public view returns
(MessageRecord)

Returns a message record.

executeProposal(bytes calldata data) public

Proposal execution should be initiated when a proposal is finalized in the Bridge contract.

Bridge
Facade for working with all parts of the protocol, hides the details of their implementation and
provides a simple interface for working with them. Stores the addresses of other contracts.

Specification

isRelayer(address relayer) public view returns (bool)

Returns true if {relayer} has the relayer role.

renounceAdmin(address newAdmin) public

Removes admin role from {msg.sender} and grants it to {newAdmin}.

adminAddRelayer(address relayerAddress) public

Grants {relayerAddress} the ​Relayer​ role.

adminRemoveRelayer(address relayerAddress) public

Removes relayer role for {relayerAddress}.

adminSetHandler(address handlerAddress, bytes32 messageType) public

Sets a new handler for message type

executeProposal(uint8 chainID, bytes32 messageType, uint64 nonce, bytes calldata data)
public

Executes a proposal that is considered passed using a specified handler contract

Governance and tokens

This section is an addition to the Protocol that affects its economic model. For more
information about all aspects of the economic model, see the section Economic model.

The protocol implements governance through its native Voting system and Proposals
mechanisms.

Distribution of relayer responsibilities

To add the Relay Nodes distribution mechanism to the vote for proposals, it is proposed to
change the method of the vote protocol by adding two arguments result and proof returned by
the VRF function.

vote(bool isFor, uint8 chainID, bytes32 messageType, uint64 nonce, bytes32 dataHash,
bytes32 result, bytes32 proof) public

Token DOTON [Rewards and Slashing]
The protocol has mechanisms for rewarding correct work and punishing incorrect work, which
is equivalent to attempts to attack the network. For this purpose, a movable DOTON token is
issued.

Specification

mint(uint256 tokens) public

Mints {tokens} a number of new tokens, in accordance with the TIP-3 specification.

burn(uint256 tokens) public

Burns {tokens} the number of tokens.

GasDOTON
A unit for calculating the commission for sending a message.

Specification

estimateGas(bytes data) public view returns (uint256)

Calculates the amount of gas required to send a message

estimateFee(uint256 gasAmount, uint256 gasPrice) public view returns (uint256)

Calculates the fee required to send a message.

Economic model
This section describes the economic model for Relay Network members. The economic model
of the parachain that the Bridge can be used with depends on the specific use case.

General principles

Distribution of relayer responsibilities

In order to determine which of the Relay Nodes will participate in the voting, it is proposed to
use the VRF (verifiable random function) mechanism.

Each Relay Node carries out a function (VRF) that accepts

● The “secret key”, a key specifically made for these die rolls.
● Hash of the transaction in which the message was sent.
● Data message hash.

The result of the calculation will be two values: RESULT (pseudorandom value) and PROOF
(proof that the pseudorandom value was calculated correctly).

A RESULT that falls below the passing level defined in the implementation process becomes a
viable voter candidate for this Proposal. The Relayer then forms a voting transaction and
sends it to the network along with the PROOF and RESULT values.

In this mechanism, there is a chance that an insufficient number of Relayers will find a value
below the passing level. Then, after the N number of blocks expires, any Relayer can vote for
this Proposal and compete for a reward.

Rewards and slashing

The Relay Network requires an economic incentive to operate. As miners are rewarded for
producing blocks, Relayers are rewarded for transmitting messages between networks. In turn,
the sender of the message should pay a fee for its transmission.

The gasDOTON unit of account is used to pay fees. The required number of gasDOTONs is
calculated depending on the length of the transmitted message. The price for gasDOTONs is
determined by the sender himself (the mechanism is similar to gas in Ethereum), so messages
in the network for which a large amount of reward is announced can be processed faster.

The formula for calculating the amount of gasDOTONs per message:

 L GS = 2
*

Where L - is the length of the message, G - is the constant cost of the symbol in the message,
and S - is the amount of gasDOTONs charged for the message.

The formula for calculating the fee in TON or DOT tokens looks like this:

 S PF = *

Where S - is the amount of gasDOTONs charged for the message, P - is the price that the
sender is willing to pay for each gasDOTON, and F - is the amount in TON or DOT that should
be sent along with the message.

A DOTON token is ISSUED to optimize commission fee to Relayers. The commission paid in
the original network is blocked in the contract of the original network until it is unblocked in
exchange for the DOTON token from the target network. The DOTON token is unmovable. It
can be burned to release the reward on the other side of the bridge.

For example, a member of the FreeTON network sent a message to the Polkadot network and
paid a commission fee of 1 TON. The commission fee of 1 TON remains on the contract in the
FreeTON network, and in return, a proportional share of DOTONs tokens is issued for each
voting participant in the Polkadot network. If 10 nodes participated in the vote, each gets 0.1
DOTON, which they can later burn to release their share on the FreeTON side.

This mechanism optimizes operating expenses for commission payments. The commission is
blocked in the contract on the side of the original network when the message is sent. After
that, the Relayers who participated in the voting get a DOTON token in the target network.
Since voting takes place in it, this doesn’t require an additional transaction. In addition, the
owner of the Relay node can save DOTONs until a significant amount is accumulated and
release it at once, thereby reducing the load on the network.

Also, to provide network security, Relayers block steak in both networks in return for which
they also get a DOTON token that they can always burn and unlock their steak. Nodes that
don’t have a stake can’t participate in voting.

The Relayer stake is used as a guarantor and the node may be slashing for incorrect behavior.
The gradation of violations and the size of the fine should be worked out by the community, as
well as the size of the Relayer steak.

