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Abstract

How is the vast brain communication system organized? A structural model
relates connections to laminar differences between linked areas. The model
is based on the principle of systematic structural variation in the cortex, ex-
tending from the simplest limbic cortices to eulaminate areas with elaborate
lamination. The model accounts for laminar patterns and for the strength
and topography of connections between nearby or distant cortices and sub-
cortical structures, exemplified quantitatively for the principal and special
prefrontal connections. Widespread connections of limbic areas and focal
connections of eulaminate areas yield a broad range of circuit patterns for
diverse functions. These diverse pathways innervate excitatory and func-
tionally distinct inhibitory neurons, providing the basis for differential re-
cruitment of areas for flexible behavior. Systematic structural variation likely
emerges by timing differences in the development of distinct areas and has
important implications for altered connections in diseases of developmental
origin.
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INTRODUCTION

The prefrontal cortex has one of the most extensive communication systems in the brain. Complex
networks link the prefrontal cortex with the external world through connections with sensory
association cortices. The prefrontal cortex is also connected with structures associated with the
internal environment because many of its functions are independent of external stimuli—motives,
drives, thoughts, and reflections as one ponders the past or plans for the future. How are the
numerous connections organized for effortless flow of thoughts and actions? This review focuses
on structural principles that help organize and predict connections in mammals. The focus is on
nonhuman primates with some references to rats and mice and application to humans.

That the cortex is organized into functional units was a seminal idea (Lorente de N6 1938) for-
malized with discoveries of functional repeated columns in the primary somatosensory and visual
cortices (Hubel & Wiesel 1968, Mountcastle 1957; reviewed in Callaway 1998, DeFelipe 2002,
Mountcastle 1997). In primary sensory cortices, pathways from the thalamus activate neurons in
layer 4 of each column, and signals are then transmitted to excitatory and inhibitory neurons in
the layers above and below (Douglas & Martin 2004). The concept of columns provided the basis
to construct models of visual function (Raizada & Grossberg 2003) and to hypothesize how the
cortex could have expanded in evolution by adding functional units (Rakic 2009).

The columnar organization of primary sensory areas was later extrapolated into a general
scheme of canonical cortical microcircuits (Douglas & Martin 2004). This scheme was based on
the assumption that all cortical areas have six layers (Brodmann 1909) and on the related notion that
columns across areas have the same number of neurons (Rockel et al. 1980). Mounting empirical
evidence, however, suggests that the idea of a uniform six-layer cortex is an oversimplification.
Here I discuss that systematic structural variation across areas is a core organizing principle, and
brain connections can be understood and predicted parsimoniously in light of this principle. I refer
to the relationship of connections to cortical structure as the structural model for connections. The
predictive power of this model is exemplified for the principal connections of prefrontal areas but
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applies to the entire cortex. Differences in the timing of development of areas provide a plausible
mechanism for the emergence of systematic cortical variation. In turn, structural variation along
the cortical mantle yields a broad diversity of connections and neural computations, differential
recruitment of areas for flexible behavior, and variable disruption in psychiatric diseases.

GENERAL PRINCIPLES OF CORTICAL STRUCTURE

The principle of systematic variation across the cortical landscape emerged from classic studies
[Abbie 1940, Dart 1934, Sanides 1970, von Economo 2009 (1927); reviewed in Pandya et al.
1988]. To understand this principle we must begin with the cortical limbic areas, operationally
defined as areas that either lack layer 4 or have a rudimentary layer 4 and are poorly myelinated
(hereafter referred to as limbic). Limbic areas thus have fewer than six layers (Figure 1c, 7, c, 7).
The cortical limbic system occupies the edges of the cortex as a ring above the corpus callosum
and the base of the brain, abutting all cortical sensory, high-order association and motor systems
(Figure 1a). Areas found adjacent to the limbic areas have a better developed layer 4 and more
distinct layers overall, characteristic of cortices with six layers (hereafter referred to as eulaminate;
see Figure 1¢, 7ii-iv). Within each cortical system, laminar patterning beyond the limbic core
appears progressively differentiated in successive eulaminate areas (Figure 1a).

Systematic differences in neuronal density across brain areas have been noted using quantitative
methods (Charvet et al. 2013, Collins et al. 2010, Dombrowski et al. 2001, O’Kusky & Colonnier
1982). Cortical areas also vary by spine density and dendritic complexity (Allman & McGuinness
1988, Elston et al. 2001, Kaas 2008). The cortex thus is not uniform by number of layers, by
neuronal density, or by other architectonic features. The central principle is that the changes in
laminar structure are not random but systematic. Thus, each cortical system, such as the visual,
auditory, somatosensory, and prefrontal cortices, is a microcosm of areas whose laminar structure
varies systematically. This principle forms the basis for a structural model that helps explain the
laminar pattern, the topography, the strength, and the existence or absence of connections within
a cortical system (e.g., the visual cortices) or between systems (e.g., visual and prefrontal cortices).

SYSTEMATIC VARIATION AND LAMINAR PATTERNS
OF CORTICAL CONNECTIONS

When neural tracers were introduced to map pathways, it became clear that connections between
areas are bidirectional but unequal in density and laminar distribution across directions. This
rule was illustrated by the connections of the primary visual cortex (V1). Neurons in layer 3 of
V1 project to neighboring area V2, where their axons terminate focally in layer 4. Reciprocal
and denser pathways emanate from neurons in the deep layers (5 and 6) of V2, and their axons
terminate mostly in layer 1 of V1 (Rockland & Pandya 1979). These connections have been
called feedforward and feedback, respectively, on the basis of direction in relation to the sensory
periphery. Connections fit these patterns for only a subset of linked pairs of cortices. Connections
that involve more layers were called “lateral” (Felleman & Van Essen 1991).

At the opposite end of the brain, the laminar distribution of connections of the prefrontal
areas also varies, and the pattern of these connections provided an important clue about their
organization: Areas along any part of the limbic ring send feedback projections to prefrontal
eulaminate cortices. In turn, limbic areas receive feedforward projections from eulaminate areas,
regardless of their placement in the cortex (Barbas 1986). The most striking anatomic difference
between limbic and eulaminate areas is laminar structure. This observation led to the hypothesis
that the structural relationship between linked areas underlies the laminar pattern of their
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interconnections. According to the structural model, feedforward connections originate from an
area with more elaborate laminar structure than the destination. Feedback refers to connections
having the opposite relationship (Figure 24). Lateral connections link areas with small differences
in structure and are distributed in more layers, as predicted by the model in Figure 2b.

Tested quantitatively in the connections within the prefrontal cortical system, the structural

model predicted successfully the relative laminar distribution of connections in different layers
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for the large majority of connections (Barbas & Rempel-Clower 1997). Quantitative data for
prefrontal connections across the hemispheres and ipsilateral connections with distant cortices
are also consistent with the structural model (e.g., Barbas et al. 2005, Medalla et al. 2007, Medalla
& Barbas 2006, Rempel-Clower & Barbas 2000). The structural model is also supported by analysis
of the topography and laminar connection patterns in other cortices (Hilgetag et al. 2008) and by
computational analysis of connections using an extensive database (Goulas et al. 2014).

The structural model thus predicts laminar patterns of connections, constrained by a rule
based on the magnitude of the structural similarity/dissimilarity between linked areas (Figure 2).
In contrast, hierarchical models rely on post hoc data of laminar connection patterns to place
areas in a sequential order (Felleman & Van Essen 1991) and are poorly constrained (Hegde &
Felleman 2007, Hilgetag et al. 1996). The structural model also challenges the notion that the
prefrontal cortex provides only feedback projections to the sensory and other association cortices.
Whereas several prefrontal areas have feedback-like connections with areas in other lobes, some
are feedforward-like (Barone etal. 2000, Medalla & Barbas 2006, Rempel-Clower & Barbas 2000).
As shown in Figure 2¢—d, feedforward and feedback connections do not depend on direction but
depend on laminar structure.

SYSTEMATIC VARIATION AND TOPOGRAPHY
OF CORTICAL CONNECTIONS

Studies show that neighboring areas are often connected (see Bullmore & Sporns 2012). Distance
has been invoked as one factor to explain the decreasing incidence of connections between succes-
sively distant areas, as exemplified for visual areas (Markov et al. 2014). But within a cortical system,
structure often changes with distance as well (Figure 34). In addition, a distance model does not
explain why connections between some distant areas are strong, such as prefrontal connections
with occipital, temporal, and parietal areas.

From the perspective of the structural model, neighboring areas and distant areas that are
similar in type are likely connected. Similarity in cortical type is assessed by common features
among areas, such as the number and distinction of layers. Classifying areas by type is analogous
to grouping people by similarity in height and weight. Cortical type does not depend on the unique
features that give an area its architectonic signature (by analogy, facial features) or its topography
(by analogy, residence). As seen in Figure 14, limbic areas in the frontal and occipital lobes are

Figure 1

Systematic variation in cortical structure. (#, i) Tilted brain shows the medial and partial basal views of the rhesus monkey brain. The
cortical limbic system forms a ring at the edge of the cortex and is composed of the simplest types of cortices (black and dark gray), and
abuts every cortical system. Small arrows ( gray) depict the onset of gradual laminar differentiation from the limbic cortices to
eulaminate areas that have six layers. (77) Medial surface: shows the medial ACC limbic areas (area MPAIL, 24, 32, 25); (iii ) Basal surface:
cortex with six layers; () the lateral prefrontal cortex is composed of eulaminate cortices. (¢, i—v) Cartoon depicts systematic laminar
changes in cortical types depicted by shades of gray, from the simplest (i, i, black and dark gray, collectively called limbic cortices), to
eulaminate cortices with six layers (7i7) that show further elaboration (iv, lightest gray). Eulaminate areas are depicted as two types based
on laminar distinction and neuronal density, but finer parcellation into more types is possible and needed for large regions, such as the
visual cortical system. Abbreviations: A, arcuate sulcus; Ca, calcarine fissure; Cg, cingulate sulcus; LO, lateral orbital sulcus; MO,
medial orbital sulcus; MPAII, medial periallocortex (agranular cortex); OLF, olfactory cortex; OPAI, orbital periallocortex (agranular
cortex); OPro, orbital proisocortex (dysgranular cortex); Ot, occipitotemporal sulcus; P, principal sulcus; pOFC, postetior orbitofrontal
cortex (areas OPAIL, OPro, 13); ProSt, area prostriata; Rh, rhinal sulcus; TH, medial temporal area TH; TP, temporal pole. Notes:
Agranular, three-layer cortex with no evidence of layer 4; dysgranular, four-layer cortex with an incipient layer 4; eulaminate, six-layer
cortex. All numbers on brains refer to architectonic areas; 6D, dorsal area 6; 6V, ventral area 6 (premotor cortices).

www.annualreviews.org o Principles of Brain Connections 273

Changes may still occur before final publication online and in print



NE38CH13-Barbas ARI 9 April 2015 12:16

Eulaminate |

Dysgranular

b

Eulaminate

Agranular

e
»
<3
2@
a
2
q
P
o0
s o0
c"
4
al o

-r--
»
*

" L] * . -.
r»m@ﬁt e
s WNe T e a
1
-= => s
CarS S

I >'P_\:<
K

v Py v [ 2 J -

ey’ - Ol
. . . ¢ o . >

L4 - ~ . o "

e Od-i 00 > e o 9 a 060

A ) A )
= > = >
= =2 £ ==

Lateral unuu)
Feedback -

Feedforward =====dp-

i * pete " A * 0 ”

nc . s ¢ c' nc ° L 4 QQCI
! - apgt 49, - apgt 49,
| 4,9 ;e O I

H IS o £3 H IS o o
1 - 1 d -
1@ e *o g [ M e (I
! Py > a ! v Py K

1 » - 1 » -
i nauo ) i nab0 )
1

' e s, o I s, o
£ Z S Z

= > = >

"Ajuo asn feuosied 104 "ST/TZ/70 U0 ALISHAAINN VYNITOH VD LSV Ag pspinoid sssooy
B10'sma 1A fenuUR MMM W0 POPE0 JUMOQ "8E'STOZ ‘19S0INBN Aoy ‘NuUY

Eulaminate | Eulaminate Il

Dysgranular

Changes may still occur before final publication online and in print



Annu. Rev. Neurosci. 2015.38. Downloaded from www.annualreviews.org
Access provided by EAST CAROLINA UNIVERSITY on 04/21/15. For personal use only.

NE38CHI13-Barbas ARI 9 April 2015 12:16

far from each other and are architectonically distinct, but they have in common the simplest types
of laminar structure (Figure 14). Neuronal density per unit volume is often a reliable indicator of
type for sensory and association cortices. Other architectonic parameters also help describe cortical
types quantitatively (Dombrowski et al. 2001). As novel markers are introduced, investigators will
be able to use several discriminant features of cortical type to assess with greater accuracy the
degree of structural similarity/dissimilarity among areas.

Distant cortices can be similar in type based on the systematic structural variation within each
cortical system. Thus, areas that are similar in type across systems can be connected. This principle
is illustrated for projections from visual and auditory association areas to prefrontal areas. The
frontal eye field (FEF) within area 8 receives strong projections from occipital visual association
and parietal visuomotor areas (Figure 34,b). Projections from visual-related areas to prefrontal
area 46 originate in more anterior parietal, and temporal cortices (Figure 34). Areas 46 and 8
are both eulaminate, but quantitative analysis has shown that the FEF site (Figure 34) has higher
neuronal density than does area 46 (Figure 34). Similarly, while the visual and visuomotor areas
that project to prefrontal areas are all eulaminate, those that project to FEF have a higher neuronal
density than do those that project to area 46 (quantitative examples in Medalla & Barbas 2006).
Laminar structure in the auditory cortical system is less differentiated overall than that in the
visual system. Auditory association areas have connections with more anterior lateral prefrontal
areas and with medial prefrontal and orbitofrontal areas (reviewed in Barbas 2000, Medalla &
Barbas 2014, Romanski & Averbeck 2009, Yeterian et al. 2012) (Figure 2c-e), consistent with the
systematic structural variation within the respective auditory and prefrontal systems.

The primary olfactory areas have, at most, three layers (Shepherd 2011) and no connections
with the lateral eulaminate prefrontal sector. In contrast, the posterior part of the orbitofrontal
cortex (pOFC) and the posterior medial region in the anterior cingulate cortex (ACC) are made
up of limbic-type areas, and they are connected with the olfactory areas (Barbas & Pandya 1989,
Garcia-Cabezas & Barbas 2014, Morecraft et al. 1992, Nauta 1979, Yakovlev 1948).

The ACC and pOFC regions have robust connections with other limbic cortices associated
with the internal environment: core functions of motives and drives (Barbas 1993, Carmichael
et al. 1994, Morecraft et al. 1992, Vogt & Pandya 1987). These limbic prefrontal cortices have
kept pace with lateral prefrontal areas in evolution and are connected with them (e.g., Nauta
1971, 1972). This linkage provides the anatomic basis for mutual influence of the processes of
emotion and cognition and for their disruption in psychiatric diseases (Barbas 1995, Damasio
1994, Lindquist et al. 2012, Pessoa 2013, Ray & Zald 2012, Salzman & Fusi 2010). The two
limbic prefrontal regions are also distinguished by other cortical connections. The pOFC receives

Figure 2

Predictions of the structural model for connections. (#) Laminar patterns predicted in the connections between areas that differ
markedly in cortical type: (Top) Pathways from a cortex with less elaborate structure originate in the deep layers and terminate in the
upper layers of a cortex with more elaborate structure (red, feedback). (Bottonz) A pathway in the reverse direction (b/ue) originates in the
upper layers and terminates in the middle layers (feedforward). (5) Predictions of the structural model linking areas with small
differences in structure: (7op) A pathway from an area with less elaborate structure to an area with more elaborate structure; (Botromz) A
pathway in the reverse direction. (c,d) Pathways from prefrontal to temporal cortices and temporal to prefrontal. Pathways are
color-coded as feedforward (b/ue, terminating mostly in middle layers 3b—5a), feedback (red, terminating mostly in superficial layers
1-3a), and lateral ( green, terminating in all layers). (c,d) Demonstrate two connection rules: First, strong connections can linknearby or
distant cortices that are of the same or comparable type (depicted by shades of gray); second, the predominant laminar pattern of
connections depends on the type difference between linked cortices (shown by shades of gray) but not necessarily on-the direction from
frontal to temporal or vice versa. Abbreviations of sulci and architectonic areas are provided in the caption for Figure 1. Additional
abbreviations: TE, inferior temporal visual area; Sts, superior temporal sulcus. Panels ¢, d based on Rempel-Clower & Barbas (2000).
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Figure 3

The rule that distant areas of comparable cortical type are interconnected is exemplified in the projections from visual and auditory
association cortices to prefrontal cortices. (#,b) Pathways from visual cortices to area 8 (pink) originate in posterior visual cortices;
pathways from more anterior visual cortices innervate area 46 (green). These connections are consistent with the principle of type
similarity between linked areas, as summarized by the progression of changes in cortical type along the ventral visual pathway (, black to
light gray arrows). (c—e) Extensive projections from auditory association cortices to (c) lateral, (4) orbital, and (¢) medial prefrontal
cortices originate from caudal auditory to progressively more rostral auditory association cortices. Abbreviations: A, arcuate sulcus;

C, central sulcus; Cc, corpus callosum; Cg, cingulate sulcus; IP, intraparietal sulcus; LF, lateral fissure; Lu, lunate sulcus; MO, medial
orbital sulcus. Ro, rostral sulcus; ST, superior temporal sulcus. OPAllL, OPro, and 13 are orbital limbic areas, collectively called pOFC
in the text. Panels c—e adapted from Medalla & Barbas (2014).

an overview of the entire external environment from higher-order sensory cortices. In contrast,
the sensory-related ACC connections are mostly with auditory association cortices (Barbas et al.
1999).

Connections thus can be summarized by a type-similarity rule as follows: Most of the connec-
tions, and particularly those that are the strongest, occur between areas that are comparable in
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cortical type or differ by 1-2 sequential types (Barbas & Pandya 1989). Similarity in cortical type
thus helps explain connections between neighboring as well as between distant areas.

RELATIONSHIP OF CONNECTIONS TO CORTICAL
INHIBITORY SYSTEMS

Why do connection patterns matter? Cortical pathways that terminate in different layers engage
excitatory as well as inhibitory neurons that vary greatly in prevalence, functional type, and efficacy
of inhibition. Cortical pathways thus influence the balance of excitation and inhibition and the
disruption of this balance in brain diseases. In the prefrontal cortex, inhibitory control is essential
for selective attention and flexible behavior. Even mild cognitive decline of prefrontal origin
in humans weakens the suppression of distracting stimuli in the auditory cortex and impairs
performance on discrimination tasks (Chao & Knight 1997).

There are various mechanisms of inhibition in the cortex (reviewed in Greengard 2001). A
brief discussion here focuses on cortical y-aminobutyric acid (GABA)-ergic neurons, which con-
stitute 25-30% of all cortical neurons in primates (Jones 2009). Cortical pathways in primates
are excitatory and largely innervate other excitatory neurons, but ~10% to more than 20% of the
synapses are on inhibitory neurons. These percentages apply to pathways that enter or leave the
white matter but do not apply to connections within cortical columns.

Cortical GABAergic neurons are diverse in morphology, distinguished by a rich and varied
axonal ramification confined within the cortex (Ascoli et al. 2008, DeFelipe 2002, Markram et al.
2004). There is no general agreement on or consistency in the morphologic classification of
inhibitory neurons (Defelipe et al. 2013). GABAergic neurons in primates, however, can be classi-
fied by expression of the calcium-binding proteins calbindin (CB), parvalbumin (PV), or calretinin
(CR). This classification has several advantages, even though each neurochemical class includes
more than one morphologic type. In primates, these neurochemical classes are largely nonover-
lapping. Moreover, each class of inhibitory neurons has preferential laminar distributions and
innervates specific parts of nearby neurons. CR is expressed in inhibitory neurons found mostly in
layers 1-2a. CB neurons are concentrated mostly in layers 2-3a. Generally, CB and CR neurons
include morphologic types with vertically oriented axons and innervate segments of the dendritic
tree of nearby neurons. PV labels the morphologic types of basket and chandelier neurons, which
are found predominantly in the middle-deep layers (DeFelipe 1997) and innervate perisomatic
elements of nearby neurons. The density of each neurochemical class varies across areas. For ex-
ample, in ACC and pOFC areas, CB neurons are more densely distributed than are PV neurons,
whereas in lateral eulaminate areas, they are more balanced (Dombrowski et al. 2001).

The systematic variation of the cortex is thus accompanied by variation in the cortical inhibitory
system. Consequently, laminar-specific connections originate and terminate in areas and layers in
which inhibitory neurons vary in overall density, prevalence of neurochemical class, and synaptic
efficacy. The interface of laminar-specific pathways with functionally distinct classes of inhibitory
neurons across areas provides a powerful model to investigate differential effects of pathways across
areas.

SYSTEMATIC VARIATION AND CONNECTIONS IN OTHER
MAMMALIAN SPECIES

Compared with gyrencephalic primates, rats and mice have only a few cortical areas (see Krubitzer
2009), including some frontal areas (Uylings et al. 2003). Connectional, physiologic, and behavioral
attributes suggest that the prelimbic cortex in rats is comparable to ACC area 32 and the infralimbic
cortex in primates to area 25 (Gabbott et al. 2005, Vertes 2004, Vogt et al. 2013). The prelimbic
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cortex is implicated in motivational and cognitive aspects of behavior (Groenewegen & Uylings
2000; Uylings et al. 2003; Vertes 2004, 2006), combining functions attributed to parts of the ACC
and dorsolateral prefrontal areas in primates. The orbital region in rats also shares some functions
with the infralimbic cortex (Chudasama & Robbins 2003).

The rodent cortex is less differentiated than the primate cortex, and yet, in spite of its overall
simplicity, the rat cortex also shows structural differences. As in primates, the primary areas are
the best laminated in rodents, exemplified by the structural elegance and exquisite functional
specificity of the somatosensory barrel cortex (Petersen 2007). The predictions of the structural
model are consistent with cortical connection data in rats and other species (Coogan & Burkhalter
1990, Hilgetag & Grant 2010; see Barbas 1986 for discussion of other species).

Rats and mice also differ from primates because they have fewer inhibitory neurons, amounting
to ~15% of all cortical neurons (Woodruff & Yuste 2008). Inhibitory neurons in rodents show
less specificity in their neurochemistry than do inhibitory neurons in primates. Aside from the
class of PV neurons and perhaps those that express somatostatin, other groups show overlapping
expression of CR and a variety of peptides (Kawaguchi & Kubota 1997, Wonders & Anderson
2006, Xu et al. 2010). PV neurons are the most prevalent class in the cortex in rats and mice but not
in primates, at least not in the prefrontal cortices of primates that have been studied (Dombrowski
etal. 2001, Gabbott & Bacon 1996, Wonders & Anderson 2006, Xu et al. 2010).

SYSTEMATIC CORTICAL VARIATION AND SUBCORTICAL
CONNECTIONS

The principle of systematic cortical variation also helps summarize subcortical connections with
the cortex. Eulaminate prefrontal cortices overall have fewer and more focal connections with
subcortical structures than do the limbic cortices. For example, most thalamic neurons that project
to lateral eulaminate areas are found in the mediodorsal (MD) nucleus—the principal thalamic
nucleus for the prefrontal cortex—whereas only a few originate in other thalamic nuclei. Limbic
prefrontal cortices are innervated by MD, as well, butare also innervated, to a significant extent, by
other thalamic nuclei: anterior, intralaminar, midline, ventral, and the medial pulvinar (Dermon
& Barbas 1994).

The thalamus is connected with the cortex via two parallel and bidirectional pathways in all
systems (reviewed in Jones 2007). Pathways from the various relay thalamic nuclei terminate
focally in the middle cortical layers, like feedforward corticocortical pathways. Parallel thalamic
pathways innervate the superficial layers of each area, akin to feedback corticocortical pathways.
The latter emanate from different neurons within a thalamic nucleus than in the relay pathways
(Jones 2007), or they emanate from different nuclei. MD innervates the middle layers of prefrontal
areas abundantly and layer 1 sparsely (Giguere & Goldman-Rakic 1988). But pathways from other
thalamic nuclei innervate robustly the upper layers as well as the middle layers of prefrontal cortices
(Haber 2003, Zikopoulos & Barbas 2007b).

Hypothalamic pathways also reach all prefrontal areas in rats and primates (Nauta & Haymaker
1969, Rempel-Clower & Barbas 1998). The hypothalamic system, which is often regarded as
diffuse, also conforms to the general structural scheme by innervating limbic areas robustly and
eulaminate cortices sparsely. Limbic prefrontal areas uniquely reciprocate with projections to the
hypothalamus, which innervates brain stem and spinal autonomic structures (Rempel-Clower &
Barbas 1998). Limbic prefrontal areas thus have rapid access to vital autonomic organs, such as
the heart, lungs, and gut, during emotional arousal.

Limbic prefrontal areas are also the major targets of pathways from the hippocampus (CAl
and subiculum), which reach the ACC and, to some extent, the orbitofrontal cortex (Barbas &
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Blatt 1995, Insausti & Munoz 2001, Rosene & Van Hoesen 1977). The hippocampal pathways are
reciprocated only indirectly through strong projections from the ACC to the entorhinal cortex
and from the pOFC mostly to the perirhinal cortex (Bunce et al. 2013, Insausti & Munoz 2001,
Rempel-Clower & Barbas 2000).

The amygdala has a wider reach on the prefrontal cortex than does the hippocampus. Nev-
ertheless, the amygdala innervates most densely the limbic prefrontal areas, and especially the
pOFC, and to a lesser extent the eulaminate areas (Ghashghaei et al. 2007, Porrino et al. 1981,
Timbie & Barbas 2014). Like the pOFC, the amygdala receives a broad overview of the entire
external environment through late-processing sensory cortices in rats and primates (McDonald
1998, Price 2003, Turner et al. 1980).

Sensory pathways that reach the pOFC indirectly via the amygdala may convey signals about
the significance of stimuli (Barbas 1995). Can the laminar patterns of these pathways reveal the
flow of information in this complex system? The amygdala receives projections from eulami-
nate temporal sensory association areas, which originate from layer 3, as in feedforward pathways
(Hoistad & Barbas 2008). These projection neurons were labeled retrogradely after bidirectional
tracers were injected into the amygdala (Figure 44). The same experiments show that axons from
the amygdala innervate all layers of the pOFC (Figure 4¢) to a different extent. One prominent
innervation pattern shows dense patches of amygdalar terminations in the middle layers of the
pOFC (Ghashghaei et al. 2007), akin to feedforward projections (Figure 4b,c). These serial pro-
jections resemble the sequential pathways from earlier to later processing in sensory areas. By
analogy, serial pathways from temporal sensory cortices to the amygdala and then to the pOFC
may convey signals about the significance of stimuli. Figure 44 also shows that projection neurons
shift to the deep layers (feedback) in nearby limbic area 28, which also projects to the amygdala
(Figure 4a). These patterns are consistent with predictions from the structural model, even when
one structure is not cortical, such as the amygdala (see also Ghashghaei et al. 2007).

The limbic prefrontal cortices have strong reciprocal projections to the amygdala. In contrast,
eulaminate areas have few, if any, projections to the amygdala. The ACC innervates the central
and other efferent nuclei of the amygdala, which innervate downstream autonomic structures.
A prominent pathway from the pOFC robustly innervates the inhibitory intercalated amygdalar
neurons (Ghashghaei & Barbas 2002), which have a key role in the internal processing of the
amygdala (Jongen-Relo & Amaral 1998, Saha et al. 2000). In rats and mice, pathways from pre-
limbic and infralimbic cortices project to the intercalated neurons as well (Cassell & Wright 1986,
Pinto & Sesack 2008, Sesack et al. 1989).

SPECIAL CIRCUITS OF THE PREFRONTAL CORTEX

The prefrontal cortex differs from other association areas by receiving privileged information
through the thalamus from two major structures: the basal ganglia and the cerebellum. The cor-
tex, in general, projects to the basal ganglia and to the pontine nuclei of the cerebellum (Haber
2003, Schmahmann & Pandya 2008). But output pathways from the basal ganglia and the cerebel-
lum preferentially innervate motor-related thalamic nuclei and MD, which are connected mostly
with motor, premotor, and prefrontal cortices (see Barbas et al. 2013). The basal ganglia and
the cerebellum specialize in sequencing information seamlessly for habits, language, and actions
(reviewed in Barbas et al. 2013, Graybiel 2008). Frontal thalamic nuclei thus receive distilled in-
formation from the neuraxis through the basal ganglia and the cerebellum and broadcast it to the
prefrontal cortex. These pathways facilitate fluid streaming of thoughts and actions in a broad
range of operations from simple routines to complex cognition attributed to the prefrontal cortex
(Figure 5).
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Figure 4

Sequential laminar-specific pathways and hypothesis for the flow of information for emotions. Projection
neurons in temporal areas were labeled retrogradely (brown) after injecting a bidirectional neural tracer in
the amygdala. Thick dotted line shows the upper border of layer 5; thin dotted line shows the upper border
of layer 4. Blue arrows depict feedforward pathways from temporal sensory areas (#) to the amygdala (b) and
from the amygdala to the pOFC (c). () Cross section through temporal cortex shows that eulaminate visual
area TE and the adjacent polymodal region (blue arrows) project to the amygdala from neurons in layer 3
(labeled neurons, brown, shown in inset at higher magnification). (b,c) Amygdalar pathways terminate in all layers
of the pOFC, but a prominent pattern includes dense axon patches in the middle layers (c, blue). The laminar
patterns of these serial pathways are akin to feedforward pathways in sensory cortices; in this system, they
may provide information about the significance of stimuli. Note the shift in the origin of labeled neurons to
the deep layers in the limbic entorhinal area 28 (#, red arrows, feedback). Structural transitions in this region
proceed from the limbic entorhinal area 28 (agranular) to eulaminate area TE1 (visual association area).
These patterns are consistent with the predictions of the structural model.
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Figure 5

Dual pathways link the thalamus with the cortex. (#) A focal driver (d1) pathway from the thalamus innervates the middle layers of the
cortex (3b-5a), reciprocated by a modulatory (m1) cortical pathway from layer 6 to the thalamus. A parallel ‘modulatory’ (m2) pathway
from the thalamus terminates widely in the upper layers (1-3a), impinging on the apical dendrites of layer 5 neurons (/ight blue) that
project back to the thalamus (d2). The parallel pathways may allow differential recruitment of areas in behavior: activity in column 1

(@) may eventually spread to column 2 and beyond through activation of pathways between the thalamus and cortex, amygdala and
cortex, or corticocortical pathways. Special pathways link the prefrontal cortex with subcortical structures. () Thalamic nuclei that are a
hub for the output of the basal ganglia and the cerebellum are connected preferentially with the frontal cortex (prefrontal and premotor/
motor cortices, black and green arrows). The inhibitory thalamic reticular nucleus (TRN) similarly receives topographic projections from
the entire cortex (not shown), but some prefrontal areas project widely to TRN, including its sensory and motor sectors (black arrows on
TRN). These special projections may facilitate selective attention and executive function in prefrontal cortex. Panel # adapted from
Zikopoulos & Barbas (2007b).

Special projections from select prefrontal areas also innervate the inhibitory thalamic reticular
nucleus (TRN), which is thought to filter signals through the thalamus and the cortex (Crick
1984). Whereas all other cortices project topographically to the TRN, lateral prefrontal areas
46/9, the pOFC, and the amygdala innervate the frontal sector of the TRN as well as the sensory
and motor sectors of the TRN (Zikopoulos & Barbas 2007a, 2012) (Figure 5b). These widespread
projections from select prefrontal areas and from the amygdala may control an attentional system
through the TRN that filters signals at an early stage of processing. Preferential connections with
hub thalamic nuclei and the TRN likely contribute to the specialization of the prefrontal cortex
in executive control.
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SYSTEMATIC CORTICAL VARIATION AND FLEXIBLE FUNCTION

Whatis the functional significance of systematic cortical variation and connections? A consequence
of this scheme is that functional columns are not uniform and canonical as originally thought but
instead must vary across cortices, as physiologic studies now show (Godlove et al. 2014). Vari-
able connections engage different neurocognitive maps (Mesulam 2008). Diversity in connection
patterns allows specific or broad recruitment of areas depending on behavioral demands. Lateral
prefrontal areas receive mostly focal feedforward thalamic projections and input from early sensory
association cortices for cognitive operations (Funahashi & Kubota 1994, Fuster 1989, Goldman-
Rakic 1988, Miller & Cohen 2001, Petrides 2000). But the activity of these eulaminate areas can
be modified by widespread feedback projections from areas with a simpler structure, which are
richly innervated by the amygdala and many thalamic nuclei. Axons from these subcortical struc-
tures terminate not only in the middle layers, but also expansively in the upper layers where they
come in contact with the apical dendrites of neurons from layer 5. If sufficiently strong, activity
in the upper layers can spread to adjacent sites, influencing nearby areas and beyond, as depicted
in Figure 54 (Zikopoulos & Barbas 2007b). Neurons in layer 5 project to the basal ganglia and
the amygdala; some also project to the thalamus and other cortices, which provides a mechanism
for the spread of activation through the thalamus and the cortex (Sherman & Guillery 1996).

Laminar-specific connections also suggest differential recruitment of functionally distinct
classes of inhibitory neurons that have preferential laminar distributions. For example, the ACC
projects to the entorhinal cortex, where it innervates all layers, as predicted by the structural
model. In the upper layers of the entorhinal cortex, ACC axons innervate CR neurons preferen-
tially, whereas in the deep layers they innervate PV neurons (Bunce et al. 2013). These patterns
have functional implications. CR neurons in the upper layers inhibit other inhibitory neurons
(Meskenaite 1997) and, thus, disinhibit pyramidal neurons, suggesting that signals from the ACC
may gain facilitated access to the hippocampus. By comparison, because PV neurons exercise
strong perisomatic inhibition of nearby excitatory neurons, the ACC pathway may gate the hip-
pocampal output to other areas through the deep entorhinal layers. The interface of pathways
with functionally distinct classes of inhibitory neurons sets the stage for shifts in cortical rhythms,
influenced by attention, context, and memory for complex behavior (see Bartos etal. 2007, Buzsiki
& Wang 2012, Cannon et al. 2014, Canolty & Knight 2010, Fell & Axmacher 2011, Isaacson &
Scanziani 2011, Massi et al. 2012, Schroeder & Lakatos 2009, Sohal et al. 2009, Tognoli & Kelso
2014).

Cortical circuits are also modulated by neurotransmitter-specific pathways from the basal fore-
brain and brain stem, such as the cholinergic and dopaminergic pathways (Hasselmo & Sarter 2011,
Robbins & Arnsten 2009, Zaborszky et al. 2013). These subcortical pathways show preferential
laminar distributions and specialization in primates (Garcia-Cabezas et al. 2009). Cholinergic
and dopaminergic systems innervate eulaminate cortices sparsely and the ACC and the pOFC
robustly. The ACC and pOFC uniquely project back to the basal forebrain (e.g., Ghashghaei &
Barbas 2001).

SYSTEMATIC CORTICAL VARIATION IN DEVELOPMENT
IN HEALTH AND DISEASE

How do graded patterns in laminar structure arise across the cortical mantle? We have advanced
the hypothesis that differences in the timing of development among areas explain their systematic
structural variation (Dombrowski et al. 2001). According to this hypothesis, the developmental
period is shortest in areas with the simplest structure and longest in areas with the most elaborate
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structure. There are only sparse data on primate cortical development, but one study showed the
course of development of four areas in rhesus monkeys: an ACC limbic area; anterior orbital area
11 with intermediate structure; prefrontal area 46 with more elaborate structure (Figure 1); and
V1 (Rakic 2002), which has more distinct layers and higher neuronal density than does any other
area in the primate cortex (O’Kusky & Colonnier 1982). These areas completed their development
from earliest to latest (in that order). Further developmental studies are needed to determine if
areas of comparable type across cortical systems develop at the same time.

The early development of limbic cortices may also explain why they project from neurons in
their deep layers (which develop first) and terminate in layer 1 of other areas. Layer 1 is also
present at the onset of neurogenesis in all areas (Marin-Padilla 1970). The early development of
limbic cortices may also help explain their widespread connections and likely tonic influence on
the neocortex (Barbas 1995). Limbic cortices appear to retain some developmental features into
adulthood. One of these features is the persistent expression in the ACC of the growth associated
protein (GAP-43), which has a role in axon growth and guidance in all areas in ontogeny (Benowitz
& Routtenberg 1997). GAP-43 and myelin proteins are mutually antagonistic (Kapthammer &
Schwab 1994). The persistent expression of GAP-43 thus helps explain the low myelin content
in the ACC in adulthood, a feature that may allow the axon remodeling and plasticity needed
for learning and memory associated with this region. The ACC is also implicated in monitoring
functions (Carter et al. 1998), which may be mediated by the ACC’s unusually extensive connec-
tions with other prefrontal cortices (Barbas et al. 1999). These widespread connections may be
promoted by GAP-43, providing a plausible developmental mechanism that optimizes the ACC’s
monitoring function.

The developmental hypothesis for the emergence of systematic cortical variation has profound
implications for diseases with roots in development. Accordingly, the timing of a given insult in
gestation—whether of genetic origin or due to disturbances in utero—can affect specific areas,
layers, neurons, and their connections. In schizophrenia, for example, there is a loss of pyramidal
neurons in the deep layers of the ACC (Benes et al. 2001). According to the rules of the structural
model, the deep layers of the limbic ACC region innervate the upper layers of eulaminate prefrontal
areas associated with cognition. When axons from the ACC form synapses with inhibitory neurons
in lateral prefrontal areas, the preferential postsynaptic targets are CB neurons (Medalla & Barbas
2009, Medalla & Barbas 2010). Physiologic and computational studies in the lateral prefrontal
cortex reveal that CB inhibitory neurons are synaptically suited to reduce noise and enhance
signals in cognitive tasks (Wang et al. 2004). The pathway from the ACC to the lateral prefrontal
cortices thus may be weakened in schizophrenia. By contrast, the same pathway may be enhanced
in autism owing to higher-than-normal expression of GAP-43 and exuberant axon branching
below the ACC, suggesting increased connectivity with the prefrontal cortices (Zikopoulos &
Barbas 2010). Schizophrenia and autism thus may affect the same pathway and the process of
attention in opposite ways, resulting in distractibility in schizophrenia and an inability to shift
attention flexibly in autism. Differences in the timing of insult may help explain differences in the
symptomatology in these diseases, as well as individual variability within a broad spectrum of a
disease.

The complex circuits of the prefrontal cortex thus may be simplified in light of the principle of
systematic cortical variation and explained by genetic control of the developmental clock. Interplay
of genetic, ontogenetic, and epigenetic factors may lead to self-organization that helps explain the
varied structural and connectional patterns in adults. As more developmental data emerge, it will
be intriguing to investigate whether the timing and spatial layout of subcortical structures in
development help endow the prefrontal cortex with special connections for executive function by
being at the right place at the right time.
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