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One must conclude, as a firmly fued scientific generalization, that
the properties of the external world are rarely represented in
a straight-forward way in the human responses triggered in that
world. Should perception therefore be expected to be disorganized
and chaotic? Not at all. ... The reason for the apparent disjunc­
tion between external stimulus properties and those of the final
percept is not hard to find. The physiological organism, standing
between these two end terms, has dimensions of its own to con­
tribute, makes its own transformations and creates its own . . .
functional relationships in the devious paths from peripheral recep­
tor processes to final response mechanism.

Frank Geldard, pp. 20-21
Sensory Saltation, Inaugural

MacEachran Memorial Lecture, 1975

There are two unavoidable gaps in any behavioral account: one
between the stimulating action of the environment and the response
of the organism and one between consequences and the resulting
change in behavior. Only brain science canfill those gaps. In doing
so it completes the account; it does not give a different account of
the same thing.

B. F. Skinner (p. 18, 1989)
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John M. MacEachran
Memorial Lecture Series

The Department of Psychology at the University of Alberta inaugurated the
MacEachran Memorial Lecture Series in 1975 in honor of the late Professor
John M. MacEachran. Professor MacEachran was born in Ontario in 1877
and received a Ph.D. in Philosophy from Queen's University in 1905. In
1906 he left for Germany to begin more formal study in psychology, first
spending just less than a year in Berlin with Stumpf, and then moving to
Leipzig, where he completed a second Ph.D. in 1908 with Wundt as his
supervisor. During this period he also spent time in Paris studying under
Durkheim and Henri Bergson. With these impressive qualifications the
University of Alberta was particularly fortunate in attracting him to its
faculty in 1909.

Professor MacEachran's impact has been signficant at the university,
provincial, and national levels. At the University of Alberta he offered the
first courses in psychology and subsequently served as Head of the
Department of Philosophy and Psychology and Provost of the University
until his retirement in 1945. It was largely owing to his activities and
example that several areas of academic study were established on a firm and
enduring basis. In addition to playing a major role in establishing the
Faculties of Medicine, Education and Law in this Province, Professor
MacEachran was also instrumental in the formative stages of the Mental
Health Movement in Alberta. At a national level, he was one of the
founders of the Canadian Psychological Association and also became its
first Honorary President in 1939. John M. MacEachran was indeed one of
the pioneers in the development of psychology in Canada.

Perhaps the most significant aspect of the MacEachran Memorial Lecture
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Series has been the continuing agreement that the Department of Psy­
chology at the University of Alberta has with Lawrence Erlbaum Associ­
ates, Publishers, Inc., for the publication of each lecture series. The
following is a list of the Invited Speakers and the titles of their published
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"Visual Form Detection in 3-Dimensional Space"
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"Learning and Motivation: Function and
Mechanism" (unpublished)
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1988 Robert S. Siegler and Eric Jenkins (Carnegie-Mellon University)
"How Children Discover New Strategies"

1989 Robert Efron (University of California at Davis & Veterans
Administration Medical Center)
"The Decline and Fall of Hemispheric Specialization"

Eugene C. Lechelt, Coordinator
MacEachran Memorial Lecture Series

Sponsored by The Department of Psychology, The University of Alberta
with the support of The Alberta Heritage Foundation for Medical Research
in memory of John M. MacEachran, pioneer in Canadian psychology.



Preface

Do not bite my finger, look where I am pointing
-(Warren McCulloch, quoted by Seymore Papert

in McCulloch, 1965, pp. xx).

Motive

These lectures are motivated by several considerations. First among these is the
desire to present in an integrated fashion the results of research in my laboratory
as it applies to pattern perception. There are a considerable number of perceptual
psychologists who feel that the results of brain research are still too crude to help
understand the sophisticated issues that define problems in figural perception. At
the same time, perceptual psychology texts often rely on incomplete and out­
dated findings obtained by neurophysiologists. These lectures review the current
state of the art in brain research to show that several lines of inquiry have been
converging to produce a paradigm shift (Kuhn, 1962) in our understanding of the
neural basis of figural perception.

The second motivation that has produced these lectures is the desire to update
the holographic hypothesis of brain function in perception as developed in my
laboratory (Barrett, 1969, 1972, 1973a, 1973b, 1973c; Pribram 1966, 1971,
1982b; Pribram, Nuwer, & Baron 1974). The earlier formalisms of the theory
have been enriched by new neurophysiological data and by the emergence in the
field of artificial intelligence of parallel distributed processing architectures
(Rumelhart, McClelland, and the PDP Research Group, 1986). These "neural
networks" or "connectionist" models are similar to OCCAM, a content address­
able computational model that we (Pribram, 1971; Spinelli, 1970) developed in
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the late 1960s and stem directly from the content addressable parallel distributed
procedures that characterize optical information processing such as holography
(see e.g., Hinton, 1979; Willshaw, 1981).

A third motivation for the lectures stems from the desire to emphasize the fact
that both distributed (holistic) and localized (structural) processes characterize
brain function. For almost two centuries scientists have squabbled as to whether
brain processes are localized (e.g., Broca, 1863; Ferrier, 1886/1978; Gall &
Spurtzheim, 1809/1969; Munk, 1881) or distributed (e.g., Flourens, 1846/1978;
Lashley, 1942; Walshe, 1948). The facts always have been and still are that both
localized and distributed processing takes place in the brain and that it is our job
to discern which processes are distributed and which are localized (see e.g.,
Pribram, 1982b).

A final motivation for these lectures is the desire to portray a neural systems
analysis of brain organization in figural perception by developing sets of quasi­
quantitative models; that is, to describe processing in terms of formalisms found
useful in ordering data in 20th-century physical and engineering science. It is my
conviction that it is only through the use of these formalisms that the psychologi­
cal and neurological levels of inquiry regarding perception can become related.
The relationship entails sets of transformations which, unless they are described
precisely and formally, are apt to be misunderstood by both psychologists and
neuroscientists. Chances of misunderstanding are less when communication
takes the form of mathematics.

The lectures are divided into three parts. A Prolegomenon outlines a theoreti­
cal framework for the presentations; Part I deals with the configural aspects of
perception, Part II with its cognitive aspects. There is therefore a considerably
different tone to the three sections and the reader must be prepared to "shift
gears" from (1) processing theory to (2) perceptions (such as color, form, mo­
tion) largely immune from intrusions by what the perceiver has come to know
and lastly, to (3) those aspects of perception which entail such knowledge (table­
ness, flowerness, personness). Critical to understanding is the acceptance of
evidence that brain perceptual systems operate as top-down as well as bottom-up
processors. It is this evidence that my colleagues and I have spent almost a half
century in amassing. Some 1,500 nonhuman primates, 50 graduate students, and
an equal number of postdoctoral fellows have participated. The results of these
researches have cast doubt on viewing brain perceptual processing as ele­
mentaristic, bottom-up, reflex-arc, stimulus-response-views that still character­
ize many texts in neurophysiology, psychology, and perception.

For the most part, tenets based on these exclusively bottom-up views are held
implicitly and therefore felt to be fact rather than theory. Such opinions are thus
extremely difficult to modify by only presenting evidence against them. The
lectures are therefore composed in terms of an alternative theoretical structure
which is presented in the Prolegomenon. This theoretical structure is, however,
based on the rich set of data presented in the lectures composing Parts I and II.
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There is too much here, and yet not enough. The lectures present a point of
view, they review some data ordinarily secluded under the rubrics of memory
research or the neurophysiology of attention. Still, many relevant psychophysical
experiments and data gathered by studying illusions are barely mentioned. But as
I have found no text that explains neural processing in perception in terms of the
primate brain as I have come to know it-although bits and pieces of explanation
abound-I have written down these lectures. As all authors are, I have been
plagued by alternations of mood ranging from exhilaration as the text reflects
insights previously barely acknowledged, to despair that these insights will not
be shared because of inadequacies in my writing style or lack of an interested
audience.

The term for the theory, holonomic, was first used by Hertz to describe linear
transformations when they are extended into a more encompassing domain. I
have here extended its meaning to cover the spectral domain. Holos refers to this
domain and Nomos to the naming of the generalization. My greatest trepidation
has been caused by the attempt to present the outlines of a formal holonomic
theory, a set of models of brain processing in perception. I have, therefore,
collaborated with Kunio Yasue and Marl Jibu who became intrigued by the
theory" and are far more coversant with mathematical modeling than I am. The
results of our collaboration make up seven appendices that illustrate facets of
the theory.

Clearly neither these mathematical models nor the theory as a whole are in
any sense conceived to attempt a "final word" regarding brain processing in
figural perception. A story best illustrates the actual purpose of the attempt: At
the time of the 3rd neuroscience conference in Boulder, Colorado, Donald
Broadbent, Colin Blakemore, Fergus Campbell, and I had climbed high into the
Rocky Mountains. Coming to rest on a desolate crag, a long meditative silence
was suddenly broken by a query from Campbell: "Karl, do you really believe it's
a Fourier?" I hesitated, then replied, "No Fergus, that would be too easy, don't
you agree?" Campbell sat silently awhile, then said, "You are right, its probably
not that easy. So what are you going to say tomorrow down there?" I replied, this
time without hesitation, "That the transform is a Fourier, of course." Campbell
smiled and chortled, "Good for you! So am I." We needed no further explanation
for our mutually chosen course of action. As scientists we shared Popper's
(1962) injunction that scientific propositions need to be falsifiable. And we knew
the Fourier relation, because of its relative simplicity, to be the most vulnerable
to disproof. Thus far, however, nature has surprised us-she may well be more
tractable than we dared hope.

The lectures therefore address those who are deeply interested in understand­
ing how brain processes configure perception. Because of the transdisciplinary
nature of the lectures, a number of language systems are inolved in integrating
current knowledge: neurophysiological, perceptual, computational, and mathe­
matical. The reader must therefore have the patience to become familiar with
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what to him is unfamiliar terminology-Languages of the Brain, Pribram, 1971
can be of help. As important, is a tolerance for naiveties in descriptions in the
disciplines in which the reader is expert: As in parallel distributed processing
networks, the tension (error signals) between these naiveties and expertise in
each of the disciplines being integrated should improve the models presented in
the lectures and therefore our understanding of brain organization in perception.

These lectures are thus but a beginning. The next step is to simulate computa­
tionally some of the models composing the theory as outlined mathematically in
the Appendix. Insights obtained from the simulations should provoke new direc­
tions in brain research and as a consequence sharpen and modify the theory or
even replace it with a more comprehensive one. To that end, these lectures are
dedicated.
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Viewpoint

Before discussing the details of neural processing in perception, it is important to
pause for a moment to consider how best to think about and address the contents
of our awareness. More fundamental disagreement has plagued this issue than
almost any other topic affecting the mind-brain relationship. At one extreme, is
the common sense feeling that the contents of perception can be trusted to
reliably inform the perceiver about the world in which he navigates-in philoso­
phy this position is called naive or, when bolstered by evidence, direct realism
(Gibson, 1979; Shaw, Turvey, & Mace, 1982).

At the other extreme is the feeling that we can never "really" be sure of
anything, including the validity of our perceptions-in philosophy this position
is called solipsism, or when specified by evidence, autopoiesis. Autopoieses is
the view that our perceptual apparatus operates autonomously as a closed system
(Maturana, 1969; Varela, 1979).

In between are compromise views and these also range from various material­
isms (e.g., Bunge 1980) to phenomenalist, mentalist (e.g., Sperry, 1980; Searle,
1984) and constructional (e.g., Maxwell, 1976; Pribram, 1971) positions. A
recent brief review of these issues is given by Epstein (1987).

When intelligent and deeply thoughtful scientists and scholars come to such
disparate conclusions it is often fruitful to search for the specific data on which
the conclusions are formed. When this is done it can usually be shown that each
"position" has intrinsic merit when limited to its data base but becomes untenable
when extended beyond these limitations (Pribram 1986a). What remains is the
view that brain processes undergo a dynamic matching procedure until there is
a correspondence between the brain's microprocesses and those in the sensory
input.
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The current lectures review evidence which indicates that the sensory aspects
of perception entail brain processes separable from those involving the cognitive
aspects. Realism fits the data that deal with sensory driven aspects of percepts;
constructivism characterizes cognitively driven processes. Ordinarily the cogni­
tive operations (noumena) operate back onto those (phenomena) that are sensory
driven: Kant (1965 edition) was not far off in his constructional realism.

Within the province of realism a critical issue surfaces with regard to how the
sensory array, the input to receptors, becomes processed. The difficulty arises in
an attempt to specify how the input to the senses is related to receptor processing.
In figural vision the issue comes center stage when scientists try to specify the
nature of a "retinal image."

Many difficulties are resolved by focusing on the single fact that everyone
agrees to: when a diffracting object is placed in the front focal plane of the optical
apparatus (pupil, and converging lens), a Fourier transform exactly describes the
optical "image" at the back focal plane within the eye (e.g., Taylor, 1978, p. 37).
Thus the optical apparatus (especially the lens) operates as a phase adjuster
integrating interference patterns among wave forms (due to diffraction) into an
optical image. As discussed in detail in Lecture 3, taking this anchor of agree­
ment as a starting point allows the concept of a retinal image to be separated into
an "optical image" or "flow" and a "retinal process." From this beginning,
clearcut differences can be readily identified in the organization of optic array,
optical flow, and retinal process.

Taking the transformation performed by the sensory apparatus-the lens in
the case of vision-as a starting point for the analysis of perception and other
psychological functions is not new. Egon Brunswick (1966) based his probabilis­
tic functionalism on what he called a "lens model." Patterns of energy become
"scattered" in the environment and the sensory receptors "recombine" the scatter:

The . . . strategy of the organism is predicated upon the limited ecological validity
or trustworthiness of cues. . . . This forces a probabilistic strategy. . . . To im­
prove its bet, it must accumulate and combine cues . . . Hence the lens . . . model
. . . may be taken to represent the basic unit of psychological functioning. (1966,
p.37)

As indicated by the vague wording "limited ecological validity or trustworthi­
ness of cues," Brunswick did not have available the evidence presented in these
lectures to analyze in depth the various sensory and neural systems and micro­
processes that comprise his "lens-like" operation. Nor did he have available the
ecological analyses in depth of the environmental patterns reaching the senses
performed by Gibson, Johannsen, Cutting, Turvey, and Shaw. Moreover there
was no formal theory available to relate these domains. However, Brunswick was
a staunch advocate of such explorations into the more remote causal interrela-
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tions among layers of variables composing "manifolds" both external to and
within the organism.

A good place to begin the study of these interrelations is Gibson's suggestion
that we consider brain processes to resonate to the patterns that stimulate the
senses, a suggestion in keeping with the harmonic analyses undertaken in the
holonomic brain theory presented in these lectures. As will be detailed, taking
Gibson's suggestion seriously commits one to realism. But the commitment
entails accepting the full implication of the ecological, "layered," approach to
perception by including the layers of brain processes largely ignored by Gibson.

REALISM

There are, therefore, areas of close agreement between Gibson's ecological
approach and that taken in the holonomic brain theory. For example, Shaw,
Turvey, and Mace indicate the broad implications of taking a realist stance:

What are the major conceptual barriers to a successful realism? ... [It is} the
assumption . . . [(a)] that the mapping of distal object properties onto proximal
stimulus properties is destructive; [(b) that] the structuring of the light by the laws
of reflection does not preserve the structure of the environment. On this assumed
failure of the proximal stimulus to specify the distal object, it is a simple matter to
generate skepticism about an animal's knowledge of what is real. Given the non­
specificity assumption, perception must be a matter of making propositions (about
what the proximal stimulus stands for) with neither a guarentee of their truth nor
any apparent way to determine their truth.

A second related barrier to realism is raised by the mind-body subtheme of animal­
environment dualism. It is the promotion of ... two different and irreducible
languages.... skepticism arises about the animal's ability to perceive what is
real, because the perception of reality depends on ... the physical and the mental
being coordinated. It has seemed in the past a relatively trivial matter to show
slippage between the object of reference and the object of experience.

Animal-environment dualism thwarts realism in another, though more subtle, way:
It invites a science of psychology largely separate from a science of physics and
vice versa . . . Realism is hamstrung to the extent that the sciences hold distinct
the knower and that which is known.

Consider, however, a program of theory and research committed to realism....
Such a program would have to seek a definition of reality that would be animal­
relative, but no less real for being so. (Shaw, Thrvey, & Mace, 1982, pp. 160-161)

Taking the stance implied by realism ("a program of theory and research
committed to realism") is akin to an act of faith: The initial sensory experiences
of infants are disparate; even as adults, introspection yields perceptions differing
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in kind according to the sense involved. When we identify what we hear, see,
and touch as referring to the "same" event, we resort to consensual validation. In
humans this procedure is repeated when we identify "a red winged black bird,"
as the "same" object with the "same" attributes referred to by someone else. One
makes a pragmatic existential choice early on, either to distrust the process of
consensual validation and retreat into soipsism, or to trust and embrace a realist
philosophy, and act accordingly.

Ecological psychology and the holonomic brain theory are both eminently
compatible with a realist position. However, to state simply that perception is
"direct" skips over several steps in the perceptual process that cannot be ignored.

One must confront the fact that the senses are stimulated by patterns of energy
perceived as "light," "sound," and "touch" which do not have the same con­
figural properties as do the objects with which they interface. This, however,
does not mean that these patterns are composed of elements. Rather, a different
process is at work: The configural properties that define objects become dis­
tributed and enfolded in the process of interfacing. They are thus transformed
into an order which, as in a hologram, is recognizably different from the per­
ceived <;onfiguration of objects but which, in some non-trivial sense, "contains"
those configurations. More on this in Lecture 3.

COMPUTATION AND REPRESENTATION

Given the transformational aspect of the realist stance, the next issue that needs
to be discussed concerns the nature of cognitive influences on percepts. This
topic is best addressed under the heading "representations." Representation liter­
ally implies hierarchical levels of processing in which what is processed becomes
"re-presented" at another level. A level or scale of processing can be defined as a
presentation, a description of an entity that is simpler than if it were made in
terms of the collection of constituents of that scale or level. Thus the entity at
each level can be characterized by a description that is a presentation. Compo­
nents are described in some different fashion than the entity as a whole. Further­
more, there would be no need for a presentation of the entity as a whole were it
not in some basic sense, simpler, that is, more efficient in processing than that
available to the components (see e.g., Pribram, 1971, chapters 4 & 13). For
example, bytes are more efficient in use than the equivalent description in bits. A
presentation of a program in Fortran is much more efficient than a presentation of
the successive switch settings that form the hardware equivalent of the program.
The question is whether psychological processes can, in the same manner, be
considered to be re-presentations of functions of the brain.

In the sense of hierarchical levels of presentation, the analogy between com­
puter software (programs) and hardware serves well. The psychological, mental
level is described in presentations that are analogous to presentations at the
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program level. The "wetware" of the brain can be thought of as analogous to the
hardware of the computer (Miller, Galanter, & Pribram, 1960; Pribram, 1986a).
There is an equivalence between program and successive hardware switch set­
tings. Can we say therefore that in some real sense the switch settings are re­
presented in the program? If this is so, then in the same sense psychological
processes re-present brain function.

This leads to a most tantalizing question: To what extent are the re-presented
entities configured in a fashion similar to the entities they re-present? In other
words, to what extent are presentation and re-presentation isomorphic to one
another? The answer to this question obviously depends on reaching some con­
sensus on the definition of isomorphic. Processes that map into each other in
such a way as to preserve structure can be said to be either geometrically or
algebraically isomorphic. For instance, although the Gestalt psychologists
thought that the electrical fields of the brain have a geometric shape resembling
that of perceived objects, evidence shows that perspective transformations dis­
play algebraic (Le., secondary) not geometric isomorphism (Shepard & Chip­
man, 1970).

Isomorphism is a non-trivial problem when one assesses the nature of brain
representations. Wolfgang Kohler (1964) attempted to show that the geometry of
cortical electrical activity conforms not only to the geometry of the physical
events that produce sensory stimulation but to the perceptions experienced by the
organism. This line of reasoning suggested that brain representations literally
"picture" the significant environment of the organism or at least caricature it.
Experiments by Lashley (Lashley, Chow, & Semmes, 1951), Sperry (Sperry,
Miner, & Meyers, 1955) and Pribram (reviewed in 1971) created a severe distur­
bance of the geometry of cortical electrical activity without disrupting behavior
dependent on perception. Thus, geometric isomorphism between the gross as­
pects of brain electrical activity and perception has been ruled out.

By contrast, the computer program-hardware analogy suggests that significant
transformations can occur between levels of presentation: indeed that the utility
of re-presentations is derived from these transformations. According to the
holonomic brain theory developed here, algebraically linear isomorphic (Le.,
isoformal), nonlinear or paralinear transformational processing characterize the
relations among brain representations. The computer analogy helped make un­
derstandable the results of neuropsychological research which showed that the
search for "pictures" in the brain (e.g., Kohler's D.C. potentials, Kohler &
Held, 1949) was misplaced. Understanding comes when the neurophysiologist
searches for algorithms, such as computable transforms of sensory input.

In the same vein, Gibson (1966), and Shaw, Turvey, & Mace (1982), among
others, have proposed that as the organism becomes attuned to its environment,
the relationship between the two is one of "complementation," not representa­
tion. Thus, musical instruments "complement" the fingers of the hand, yet piano
keyboards, violin strings, and clarinet stops have completely different configura-



VIEWPOINT xxvii

tions. Complements share common procedures, common functions, and there
has been considerable debate (see Vol. 3, No.1; 1980 of the Behavioral and
Brain Sciences especially Fodor, pp. 63-110) as to whether the modeling of
psychological processes should be complementary and functional (computational
and procedural) or structural (representational).

The holonomic brain theory defines its formalism in terms of transformation­
al procedures that specify the relationships among complements-presenta­
tions-and between re-presentations of these presentations. For instance, neu­
roscientists talk of the "representation" of the spatial ordering of receptors and
effectors in the ordering of cortical inputs and outputs-this, despite consider­
able distortion.

Furthermore, there is good evidence from the work of Sokolov (1963) that
brain events "model" sensory input patterns. When a sensory input recurs repeat­
edly, an organism habituates, that is, fails to react overtly to that input. Sokolov
found that when he omitted a stimulus in a regularly recurring series, the organ­
ism dishabituates; an orienting reaction occurs. Similarly, if suddenly a signal of
reduced intensity is presented within a series of signals of greater intensity, an
orienting reaction marks the reduced signal. There must be some enduring brain
process that is produced by an input if subsequent variations of that input are
"sensed" (although this does not mean that the geometries of input and brain
process are isomorphic). Reducing or omitting a signal produces a mismatch,
which results in an orienting reaction. During habituation a "neuronal model," a
"representation" of the input appears to be constructed and subsequent inputs are
matched to this representation. More on this in Lecture 8.

Still, the representation need not be an immutable structure. Rather, re­
presentation must be a process, the re-construction of a presentation. (For a
sophisticated analysis of what is involved, see Hochberg, 1984). The issue can
perhaps be grasped most readily by focusing on memory. Is memory structural in
the sense that one may find in the brain an isomorphic form or figure correspond­
ing to a subjectively remembered experience, or is such a "memory" the result of
processing neural events stored in some other form? By using primes and probes,
Fergus Craik in an elegant program of experiments (Craik, 1988), has shown that
disturbances in remembering are almost always due to interference with process
and not with a loss of stored items. Neuropsychological evidence (e.g., Pribram,
1986b; Weiskrantz, 1986) has also repeatedly demonstrated that "engrams"
are not "lost" as such as a result of brain damage. Rather engrams are re­
constructions that can appear as intrusion errors when amnesics are examined in
a systematic fashion: that is, during recall, reconstruction of an engram occurs
but in an inappropriate context.

The holonomic brain theory thus holds that the "deep structure" of memory
(in Chomsky's 1965 sense which distinguishes deep from surface structure) is
distributed, as in current image processing and PDP neural network computation­
al models; that this distributed, dismembered store must be re-membered, assem-
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bled into an experienced "memory" by a content-addressable process. The pro­
cess can be triggered internally or from a sensory input. In short, re-membering
is a process that depends on transforming a deep structure, a dis-membered re­
presentation, which is holonomically organized and thus of a form different from
either the experienced memory or the sensory array that originated the process.

Formally, in terms of the holonomic brain theory developed in these lectures,
the re-presentation occurs as a dynamical transformation in a distributed network
of dendritic microprocesses. Smolensky captures the essence of this formalism as
follows:

The concept of memory retrieval is refonnalized in tenns of the continuous evolu­
tion of a dynamical system towards a point attractor whose position in the state
space is the memory; you naturally get dynamics of the system so that its attractors
are located where the memories are supposed to be; thus the principles of memory
storage are even more unlike their symbolic counterparts than those of memory
retrieval.

It is these dynamical transformations, these transfer functions, that critically
distinguish current theories (including the holonomic brain theory) from earlier
formalisms such as those of General Systems Theory.

Thus, the holonomic brain theory incorporates "representations" not as pic­
torial forms but as self-maintaining structures that act somewhat like the set­
points of thermostats. These setpoints serve as "attractors" in more or less tempo­
rary stable configurations which are subject to continuous adaptive change.
Holoscapes defined in Lecture 2-mapping of isopotential dendritic polariza­
tions-are such configurations. Physiology is replete with examples of self­
maintaining structures: the skin remains "the same" despite constantly shedding
cells which are replaced with new ones; red blood cells last only a month, yet the
red blood cell count remains stable. You as a person, a structure, are recogniz­
able over the years despite the fact that every cell in your skin, hair, and so forth
has probably been repeatedly exchanged during the period of observation. Cer­
tainly every molecule in your body has been exchanged several times. This self­
maintenance of structure is often called self-organization, autopoiesis (Maturana,
1969; Varela, 1979) because the organizing propensity generates the organization
since it is genetically specified.

According to the views expressed in these lectures, structure and process are
distinguished more by the level or scale of observation than by any intrinsic
difference. At the seashore, breakers are processes; they exert considerable
force, can move objects, and upset bodies. When viewed from 10,000 feet these
same breakers appear as standing waves, a structure that delimits and represents
the boundary between open sea and land.

In the holonomic brain theory, when viewed closely the "representations" that
are coordinate with perceptions (or memories) are composed of fluctuating polar-
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izations within the dendritic network-probablility amplitude modulated Fourier
coefficients. At close range they, like the seashore at hand, are seething with
activity that, however, exhibits structure (coordinate with images, objects, etc.)
when viewed from the distance of sentient observation.

IN SUMMARY

The holonomic brain theory espouses a transformational and constructional
realism and thus goes beyond the direct realism proposed by Gibson in specify­
ing the ecological details of the sensory and brain processes involved in perceiv­
ing. Specification devolves on recognizing transformations that occur between
bottom-up levels among brain systems. Top-down influences on processing pro­
cedures provide structural constraints on processing. That is what these lectures
are about.



PROLEGOMENON

Before the connection of thought and brain can be explained, it must be
stated in elementary form; and there are great difficulties about stating it.
. . . Many wouldfind reliefat this point in celebrating the mystery ofthe

unknowable and the u awe" which we should feel. . .. It may be con­
stitutional infirmity, but I can take no comfort in such devices for making
a luxury of intellectual defeat. . .. Better live on the ragged edge,
better gnaw the file forever! (William James, 1950, pp. 177-179)

. . . it is entirely possible that we may learn about the operations of
thinking by studying perception. (Irvin Rock, 1983, p. 1)



Aims and Origins

There is good evidence for the age-old belief that the brain has something
to do with. . . mind. Or, to use less dualistic terms, when behavioral
phenomena are carved at their joints, there will be some sense in which
the analysis will correspond to the way the brain is put together. .. . In
any case each time there is a new idea in psychology, it suggests a
corresponding insight in neurophysiology, and vice versa. The procedure
of looking back and forth between the two fields is not only ancient and
honorable-it is always fun and occasionally useful (Miller, Galanter, &
Pribram, 1960, p. 196)

AN INTRODUCTION

The explosion of data in the behavioral and neural sciences has made the study of
the correspondence between the way the brain is put together and the carving
behavioral phenomena at their joints even more intriguing and rewarding than
when the introductory quotation was written. Exploring the way the brain is put
together provides insights into how experience becomes processed. When the
evidence from the brain sciences is ignored, the experiential phenomena guiding
behavior are found to be so richly structured, and carving can proceed in such a
multitude of ways, that the result has often been a purely descriptive phenotypi­
cal science in which descriptions constitute a tower of Babel. This is especially
true of perception, which of necessity must come to grips with the simultaneity,
subjectivity, and relative privacy of what is being experienced.

By contrast, as developed in these lectures, a neural systems analysis of the
brain-behavior relationship, which takes into account processing levels, allows
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the perceptual experience to be analyzed into basic functional modules that are at
the same time separable and interpenetrating.

However, care needs to be maintained when identifying the functions of
separate neural systems. It seems deceptively easy, but is inadmissable to com­
pletely identify neural system function with behavioral system function. The
mistake of slipping into a category error plagues all of physiology. The function
of the lungs is readily identified as respiration; but respiratory functions include
those of red blood cells and the membrane exchange of O2 and CO2 , as well as
the lung's inspiratory/expiratory cycles that make the other aspects of respiration
possible. The models that describe inspiration/expiration by the lungs are con­
siderably different from those describing oxygen transport by the hemoglobin of
red blood cells.

The issues are the same when it comes to relating the physiology of receptors
and the nervous system to behavioral functions including those reported as per­
ceptions. Perception entails the functions of receptors, primary sensory receiving
stations, and those brain systems associated with them. There can be no simple
model of "perception" or even "pattern recognition," any more than there can be
a simple model of "respiration."

In the current lectures these issues are handled in two ways: (a) An attempt is
made to sharply distinguish models based on observations made at the behavioral
level of psychophysics and perception from those at the neural systems, neuronal
and subneuronal levels. The distinction is implemented according to whether
models describe what is being processed or whether they describe how process­
ing is carried out by the nervous system; and (b) whenever possible, transfonna­
tions, transfer functions, are described that relate the models at different levels to
one another. It is the specification of these transfer functions that distinguishes
current from earlier mathematical and general systems approaches. The nature of
the transfer functions is adduced from data obtained in neuropsychological obser­
vations in which both the brain and the situational variables controlling the
behavioral reports of perceptual experience are specified.

NEURAL SYSTEMS

When the neurophysiology of perception is considered, a set of processes
emerges, each served by a separate neural system. These systems are shown to
act in concert with other neural systems anatomically and/or biochemically re­
lated to them. Three major divisions can be discerned (see Fig. 1.1) in the sets of
primate brain systems relevant to perception. The division is made on the basis of
sense modality. In the posterior convexity of the cerebrum, processing is an­
chored in visual and auditory inputs ("distance" processing); in the frontolimbic
forebrain, processing is anchored in olfactory/gustatory and in pain/temperature
stimulation (thennochemical processing); midway, surrounding the central



FIG. 1.1. Systems of cerebral structures which are coordinate with cognitive func­
tions. The hierarchical organization is arranged in a top-down manner and designated
by the indicated textures for: Executive (E), Cross-Modal (X), Cognitive (C), Object (0)
and Image (I) functions. The image, object and cognitive functions apply to the sensory
and motor processes such as Vision (V), Audition (A), Gustation (G), and the Somatic
divisions. The Somatic division is partitioned into predominantly Motor (SM) and
Somaesthetic (55) compartments. Intrinsic cross-modal processes are represented by
regions within which the principle sensory systems interact: Visuospatial (VS), Visu­
oauditory (VA) and Acousticosomatic (AS). The frontal executive functions are inter­
connected to other systems so that they can be regulated by Priorities (E1), Prac­
ticalities (E2) and Proprieties (E3). From: Hudspeth, W. J. and Pribram, K. H. (1990).

(Rolandic) fissure, processing is anchored in somatic sensibilities that allow the
organism to be in proximate touch with the environment and, even more impor­
tant, to directly act on, and thus alter it.

Within each division, there is a core of projection systems connected extrin­
sically, rather directly, with the receptors of the modality: these systems provide
for sensory imaging. Surrounding these projection systems are perisensory sys­
tems that process the input by controlling movements related to that input: it is
these systems that allow figure to be extracted from ground. Beyond these
systems are others intrinsic in their connections, that is, they primarily receive
their input from and operate back on the sensory-motor systems. The intrinsically
connected systems themselves are hierarchically organized: One set of intrinsic
systems is sensory-mode specific, extracting invariants from iterated images to
produce object-forms. Another, still sensory-mode specific, makes categoriza-
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tions possible. Yet another is involved in setting up computational spaces which
relate processing in various sensory modes to one another. Finally, in humans,
systems entailing language have developed as another intrinsically connected
complex.

As reviewed in the body of these lectures, the systems responsible for extract­
ing the invariances (constancies) that characterize object-forms, interpenetrate in
a top-down, corticofugal fashion, those systems responsible for imaging. This
top-down interpenetration is implemented by parallel connections. Such connec­
tions, now at a new level in the hierarchy, are found again when systems respon­
sible for stimulus sampling and categorizing are considered, and once more when
the systems concerned with relevance and inference are studied. Each level
entails both feedforward and feedback operations: thus, the paradox of the separ­
able yet unitary nature of the perceptual experience can be accounted for.

This characterization of the relations between brain systems differs from the
traditional view that has been limited to bottom-up, forward propagation from
sensory projections to higher order "associative" systems. In the nineteenth
century, Flechsig (1900) had suggested that cognitions are derived exclusively by
a process in which input from various senses becomes associated in the cortex of
the posterior cerebral convexity-thus the term association cortex. Flechsig's
view is still widely held despite overwhelming evidence (reviewed in Lecture 7)
against it. (See e.g., Kuftler and Nichols, 1976; Luria, 1973; Mishkin, 1973;
Shepherd, 1988).

As noted, in the alternative view the results of computation at the later level of
processing are fed back to the earlier levels. These lectures are based on evidence
for such reciprocal connectivity between hierarchically ordered neural systems,
by means of which processing leads to a selection procedure in which input is
matched against a resident microstructure (genetically or experientially produced
memory). The result of the match acts like a set point on a thermostat (or
homeostat) to instruct further processing. Of course the set point is not a point or
single number as it is on a thermostat; rather, it is a set of "attractors" developed
in a multidimensional complex, a temporary stable state, (Prigogine & Stengers,
1984) often referred to as an Image (e.g., a "motor image"). At the same time,
the details of processing need not be specified in the match, a great savings in
memory storage. Von Foerster (1965) described such operations as providing
memory without record. Nonetheless, memory storage is involved, but it con­
sists more of refining Images (Gibson & Gibson, 1955) than of detailing
procedures.

In such a reciprocally acting set of systems, input triggers an operation that at
any moment is largely self-determining. Further, the larger the amount of experi­
ence stored in the systems operating in a top-down fashion, the greater the self­
determination. Thus Beethoven could compose the late quartets and the Eighth
and Ninth Symphonies despite the fact that he was completely deaf at the time of
composition.
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In short, in systems characterized by bottom-up, top-down reciprocity, selec­
tion characterizes a microprocess in which sensory and central inputs are
matched with a resident microstructure. The results of the match instruct and
direct further processing. In systems endowed with memory storage, these inter­
actions therefore lead to progessively more self-determination. Momentary input
serves to trigger rather than specify the process.

NEURONS

Neurons are ordinarily conceived to be the computational units of the brain. Thus
the majority of processing theories since the seminal contribution of McCulloch
and Pitts (1943) have taken the axonal discharge of the neuron, the nerve im­
pulse, as the currency of computation.

However, this framework for computational theory has led to considerable
misunderstanding between neuroscientists and those interested in computational
processing. Successful computational networks depend on highly-often ran­
domly-interconnected elements. The more complex the computation, the more
connections are needed: the law of requisite variety (Ashby, 1960). Neuro­
scientists know that neurons are connected nonrandomly, often sparsely, and
always in a specifically configured fashion (see Crick & Asanuma, 1986, for a
neuroscience view of connectionist computational theory). In short, current com­
putational processing emphasizes a minimum of constraints in the processing
wetware or hardware; in the current neuroscience framework wetware is highly
constrained.

Misunderstanding is alleviated when the computational framework is broad­
ened to include the microprocessing that takes place within dendritic networks.
Not only are axonal-dendritic synapses that connect neurons subject to local
influences in these networks, but innumerable local circuit operations provide the
unconstrained high connectivity needed in computational procedures (Bishop,
1956; Pribram, 1960, 1971; Schmitt, Dev, & Smith, 1976). Local circuit neurons
are found in many locations in the sensory and central nervous system (see Table,
p. 9, in Shepard, 1981). The processing capability of such neurons (primarily
inhibitory) is often dendro-dendritic. (See e.g., Rakic, 1976; Sloper, 1971.)

Junctions (axodendritic and dendo-dendritic) between neurons in the form of
chemical synapses and electrical gap junctions occur within overlapping dendri­
tic arborizations (Fig 1.2). These junctions provide the possibility for processing
as opposed to the mere transmission of signals. The term neurotransmitters
applied to chemicals acting at junctions is, therefore, somewhat misleading.
Terms such as neuroregulator and neuromodulator convey more of the meaning
of what actually transpires at synapses.

Nerve impulse conduction leads everywhere in the central nervous system to
such junctional dendritic microprocessing. When nerve impulses arrive at syn-
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apses, presynaptic polarizations result. These are never solitary but constitute
arrival patterns. The patterns are constituted of sinusoidally fluctuating hyper­
and depolarizations which are insufficiently large to immediately incite nerve
impulse discharge. The delay affords opportunity for computational complexity.

The dendritic microprocess thus provides the relatively unconstrained compu­
tational power of the brain, especially when arranged in layers as in the cortex.
As developed in the next lecture, this computational power can be described by
linear dynamic processes, in terms of quantum field neurodynamics.

Neurons (Fig. 1.3) are thresholding devices that spatially and temporally
segment the results of the dendritic microprocess into discrete packets for com­
munication and control of other levels of processing. These packets are more
resistant to degradation and interference than the graded microprocess. They
constitute the channels of communication not the processing element.

Communication via neurons often consists of dividing a message into chunks,
labelling the chunks so that they are identifiable, transmitting the chunked mes­
sage, and reassembling it at its destination. Neurons are labelled by their location
in the network. This form of labelling is highly efficient because of the essen­
tially parallel nature of neuronal connectivities.

Neuronal channels constrain the basic linear microprocess. These structural
constraints can be topologically parallel, convergent, and divergent. An instance
of a combination of these forms of constraint is the connectivity between retina
and cerebral cortex, which is expressed as a logarithmic function of distance
from the foveal center. Other constraints shape the time course of computations
and lead to learning. Unveiling the manner in which constraints are imposed in
the natural brain is the work of the neurophysiologist. Much of what is contained
in these lectures describes the results of this work.

DENDRITIC MICROPROCESSING

Recognizing the importance of dendritic microprocessing allows a coherent theo­
ry to be framed regarding the neural functions responsible for perception. As
Pribram (1971) initially stated in Languages of the Brain:

Any model we make of perceptual processes must thus take into account both the
importance of Imaging, a process that contributes a portion of man's subjective

FIG. 1.2A. Ultrastructure of various types of synapse. (A) Axons. (D)
Dendrites. From: Barr, M. L. & Kiernan, J. A. (1983). The Human Ner­
vous System, Fourth Edition. Philadelphia, PA: Harper & Row.
FIG. 1.2B. Diagram of microstructure of synaptic domains in cortex.
The ensemble of overlapping circles represents the junctions between
branches of input axons and cortical dendrites. Redrawn after Scheibel
and Scheibel in Chow and Leiman, 1970. From Pribram, 1971.
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Axodendritic synapses

FIG. 1.3. Semidiagrammatic representation of the constituents of a
nerve cell. From: Barr, M. l. & Kiernan, J. A. (1983). The Human Ner­
vous System, Fourth Edition. Philadelphia, PA: Harper & Row.

experience, and the fact that there are influences on behavior of which we are not
aware. Instrumental behavior and awareness are often opposed-the more efficient
a performance, the less aware we become. Sherrington noted this antagonism in a
succinct statement: "Between reflex action and mind there seems to be actual
opposition. Reflex action and mind seem almost mutually exclusive-the more
reflex the reflex, the less does mind accompany it." (p. 104)

Languages then proceeds to detail the fact that nerve impulses in axons and
junctional microprocessing in dendrites function reciprocally. An hypothesis was
formulated to the effect that when habit and habituation characterize behavior
that has become automatic, there is efficient processing of dendritic "arrival
patterns into departure patterns." On the other hand, persisting designs of junc­
tional patterns are assumed to be coordinate with awareness. The hypothesis is
consonant with the view that we are cognizent of some, but not all of the events
going on in the brain.
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Nerve impulses arriving at junctions generate dendritic microprocesses. The
design of these microprocesses interacts with that which is already present by
virtue of the spontaneous activity of the nervous system and its previous experi­
ence. The interaction is modulated by inhibitory processes and the whole pro­
cedure accounts for the computational power of the brain. The dendritic micro­
processes act as a "cross-correlation device to produce new figures from which
the patterns of departure ofaxonic nerve impulses are initiated. The rapidly
paced changes in awareness could well reflect the [pace of] duration of the
correlation process." (Pribram, 1971).

Historically the issues were framed by Lashley, Kohler, and Hebb. Donald
Hebb (1949) summed up the problem by pointing out that one must decide
whether perception is to depend on the excitation of specific cells, or on a pattern
of excitation whose locus is unimportant. Hebb chose the fonner alternative: "A
particular perception depends on the excitation of particular cells at some point
in the central nervous system."

As neurophysiological evidence accumulated (especially through the micro­
electrode experiments of lung (1961); Mountcastle (1957); Maturana, Lettvin,
McCulloch, and Pitts (1960); and Hubel and Wiesel (1962) this choice, for a
time, appeared vindicated: Microelectrode studies identified neural units respon­
sive to one or another feature of a stimulating event such as directionality of
movement, tilt of line, and so forth. Today, textbooks in psychology, in neu­
rophysiology, and even in perception, reflect this view that one percept corre­
sponds to the excitation of one particular group of cells at some point in the
nervous system.

Profoundly troubled by the problem, Lashley (1942) took the opposite stance:

Here is the dilemma. Nerve impulses are transmitted over definite, restricted paths
in the sensory and motor nerves and in the central nervous system from cell to cell
through definite inter-cellular connections. Yet all behavior seems to be determined
by masses of excitation, by the form or relations or proportions of excitation within
general fields of activity, without regard to particular nerve cells. It is the pattern
and not the element that counts. What sort of nervous organization might be
capable of responding to a pattern of excitation without limited, specialized paths
of conduction? The problem is almost universal in the activities of the nervous
system and some hypothesis is needed to direct further research. (p. 306)

Wolfgang Kohler also based his Gestalt arguments on such "masses of excita­
tion... within generalized fields of activity" and went on to prove their ubiq­
uitous existence in the decade after the publication of Hebb's and Lashley's
statements. A series of experiments in which I was involved established the
existence of generalized fields but showed that, although they were related to the
speed with which learning took place, they were unrelated to perception as tested
by discrimination tasks (see Languages of the Brain, chap. 6, for a review of
these studies).
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Lashley was never satisfied with either Hebb's or Kohler's posItIon. His
alternative was an interference pattern model which he felt would account for
perceptual phenomena more adequately than either a DC field or a cell assembly
approach. He did not, however, have a clear idea of how the process might work.
He never specified the fact that the interference patterns were generated by
arrivals of nerve impulses nor how such patterns provide a computational scheme
for perception. Thus he never developed an argument for the existence of a
dendritic microprocess responsible for the computational power of the neuronal
mechanism.

According to the views presented here and in keeping with Lashley's intui­
tions, this computational power is not a function of the "particular cells" and the
conducting aspects of the nervous system (the axonal nerve impulses), nor is it
necessarily carried out within the province of single neurons. At the same time,
the theory based on these views does not support the notion that the locus of
processing is indeterminate. Rather the locus of processing is firmly rooted
within regions of dendritic networks at the junctions between neurons.

As summarized by Szentagothai (1985, p. 40):

The simple laws of histodynamically polarized neurons ... indicating the direc­
tion of flow of excitation . . . came to an end when unfamiliar types of synapses
between dendrites, cell bodies and dendrites, serial synapses etc. were found in
infinite variety.... A whole new world of microcircuitry became
known... culminating in a new generalized concept of local neuron circuits
(Rakic, 1976; Schmitt et aI., 1976).

The ubiquity of such local circuit neurons indicates that computation is strongly
influenced by local circuit interactions that modify the postaxonal dendritic pro­
cesses. Perceptual processing depends therefore on network properties that ex­
tend beyond the purview of the dendrites of a single neuron. It is the synaptic
event, rather than the neuron per se, that serves as the computational element.

The sub- and superneuronal aspect of the dendritic microprocess, its potential
to extend beyond the single neuron, provides explanatory power for both older
and recently accumulating evidence that brain processes coordinate with percep­
tion are distributed. This evidence is reviewed in lectures 2 and 4. In a distributed
process, perceptual events are represented not by single neurons but by patterns
of polarization across ensembles of synapses.

On the basis of their extensive studies Thatcher & John, (reviewed in 1977)
came to a similar conclusion:

The spatiotemporal patterning of these cooperative processes ... [involve] ionic
shifts ... with extrusion of potassium ions and ionic binding on extracellular
mucopolysaccharide filaments. If we focus our attention not on the membranes of
single neurons, but upon charge density distributions in the tissue matrix of neu­
rons, glial cells, and mucopolysaccharide processes, we can envisage a complex,
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three-dimensional volume of isopotential contours, topologically comprised of por­
tions of cellular membranes and extracellular binding sites and constantly changing
over time. ,Let us call this volume of isopotential contours or convoluted surfaces a
hyperneuron. (pp. 305-306)

Basic to this new view of the neurology of perception is the fact that propaga­
ted nerve impulses are but one of the important electrical characteristics of neural
tissue. The other characteristic is the microprocess that takes place at the junc­
tions between neurons. Hyper- and depolarizations of postsynaptic dendritic
membranes occur at the junctions between neurons where they may even produce
miniature electrical spikes. However, these minispikes and graded polarizations
also differ from axonal nerve impulses in that they do not propagate. As dis­
cussed in Lecture 4, the influence of these minispikes and graded polarizations
on further neuronal activity is by way of cooperativity among spatially separated
events. Cooperativity is mediated by the cable properties of dendrites and the
surrounding glia (see e.g., Poggio & Torre, 1980) This type of interaction is
called nonlocal because the effect is exerted at a distance without any obvious
intervening propagation. By analogy the effect is also called jumping or saltatory
as in saltatory conduction by myelinated nerve fibers. It is this saltatory nat~re of
the interactions as captured by perceptual experiences that fascinated Frank
Geldard, experiences so clearly described in his inaugural MacEachran Memori­
al Lecture (1975).

RECEPTIVE FIELDS

The neurophysiologist can readily study the output-spike trains-of neurons
when they act as channels, but he has only limited access to the functions of the
interactive dendritic junctional architecture because of the small scale at which the
processes proceed. A major breakthrough toward understanding was achieved,
however, when Kuftler (1953) noted that he could map the functional dendritic
field of a retinal ganglion cell by recording impulses from th~ ganglion cell's axon
located in the optic nerve. This was accomplished by moving a spot of light in front
of a paralyzed eye and recording the locations of the spot that produced a response
in the axon. The locations mapped the extent of the responding dendritic field of
that axon's parent neuron. The direction of response, inhibitory or excitatory, at
each location indicated whether the dendrites at that location were hyperpolarizing
or depolarizing.

The resulting maps of dendritic hyper- and depolarization are called receptive
fields. The receptive fields of retinal ganglion cells are configured concentrically:
a circular inhibitory or excitatory center surrounded by a penumbra of opposite
sign. This center-surround organization has been shown to be due to the opera­
tion of horizontally arranged dendritically endowed neurons that produce "later-
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al" inhibition in the neighborhood of excitation and vice versa. The center­
surround organization thus reflects the formation of a spatial dipole of hyper- and
depolarization, an opponent process fundamental to the organization of the con­
figural properties of vision.

Utilizing Kuffler's techniques of mapping, Hubel and Wiesel (1959) discov­
ered that at the cerebral cortex the circular organization of dendritic hyper- and
depolarization gives way to elongated receptive fields with definite and various
orientations. They noted that oriented lines of light rather than spots produced the
best response recorded from the axons of these cortical neurons. They therefore
concluded that these cortical neurons were "line detectors." In keeping with the
tenets of Euclidean geometry where lines are made up of points, planes by lines
and solids by planes, Hubel and Wiesel suggested that line detectors were com­
posed by convergence of inputs from neurons at earlier stages of visual process­
ing (retinal and thalamic-which acted as spot-detectors due to the circular
center-surround organization of the receptive fields.)

The Euclidean interpretation of neuronal processing in perception became
what Barlow (1972) has called the neurophysiological dogma. The interpretation
led to a search for convergences of paths from "feature detectors" such as those
responding to lines, culminating in "pontifical" or "grandfather" cells that em­
bodied the response to object-forms such as faces and hands. The search was in
some instances rewarded in that single neurons might respond best to a particular

· . .· . ..... . ... ..... . . .· ..· . .. . ........ .. . . .· . .. . .· . ..•...........•...... .. . .. . .· . ...•......••. . .· .......•.•.. ,...... . •.•.........· .........•...~..... .. . .· ....................•••• .. .. ..· ....................•.• .. . ........................• .. . .......................• . .· ...................••• . ......................•••• . . .· ..................•• . ••...........· ..................•••• .......... ..............•• .· ...............•.••• .. .. ..· ..............•..•••• .. .. ....· .. .. . .· ........• .· ...... .. ..· . . . .... .. .. .. ..· .. .. . .· .. .. . ........... .. . ...... . . .· . . ..... .. . .: . .. :... ........•• . ...... .. ... .. . . .· . .. . . .· ........• .. . .· .•......•.... ......•.• ........•.· .. . . .· ..........••• . . .· . .. ..· . .....•.... . . .· . ..........................•......••....•...•.•.•.••
FIG. 1.4. Two dimensional map of points on the retina at which a light
spot produces responding in a particular lateral geniculate cell in the
brain of a monkey. After Spinelli and Pribram, 1967.
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FIG. 1.5. Two dimensional map in the visual field at which a light spot
produces responding in a particular striate cortex cell in the brain of a
monkey. After Spinelli and Pribram, 1967.

object form such as a hand or face (Gross, 1973). However, response is never
restricted to such object-forms. As detailed in Lectures 4 and 5, such "best"
responses can also occur in parallel networks in which convergence is but one
mode of organization.

About a decade after the discovery of elongated visual receptive fields of
cortical neurons, new evidence accrued that called into question the view that
figures were composed by convergence of Euclidean features. For instance, in
our laboratory at Stanford University we mapped the architecture of cortical
dendritic fields by computer and found cortical receptive fields that contained
multiple bands of excitatory and inhibitory areas (Spinelli & Barrett, 1969;
Spinelli, Pribram & Bridgeman, 1970). In Leningrad similar observations were
made by Glezer (Glezer, Ivanoff, & Tscherbach, 1973), who remarked that these
cortical neurons responded more like "stripedness" (than line) detectors (Fig.
1.5). The critical report, however, was that of Pollen, Lee, and Taylor (1971),
who interpreted similar findings to indicate that the cortical neurons were behav­
ing as Fourier analyzers rather than as line detectors.

At the same time Campbell and Robson (1968), initially on the basis of
psychophysical, and subsequently, on the basis of neurophysiological experi­
ments, developed the thesis that vision operates harmonically much as does
audition except that the visual system responds (by virtue of a Fourier process) to
spatial frequencies. The details of these experiments and their intepretation
makes up the content of Lectures 2 and 4. Here I want to introduce the critical
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difference between Euclidean-based geometric and Fourier-based hannonic
approaches.

For those using the geometric approach, spots and lines are seen as elementary
features that become combined in ever more complex forms as higher levels of
the neural mechanism are engaged. When a harmonic analysis is taken as the
approach, the elongated receptive field organization of cortical neurons suggests
that neurons act as "strings" tuned to a limited bandwidth of frequencies. The
ensemble of strings compose resonators or active filters as in musical instru­
ments. A century ago, Helmholtz proposed that sensory receptors are akin to a
piano keyboard; that a spatially isomorphic relation is maintained between recep­
tor and cortex as in the relation between keys and strings of a piano, but that each
cortical "unit" responds (resonates) to a limited bandwidth of frequencies as do
the strings attached to the piano's sounding board. From the operation of the total
range of such units, magnificent sounds (in the case of the piano) and sights (by
means of the visual system) can become configured (Fig. 1.6).

The geometric and hannonic views differ significantly with respect to the
composition of a percept. Irwin Rock (1983) described this difference as follows:

One confusion here may be with the meaning of "feature." A feature could refer to
an identifiable part or unit that must first be extracted or detected, and then along
with other features assembled into an overall pattern. Or "feature" could refer to an
identifiable emergent characteristic of the form once it is achieved rather than as
one of the parts that produces it. (p. 96)

The details of the neurophysiological data as reviewed in Lectures 4 and 5 show
that features such as oriented lines, movement and color are best conceived as
identifiable emergent characteristics of form because they are already conjoined
in the receptive field. Furthermore such features become activated either by
sensory input or by central process to configure a percept. This evidence, makes
the "resonating string metaphor" more reasonable than the feature detector ap­
proach.

There are four critical reasons for preferring tuned frequencies to detected
features: (a) Neurons in the visual cortex respond to several features of sensory
input and there is no evidence that the different features are represented by
separate neurons, as would be required if it acted as a detector; (b) the receptive
field properties of such neurons can be accounted for by considering them as
spatial and temporal differentiations of tuned frequency; (c) tuned frequencies
provide a potentially richer panoply of configuration (e.g., texture, paralax), and
(d) perceptual research has clearly shown that lines (and therefore line detectors)
composing contours are inadequate elements with which to account for the
configural properties of vision.

Rock (1983) summarized the evidence and argument as follows:
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FIG. 1.6. Diagram of essential connectivity of the initial stages of
visual sensory processing and its similarity to the connectivity of a
metaphorical piano to illustrate the principles of harmonic analysis.

The emphasis on contour detection is entirely misplaced because, as far as form is
concerned, a contour simply marks or delineates a location. What matters for form
perception is the set of all such locations; and if these can be delineated without
contours, contours are not necessary. That is why, in addition to depth, we perceive
regions of particular shapes in two random dot patterns viewed binocularly despite
the absence of any physical contours (Julez 1971). Illusory contours . . . also
support this conclusion. (p. 43)
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Rock provided the results of innumerable experiments to document his insight
that the configural properties of vision are due to a "process of directional
integration" (p. 47). The most critical is the demonstration that "the perceived
direction of a point with respect to ourselves... is a joint function of retinal
locus and eye position" (p. 46). The details of the evidence for this approach are
presented in lecture 3.

In summary, sensory cortical receptive fields are considered analogous to
resonating strings in a piano. The functional relationship among strings (among
the receptive fields of the sensory cortex) and with the keyboard (with the
sensory receptors) is spatially organized and provides a macrolevel of perceptual
processing. The functional relationship among resonant frequencies, characteris­
tic of overlapping functions of the receptive fields of the cortical neurons, pro­
vides a microlevel of perceptual processing. It is this cooperative microprocess
that allows one to assume that indeed a specific brain process is coordinate with
the richness of experience that is perception.

PLASTICITY

Cooperativity, implemented in the dendric microprocess, makes possible parallel
distributed processing of considerable flexibility within a single processing layer.
Moreover, in multilayered networks selective modification can occur provided
the presynaptic network becomes influenced by iterations of input. Such an
arrangement is often referred to as the Hebb rule because Donald Hebb (1949)
captured the imagination of the broad scientific community when he called
attention to the fact that selective modification is dependent on presynaptic
effects. The importance of this presynaptic requirement had been familiar to
many neuroscientists for a half-century: For example in his Project for a Scien­
tific Psychology (1895/1966), Freud ascribed selective learning to the restricted
lowering of certain synaptic resistances by the absorption of energy (precathexis)
at the presynaptic site due to repeated use. It is the actual mechanism by which
such selective changes can occur that has taken a century to unravel (see e.g.,
Stent, 1973; and discussion in Kimble, 1965).

The holonomic brain theory presented in the next lecture is based on a radical
extension of this rule: A microprocess is conceived in terms of ensembles of
mutually interacting pre- and postsynaptic events distributed across limited ex­
tents of the dendritic network. The limits of reciprocal interaction vary as a
function of input (sensory and central) to the network-limits are not restricted
to the dendritic tree of a single neuron. In fact, reciprocal interaction among pre­
and postsynaptic events often occurs at a distance from one another, that is, in a
saltatory fashion. More on this in Lectures 2 and 4.

Perceptual learning is extremely rapid-three to five iterations usually suffice
(Kimble, 1967). This type of rapid learning is achieved when several layers of
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cooperative networks are cascaded-as in cortical layers-so that feedback and
feedforward procedures can be implemented. In feedforward computations are
fed to all subsequent processing layers in parallel (with possible delays due to
longer paths). Feedback implements the results of computation at each layer by
back propagation to layers closer to the input source.

These layered networks simulate layered neural configurations such as those
characterizing the retina and cerebral cortex. Other neural configurations such as
those characteristic of the basal ganglia and brain stem nuclei are better simulated
by clusters of interconnected units described in graph theory by "cliques," "hy­
percubes," and so forth (Fig 1.7). Brain systems are configured by composites of
clustered and layered processors related by topologically discrete parallel
connections.

Both layered and clustered processors are implementations of dynamical prin­
ciples more appropriate for modelling the configural aspects of perception than
the digital finite-state principles that guided earlier theories concentrating on
symbolic processes. The similarity of these current processing theories to neu­
rodynamics and the success such programs are having in simulating the psycho­
logical and neurological aspects of perception indicates that the time is ripe for

FIG. 1.7. Six dimensional hypercube with 64 nodes, and 6 connec­
tions per node. Computer generation by Conrad Schneiker. From:
Hameroff, S. R. (1987). Ultimate Computing. Amsterdam: Elsevier Sci­
ence Publishers.
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brain theory to be fonnally realizable whenever possible. Howeve!", just as in
computer science, the level of description becomes critical in detennining the
model-that is, the code, the language-in which a particular procedure is to be
invoked.

The interesting and often difficult problems are those that specify the transfer
functions, the transfonnations that relate one level, one code, to another: The
necessity to deal with these transfer functions is immediately apparent in compu­
ter science where one must have available (often at considerable cost) the soft­
ware that encodes the "transfer functions" connecting machine to machine­
language and this to assembler language, assembler to operating system, and so
forth. A computational neural theory of perception must specify the relationship
between operations of the subneuronal to the neuronal level; those at the neuronal
level to those at the neural systems level; and, as well, those at the neural systems
level to those at the perceptual level.

Cooperative networks, even when layered, have limitations as well as
strengths. Cooperativity, in sensory systems, given iterative inputs provided by
movement, is powerful in correlating, in developing perceptual constancies, and
is self-organizing. For other kinds of computation, structured constraints must be
imposed on the networks. These constraints can come directly by way of sensory
input or they can be imposed from within the brain. The centrally imposed top­
down constraints are generated by a variety of brain systems that preprocess at
the midbrain and thalamic level the input to the primary sensory cortex. These
top-down preprocessing procedures, organized by prior experience, are those
that constitute the cognitive aspects of perception.

PARALINEARITY

The cooperative stages of sensory processing are described in the theory pre­
sented in the next lecture as paralinear computations. Nonlinearities enter only as
auxilliaries that sharpen the computational process. The locus of entry of non­
linearities can thus be identified without jeopardizing the advantages that accrue
to the overall linearity of the operation of the brain systems involved in configur­
ing percepts.

A beginning in making the distinction between overall linearity and the entry
of nonlinearities comes from analyzing the relevant dynamics of neural process­
ing. The input to the brain is in the form of modulations of nerve impulse trains,
modulations initiated in receptor activity.

Similarly, the output to muscles and glands is in the fonn of spatially and
temporally patterned trains of nerve impulses. There are, of course many stages
of processing intervening between input and output. At each of these processing
stations, four types of transfonnation take place. Walter Freeman (1989) de­
scribed these stages in the following passages:
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At the first stage pulses coming in to a set of neurons are converted to synaptic
currents, [patterns of hyper-and depolarizations] which we call waves. Second,
these synaptic currents are operated on by the dendrites of the neurons. This
involves filtering and integration over time and space in the wave mode. Third, the
wave activity reaching the trigger zones is converted back to the pulse mode.
Fourth, it then undergoes transmission, which is translation from one place to
another, delay, dispersion in time, etc. The operations of filtering, integration and
transmission can be described with linear differential equations. Pulse to wave
conversion at synapses is commonly thought to be nonlinear, but in fact in the
nonnal range of cortical operation it is linear. Multiplication by a constant suffices
to represent the conversion from a density of action potentials (pulse density) to a
density of synaptic current (wave [Le. polarization amplitude]). But the operation
of wave to pulse conversion is nonlinear, and the trigger zone is the crucial site of
transfonnation that detennines the neural gain over the four stages. (personal
communication)

These passages contain the key elements of the holonomic brain theory pre­
sented in the next lecture, in which "the operations of filtering, integration, and
transmission can be described with linear differential equations" and "pulse to
wave conversion at synapses is commonly thought to be non-linear, but in fact,
in the nonnal range of cortical operation is linear." It is only at the axon hillock
where nerve impulses are generated that "wave to pulse conversion is non­
linear." (Fig. 1.8) In the holonomic approach, the configural aspects of percep­
tion are coordinate with synaptic and dendritic processing; modelling can there­
fore take advantage of the practical features of linearity. This leaves to conducted
nerve impulse activity the role of imposing nonlinear constraints and of commun­
icating the results of processing at one brain location to another such location.
Signal transmission with its attendant gain control (as indicated by Freeman)
necessitates the introduction of nonlinearities. But (again, as Freeman noted)
pulse to wave conversion at synapses once more linearizes the system. Thus the
unconstrained dendritic computational microprocess in perception is essentially
linear.

Understanding the neural basis of the imposition of nonlinearities in con­
straining the linear junctional microprocesses is illustrated by the work of Pog­
gio. Poggio, Torre & Koch (1985) came to the following views:

[An] analog parallel model of computation is especially interesting from the point
of view of the present understanding of the biophysics of neurones, membranes and
synapses. Increasing evidence shows that electrotonic potentials playa primary role
in many neurones. Mechanisms as diverse as dendrodendritic synapses, gap
junctions, neurotransmitters acting over different times and distances, voltage­
dependent channels that can be modulated by neuropeptides and interactions be­
tween synaptic conductance changes provide neurons with various different circuit
elements. Patches of neural membrane are equivalent to resistances, capacitances
and phenomenological inductances. Synapses on dendritic spines mimic voltage
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FIG. 1.8. Diagram of an idealized neuron as it is conceived to partici­
pate in the processing of signals.

sources, whereas synapses on thick dendrites or the soma act as current sources.
Thus, single neurons or small networks of neurons could implement analog solu­
tions. (p. 317)

When the constraints on processing are asymmetrical, as for instance, when
excitatory and inhibitory inputs are spatially or temporally asymmetrical (Pog­
gie, Torre, & Koch, 1985) directional selectivity results. Such asymmetries
impose nonlinearities on the basically linear analog microprocess.

The issue of linearity with regard to cortical processing in visual perception
has been addressed in a comprehensive review by Shapley and Lennie (1985):
"The idea [that within patches of receptive field, linearity is maintained] is an
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attractive one because it is consistent with the narrow spatial frequency tuning
and spread of best frequencies of cortical neurons but is weakened to the extent
that the neurons behave non-linearly" (p. 572).

As noted, these nonlinearities are a function of the outputs of neurons that
depend on gain control at the axon hillock. The nonlinearities are thus introduced
primarily into the perceptual microprocess in the fonn of overall retinal to corti­
cal mapping that is spatially logarithmic (Schwartz, 1977). However, in addition
to the effects on the perceptual macroprocess, "the nature of some of these
nonlinearities suggests that they are precisely what make the cells highly tuned
spatial frequency filters" (Shapley & Lennie, 1985, p. 575).

To anticipate the theme detailed in Lectures 2 and 4, the configurations (i.e.,
the internal architecture) of the receptive fields of visual cortical neurons can be
described in tenns of spatial frequency: Recordings of axonal impulse responses
of the cortical neuron show that the stimulus that best engages these cortical
neurons is a (sine wave) grating (composed of regularly spaced bars of widths
equal to those of the spaces), which is drifted across the visual field. The spatial
frequency of the gratings that engages the spatial frequency of the receptive field
is determined by the widths of the bars making up the grating and the spacings
between them. The range of spatial frequencies to which the cortical neuron
responds detennines the bandwidth of the tuning curve. This bandwidth is ap­
proximately an octave (± 1/2 octave) (see review by DeValois & DeValois,
1980).

These experimental results have led to the view that the neural processes
involved in spatial vision are kin to those involved in audition. Hannonic analy­
sis is therefore an appropriate tool for developing a computationally realizable
theory of the neural processes involved in the configural aspects of perception.

The simplest and most fundamental of the tools of hannonic analysis is the
Fourier decomposition, which represents a spatial or temporal pattern by a set of
regular oscillations differing in amplitude and frequency. Each regular oscillation
is in turn decomposed into sine and cosine components, which differ only in that
they are 90° out of phase. The phase of each of the regular oscillations with
respect to the others differing in frequency, is encoded by a ratio called the
Fourier coefficient. Computation of the Fourier representation of oriented gra­
tings in tenns of their coefficients has more successfully predicted the responses
of cortical neurons, than has the display of oriented single lines or bars of various
widths (DeValois, Albrecht, & Thorell, 1978). At the neural microprocessing
level, the holonomic brain theory is thus not only computationally simpler,
especially with respect to calculating correlations, than nonlinear theory, but is
more accessible to test.

However, each of the sinusoidal Fourier components extends to infinity. Corti­
cal receptive fields are bounded. The limit on the functional receptive field of
cortical neurons is produced not only by the anatomical extent of the dendritic
field of a single neuron, but also by inhibitory (hyperpolarizing) horizontal
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networks of dendrites that interpenetrate overlapping excitatory (depolarizing)
fields. Lecture 10 deals with the way inhibitory networks modify the functional
dendritic field.

These bounded receptive fields provide the data reviewed by Shapley and
Lennie (1985), which were obtained using harmonic analysis. They noted that
the existence of nonlinearities has caused advocates of the Fourier approach "to
propose that the spatial image may be analyzed into spatial Fourier components
over small patches of visual field." This "patch" technique of Fourier analysis
was pioneered for radioastronomy by Bracewell (1965) and then applied to
neurophysiology by Pollen, Lee, & Taylor (1971); Pribram (1971); Robson
(1975); and Glezer (1985). For the brain cortex each patch is configured by a
simple cortical receptive field.

STATE OF THE ART

Currently, several formalisms have been adopted to construct theories of percep­
tion similar in character to the holonomic approach taken in these lectures. These
theories differ from the holonomic brain theory in that they do not address the
role of each of the various brain systems involved in perception. In fact, most of
the theories-for example see Ginsberg (1971), Caelli (1984), Watson and
Ahumada (1985), Hoffman (1984), Dodwell (1984), Cutting (1985), Cavanagh
(1984, 1985) and Palmer (1983)-are based primarily on psychophysical data.
Their encoding schemas aim to explain in one model the full range of phenomena
involved in pattern recognition by a variety of correlational methods (e.g., those
of Anderson, Silverstein, Ritz, & Jones, 1977; Kohonen, 1977), holographic
filters (Cavanagh 1975, 1976), or Lie group manifolds (Dodwell & Caelli, 1984;
Hoffman, 1984).

Kronauer and Zeevi (1985), have summarized the essentials of the neural
microprocesses on which the holonomic brain and similar theories must be
based:

The operation in question obviously cannot be a global Fourier transfonnation or,
for that maUer, any simple hannonic decomposition scheme, since we are dealing
with a space (position) dependent system whose characteristics are inhom­
ogeneous. At best, therefore, we may consider a possible "short distance" spectral
decomposition analogous to the time-frequency domain spectrogram so widely
used in speech analysis (Flanagan, 1972). (p. 99)

Flanagan (1972) and before him Gabor (1946) showed that in a communication
there is a tradeoff between accuracy in the spectral domain and accuracy in the
time domain. In fact the unit they found to be most useful to represent and
analyze a communication (e.g., speech) was a time-limited sinusoid (repetitive
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waveform) of specified frequency. It is this unit that fonns the basis of the
holonomic brain theory as developed in the next lecture.

For vision, the sinusoid is place limited (as well as time limited). As Kronauer
and Zeevi (1985), have noted, the tradeoff between space and frequency has
consequences:

Thus, as every engineer well knows, sharpening up the spatial resolution results in
a spread of the spatial-frequency characteristics, and vice versa. Does this conclu­
sion, based on pure communication theory considerations, bear any relevance to
better understanding of cortical engineering design and signal processing in the
visual system? Recent studies indicate that, in fact, cortical neurons in area 17
respond in a way that is localized both in space and in spatial frequency (Maffei &
Fiorentini, 1973; Andrews & Pollen, 1979; Tootell, Silvennan, & DeValois, 1981;
Movshon, Thompson & Tolhurst, 1978), in the sense that a cell's stimulus domain
exists in a certain well-defined region of visual space (the so-called receptive field)
and is also localized in spatial-frequency to a limited range of luminance­
periodicity-modulation. Proceeding from photoreceptors through ganglion- and
LGN-cells to cortical simple cells, one finds a progressive loss in localizability of
positional infonnation (at the single cell level of operation) and a decrease in spatial
frequency bandwidth. (pp. 99-1 (0)

This relationship between space and frequency is fundamental. A convenient
way to picture it is to recall the metaphor of a piano (described in a previous
section) as developed by Helmholtz (1863) and Ohm (1843) to describe the
auditory system. At a macro level of organization, the keys of the keyboard (the
receptors) are spatially arranged with respect to one another and this spatial
arrangement is maintained in the connectivity between keyboard and the strings
of the sounding board. It is at the micro level of individual strings (the receptive
fields of cortical cells) that the frequency mode of response occurs: each string
resonates at a limited bandwidth of frequency. We are well acquainted with the
richness of sensory experience that can be generated by such an arrangement.

Furthermore, Kronauer and Zeevi (1985) indicated that this micro level fre­
quency response is carried out within the functional receptive field, that is, the
dendritic microprocess of junctional polarizations.

The response characteristics of a cortical simple cell can conveniently be described
in terms of a receptive field profile (the cell's kernel) that specifies its excitatory
and inhibitory substructures. lYpically there appear to be two major subclasses of
simple-cell receptive field profiles: bipartite ("edge" type) and tripartite. Careful
analysis of the receptive fields, reconstructed from spatial-frequency selectivity
measurements, indicates additional "ringing" reminiscent of Gabor's elementary
function (Andrews and Pollen 1979). Most interesting, however, is the finding that
pairs of simple cells that are adjacent in the cortical tissue and have the same
preferred orientation are tuned to the same spatial frequency and respond to drifting
sine wave gratings 90° out of phase, spatially (Pollen and Ronner 1980). Thus, the
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fact that cortical neurons balance the position/frequency trade-off by possessing
both some spatial retinotopic localization and, at the same time, a spatial frequency
bandwidth of about one octave with matched sine and cosine (phase quadrature)
cell pairs, suggests that important kinds of visual processing are going on in both
domains (Zeevi and Daugman 1981).

One of the advantages of processing in both spatial and frequency domains is
economical coding. This is due to the efficiency of encoding when uncertainty
with regard to frequency and place (in space and time) are minimized. Kronauer
and Zeevi (1985) pointed this out in the following passage:

Some recent theoretical studies have emphasized the principle of economical cod­
ing (minimal representation) for the cortex (e.g., Sakiu and Barlow 1982). In view
of the high-functional multiplicity found in the cortex, this emphasis seems mis­
placed. Yet, it is true that, from several view points, the processing is economical.
The receptive field patterns of simple cells come very close to minimizing uncer­
tainty in the four-dimensional space comprised of two spatial and two frequency
coordinates (Daugman 1980, 1984). Moreover, it seems that no two cells perfonn
the same functions, so there is no wasteful redundancy in the simple sense. (p. 1(0)

As detailed in the next lecture, this type of economical encoding, is achieved
by an ensemble of receptive fields. The advantages of such coding are critical:
Transfonnations between frequency spectrum and spacetime are readily accom­
plished because the transfonn is invertable. This makes the computing of correla­
tions easy. In addition, the property of projecting images away from the locus of
processing (as by a stereo system and by a hologram) and the capacity to process
large amounts of infonnation are inherent in holonomic processing. As these
properties are also the ones that characterize figural awareness, they make a good
point of departure for constructing a theory of brain organization in perception.
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