NEVER Phase 2 (Auctions)

Developed by Pruvendo at 05/06/22

Introduction

The present set of conracts describes EVER/NEVER auction implementation with the full support of
D'Auctions. The solution follows the winner of DeFi contest #14.

Overview
The entities described below were implemented throughout the present contest.
Auctions

Auctions are intended to define the fare EVER/USD rate. The initial estimations are done by Oracle
handling (implemented during the first stage of NEVER contests (DeFi contest #16) while the goal of
the auction is to define the final price, to sell the required amount to the winner as well as to open an

exchange center for all the participants allowing then to buy/sell NEVER's with some surplus fee
comparing to the Auction price.

The auction is desinged as a Vickrey second price auction.

D'Auctions

While the minimal stake allowed for the auction is supposed to be pretty high (up to millions of
dollars) very few people can participate there.

To make the auction more acceptible for a wider audithorium the paradigm of D'Auctions has been
implemented. The participants can combine their capabilities and create a joining stake trying to win
as a single entity.

Later the winning stake is fairly distributed between the participants (with some extra award for the
D'Auction owner) and the lost stakes are returned back (with the possibility to be automatically
reinvested).

The important feature is to let D'Action owner to explicitly declare his investment strategy, has no
ability to hiddenly change it, thus letting a participant to select a D'Auction that is best in terms of
satisfying the participant's requirements and desires.

Location

The implementation provided is located at GitHub. The product is under MIT license.
Architecture

The following key contracts were implemented.

BidLocker

This contract keeps the bid of a participant until the auction is completed. Upon completion the bid
either sent to NeverBank or returned back to the participant.

BlindAuction

It's a core contract that represents auction itself, below the process of its creation described.


https://firebasestorage.googleapis.com/v0/b/ton-labs.appspot.com/o/documents%2Fapplication%2Fpdf%2Fjz5i5hcndnktkekjat-NOT%20Pruvendo%20Implementation%20draft%203.pdf?alt=media&token=015ee545-fe73-432c-a525-9a4e672128ba
https://firebasestorage.googleapis.com/v0/b/ton-labs.appspot.com/o/documents%2Fapplication%2Fpdf%2Fjz5i5hcndnktkekjat-NOT%20Pruvendo%20Implementation%20draft%203.pdf?alt=media&token=015ee545-fe73-432c-a525-9a4e672128ba
https://en.wikipedia.org/wiki/Vickrey_auction
https://github.com/Pruvendo/never2
https://opensource.org/licenses/MIT

« The creation of BlindAuction is initiated by OracleProxy mentioned below.

« At the same time, NeverBank is deployed that acts as an entrance point for the "winning"
coins.

« registerBank method of OracleProxy is called to keep the bank address. Later this address will
be sent to each BlindAuction created by the present OracleProxy.

« Also setAuctionCode method of OracleProxy is called as it's needed for auction deployment.

« In the present implementation the BlindAuction itself is deployed by initiateAuctions method,
but during the Phase 3 (final stage) it's planned to improve the robustness. At the same time
the bank is called with updateAuction to let it be prepared to pay to the winners.

The auctions consists on two parts: NEVER/EVER and EVER_NEVER. It has as much as three static
variables:

« OracleProxy address

« NeverBank address

« Ordinary number of the auction (monitored by OracleProxy that deploys the auctions to keep
them unique).

The auction bid looks like a triple: nanoevers, nanoevers and direction, where the first two numbers
indicate the amounts the participant plans to pay or receive, where the last one represents the
direction (true means conversion from nanonevers to nanoevevers and false the opposite).

The constructor parameteres define the floor rate (all the lower bids are dropped) as well as minimal
exchange amounts (too small deals are forbidden). The rest of parameters describe the duration of
OPEN and REVEAL stages.

The creation of bids is not controlled by the auction. The first interaction of bids with the auction
happens at REVEAL stage that allows to keep all the bids secret for other participants (all the data is
hashed and salted, the exception here is D'Auction as it can not make a hidden bid).

To create a bid (BidLocker) it's necessary to calculate the following hashes:

« Auction address
« Owner address (where coins are to be transferred later, important for D'Auctions)
« hashes of the bid itself (a pair of values)

All these hashes are kept as static variables of the BidLocker contract.
Upon deployment of BidLocker it's necessary to transfer there enough coins and call the lock method
BEFORE starting the REVEAL stage of the auction. During the REVEAL stage the verify method should

be called to check if the bid corresponds to the one created at the time of lock method invocation. The
same parameteres (that were hashed before deployment and salting) must be used.

The winning bid is the one with the best myCurrency/buyCurrency ratio, however, buyCurrency can be
purchased by the rate of the second-best bid.

Upon the auction completion the auction calls updateWinners method of NeverBank and informs it
about winners and necessary payments. The owner of the winning BidLocker can call receiveWin

method that transfers the required amount to the bank and receives coins in the desired currency
back.

Calculator

Calculator is an auxiliary contract that performs hash calculations with salting.

DeAuction



The present implementation of D'Auctions works as follows:

« DeAuction contract is created using the owner's public key where the parent BlindAuction is
kept as a static variable. DeAuction as well as a BlindAuction works in both directions. It will
create two stakes - NEVER/EVER and EVER_NEVER, certainly, only in case the corresponding
WeightedAggregate contracts will exist.

« The corresponding WeightedAggregate contracts are created keeping the DeAuction address
as a static variable.

« The owner calls setAggregators methods to keep the addresses of aggregators and trust
them. Additionally, it calls setLockerCode to be able to create bids as well as setStakeCode to
trust to the Stake contracts to be appeared.

« Upon the completion of the auction (in case of any result) the DeAuction will be notified by
BidLocker (described above) using notifyWin method and thus receives coins that can be
withdrawn by Stake owners using withdraw method.

NeverBank

NeverBank is an auxiliary contract that is responsible for payments to winners of auctions. Basically,
it's an entrance point for the "winning" coins. It keeps an OracleProxy address as a static variable.

OracleProxy

This contract acts a bridge between oracles and auctions, creating the laters. The reference to the
oracle (that provides a preliminary exchange rate) is kept as a static variable. Also it's needed for a
validation of BlindAuction updates for the auctions created by the present OracleProxy.

Stake
The Stake contract works in the following way:

« Stake contract is created using the owner's public key where the parent DeAuction is kept as a
static variable.

« Upon creation, it's necessary to put there a required amount and call lock with two numbers -
(nano)evers and (nano)nevers as well as with direction flag (true means that the coversion
from NEVER to EVER is expected).

« Upon the successful lock the contract send all the coins to the DeAuction to take them back
upon completion using withdraw method (DeAuction is trustful as the contract address is
checked).

Usage

All the scripts use everdev utility. To set the required Solidity compiler version run:

everdev sol set -c 0.59.4

The user must have standard signers and givers to make the scripts runnable. The corresponding
instruction can be found here.

« In the file .project_config change TVM_LINKER to the own linker. The recompile can be done by
using:

./clean.sh && ./compile.sh

« Atfirst run deploy_proxy_and_bank.sh . It will deploy contracts and register them for the
mutial work. Remember the proxy address from the last output line.


https://github.com/tonlabs/everdev

« After this the user can freely deploy the auctions by the script
./deploy_auction.sh <address>

where the <address> is a proxy address received above. Again, remember the address from the last
output line.

Now the auction has started.The user can do bids and create D'Auctions.
« Create D'Auction by
./deploy_deauction.sh <address>
where the <address> is taken from the previous bullet point. Remember the address.
« Now the user can create stakes by
./deploy_stake.sh <address>
where the <address> is an D'Auction address. Remember the address.
« To lock the stake and withdraw use:
./lock_stake.sh <address>

« Just to withdraw:

./withdraw_stake.sh <address>

Also the user can act without D'Auctions:

« To deploy locker with the given hashes and flags. Remember the address:

./deploy_locker.sh <auctionAddrHash> <ownerAddrHash> <bidHash> <isNever>

« To lock the bid:

./lock_locker.sh <address>

. To reveal:

./reveal_locker.sh <address> <owner> <auction> <nanonevers> <nanoevers> <salt>

Note: Addresses should be without 0:
Links

OracleProxy 0:76c91eebfcf6cb8al2bcclabc77ada5d9488821716faa91fec512feb3abe39bd NeverBank
0:424e2d4611d45e3dafl48a49c5aebblca8358bcaae2df6f2924c9a82efa88585 DeAuction
0:4cfab22670b64b71206d5a71031453223b8b002e3caad538674b665c535d05bf Stake
0:e09d6bcaad311d3a5dfa30b21c5c81fb05fbd70cb68dcbbe0cbad9f3044e92604 BidLocker
0:2e0291e79bd4fb550bb10cd8d6c95f2df1674€02d63993d8bb4a3989352d8ccl



Quality

The present system was both covered by TS4 tests as well as integration testing in a special dev net.

More information

Feel free to ask any question Sergey Egorov, he will either answer or address them to the proper
developer.


https://t/me/SergeyEgorovSPb

