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 This document is provided as a free resource for public use. You are welcome to use it 
 for personal consumption. The following restrictions apply: 

 1.  Non-Commercial Use Only 
 Any reproduction, distribution, or use for profit or commercial purposes is 
 prohibited. 

 2.  No Unauthorized Modifications 
 You may not alter or edit the content and present it as your own without proper 
 attribution. Please contact  admin@theactuarialnexus.com  if you would like to 
 distribute this document for non-commercial purposes. 

 While every effort has been made to ensure the accuracy of this document, it may 
 contain typos or errors. Please email  admin@theactuarialnexus.com  if you encounter 
 any typos. 

 This document was authored in association with The Actuarial Nexus, and is not 
 endorsed by or affiliated with the Society of Actuaries. 

 Most questions on Exam SRM test a conceptual understanding of the material. As such, 
 this document includes definitions and explanations to accompany some of the 
 formulas. The formulas and notation in this document have been kept as close as 
 possible to those in the source material. 

 Memorizing the information in this document alone is not sufficient preparation to pass 
 Exam SRM. 

 Visit  The Actuarial Nexus  for a comprehensive study  program, including 70+ written 
 chapters, 800+ practice questions, and powerful analytic tools designed to help you 
 pass the exam. 
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 0. Review 
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 0.1  Sampling Assumptions 
 Concept  Description 

 The expected value (mean) of  converges to the 
 population mean,  . 

 The variance of  converges to the population 
 variance,  . 

 are independent  The set  consists of independent variables. 

 are normally distributed  The set  follows a normal distribution. 

 and  are parameters. The goal is to use statistics,  such as  and  to infer 
 information about parameters. 

 0.2  Pearson Correlation Coefficient 
 Concept  Description 

 Definition 
 The  Pearson (ordinary) correlation coefficient  measures 

 the strength and direction of the linear relationship 
 between two continuous variables. 

 Formula 

 Values 
 : Negative linear relationship. 
 : No linear relationship. 
 : Positive linear relationship. 

 Properties  It is a dimensionless measure (units of measurement 
 removed) and location and scale invariant. 
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 0.3  Matrices 
 Concept  Formula/Notation  Notes 

 Matrix 

 Matrices are typically denoted 
 by uppercase letters such as 

 ,  , and  . 

 If a matrix  has  rows and 
 columns, it is referred to as 

 an  matrix. 
 is a  matrix with 3 
 rows and 3 columns. 

 Inverse 

 Only square matrices can be 
 inverted. 

 Inverting matrices by hand is 
 beyond the scope of the 

 exam. 

 Transpose  ,  or 

 The 
 Variance-Covariance 

 Matrix 

 - Covariance measures how 
 much two variables change 
 together. 
 - The matrix is symmetric. 
 - The variances are always 
 non-negative. 

 Matrices are commonly used in  multiple linear regression  . 
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 0.3  Maximum Likelihood Estimation 
 Terminology  Formula / Description 

 Maximum 
 Likelihood 
 Estimation 

 Maximum likelihood estimation  is a method for estimating  the 
 parameters of a statistical model by maximizing the likelihood 

 that the observed data occurred under the model. 

 Likelihood 
 Function 

 For a random sample  drawn from a 
 distribution with PDF  , the  likelihood function  is: 

 Log-Likelihood 
 Function 

 The  log-likelihood function  is: 

 where  is the natural logarithm function (by convention). 

 Score Function 

 The  score function  is the partial derivative of the  log-likelihood 
 function with respect to the parameter(s): 

 For a parameter vector,  , the score function is: 

 Maximum 
 Likelihood 
 Estimator  The  maximum likelihood estimator  (MLE) is found by  setting the 

 score function to zero and solving for  . The argmax  is the value 
 of  where the function is maximized. 

 (Fisher) 
 Information 

 Matrix 
 A larger value of  indicates that the data provides  more 

 information about  , leading to more precise estimates. 
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 Covariance Matrix 

 The asymptotic variance-covariance matrix (covariance matrix) is 
 the inverse of the information matrix:  . 

 As the sample size grows, the distribution of the MLE 
 approaches a normal distribution with mean  and covariance 
 matrix  . 
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 1. Basics of Statistical Learning 
 (Learning Objective 1) 
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 1.1  Types of Variables 
 Terminology  Definition  Example 

 Input Variable 

 A variable used to predict the 
 output variable (a.k.a. predictors, 
 explanatory variables, exogenous 
 variables, independent variables, 

 features, regressors). 

 In a house price prediction model, 
 input variables could include the 
 size of the house, the number of 

 bedrooms, and the location. 

 Output 
 Variable 

 The variable that you are trying 
 to predict or explain (a.k.a. 

 response, outcome of interest, 
 endogenous variable, explained 

 variable, outcome, regressand, or 
 dependent variable). 

 In a house price prediction model, 
 the output variable is the price of 

 the house. 

 Confounding 
 Variable 

 A variable that affects both the 
 independent variable and the 

 dependent variable, potentially 
 leading to a false association 

 between them. 

 In a study examining the 
 relationship between coffee 

 consumption and heart disease, 
 smoking can act as a 
 confounding variable. 

 People who drink more coffee 
 might also be more likely to 

 smoke, and smoking is a known 
 risk factor for heart disease. 

 Binary 
 Variable 

 A variable that captures the 
 presence or absence of a 

 particular attribute, event, or 
 condition within a dataset. 

 Gender (male/female), yes/no 
 responses, or the occurrence of 

 an event. 

 Dummy 
 Variable 

 A binary (0/1) indicator used in a 
 regression model to represent 
 the presence or absence of a 

 categorical attribute. 

 Several dummy variables can be 
 created to represent variables 

 with more than two categories. 

 For a color variable with red and 
 blue, use 1 if blue and 0 if red. 

 For a color variable with red, blue, 
 and green, use 1 if blue and 0 

 otherwise, 1 if green and 0 
 otherwise. Red is the reference 

 when both are 0. 

 Nominal 
 Variable 

 A variable that categorizes data 
 without any intrinsic order. 

 Blood type (A, B, AB, O) or eye 
 color (blue, green, brown). 
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 Ordinal 
 Variable 

 A variable that categorizes and 
 ranks data in a specific order. 

 Satisfaction ratings (poor, fair, 
 good, excellent) or education 

 levels (high school, bachelor's, 
 master's, doctorate). 

 Count 
 Variable 

 A variable that quantifies the 
 number of occurrences of an 
 event within a fixed period or 

 space. 

 The number of customer visits to 
 a store or the number of emails 

 received per day. 

 Interaction 
 Variable 

 A variable that captures the 
 combined effect of two variables 

 when their joint impact on the 
 outcome is different from their 

 individual effects. 

 In a model with "Education" and 
 "Gender," adding an Education × 
 Gender variable lets the effect of 

 education differ between 
 genders. 

 Omitted 
 Variable 

 A relevant variable left out of a 
 model, which can bias the results 

 if it's correlated with included 
 variables. 

 Leaving out experience in a wage 
 model that includes education 

 may overstate education’s effect 
 if experience is also related to 

 wages. 

 Suppressor 
 Variable 

 A variable that increases the 
 predictive validity of other 

 variables when included in the 
 model. 

 Party hours may act as a 
 suppressor when added to a 

 model predicting GPA from SAT 
 scores. 
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 1.2  Prediction and Inference 
 Prediction  aims to forecast the output variable based  on the input variables. The focus 
 is on the accuracy of the predictions. 

 Inference  aims to understand the relationship between  the input variables and the 
 output variable. The focus is on interpretability. 

 In some situations, it is necessary to model for  both  inference and prediction 
 simultaneously. 

 1.3  Decomposition of the Expected Squared Error 
 The  expected squared error  , or squared expected difference,  is a theoretical measure of 
 how far predictions,  , are from actual outcomes,  : 

 Terminology  Reducible Error  Irreducible Error (Noise) 

 Formula 

 Description 
 Reducible error  is the error 
 introduced by the model's 

 approximation. 

 Irreducible error  (noise) 
 captures the effects of 

 unobserved variables or 
 inherent randomness in the 

 data. 

 Comments 

 Decreased by improving the 
 model, choosing better 

 predictors, or using more 
 sophisticated modeling 

 techniques. 

 In practice, the irreducible error 
 can never be zero. There are 
 always factors affecting the 

 response variable that are not 
 included in the model. 
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 1.4  Parametric and Non-Parametric Methods 
 A  parametric method  assumes the data can be modeled  by a particular distribution 
 characterized by a fixed number of parameters. The most popular parametric models 
 take a linear form. 

 A  non-parametric method  does not assume a fixed form  or structure for the underlying 
 data distribution. Instead of having a predetermined number of parameters, 
 non-parametric models allow the data to dictate the model complexity. 

 Flexibility  refers to the model's capacity to fit  a wide variety of shapes and patterns in 
 the data. Flexible models can model complex and non-linear relationships, but have a 
 higher risk of overfitting. 

 Overfitting  occurs when a model is too closely fit  to the specific features of the training 
 data, including noise, leading to poor generalization to new, unseen data. An overfit 
 model has low training error but high test error. 

 1.5  Supervised vs Unsupervised Learning 
 Method  Supervised Learning  Unsupervised Learning 

 Definition 

 Supervised learning  involves 
 using labeled data, where each 
 data point is associated with a 

 response measurement. 

 Unsupervised learning  deals 
 with data that has no labeled 

 responses. 

 Goal  Predict or classify the response 
 based on inputs. 

 Discover patterns, relationships, 
 and groupings in the data. 

 Examples 
 -  Linear Regression 
 -  Logistic Regression 
 -  Decision Trees 

 -  Principal Component 
 Analysis 

 -  K-means Clustering 
 -  Hierarchical Clustering 

 Exam SRM  Learning Objectives 1-4  Learning Objective 5 
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 1.6  Regression vs Classification 
 The response variable plays an important role in selecting the learning method. 

 Method  Regression  Classification 

 Response 
 Variable  Quantitative (numerical)  Qualitative (categorical) 

 Goal  Predict a quantitative outcome.  Classify data into categories. 

 Examples 

 -  Linear Regression 
 (continuous) 

 -  Time Series  (continuous) 
 -  Poisson Regression 

 (discrete) 

 -  Logistic Regression 
 -  Decision Trees 

 1.7  Mean Squared Error and Error Rate 
 Data  Training Data  Test Data 

 Mean Squared Error 
 Regression 

 Difference between 
 observed and predicted 

 values. 
 Example 

 Error Rate 
 Classification 

 Proportion of 
 misclassified training 

 observations. 

 Example 

 Purpose  Measures how well a model 
 fits the training data. 

 Measures prediction 
 accuracy on unseen data. 

 Notes  Lower values indicate 
 better fit on training data. 

 Estimated with 
 cross-validation if test data 

 is unavailable. 
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 1.8  Bias-Variance Tradeoff 
 1.8.1 Definitions 

 Terminology  Formula/Description 

 Expected Test MSE 
 Measures model generalization to new data. 

 Variance 
 Measures model sensitivity to fluctuations in the training 

 data. 

 Bias 
 Measures the error introduced by approximating a complex 

 reality with a simpler model. 

 Irreducible Error 
 Represents noise in the data which cannot be explained by 

 any model. 

 1.8.2 Tradeoff Table 

 Model 
 Flexibility  Bias  Variance  Expected Test MSE  Notes 

 Low  High  Low  High (due to high 
 bias) 

 - Simple models 
 - Leads to underfitting 

 Medium  Medium  Medium  Low (optimal 
 trade-off) 

 - Optimal trade-off between 
 bias and variance 

 High  Low  High  High (due to high 
 variance) 

 - Complex models 
 - Leads to overfitting 
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 1.9  Data Collection 
 Sampling frame error  occurs when the sampling frame,  or the list from which the 
 sample is drawn, does not adequately approximate the population of interest. Limited 
 sampling regions can introduce bias when attempting to extrapolate beyond the 
 sampled area. 

 When an omitted variable influences both the dependent variable  and the explanatory 
 variable  , it can create a  spurious  relationship.  The effects of the omitted variable may 
 be incorrectly attributed to other included variables, potentially creating a misleading or 
 false association between those variables and the outcome. 

 Techniques to handle data that are  missing at random  : 
 1.  Ignore the problem. 
 2.  If only a few data points are missing, remove the observations with missing data. 
 3.  If missing data are concentrated in one variable, omit the variable. 
 4.  Impute the data by substituting missing values with reasonable estimates. 

 Traditional statistical techniques are intended for the  low-dimensional  setting in which 
 the number of observations is much greater than the number of features (  ). New 
 technologies have enabled the collection of an almost unlimited number of features, 
 enabling analysis around  high-dimensional  (  ) data  sets. In practice, while  can 
 be very large,  can be limited due to cost or sample  availability. Applying least squares 
 regression in a high-dimensional setting can lead to overfitting. Methods such as 
 forward stepwise selection  ,  lasso  , and  principal components  regression  are particularly 
 useful in high-dimensional settings. 
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 1.10  Bayes Classifier 
 Concept  Description 

 Bayes Classifier 
 The  Bayes classifier  is a hypothetical optimal classifier 
 that assigns the most probable class given a predictor 

 vector. 

 Formula 

 Goal  Minimizes test error by selecting the class with the highest 
 conditional probability. 

 Limitations  Requires full knowledge of the true conditional probability 
 distributions, which is rarely available in practice. 

 Approximation  Approximated using models like logistic regression, 
 decision trees, and neural networks. 

 Concept  Description 

 Bayes Error Rate 
 The  Bayes error rate  is the lowest possible test error  rate 
 achievable, even with the optimal classifier. It is similar to 

 the irreducible error. 

 Formula 
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 1.11  K-Nearest Neighbors 
 1.11.1 Algorithm 
 For a new point  : 

 Step  Description 

 1. Choose  Select the number of neighbors. 

 2. Compute Distances  Measure the distance from  to all other 
 observations (e.g., Euclidean distance). 

 3. Find  Nearest Neighbors  Select the  closest points to  . 

 4. Classify the Point  Assign the class based on the majority vote among 
 the  neighbors. 

 The conditional probability 
 belongs to class 

 1.11.2 Bias-Variance Tradeoff in KNN 

 Value  Bias  Variance  Behavior 

 Small  Low  High  Sensitive to noise; may overfit. 

 Large  High  Low  May miss patterns; smoother 
 predictions. 
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 1.12  The Validation Set Approach 
 1.12.1 Algorithm 

 Step  Description 

 1. Data Splitting  Randomly divide data into training (70–80%) and 
 validation (20–30%) sets. 

 2. Model Training  Fit the model using the training set. 

 3. Model Validation 
 Evaluate the model on the validation set using metrics like 
 mean squared error (MSE) or the sum of squared 
 prediction errors (SSPE). 

 1.12.2 Pros and Cons 

 Pros  Cons 

 Simple  High variance due to single split 

 Fast  Not all data is used for training 

 Low computational cost  May overestimate test error 
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 1.13  Leave-One-Out Cross-Validation 
 1.13.1 Algorithm 

 Step  Description 

 1. Data Splitting 

 For each observation  in the dataset: 
 - Remove the  -th observation, resulting in the  training set 

 . 
 - Train the model on  . 
 - Test the model on the removed i-th observation  , 

 obtaining the prediction  . 

 2. Model Training  Compute the performance metric (e.g., mean squared 
 error or error rate) for each iteration. 

 3. Model Validation 

 Average the performance metrics over all n iterations to 
 obtain the final estimate. 

 For regression, use the predicted residual sum of squares 
 (PRESS): 

 For classification, use: 

 1.13.2 Pros and Cons 

 Pros  Cons 

 Nearly unbiased estimate of test error  Requires training the model  times 

 Uses almost all data for training  High variance due to similar training sets 

 No randomness in splits => leads to 
 consistent results  Computationally expensive for large 
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 1.14  K-Fold Cross-Validation 
 1.14.1 Algorithm 

 Step  Description 

 1. Data Splitting 
 Divide the data set into  folds. When  , k-fold CV  is 
 equivalent to LOOCV. Popular choices for  are  or 

 . 

 2. Model Training 

 For each fold: 
 - Train the model on  folds. 
 - Validate the model on the remaining fold. 
 - Compute the MSE for the predictions on the validation 

 fold. 

 3. Model Validation 

 Calculate the mean of the MSE values obtained from each 
 of the  folds. 

 For regression, use: 

 Example 

 For classification, use: 

 1.14.2 Model Comparison 
 LOOCV has higher variance and lower bias than K-fold CV for  since LOOCV 
 averages the outputs of  fitted models. These models  are highly correlated with each 
 other. 

 In terms of the bias-variance tradeoff, K-fold can be considered between the validation 
 set approach and LOOCV. 
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 2. Linear Models 
 (Learning Objective 2) 
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 2.1  Simple Linear Regression 
 2.1.1 Theoretical Representation of a Linear Model 

 Concept  Description 

 Equation  (approximation) 

 Dependent Variable (  )  The outcome variable we aim to predict. 

 Independent Variable (  )  The input variable used for prediction. 

 Intercept (  )  Expected value of  when  . 

 Slope (  )  The change in  for a one-unit increase in  . 

 Coefficients (or Parameters)  , 

 2.1.2 Observations vs Predictions (Actuals vs Estimates) 

 Concept  Description 

 Observed Values (  )  Actual data points collected from empirical data for 
 observations  . 

 Predicted Value (  ) 
 The value of  predicted by the regression equation 

 for a given observation,  . 

 Regression Equation 

 Estimated Intercept (  or  ) 
 Estimate from ordinary least squares: 

 Estimated Slope (  or  ) 

 Estimate from ordinary least squares: 
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 2.1.3 Ordinary Least Squares 

 Concept  Description 

 Terminology 

 The following refer to the same concept: 
 -  Ordinary least squares (OLS) 
 -  Method of least squares 
 -  Least squares method 
 -  Least squares regression 

 -  Simple linear regression: One independent variable 
 -  Multiple linear regression: More than one 

 independent variable 

 Goal  The goal of OLS is to estimate regression coefficients by 
 minimizing the residual sum of squares (RSS). 

 Residual (  ) 

 A  residual  measures the difference between the 
 observed value  and the predicted value  . 

 Residual Sum of Squares 
 (  ) 

 Fitted Regression Line 
 (Line of Best Fit) 
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 2.1.4 Error Term 
 The  true model  is defined as  . 

 The  error term  (disturbance term) is  . It acknowledges that 
 observed data points do not perfectly fit the underlying theoretical model, and accounts 
 for  random variation (noise). 

 Assumptions about the error terms,  , are made to ensure OLS produces 
 unbiased estimates.  An estimator  of a parameter  is  unbiased  if  . 

 The following assumptions apply to observations,  , and errors,  : 

 Observation Assumptions  Error Assumptions 

 1.  1. 

 2.  are non stochastic 
 variables. 

 2.  are non stochastic 
 variables. 

 3.  3.  and 

 4.  are independent random variables.  4.  are independent random 
 variables. 

 From the central limit theorem, these assumptions imply that  and  are 
 approximately normally distributed. 
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 2.2  Mean Squared Error and Standard Error 
 The formulas below only apply to simple linear regression (one independent variable). 

 Concept  Description 

 The variance of the error term provides a measure of how 
 much the observed values deviate from the true values 

 due to random noise. 

 Mean Squared Error 
 (MSE) 

 Example 

 To obtain an unbiased estimator of  : 

 Residual Standard Error 
 (RSE) 

 Example 

 The RSE is an estimate of  : 

 Standard Error of 
 Example 

 Standard Error of 
 Example 
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 2.3  Sum of Squares and R-Squared 
 Concept  Description 

 Total Sum of Squares 
 (  ) 

 Total deviation: 

 Measures the total variation in the dependent variable 
 around its mean.  Example  . 

 Residual Sum of Squares 
 (  ,  ,  ) 

 Unexplained deviation: 

 Measures the discrepancy between the observed data 
 and the values predicted by the model.  Example  . 

 Regression Sum of 
 Squares 

 (  ) 

 Explained deviation: 

 Measures the variation explained by the regression 
 model.  Example  . 

 Decomposition of TSS 
 (Linear Regression Only) 

 The cross-product term equals zero in linear regression. 
 A nonzero cross-product term exists for  nonlinear 

 models  . 

 Coefficient of 
 Determination or 
 R-Squared (  ) 

 R-squared  measures the proportion of the variance  in the 
 dependent variable that is explained by the independent 

 variable. 

 Value ranges from 0 to 1. 
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 2.4  The t-Test 
 For Exam SRM, the  t-test  is mainly used to test the  significance of a regression 
 coefficient, such as the slope,  . 

 Concept  Description 

 Null Hypothesis 
 (  ) 

 :  , represents the status quo, that  is equal to a 
 specific value  . 

 In regression, often  , indicating no relationship 
 between the predictor and the response. 

 Alternative 
 Hypothesis 

 (  ) 

 Competes with  , representing a difference from  . 

 -  (two-tailed) 
 -  or  (one-tailed) 

 t-Statistic (t-ratio) 
 The  t-statistic  measures how many standard errors the 
 estimate  is from the hypothesized value  . 

 Degrees of Freedom 
 (df)  For simple regression,  , since two parameters, the 

 intercept and slope are estimated. 

 Significance Level 
 (  ) 

 Probability threshold for rejecting  , such as  . 

 - One-tailed: critical value at  . 
 - Two-tailed: critical value at  in each tail. 

 See the table on the next page for details. 

 Decision Rule 
 Reject  if  critical value from the t-distribution table or 
 p-value <  . Otherwise fail to reject  . See the table on the 
 next page for details. 

 Interpretation 
 - Reject  ⇒ variable likely significant; keep in model 
 - Fail to reject  ⇒ variable may be excluded from the 
 model 
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 Alternative Hypothesis  Reject Null Hypothesis Criteria 
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 2.5  Intervals and Partial Correlations 
 2.5.1 Confidence Interval 
 A  confidence interval  is a range of values, derived  from sample data, that is likely to 
 contain the true value of an unknown population parameter. 

 A 95% confidence interval suggests that if the same population were sampled multiple 
 times, approximately 95% of the calculated confidence intervals from those samples 
 would contain the true parameter value. 

 For simple linear regression with parameters  and  , a  confidence 
 interval for the slope  is given by: 

 For multiple linear regression with  predictors,  a  confidence interval for 
 the slope  is given by: 
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 2.5.2 Prediction 
 Prediction  (or forecasting) is the process of estimating  future values based on 
 historical data. Let the response variable from a series of known explanatory variables, 

 , be denoted as: 

 The least squares point predictor for  is: 

 For simple linear regression, the least squares point predictor for  is denoted: 

 We can decompose the prediction error into the estimation error and the random error: 

 This decomposition allows us to model the distribution of the prediction error, and 
 construct a prediction interval for  . 

 2.5.3 Prediction Interval 
 A  prediction interval  (forecast interval) for the  dependent variable  at a 
 given  is: 

 where  . 

 The prediction interval is generally wider than the confidence interval for the mean 
 response because it includes the variability of the individual observations. 

 For simple linear regression where,  , the standard  error of the prediction 
 at  is: 
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 2.5.4 Partial Correlations 
 The  partial correlation coefficient  measures the strength  and direction of the linear 
 relationship between two variables, while controlling for the effect of one or more other 
 variables: 

 Calculating partial correlation coefficients using the t-ratio is efficient and allows all 
 partial correlation coefficients to be computed from a single regression, though it might 
 miss nonlinear relationships. 

 Create  added variable plots  (partial regression plots)  by plotting 
 vs  to visualize nonlinear 

 relationships. 
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 2.6  Multiple Linear Regression 
 2.6.1 Concepts 

 Concept  Description 

 Definition 

 Multiple linear regression extends from simple linear 
 regression and models the relationship between a 

 dependent variable  and multiple independent variables 
 . 

 Model Form 

 Least Squares Method  Estimate regression coefficients by minimizing the RSS. 

 Prediction 

 Residual Sum of Squares 
 (  ) 

 Mean Squared Error 
 Example 

 is the number of parameters including the 
 intercept. 

 Residual Standard Error 
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 2.6.2 Matrix Notation 

 Concept  Description 

 Model Form 

 Dependent Variables (  ) 

 Design Matrix (  ) 

 Coefficients (  ) 

 Errors (  ) 

 Least Squares Method  Estimate regression coefficients,  , by minimizing 
 the RSS. 

 Coefficients Estimate (  ) 

 (unbiased) & 
 where  is the variance-covariance matrix. 

 Alternatively, 

 Prediction Estimate 
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 2.7  The F-Test 
 2.7.1 Definitions 
 While the t-test assesses the significance of individual regression coefficients, the 
 F-test  measures the overall significance of a regression  model. 

 Concept  Description 

 Null Hypothesis 
 (  )  None of the predictor variables have any effect on the 

 response variable. 

 Alternative 
 Hypothesis 

 (  )  At least one predictor variable is significantly associated with 
 the response variable. 

 F-Statistic 
 Example 

 The  F-statistic  measures the ratio of explained variance per 
 predictor to unexplained variance per degree of freedom. 

 Decision Rule 
 Reject  if  critical value from the F-distribution  table. 

 Otherwise fail to reject  . A F-distribution table  is  not 
 provided on the exam. 

 Interpretation 
 Reject  ⇒ at least one predictor variable is significant. 

 Fail to reject  ⇒ no predictor variables are significant. 
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 2.7.2 Partial F-Test 
 The  partial F-test  assesses whether a subset  of  the  coefficients is zero. 

 Concept  Description 

 Null Hypothesis 
 (  )  The subset of  coefficients are zero. For convenience,  the 

 variables chosen for omission are at the end of the list. 

 Alternative 
 Hypothesis 

 (  )  At least one of the  coefficients is non-zero. 

 F-Statistic 

 uses all variables except the last  . 

 2.8  ANOVA Table 

 Sum of 
 Squares (SS)  Formula  Degrees of 

 Freedom (df)  Mean Square (MS) 

 Regression SS 

 Error SS (RSS) 

 Total (TSS) 
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 2.9  Subset Selection 

 Method  Algorithm  Notes 

 Best Subset 
 Selection 

 1. Start with the null model  with 
 no predictors. 

 2. For each  : 

  a. Fit all  models with 
 predictors. 
  b. Select the best one based on 
 lowest RSS or highest  . Call it  . 

 3. Choose the best overall model from 
 using selection criteria 

 (e.g.  ). 

 - Builds a simple model with 
 only key predictors. 
 - Risk of overfitting. 
 - Requires fitting  models — 
 not feasible for large  . 
 - Slower than alternatives; 
 often avoided when  is large. 

 Forward 
 Stepwise 
 Selection 

 1. Start with the null model  . 

 2. For  : 
 a. Evaluate all  models by 

 adding one new predictor to  . 
 b. Choose the one with the lowest 

 RSS or highest  as  . 

 3.  Choose the best overall model 
 from  using selection 
 criteria. 

 - More computationally 
 efficient than best subset 
 selection. 
 - With  , it fits only 211 
 models vs. over 1 million for 
 best subset selection. 
 - Performs well in practice but 
 doesn't guarantee finding the 
 absolute best model. 

 Backward 
 Stepwise 
 Selection 

 1. Start with the full model 
 containing all  predictors. 

 2. For each  : 
 - a. Evaluate all models formed by 

 removing one predictor from  . 
 - b. Choose the best  based 

 on lowest RSS or highest  . 

 3.  Choose the best overall model 
 from  using selection 
 criteria. 

 Similar to forward stepwise 
 selection. 
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 Hybrid 
 Approach  Sequentially add variables, but also 

 remove any that no longer improve 
 the model. 

 Combines the benefits of best 
 subset selection with the 
 computational efficiency of 
 stepwise methods. 

 Stepwise 
 Regression 

 1. Run all simple regressions with one 
 variable. Choose the one with the 
 largest t-ratio. If it's below a set 
 threshold (e.g., 2), stop. 
 2. Add variables one at a time based 
 on the most significance. The t-ratio 
 must be above the threshold. 
 3. Remove variables one at a time 
 based on the least significance. The 
 t-ratio must be below the threshold. 
 4. Alternate between adding and 
 removing until no changes meet the 
 criteria. 

 - Stepwise regression is fast 
 but can overfit and miss the 
 best model. 
 - It ignores nonlinear effects, 
 outliers, and joint variable 
 interactions. 
 - Relies solely on t-ratios and 
 lacks expert input. 
 - Modern tools allow for the 
 practical use of more complex 
 algorithms. 
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 2.10  Choosing the Best Model from Subset Selection 

 Model  Formula 

 Variable Definitions 

 -  : the total number of predictors in the model 
 including the intercept. 

 -  : the number of observations in the dataset. 
 -  (MSE): an estimate of the variance of the model's 

 error  . 

 Mallows's 
 Example  Lower  values indicate better fitting models. The  two 

 formulas will identify the same model even if they yield 
 different values. 

 Akaike Information 
 Criterion (AIC) 

 Example  A lower AIC indicates a better fit, with a penalty for the 
 number of parameters to discourage overfitting. For linear 
 models with Gaussian errors, AIC is proportionate to  . 

 Bayesian Information 
 Criterion (BIC) 

 Example 
 A lower BIC indicates a better fit, with a penalty for the 

 number of parameters to discourage overfitting. 
 BIC penalizes the number of predictors more heavily than AIC, 

 especially as the sample size (  ) increases. 

 Adjusted 
 Example 

 Here,  excludes the intercept term. 

 Higher adjusted  values indicate better fitting models. 

 always increases or stays the same when more predictors 
 are added to the model, regardless of whether those 

 predictors are truly relevant. Adjusted  penalizes  the 
 addition of noise variables to account for the number of 

 predictors,  , in the model. 
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 2.11  Residual Analysis 
 2.11.1 Information 
 The purpose of residual analysis is to check the residuals for patterns or relationships 
 with other variables. It also plays an important role in improving model formulation by 
 identifying additional explanatory variables. 

 Discrepancies to look for include: 
 1.  Lack of Independence:  The deviations  are not independent. 
 2.  Heteroscedasticity:  Variability of observations is  not constant. 
 3.  Relationships with Explanatory Variables:  If an explanatory  variable can help 

 explain  , then it can also help predict  . 
 4.  Nonnormal Distributions:  Significant deviation from  normality nullifies usual 

 inference procedures. Detected through QQ plots. 
 5.  Unusual Points  : Outliers or influential observations  may disproportionately affect 

 the regression model. 

 Three strategies for handling outliers include: 
 1.  Include and Comment 
 2.  Delete the Observation 
 3.  Create a Binary Variable 

 Steps to follow after a preliminary model fit: 
 1.  Display the distribution of residuals to identify outliers. 
 2.  Assess the correlation between residuals and additional explanatory variables to 

 identify linear relationships. 
 3.  Plot residuals against additional explanatory variables to detect nonlinear 

 relationships. 
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 2.11.2 Standardized Residuals 

 Name  Formula  Notes 

 Standardized 
 Residual 

 Easy to compute and understand. 

 approximates the residual standard deviation. 

 Standardized 
 Residual 
 Example 

 More precise than the first definition. 

 Incorporates the leverage,  , and uses the 

 standard error,  . 

 Studentized 
 Residual 
 Example 

 Best for identifying outliers. 

 Excludes the  th observation when estimating 
 the standard error. 

 Follows a  -distribution with 
 degrees of freedom. 
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 2.12  Influential Points 
 Concept  Description 

 Influential Point  An  influential point  is a data point that has a disproportionate 
 impact on the regression line. 

 Outlier  An  outlier  is an observation that is unusual in the  vertical 
 direction (unusual response value). 

 Leverage 

 The  leverage  of an observation measures the influence  that 
 the observation's predictor values have on its fitted value. 

 Average leverage 

 Leverage in simple linear regression 

 High Leverage Point 
 Example 

 A  high leverage point  is an observation that is unusual  in the 
 horizontal directional (unusual predictor value). It can drag 

 the regression line toward itself. 

 Addressing High 
 Leverage Points 

 1.  Include the observation with commentary 
 2.  Delete the observation 
 3.  Choose another variable 
 4.  Use a nonlinear transformation 

 Cook’s Distance 

 Cook's distance measures the change in predicted values 
 when the  -th observation is removed from the model. 
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 2.13  Collinearity 
 Concept  Description 

 Collinearity 

 Collinearity (multicollinearity)  occurs when two or  more 
 predictor variables in a regression model are highly 

 correlated, making it difficult to isolate their individual effects 
 on the response variable. 

 Variance Inflation 
 Factor (VIF) 

 Example 
 The VIF quantifies how much the variance of a regression 

 coefficient is inflated due to collinearity with other predictors. 

 indicates severe collinearity. 

 VIF Adjusted Standard 
 Errors 

 Addressing 
 Collinearity 

 1.  Center variables 
 2.  Acknowledge only 
 3.  Substitute with transformed variables 
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 2.14  Homoscedasticity and Heteroscedasticity 
 2.14.1 Definitions 

 Concept  Description 

 Homoscedasticity 

 Homoscedasticity  is the condition in which the variance  of 
 the errors is constant across all levels of the independent 

 variable(s). 

 Heteroscedasticity 
 Heteroscedasticity  is the condition in which the variance  of 

 the errors is not constant across all levels of the independent 
 variable(s). 

 Addressing 
 Heteroscedasticity 

 1.  Heteroscedasticity-consistent standard errors 
 2.  Weighted least squares 
 3.  Transformation of variables 

 Heteroscedasticity- 
 Consistent Standard 

 Errors  Heteroscedasticity-consistent standard errors  (robust 
 standard errors) adjust for heteroscedasticity without 

 modifying the coefficients themselves. 

 Weighted Least 
 Squares  Weighted least squares  assigns different weights to 

 observations based on the variability of their residuals, giving 
 less weight to observations with higher variance. 

 Transformation of 
 Variables 

 Transforming  the dependent variable  can effectively 
 address heteroscedasticity by stabilizing the variance of the 

 error terms. 
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 2.14.2 Breusch-Pagan Test 

 Concept  Description 

 Purpose  The  Breusch-Pagan test  is used to detect heteroscedasticity 
 in a regression model. 

 Hypothesis Test 
 The variance of the residuals is constant (homoscedastic). 

 The variance of the errors is not constant (heteroscedastic). 

 Steps 

 1.  Run the regression model and obtain the residuals  . 
 2.  Compute  . 
 3.  Regress the standardized squared residuals  on  . 

 4.  Calculate the test statistic as  . 
 5.  Compare the test statistic to the chi-square 

 distribution with degrees of freedom equal to the 
 number of predictors  (excluding the intercept). 
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 2.15  Ridge Regression 
 Concept  Description 

 Shrinkage Methods 

 Shrinkage methods  build on ordinary least squares  (OLS) by 
 adding a penalty to the regression coefficients. The two most 

 common shrinkage methods are ridge regression and the 
 lasso. 

 Ridge Regression 

 Ridge regression  modifies the OLS approach by adding  a 
 shrinkage penalty to the size of the coefficients. Ridge 

 regression shrinks the coefficients towards zero, but it does 
 not set any of them to exactly zero. 

 Ridge Regression 
 Objective Function 

 Minimize: 

 Residual Sum of 
 Squares (from OLS) 

 L2 (Euclidean) Norm  The  L2 norm  represents the straight-line distance  from the 
 origin to the point defined by the vector in  -dimensional 
 space.  Geometrically  , it creates the shape of the penalty 

 region (a circle in 2D, sphere in 3D, etc.). 

 Tuning Parameter 

 The  tuning parameter  ,  , controls the strength of  the 
 shrinkage penalty. Its purpose is to balance the trade-off 

 between fitting the training data well and keeping the model 
 coefficients small to avoid overfitting. 

 Shrinkage Penalty  As  increases, the L2 norm decreases. Geometrically,  the 
 shrinkage penalty  uses the L2 norm to push the coefficients 

 inward. 
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 Scale Equivariance 

 Least squares regression is  scale equivariant  , meaning  that 
 multiplying a predictor variable by a constant does not affect 

 the relative contribution of that predictor to the model. 

 Ridge regression is  not scale equivariant  because  the 
 shrinkage penalty depends on the magnitude of the 

 coefficients. To address this, it is best to standardize the 
 predictors before applying ridge regression: 

 Advantages of Ridge 
 Regression 

 1.  Lower test MSE can be achieved compared to OLS. 
 2.  Useful when dealing with datasets with a large number 

 of predictors. 
 3.  The ability to adjust  allows for optimization of 

 overall model performance. 
 4.  Ridge regression is computationally more efficient 

 than best subset selection, and can be computed 
 almost as quickly as an OLS model. 
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 2.16  Lasso 
 2.16.1 Definitions 
 The concepts below extend from the  previous section  . 

 Concept  Description 

 Least Absolute 
 Shrinkage and 

 Selection Operator 
 (LASSO) 

 Lasso  , or the lasso, modifies the OLS approach by  adding a 
 shrinkage penalty to the size of the coefficients. Unlike ridge 

 regression, lasso sets some coefficients exactly to zero. 

 The ability of lasso to set some coefficients exactly to zero 
 means it can apply  feature selection  by removing less 

 important predictors. 

 Ridge Regression 
 Objective Function 

 Minimize: 

 Residual Sum of 
 Squares (from OLS) 

 L1 Norm 
 Geometrically  , the  L1 norm  creates a diamond-shaped 

 constraint region in parameter space. 
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 2.16.2 A Geometric Interpretation of Ridge Regression and Lasso 
 Ridge regression aims to find the coefficient vector that minimizes: 

 Lasso aims to find the coefficient vector that minimizes: 

 Consider a simple example with two predictors (  ). 

 The constraint  forms circular regions and the constraint 
 forms diamond-shaped regions for varying values of  . The solution to the optimization 
 problem is the point where the RSS contour (dotted green curve) first touches a 
 constraint boundary. 

 ●  For ridge regression, the smooth boundary of the circle means the solution is 
 less likely to intersect at exactly zero (  or  ).  Hence, ridge 
 regression does not perform feature selection, since the coefficients are never 
 exactly zero. 

 ●  For lasso, the diamond-shaped constraint has sharp corners at  and 
 . When the RSS contour intersects the diamond, it's  likely to intersect at a 

 corner where one of the coefficients is zero. This property makes the lasso 
 perform feature selection. 
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 2.17  Binary Dependent Variables 
 Concept  Description 

 Definition 
 The  linear probability model  is a regression model  that 

 estimates the probability of a binary outcome as a linear 
 function of the predictors. 

 True Model Form 
 is a binary variable that takes on a value of 0  or 1. 

 Expected Value 
 where  is the probability that the outcome equals  1. 

 Variance 

 Drawbacks 

 1.  The expected value of the response is not inherently 
 restricted to the [0, 1] interval, and may not be a valid 
 probability. 

 2.  The variance of the error term in the linear probability 
 model is not constant, leading to heteroscedasticity. 

 3.  The response variable  can only take values of 0  or 
 1, whereas the residuals are continuous. 

 Alternative Models 

 Alternative models (e.g.  logit  and  probit  models)  of the form 

 overcome the drawbacks of the linear probability model, 
 where  is a predefined function. 

 Interpretation: The model form specifies that the conditional 
 probability of  given the predictors is a function  of the 

 linear combination of the predictors and the coefficients. 
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 2.18  Logit and Probit Models 
 2.18.1 Logit Models 

 Concept  Description 

 Logistic Regression 

 Logistic regression  (logit regression) is a statistical  model 
 that estimates the probability of a binary outcome by 

 modeling the log‑odds of the event as a linear combination of 
 predictor variables. 

 Logit Function 

 Logistic Regression 
 Model 

 Example 

 Logistic Function 
 The logistic function maps any real-valued number to the (0, 

 1) interval, making it suitable for modeling probabilities. 

 Odds 

 Log-Odds 

 Odds Ratio 
 The  odds ratio  compares the odds of an event occurring  in 

 two different groups. 
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 2.18.2 Probit Models 

 Concept  Description 

 Probit Regression 

 Probit regression  is a statistical model that estimates  the 
 probability of a binary outcome by mapping a linear 

 combination of predictor variables through the standard 
 normal cumulative distribution function. 

 2.18.3 Threshold Interpretation 

 Concept  Description 

 Underlying Linear 
 Model 

 The logit and probit models can be interpreted to have an 
 underlying linear model: 

 where  is a continuous variable that captures the 
 underlying continuous process, but is not directly observable 

 from the data. 

 Threshold Model 
 Example 
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 2.18.4 Parameter Estimation 

 Concept  Description 

 Log-Likelihood 
 Function for a Binary 

 Variable 

 Likelihood Ratio Test 

 Max-Scaled 

 Pseudo- 
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 2.19  Nominal Dependent Variables 
 2.19.1 Generalized Logit Model 

 Concept  Description 

 Nominal Dependent 
 Variable 

 A  nominal dependent variable  is a categorical outcome 
 whose values represent distinct, unordered groups with no 

 inherent ranking. 

 Creating Dummy 
 Variables 

 A dummy variable can be added to a regression model when 
 a qualitative predictor is binary. When a qualitative predictor 
 has more than two levels, multiple dummy variables can be 

 created. 

 Generalized Logit 
 Model 

 For the  -th category (  ) and  -th observation, 
 define the linear predictor as: 

 Baseline Category 
 (  )  Category  is the baseline category, which anchors all 

 comparisons. Assume  . 

 Category Probabilities 
 Example 

 Represents an estimate of the probability of outcome  from 
 linear predictors. 

 Log-Odds 
 Interpretation 

 Example  Each  captures the change in the  log-odds  of category 
 versus  for a unit change in predictor  . 

 Special Case  When  and  , the generalized logit model reduces 
 to the  logit model  . 
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 2.19.2 Other Models 

 Concept  Description 

 Multinomial Logit 
 Model 

 The  multinomial logit model  assumes the same set of 
 coefficients,  , for explanatory variables across  all 

 alternatives: 

 The generalized logit model is a special case of the 
 multinomial logit model. 

 A feature of the multinomial logit model is the  independence 
 of irrelevant alternatives  , which implies that the  ratio of the 

 probabilities of choosing any two alternatives  and  is 
 independent of the presence or characteristics of other 

 alternatives. 

 Nested Logit Model 

 The  nested logit model  addresses the issue of independence 
 of irrelevant alternatives by creating nested structures. 

 It decomposes the probability of selecting a specific category 
 into two components: the probability of selecting a particular 

 nest and the conditional probability of choosing an option 
 within that nest. 

 Mixed Logit Model 

 A  mixed logit model  is a multinomial logit model that  relies 
 on both  and  . 
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 2.20  Ordinal Dependent Variables 
 Concept  Description 

 Ordinal Dependent 
 Variable 

 An  ordinal dependent variable  is a categorical outcome 
 whose values represent a natural ordering among the 

 categories. 

 Cumulative 
 Probability 

 Cumulative probabilities  are used to model how explanatory 
 variables influence the probability of being at or below each 

 category level of an ordinal outcome. 

 For an ordinal variable  with  categories: 

 Cumulative Logit 

 Cumulative Logit 
 Model 

 Proportional Odds 
 Model 

 Cumulative Probit 
 Model 
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 2.21  Poisson Regression 
 Concept  Description 

 Poisson Regression 
 Poisson regression  is a type of  generalized linear  model  used 
 to model count data. It assumes that the response variable 

 follows a Poisson distribution. 

 Exposure  represents the  exposure  for the  -th observation and  is 
 the mean from the Poisson distribution. This adjustment is 

 made to account for different levels of exposure among 
 observations. 

 Logarithmic Link 
 Function 

 Partial Derivative 
 represents the proportional change in the mean for  a 

 one-unit change in  . 

 Goodness-of-Fit 

 General Form  Pearson's Chi-Square 
 Statistic 

 Pearson Residual 
 Pearson Goodness-of-Fit 

 Statistic 
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 2.22  Other Count Models 
 Concept  Description 

 Drawbacks of Poisson 
 Regression 

 The Poisson regression model's simplicity can be too 
 restrictive due to its assumption of  equidispersion  (mean 

 equals variance). 

 To address this, a common adjustment is to assume 
 , where  accounts for dispersion. 

 Negative Binomial 
 Distribution 

 The negative binomial distribution models the number of 
 successes until an experience is stopped. 

 Advantages of using a dependent variable that follows the 
 negative binomial distribution: 

 1.  It has more flexibility due to more parameters. 
 2.  The Poisson distribution is a special case of the 

 negative binomial distribution. 
 3.  The negative binomial distribution can be derived as a 

 mixture of Poisson distributions with a 
 gamma-distributed rate parameter  . 

 4.  The negative binomial distribution allows for 
 straightforward estimation of features. 

 Zero-Inflated Models 

 Zero-inflated models  are useful for understanding  the 
 probability of observing zero counts as a combination of 

 genuine zeros from the count distribution and inflated zeros 
 from non-reporting. 

 Hurdle Models 

 Hurdle models  offer another approach to handle datasets 
 with an excess number of zeros. These models are motivated 

 by sequential decision-making processes. For example, in 
 healthcare, an individual’s decision to seek care (first hurdle) 
 is distinct from the amount of care received (second hurdle). 

 Heterogeneity Models 
 Heterogeneity models  introduce one or more random 

 parameters (e.g.  , the heterogeneity component) to  capture 
 unobserved characteristics in the model. 

 Latent Class Models 

 Latent class models  aim to classify and homogenize 
 observations by using a discrete random variable to modify 

 basic count distributions. This means the classification is not 
 directly observed but inferred through the model. 
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 2.23  Generalized Linear Models 
 2.23.1 Definitions 

 Concept  Description 

 Generalized Linear 
 Model 

 In ordinary linear regression, the response variable and 
 residuals are assumed to be normally distributed with 

 constant variance. 

 Generalized linear models  (GLMs) extend this framework  by 
 allowing the response to follow any distribution in the linear 

 exponential family. 

 Linear Exponential 
 Family 

 The  linear exponential family  is a class of probability 
 distribution functions that can be expressed in the form: 

 Systematic 
 Component 

 For an observation  with  predictors, the  systematic 
 component  is: 

 Link Function 
 Example 

 The  link function  is  where: 

 The purpose of the link function is to connect the mean of the 
 response variable,  , to the linear predictor,  . 

 Mean Function 

 The inverse of the link function,  , is the  mean function  : 

 It is used to obtain the  mean response  ,  , from the 
 linear predictor. 
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 2.23.2 Canonical Link Function 
 The  canonical link function  is a specific type of  link function where: 

 This relationship ensures that the linear predictor  is equal to the canonical parameter 
 , leading to more straightforward interpretations  and simpler computations. 

 Below are mean functions  and canonical link functions  for common 
 distributions in the linear exponential family: 

 Distribution  Mean Function  Canonical Link 

 Normal 

 Bernoulli 

 Poisson 

 Gamma 

 Inverse Gaussian 

 2.23.3 Linear Regression Sampling Assumptions on GLMs 

 Linear Regression  Generalized Linear Model 

 Generalized through the link function. 

 are nonstochastic variables.  Also applies to GLMs. 

 See the  following table  . 

 are independent random variables.  Also applies to GLMs. 

 are normally distributed.  Not required for GLMs. 
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 2.23.4 Variance Function 

 Distribution  Variance Function 

 Normal  1 

 Bernoulli 

 Poisson 

 Gamma 

 Inverse Gaussian 

 2.23.5 The Tweedie Distribution 

 Concept  Description 

 The Tweedie 
 Distribution 

 The  Tweedie distribution  is a flexible family of probability 
 distributions that includes several special cases such as the 
 normal, Poisson, gamma, and inverse Gaussian distributions. 

 PDF 

 Mean 

 Variance 

 The power parameter  determines the specific type  of 
 distribution where  . 

 From the  variance function table  , the Tweedie distribution 
 can be viewed as a choice between the Poisson and gamma 

 distributions. 
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 2.24  Estimation in GLMs 
 2.24.1 Maximum Likelihood Estimation for Canonical Links 

 Concept  Description 

 Linear Exponential 
 Family (PDF) 

 Linear Exponential 
 Family Log-Likelihood 

 Function 

 Log-Likelihood 
 Function for 

 Canonical Links 

 Information Matrix 

 Overdisperson 

 Overdispersion  occurs when the observed variability  in the 
 response variable is greater than what is expected under the 

 assumed distribution of the GLM. 

 In the presence of overdispersion, the variance can be 
 approximated by: 
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 2.24.2 Goodness-of-Fit Statistics for GLMs 

 Concept  Description 

 Sum of Squares 
 Example 

 In  linear regression  , the cross-product term equals  zero 
 because the residuals  are uncorrelated with the 

 fitted values  . For nonlinear models, the cross-product  is 
 rarely zero. 

 Pearson Chi-Square 
 Statistic  In nonlinear models,  is not applicable, due to the 

 cross-product term (  ).  The 
 Pearson chi‑square statistic  is an alternative to  . 

 Deviance Statistic 
 Example  The deviance statistic measures the difference between the 

 fitted model and the saturated model (the model with the 
 best possible fit). 

 Deviance Statistic 
 (Specific Cases) 

 Normal Distribution 

 Bernoulli Distribution 

 Poisson Distribution 
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 2.24.3 Residual Analysis for GLMs 

 Concept  Description 

 Raw Residuals 

 In linear models, residuals are the difference between 
 observed responses and fitted values. For GLMs, these are 

 termed  raw residuals  and are denoted  . Raw residuals 
 are not reliable for GLMs due to heteroscedasticity. 

 Cox-Snell Residuals 

 Pearson Residuals 

 Anscombe Residuals 

 Deviance Residuals 
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 3. Time Series Models 
 (Learning Objective 3) 
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 3.1  Introduction to Time Series 
 3.1.1 Key Terms 

 Term  Definition  Example 

 Stochastic 
 Process 

 An ordered sequence of random 
 variables indexed by time or space, 

 used to model random evolution over 
 time. 

 Evolution of a stock price 
 over time. 

 Longitudinal 
 Data 

 Data consisting of repeated 
 measurements over time for the same 

 subjects. 

 Blood pressure recorded 
 for patients over 10 years. 

 Time Series  A sequence of data points recorded at 
 regular intervals, indexed by time  . 

 Daily temperature 
 recordings over a year. 

 Cross-Sectional 
 Data 

 Data collected at a single point in 
 time across multiple subjects. 

 Income, education, and 
 occupation data from a 

 survey of 1,000 individuals 
 at one time. 

 Panel Data 
 A combination of cross-sectional and 

 longitudinal data. Tracks multiple 
 entities over time. 

 Yearly income data for 
 multiple households 
 tracked over 5 years. 
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 3.1.2 Time Series Models 

 Concept  Description 

 Time Series Models 
 Time series models  capture and predict the behavior  of 

 variables over time to identify patterns, trends, and seasonal 
 effects. 

 Forecasting 
 Components 

 - Trends (  ) reflect long-term movements. 
 -  Seasonal patterns  (  ) capture periodic fluctuations. 
 - Irregular or random patterns (  ) represent unpredictable 
 short-term changes. 

 Model Forms 

 Trend Examples 

 1. Linear trend: 

 2. Quadratic trend:  . 
 3. Binary trend:  where  . 
 4. Regime-switching trend: A trend that switches between two 
 different regimes at a specified time. 
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 3.2  Stationarity 
 3.2.1 Stationarity 

 Concept  Definition 

 Weak Stationarity 

 1. The mean  is constant and does not depend on  . 
 2. The covariance  depends only on the lag  . 

 An implication of the second point is constant variance: 
 (homoscedasticity). 

 Strong Stationarity  The entire distribution, and not just the mean and variance, of 
 is constant over time. 

 Detecting 
 Stationarity 

 Use a control chart with an upper control limit (e.g.  ) 
 and a lower control limit (e.g.  ). 

 3.2.2 White Noise 

 Concept  Definition 

 Definition 

 White noise  : 
 1.  Resembles a stationary series,  , with no discernible 

 pattern over time (i.i.d. random variables with zero 
 mean and constant variance). 

 2.  Used as a benchmark for randomness. 
 3.  Once all systematic patterns, trends, and correlations 

 have been filtered out from a time series, the remaining 
 residuals ought to resemble white noise (verify with a 
 plot). 

 Forecast Interval for 
 White Noise 
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 3.2.3 Random Walk 

 Concept  Definition 

 Definition 

 A  random walk  is a time series,  , where each value is the 
 previous value plus a random step (i.e. white noise,  ). 

 The random walk is non-stationary because both the mean 
 and variance depend on  : 

 Forecast Estimate  The point estimate for a forecast  lead-time units  in the 
 future, 

 . 

 95% Forecast Interval 
 Example  is expected to be in this interval approximately  95% of 

 the time. 

 Detecting a Random 
 Walk 

 1.  Use a control chart. 
 2.  If the series follows a random walk model, the 

 differenced series should follow a white noise 
 process. 

 3.  A random walk model will exhibit a higher standard 
 deviation in the original series than in the differenced 
 series. 
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 3.3  Forecast Evaluation 
 3.3.1 Out-of-Sample Validation Process 

 Step  Description 

 1. Divide the Sample 
 Split the sample of size  into two subsamples: 

 - Model Development Subsample: 
 - Model Validation Subsample: 

 2. Fit the Model  Using the model development subsample (  ), 
 fit a candidate model to the dataset. 

 3. Forecast 
 With the model from Step 2 and the dependent variables 
 up to and including  , forecast the dependent variable 

 for  . 

 4. Compute Residuals 

 Use actual observations and the fitted values from Step 3 
 to compute one-step forecast residuals (  ) for 
 the model validation subsample. Summarize these 
 residuals with comparison statistics. 

 5. Choose a Model 
 Repeat Steps 2 through 4 for each candidate model. 
 Choose the model with the smallest set of comparison 
 statistics. 
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 3.3.2 Statistics for Comparing Forecasts 

 Statistic  Formula 

 Mean Error (ME) 
 Example 

 Measures recent trends not anticipated by the model. 

 Mean Percentage Error 
 (MPE) 

 Example 
 Measures error relative to the actual value, indicating trends. 

 Mean Square Error 
 (MSE) 

 Example 
 Detects more patterns than ME. 

 Mean Absolute Error 
 (MAE) 

 Example  Detects more patterns than ME, with units same as the 
 dependent variable. 

 Mean Absolute 
 Percentage Error 

 (MAPE) 
 Example  Similar to MAE, MAPE detects more than trend patterns. 

 Similar to MPE, MAPE examines error relative to the actual 
 value. 
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 3.4  Autoregressive Models 
 3.4.1 Autocorrelation 

 Concept  Definition 

 Definition  Autocorrelation  is a measure of how much a time series  is 
 linearly correlated with a lagged version of itself. 

 Correlation Statistic 
 (  ) 

 Lag-1 Autocorrelation 
 (  ) 

 Example 

 Lag-k Autocorrelation 
 (  ) 

 Example 

 Interpretation of 

 -  Positive autocorrelation: a high value at time  implies 
 high value at time 

 -  Negative autocorrelation: a high value at time 
 implies a low value at time  , indicating a 
 mean-reverting behavior 

 -  Zero autocorrelation: implies no linear relationship 
 between the values of the series at different times, 
 suggesting that the series behaves like white noise 
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 3.4.2 AR(1) Model 

 Concept  Definition 

 Order 1 
 Autoregressive Model 

 An  order 1 autoregressive model  (  ) is a time series 
 process that depends linearly on the immediately preceding 

 value plus random noise. 

 Stationarity  must lie strictly between -1 and 1 (  ) to 
 ensure that the  model is stationary. 

 Case: 
 The model simplest to a random walk: 

 Case: 
 The model reduces to a white noise process: 

 Lag-k Autocorrelation 
 Function 

 (  ) 
 when  (white noise) 

 Fitting a Model 
 Match observed autocorrelations,  , with theoretical 

 expectations,  , to determine if an autoregressive  model is a 
 good fit. 

 Conditional Least 
 Squares Estimates 

 Residuals 

 Variance 

 Mean Squared Error 
 Example 

 Smoothed Series 
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 K-Step Ahead 
 Forecast and Forecast 

 Interval 
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 3.5  Smoothing 
 Concept  Definition 

 Smoothing  Smoothing  techniques are used to reduce noise and  better 
 reveal the underlying trend in a time series. 

 Moving Average 
 (Running Average) 

 The adjustment term accounts for a new data point entering the 
 average and an old data point leaving the average. 

 Double Smoothing 
 Example 

 Consider the Model 

 Smoothed Series 

 Doubly Smoothed Series 

 Trend Estimate 

 Forecast 

 Weighted Least 
 Squares (WLS) 

 A generalization of ordinary least squares that accounts for 
 variability in the observations. 

 One-Step 
 Prediction Error  A measure of how well a forecasting model predicts the next 

 observation. 

 Sum of Squared 
 One-Step 

 Prediction Errors 
 Example  Used to select the optimal smoothing parameter,  . 
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 3.6  Exponential Smoothing 
 Concept  Definition 

 Definition  Exponential smoothing  builds on simple moving averages  by 
 assuming that the most recent observations are more relevant. 

 Formula 

 Double Exponential 
 Smoothing 

 Example 

 Consider a model with a  trend component  : 

 Smoothed Series 

 Doubly Smoothed Series 

 Intercept Estimate 

 Trend Estimate 

 Forecast 
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 3.7  Seasonal Adjustments 
 Concept  Definition 

 Definition  Seasonal  time series models capture patterns that  repeat over 
 fixed intervals of time (e.g. yearly cycles). 

 Seasonal Base 
 (SB) 

 The  seasonal base  is the period over which a seasonal  pattern 
 repeats itself (e.g. for monthly data exhibiting yearly seasonality, 

 the seasonal base is 12 months). 

 Seasonal 
 Component 

 Regression 
 Formula 

 Run multiple linear regression with  variables. 

 Seasonal 
 Autoregressive 

 Model 

 Seasonal autoregressive models  (SAR models) extend  the 
 autoregressive model by only incorporating lagged values at 

 seasonal periods. 

 e.g. SAR(1), SB=12 (monthly data with yearly seasonality): 

 Holt-Winters 
 Seasonal Additive 

 Model 

 The  Holt-Winters seasonal additive model  is an exponential 
 smoothing model that accounts for level, trend, and seasonality, 

 using weighted averages,  , that update over time. 
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 3.8  Unit Root Test 
 Concept  Definition 

 Definition 
 A  unit root  is a characteristic of a time series that 

 indicates that the series is non-stationary. A  unit  root test 
 is used to determine the presence of a unit root. 

 Consider the Time Series Model 

 Parameters 

 : intercept term 
 : time trend 

 :  autoregressive parameter 
 : error term 

 Special Cases 

 Random Walk (  ) 

 AR(1) (  and  ) 

 Linear Trend (  ) 

 Dickey-Fuller Test 

 The  Dickey-Fuller (DF) test  is a t-test used to determine 
 whether a time series has a unit root. 

 Running a regression model where  is potentially  a 
 random walk can be problematic due to non-stationarity. 

 Instead, use least squares on the differenced model: 

 (unit root / random walk) 

 Augmented Dickey-Fuller 
 Test 

 The DF test assumes the errors are not autocorrelated. To 
 address this, the  augmented Dickey-Fuller test  includes 
 lagged differences on the right hand side of the equation 

 to account for autocorrelation in the error terms: 
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 3.9  ARCH and GARCH Models 
 Concept  Definition 

 Definition 

 Volatility clustering  in time series occurs when periods  of high 
 volatility are followed by more high volatility, and periods of low 

 volatility are followed by more low volatility. 

 ARCH and GARCH models address changing variance over time. 

 Conditional 
 Variance 

 The GARCH model captures both short-term and long-term 
 patterns in volatility. 
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 4. Decision Trees 
 (Learning Objective 4) 
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 4.1  Introduction to Decision Trees 
 Concept  Description 

 Decision Node 
 (Internal Node)  An internal node that splits into two or more branches. 

 Leaf Node 
 (Terminal Node) 

 The final output node that doesn’t split further and contains the 
 class label or the continuous value. 

 Branch 
 (Edge) 

 A connection between nodes representing the outcome of a 
 test at a decision node. 

 4.2  Regression Trees 
 Concept  Description 

 Definition  A  regression tree  is a type of decision tree used  for predicting 
 (continuous) numerical values. 

 Building a 
 Regression Tree 

 1.  Divide the predictor space of  into 
 distinct boxes (or regions)  . 

 2.  For every observation within region  , the regression 
 tree makes the same prediction. This prediction is 
 typically the mean of the response values,  , for  the 
 training observations in  . 

 Goal 

 Select the regions to minimize the RSS: 

 Minimizing the RSS finds the optimal splits that reduce the 
 within-region variance. 
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 4.3  Recursive Binary Splitting 
 Concept  Description 

 Definition 
 Recursive binary splitting  is a process used to create  a 

 regression tree, without having to evaluate every possible way to 
 partition the feature space into  boxes. 

 Approach 
 Summary 

 1.  Begin with the entire predictor space and progressively 
 split it into smaller and smaller regions. 

 2.  At each step, make the best possible split based on a 
 criterion, such as minimizing RSS. 

 3.  Apply the process recursively to each sub-region. 

 Approach Detail 

 1.  For each  , evaluate different potential cutpoints  . For 
 a given  and  , partition the data into two regions: 

 and  . 
 2.  Calculate the RSS for this split as: 

 Identify the pair  that results in the smallest RSS  and 
 split the dataset into regions  and  . 

 3.  Apply the same process recursively to each resulting 
 region until a stopping criterion is met. 

 Overfitting 

 Binary splitting can lead to overfitting, due to using potentially 
 small nodes with few data points. 

 Pruning can mitigate the risk of overfitting. 

 |  The Actuarial Nexus  | All Rights Reserved |  ©  2025  | Page  85  | 

https://www.theactuarialnexus.com/


 4.4  Pruning 
 Concept  Description 

 Definition 

 Cost complexity pruning  (weakest link pruning) involves 
 removing leaves of a decision tree to prevent overfitting to 

 training data and improve generalization to test data. 

 The primary goal of pruning is to select a subtree that minimizes 
 the test error to strike a better balance between bias and 

 variance. 

 Approach 

 1.  Use recursive binary splitting to grow a full decision tree 
 using training data. 

 2.  For various tuning parameters,  , create subtrees  such 
 that: 

 3.  Select the optimal value of  using K-fold 
 cross-validation by minimizing the average MSE across 
 the K folds. 

 4.  The subtree in step 2 with the optimal  is the pruned 
 tree that balances complexity and performance. 

 Selecting 

 The tuning parameter  acts as a regularization term  that 
 balances the trade-off between the complexity of the tree and its 

 fit to the training data. 

 When  , the criterion reduces to the SSE. This often leads 
 to overfitting because the tree will have many leaves, each 

 potentially capturing noise in the data. 

 - When  is large, the term  becomes significant. This 
 encourages smaller, simpler trees. If  is very large, the pruning 

 process might remove many branches, potentially leading to 
 underfitting. 

 Find an  that provides a good balance between the SSE and 
 the complexity penalty by minimizing the average 

 cross-validated MSE (step 3). 
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 4.5  Classification Trees 
 Concept  Description 

 Building a 
 Classification Tree 

 A  classification tree  is also constructed by recursively  splitting 
 the data into subsets based on feature values. Each split is 
 chosen to maximize the most commonly occurring class. 

 Node Purity  Node purity measures how similar the response values are 
 within a node. 

 Classification Error 
 Rate 

 Example 

 A simple measure of node impurity, indicating the proportion of 
 observations that do not belong to the most commonly 

 occurring class. 

 where  is the proportion of observations in region  that 
 belong to class  . 

 Gini Index 
 Example 

 where  is defined above and  is the number of classes. 

 Entropy 
 (Cross-Entropy) 

 Example  where  is defined above and  is the number of classes. 
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 4.6  Trees vs Linear Models 
 Concept  Regression Trees  Linear Regression Models 

 Model Form 

 Explainability 
 Easier to explain and 
 understand, even by 

 non-experts 

 More difficult to explain and 
 understand 

 Decision-Making  Mirrors human 
 decision-making process 

 Does not mirror human 
 decision-making process 

 Qualitative Data  Does not require dummy 
 variables  Requires dummy variables 

 Predictive Accuracy  Lower  Higher 

 Changes in Data 
 Small changes can lead to 

 significant changes in the tree 
 structure 

 More robust to changes in 
 data 
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 4.7  Bagging 
 Concept  Description 

 Definition 
 Bagging (bootstrap aggregation)  reduces the high variance 

 of decision trees by averaging predictions from multiple 
 models trained on bootstrapped datasets. 

 Bootstrap Method 

 Involves sampling with replacement from a single dataset to 
 create multiple bootstrapped training sets. 

 Average Predictions 

 Using population data: 

 Using bootstrapped data: 

 Regression Trees 

 Build  unpruned regression trees from  bootstrapped 
 training sets and average their predictions. 

 Each tree has high variance, but low bias. Averaging the 
 trees reduces the high variance while maintaining low bias. 

 Classification Trees  Use majority vote (most common class) among 
 predictions to determine the predicted class. 

 Out-of-Bag (OOB) 
 Fit the model with 2/3 of data; remaining 1/3 (OOB) used for 

 testing. For large  , the OOB error is comparable  to the 
 LOOCV error and more computationally efficient than CV. 
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 4.8  Random Forests 
 Bagging grows multiple decision trees using bootstrap samples and considers all 
 predictors,  , at each split. This often leads to  highly correlated trees, especially when 
 strong predictors are in the dataset. As a result, the variance reduction from averaging 
 is limited. 

 Random forests  solve this by adding randomness. At  each split, only a random subset 
 of predictors (  , typically  ) is considered. This  prevents strong predictors 
 from dominating every tree, leading to more decorrelated trees. When  , random 
 forests are equivalent to bagging. 

 The selection of  is crucial for balancing bias and  variance in the model. A smaller 
 is useful when a large number of predictors are correlated. Random forests (  ) 
 typically lead to a slight improvement over bagging (  ). Similar to bagging, a large 
 number of trees  will not lead to overfitting. 
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 4.9  Boosting 
 Concept  Description 

 Definition 
 Boosting  builds models sequentially, leveraging the  information 
 from previously constructed models to correct the errors of its 
 predecessors. 

 Algorithm 

 1.  Set the initial prediction function  and the 
 residuals  for all training data points  . 

 2.  For  , repeat the following steps: 
 -  Fit a regression tree  with  splits (resulting in 

 terminal nodes) to the training data  . 
 -  Update the prediction function by adding a 

 shrunken version of the new tree: 

 -  Update the residuals: 
 3.  The final boosted model is given by: 

 Number of Trees 
 (  ) 

 Unlike bagging and random forests, boosting can overfit if the 
 number of trees  is too large, though this overfitting  occurs 
 slowly. Use cross-validation to select the optimal value for  . 

 Shrinkage 
 Parameter (  ) 

 The shrinkage parameter (learning rate),  , ensures  that 
 the model learns slowly and avoids overfitting. Typical values are 
 0.01 or 0.001. A very small  can necessitate a larger  to 
 achieve good performance. 

 Interaction Depth 
 (  ) 

 The interaction depth controls the complexity of each tree in the 
 boosted ensemble. Often,  works well, making each  tree a 
 stump with a single split. 

 Performance 

 When evaluating the test error as a function of the total number 
 of trees and the interaction depth  , we observe the  following: 

 - Stumps (  ) perform well if a sufficient number  of them 
 are used. 

 - The model with stumps outperforms the model with trees of 
 depth two (  ). 

 - Both models outperform a random forest. 
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 5. Unsupervised Learning Techniques 
 (Learning Objective 5) 
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 5.1  Introduction to Unsupervised Learning 
 Concept  Definition 

 Unsupervised Learning 

 Unsupervised learning  is a type of learning algorithm  that 
 focuses solely on the features  without 

 considering the response variable,  . 

 The goal is to uncover patterns, groupings, or structure in 
 the data without predefined labels. 

 Principal Component 
 Analysis 

 Principal component analysis  (PCA) is a dimensionality 
 reduction method that transforms a large set of variables 
 into a smaller one that still contains most of the original 

 data's information. 

 K-Means Clustering 
 K-means clustering  partitions the data into a predefined 

 number of clusters by minimizing the variance within each 
 cluster. 

 Hierarchical Clustering 
 Hierarchical clustering  builds a tree-like structure  of 

 clusters by iteratively merging or splitting clusters based on 
 their similarities. 
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 5.2  Principal Components Regression 
 5.2.1 Linear Combinations of Predictors 

 Concept  Description 

 Original Predictors 

 Linear Combination 

 where 

 Selecting  Principal Component Analysis  or  Partial Least Squares 

 Regression Model 

 Goal 

 Reduce  coefficients (  ) to 
 coefficients (  ) 

 Bias-Variance Tradeoff  Reducing  , where  , introduces bias but 
 significantly reduces variance. 
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 5.2.2 Principal Components Regression 

 Concept  Description 

 Definition 
 Principal components regression  combines principal 

 component analysis with linear regression by using principal 
 components as predictors. 

 Steps 

 1.  PCA  applied to the predictors  to reduce 
 dimensionality (unsupervised) 

 2. Regression on selected principal components 
 (supervised) 

 Assumption  Directions with greatest variance in predictors are most 
 associated with the response  . 

 Dimensionality 
 Reduction 

 Uses only the first  principal components where  to 
 reduce overfitting and improve generalization. 

 Bias-Variance Tradeoff  Bias decreases and variance increases as more principal 
 components are included. 

 Performance  PCR performs well when few principal components are 
 needed. Many components can lead to overfitting. 

 5.2.3 Partial Least Squares 
 In PCR, the response  is not used to determine the  principal component directions, so 
 there is no guarantee that the directions explaining the predictors will also be effective 
 for predicting the response.  Partial least squares  (PLS)  is a supervised method that 
 aims to overcome this limitation by incorporating the response variable in the 
 identification of new feature directions. In practice, PLS does not perform much better 
 than ridge regression or PCR. PLS can reduce bias at the cost of increased variance. 
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 5.3  Principal Component Analysis 
 5.3.1 Definitions 

 Concept  Description 

 Definition 

 Principal component analysis (PCA)  transforms the 
 original variables into a new set of uncorrelated variables, 

 called principal components, ordered by the amount of 
 variance they explain in the data. 

 Original Features 

 The  -th Principal 
 Component (PC) 

 (  ) 

 Loading Vector 
 (  ) 

 reflects the weight of the original feature  in 
 forming the principal component  where: 

 Score 
 (  ) 

 The scores are the values of the principal components for 
 each observation in the dataset. 
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 5.3.2 Methodology 
 The goal of PCA is to choose the loading vectors  that maximize the variance of the 
 principal components  . 

 Consider the optimization problem for finding the first principal component (  ): 

 Once  has been determined, the second principal component,  , is the linear 
 combination of  that has the maximum variance while  being uncorrelated 
 with  . 

 Visually,  is the vector that defines the line that  is as close as possible to the data. In 
 a two-dimensional example (  ), once the loading vector  is found, there is only 
 one possible direction (up to a sign flip) for  ,  which is orthogonal to  . 
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 In higher-dimensional datasets (  ), multiple principal  components can be 
 identified, each being orthogonal to all previously determined components. 

 Once the principal components are computed, they can be used to create a  biplot  , 
 displaying both the scores of observations and the loadings of variables in a 
 reduced-dimensional space. 
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 5.3.3 Proportion of Variance Explained 

 Concept  Description 

 Definition 
 The  proportion of variance explained (PVE)  measures 

 how much of the total data variance is captured by each 
 principal component. 

 Total Variance 

 For simplicity, assume the variables have mean zero. 

 Variance of the  -th PC 

 PVE of the  -th PC 

 PVE as 
 Approximation for 

 Scree Plot 
 Example 

 A  scree plot  visualizes the PVE for each PC. Look  for an 
 elbow point where the explained variance drops 

 significantly to determine the number of PCs for the 
 model. 
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 5.4  K-Means Clustering 
 5.4.1 Definitions 

 Concept  Description 

 Goal 

 Given a set of observations  where each 
 observation is a  -dimensional vector, K-means clustering 

 aims to partition the  observations into  pre-determined 
 clusters,  . 

 Properties 

 Every observation belongs to one and only one cluster. 

 The clusters are non-overlapping. 

 Euclidean Distance 
 Euclidean distance is the straight-line distance between two 

 points, calculated as: 

 Within-Cluster Variation 
 Example 

 The most common choice for this measure is the squared 
 Euclidean distance,  . 

 Optimization Goal 

 Local Minimum 

 The final solution may be a local minimum rather than a 
 global minimum. 

 The algorithm is often run multiple times, and the solution 
 with the lowest within-cluster variation is selected. 

 Handling Outliers 

 Clustering algorithms may not be suitable when a small 
 subset of observations are significantly different from the 

 rest. Mixture models offer a more flexible approach for 
 handling outliers. 
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 5.4.2 K-Means Clustering Algorithm 

 Step  Description 

 1. Initialization  Randomly assign a number from 1 to  to each 
 observation, indicating the initial cluster assignment. 

 2. Iteration 

 Repeat the following steps until the cluster assignments 
 stop changing: 

 a. For each of the  clusters, compute the cluster 
 centroid.  Example  . 

 b. Assign each observation to the cluster whose centroid 
 is closest, based on Euclidean distance.  Example  . 

 5.4.3 Algorithm Visual Example 
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 5.5  Hierarchical Clustering 
 5.5.1 Definitions 

 Concept  Description 

 Hierarchical 
 Clustering 

 Hierarchical clustering  produces a dendrogram to show  cluster 
 arrangements and merging order. Unlike k-means clustering, 

 hierarchical clustering does not require the number of clusters 
 to be specified in advance. 

 Dendrogram 

 A  dendrogram  is a tree-like diagram that shows the  sequences 
 of merges. Each leaf node represents a single observation, and 
 each internal node represents a cluster formed by merging two 

 clusters. 

 Node Height 

 The height of the nodes in the dendrogram indicates the level of 
 dissimilarity  (or distance) at which clusters are  merged. 

 The most common dissimilarity measure is Euclidean distance. 

 Agglomerative 
 Clustering 

 Agglomerative (bottom-up) clustering  is the most common 
 type of hierarchical clustering, starting with each observation as 

 its own cluster and merging (fusing) the most similar clusters 
 step-by-step. 
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 5.5.2 Hierarchical Clustering Algorithm 

 Step  Description 

 1. Initialization  Start with  observations, each as its own cluster.  Compute all 
 pairwise dissimilarities between the observations. 

 2. Iteration 

 For 
 a. Identify closest clusters:  Examine pairwise intercluster 
 dissimilarities among the  clusters and identify  the two clusters 
 with the smallest dissimilarity. Fuse them. 
 b. Update dissimilarities: Update the pairwise dissimilarities 
 among the remaining  clusters. 

 5.5.3 Calculating Dissimilarity - Linkage Methods 

 Concept  Linkage Method  Characteristics 

 Complete 
 Linkage 

 Maximum intercluster dissimilarity. 
 Example  . 

 Produces compact clusters; 
 sensitive to outliers. 

 Single 
 Linkage 

 Minimal intercluster dissimilarity. 
 Example  . 

 Can produce elongated or 
 chained clusters; less compact. 

 Average 
 Linkage 

 Mean intercluster dissimilarity. 
 Example  . 

 Balanced clusters; less sensitive 
 to outliers. 

 Centroid 
 Linkage 

 Dissimilarity between the centroids 
 of the clusters.  Example  . 

 Can produce inversions, where 
 clusters are fused below either of 

 the individual clusters in the 
 dendrogram. 

 Intercluster dissimilarity measures how different two clusters are, using the maximum, 
 minimum, or average pairwise distance between observations depending on the linkage 
 method (complete, single, or average, respectively). 
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 5.5.4 Visual Example 

 The second image shows the resulting dendrogram from a hierarchical clustering 
 algorithm on the data set from the first image. 
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