
Privacy-aware COVID tracker

@idealatom

14 July 2021

https://github.com/idealatom/zkp-covid-tracker

“They who can give up essential liberty to obtain a little temporary safety
deserve neither liberty nor safety.“ [1]

1 Introduction

The idea is to protect the users’ privacy while proving that person didn’t appear
in a dangerous area.

The privacy is important. Let’s care about privacy and allow authority
instances (like Governance) to ensure that a person wasn’t appeared in the
COVID-19 affected area by generation proof that proves the User is outside
the specified area. So Governance can control the spreading of a virus without
tracking the exact location of all Users.

2 Privacy-aware Covid-19 tracker

This article and attached repo contain a proof of concept project made for the
TON contest: #18 Groth16 zkSNARK Proof Verification Use Cases1.

2.1 Idea

The idea is to prove that you weren’t in some specific area on the
map without revealing your actual location.

To do so, we made a prototype by creating a zkSNARK widget that accepts
Users’ coordinates (as personal input) and generates proof that this is outside
of a specified area defined by min and max coordinates (as auxiliary input).

1<https://devex.gov.freeton.org/proposal?proposalAddress=0\

markdownRendererPercentSign{}3Ae6b65075478e7d412fdb0870452f30dfa8bf51272e28a3167abc5c5df6fd051d>

1



Figure 1: Privacy-aware COVID tracker demo

2



2.2 Demonstration

The whole demo is located in GitHub repo by link2

2.3 Workflow

Initial setup:
1. Governance create a solidity contract with snark that can validate coor-

dinates and get the answer, is the User placed in the specified area
2. User generates proof on his device and send it to the contract

After this:
1. User can confirm that he is in a safe area
2. User location data doesn’t send outside of his device, so we preserve pri-

vacy

2.4 Assumptions

1. Let’s assume that each user have unique secure device which generates
proof with current coordinates as an input (which is never leave this de-
vice). In the demo we made a server that emulates this device.

2. Personal ID and Time assumption: In real world we have to provide secure
device, that encrypt location on the user’s side and they have to be bonded
with location. So let’s assume that a personal tracker can log it.

2.5 Implementation:

A zkSNARK checks that at least one of these constraints is true, using a com-
parison of components from a blueprint library:

userLatitude <= minLatitude

maxLatitude <= userLatitude

userLongtitude <= minLongtitude

maxLongtitude <= userLongtitude

2.6 Architecture:

2.6.1 ZKP (blueprint)

By running the script, you can do: 1. trusted setup by Generating proving.key

& verification.key 2. Generate and save proof and primary input to file
by given coordinates and min/max coordinates 3. Verify example (Check the
status of the proof)

2<https://github.com/idealatom/zkp-covid-tracker>

3



2.6.2 TON Blockchain (smart contract)

Validates proof on-chain using VERGRTH16 TVM instruction.

2.6.3 Demo web app

This web application interactively generates and validates proofs for a given user
location and restricted area coordinates. * Proofs are generating by a node back-
end with compiled blueprint CLI tool and pre-generated proving key; * Proofs
are validating on chain using verification.sol smart contract from a repo, de-
ployed at: 0:e13752c9dc987ca1e33a012511409b273ea06af68e799c24f3cee861fc9815aa

address at Nil’s test network;
• A verification key is stored in the smart contract and can be changed using

the setVerificationKey method

2.7 How to build and use:

2.7.1 ZKP CLI tool

1. Clone: git clone https://github.com/idealatom/ton-zkp-contest

--recursive

2. Go to build directory: cd ton-zkp-contest/zkp && mkdir build &&

cd build

3. Build cmake .. && make cli

4. Generate proving and verification keys: > bin/cli setup Blueprint

size: 284 Generating constraint system... Number of R1CS constraints:

287 Generating key pair... Saving proving key to a file "proving.key"

Saving verification key to a file "verification.key"

5. Generate the proof for given coordinates: > bin/cli prove --posLat

13.686019 --minLat 13.673677 --maxLat 13.697777 --posLng 100.564981

--minLng 100.523192 --maxLng 100.551189 Loading proving key from

a file "proving.key" Generating constraint system... Generating

witness... Blueprint is satisfied: 1 Generating proof... Saving

proof to file "proof" Saving primary input to file "primary.input"

6. Verify proof file using saved primary input and verification key: >

bin/cli verify Loading proof from a file "proof" Loading primary

input from a file "verification.key" Loading verification key

from a file "primary.input" Verification status: 1

2.7.2 Web app backend

“‘ cd ./backend
npm install
npm run dev
“‘

4



2.7.3 Web app frontend

> cd /frontend/ > yarn install > yarn start

Then open localhost:8000 in your browser.

2.8 Testing

Build tests:
> cd /zkp/test/

> cmake .. -DBUILD TESTS=1

> make circuit test

Run tests > test/circuit test

References

[1] Benjamin Franklin. Memoirs of the life & writings of Benjamin Franklin.
1706.

5


