
NEVER Phase 2 (Auctions)

Developed by Pruvendo at 05/06/22

Introduction

The present set of conracts describes
EVER/NEVER auction implementation with
the full support of

D'Auctions. The
solution follows the winner of DeFi contest #14.

Overview

The entities described below were
implemented throughout the present
contest.

Auctions

Auctions are intended to define the fare EVER/USD rate. The initial
estimations are done by Oracle

handling
(implemented during the first stage of
NEVER contests (DeFi contest #16)
while the goal of

the auction is to define the final price, to
sell the required amount to the winner
as well as to open an

exchange center
for all the participants allowing then
to buy/sell NEVER's with some
surplus fee

comparing to the Auction
price.

The auction is desinged as a Vickrey
second price auction.

D'Auctions

While the minimal stake allowed for the
auction is supposed to be pretty high
(up to millions of

dollars) very few
people can participate there.

To make the auction more acceptible for
a wider audithorium the paradigm of
D'Auctions has been

implemented. The
participants can combine their
capabilities and create a joining stake
trying to win

as a single entity.

Later the winning stake is fairly
distributed between the participants
(with some extra award for the

D'Auction owner) and the lost stakes are returned back (with the possibility to be automatically

reinvested).

The important feature is to let
D'Action owner to explicitly declare
his investment strategy, has no

ability
to hiddenly change it, thus letting a
participant to select a D'Auction that
is best in terms of

satisfying the
participant's requirements and desires.

Location

The implementation provided is located
at GitHub. The product is under
MIT license.

Architecture

The following key contracts were
implemented.

BidLocker

This contract keeps the bid of a participant
until the auction is completed. Upon completion
the bid

either sent to NeverBank or returned
back to the participant.

BlindAuction

It's a core contract that represents auction
itself, below the process of its creation
described.

https://firebasestorage.googleapis.com/v0/b/ton-labs.appspot.com/o/documents%2Fapplication%2Fpdf%2Fjz5i5hcndnktkekjat-NOT%20Pruvendo%20Implementation%20draft%203.pdf?alt=media&token=015ee545-fe73-432c-a525-9a4e672128ba
https://firebasestorage.googleapis.com/v0/b/ton-labs.appspot.com/o/documents%2Fapplication%2Fpdf%2Fjz5i5hcndnktkekjat-NOT%20Pruvendo%20Implementation%20draft%203.pdf?alt=media&token=015ee545-fe73-432c-a525-9a4e672128ba
https://en.wikipedia.org/wiki/Vickrey_auction
https://github.com/Pruvendo/never2
https://opensource.org/licenses/MIT


The creation of BlindAuction is initiated by
OracleProxy mentioned below.

At the same time, NeverBank is deployed that
acts as an entrance point for the "winning"

coins.

registerBank method of OracleProxy is called to keep the bank address. Later this
address will

be sent to each BlindAuction
created by the present OracleProxy.

Also setAuctionCode method of OracleProxy
is called as it's needed for auction deployment.

In the present implementation the BlindAuction itself is deployed by
initiateAuctions method,

but during the Phase
3 (final stage) it's planned to improve the
robustness. At the same time

the bank is called
with updateAuction to let it be prepared to
pay to the winners.

The auctions consists on two parts:
NEVER/EVER and EVER_NEVER. It has as much as
three static

variables:

OracleProxy address

NeverBank address

Ordinary number of the auction (monitored by
OracleProxy that deploys the auctions to keep

them unique).

The auction bid looks like a triple: nanoevers,
nanoevers and direction, where the first two
numbers

indicate the amounts the participant
plans to pay or receive, where the last one
represents the

direction (true means conversion from nanonevers to nanoevevers and
false the opposite).

The constructor parameteres define the floor
rate (all the lower bids are dropped) as well
as minimal

exchange amounts (too small deals
are forbidden). The rest of parameters describe
the duration of

OPEN and REVEAL stages.

The creation of bids is not controlled by the
auction. The first interaction of bids with the
auction

happens at REVEAL stage that allows
to keep all the bids secret for other
participants (all the data is

hashed and
salted, the exception here is D'Auction as it
can not make a hidden bid).

To create a bid (BidLocker) it's necessary to
calculate the following hashes:

Auction address

Owner address (where coins are to be transferred later, important for D'Auctions)

hashes of the bid itself (a pair of values)

All these hashes are kept as static variables of
the BidLocker contract.

Upon deployment of BidLocker it's necessary
to transfer there enough coins and call the
lock method

BEFORE starting the REVEAL stage
of the auction. During the REVEAL stage the
verify method should

be called to check if
the bid corresponds to the one created at the
time of lock method invocation. The

same
parameteres (that were hashed before deployment
and salting) must be used.

The winning bid is the one with the best myCurrency/buyCurrency ratio, however,
buyCurrency can be

purchased by the rate of
the second-best bid.

Upon the auction completion the auction calls
updateWinners method of NeverBank and informs it

about winners and necessary payments.
The owner of the winning BidLocker can call
receiveWin

method that transfers the required
amount to the bank and receives coins in the
desired currency

back.

Calculator

Calculator is an auxiliary contract that
performs hash calculations with salting.

DeAuction



The present implementation of D'Auctions works as follows:

DeAuction contract is created using the owner's public key where the parent BlindAuction is

kept as a static variable.
DeAuction as well as a BlindAuction works in
both directions. It will

create two stakes -
NEVER/EVER and EVER_NEVER, certainly, only in case the corresponding

WeightedAggregate contracts will exist.

The corresponding WeightedAggregate contracts are created keeping the DeAuction
address

as a static variable.

The owner calls setAggregators methods to
keep the addresses of aggregators and trust

them. Additionally, it calls setLockerCode to
be able to create bids as well as setStakeCode
to

trust to the Stake contracts to be appeared.

Upon the completion of the auction (in case
of any result) the DeAuction will be notified
by

BidLocker (described above) using notifyWin method and thus receives coins that
can be

withdrawn by Stake owners using
withdraw method.

NeverBank

NeverBank is an auxiliary contract that is
responsible for payments to winners of auctions.
Basically,

it's an entrance point for the "winning" coins. It keeps an OracleProxy
address as a static variable.

OracleProxy

This contract acts a bridge between oracles and
auctions, creating the laters. The reference
to the

oracle (that provides a preliminary
exchange rate) is kept as a static variable.
Also it's needed for a

validation of
BlindAuction updates for the auctions created
by the present OracleProxy.

Stake

The Stake contract works in the following way:

Stake contract is created using the owner's public key where the parent DeAuction
is kept as a

static variable.

Upon creation, it's necessary to put there a
required amount and call lock with two numbers -

(nano)evers and (nano)nevers as well
as with direction flag (true means that
the coversion

from NEVER to EVER is expected).

Upon the successful lock the contract send all
the coins to the DeAuction to take them back

upon completion using withdraw method
(DeAuction is trustful as the contract address is

checked).

Usage

All the scripts use everdev utility.
To set the required Solidity compiler version
run:

everdev sol set -c 0.59.4


The user must have standard signers and givers to make the scripts runnable. The
corresponding

instruction can be found
here.

In the file .project_config change TVM_LINKER to the own linker. The
recompile can be done by

using:

./clean.sh && ./compile.sh


At first run deploy_proxy_and_bank.sh . It will deploy contracts and register them
for the

mutial work. Remember the proxy
address from the last output line.

https://github.com/tonlabs/everdev


After this the user can freely deploy the
auctions by the script

./deploy_auction.sh <address>


where the <address> is a proxy address
received above. Again, remember the address
from the last

output line.

Now the auction has started.The user can do
bids and create D'Auctions.

Create D'Auction by

./deploy_deauction.sh <address>


where the <address> is taken from the previous bullet point. Remember the address.

Now the user can create stakes by

./deploy_stake.sh <address>


where the <address> is an D'Auction address.
Remember the address.

To lock the stake and withdraw use:

./lock_stake.sh <address>


Just to withdraw:

 ./withdraw_stake.sh <address>


Also the user can act without D'Auctions:

To deploy locker with the given hashes and flags. Remember the address:

./deploy_locker.sh <auctionAddrHash> <ownerAddrHash> <bidHash> <isNever>


To lock the bid:

./lock_locker.sh <address>


To reveal:

./reveal_locker.sh <address> <owner> <auction> <nanonevers> <nanoevers> <salt>


Note: Addresses should be without 0:

Links

OracleProxy
0:76c91eebfcf6cb8a12bcc1a6c77ada5d9488821716faa91fec512feb3a6e39bd
NeverBank

0:424e2d4611d45e3daf148a49c5ae6b1ca8358bcaae2df6f2924c9a82efa88585
DeAuction

0:4cfab22670b64b71206d5a71031453223b8b002e3caa4538674b665c535d05bf
Stake

0:e09d6bcaad311d3a5dfa30b21c5c81fb05fbd70cb68dcbbe0cba9f3044e92604
BidLocker

0:ae0291e79bd4fb550bb10cd8d6c95f2df1674e02d63993d8bb4a3989352d8cc1



Quality

The present system was both covered by TS4 tests
as well as integration testing in a special dev
net.

More information

Feel free to ask any question Sergey Egorov, he will either answer or address them
to the proper

developer.

https://t/me/SergeyEgorovSPb

