Exam SRM Summary
Sheet

Last Updated: April 2025

| The Actuarial Nexus | All Rights Reserved | © 2025 | Page 1 |



https://www.theactuarialnexus.com/

0. Review
0.1 Sampling Assumptions
0.2 Pearson Correlation Coefficient
0.3 Matrices
0.3 Maximum Likelihood Estimation
1. Basics of Statistical Learning (Learning Objective 1)
1.1 Types of Variables
1.2 Prediction and Inference
1.3 Decomposition of the Expected Squared Error
1.4 Parametric and Non-Parametric Methods
1.5 Supervised vs Unsupervised Learning
1.6 Regression vs Classification
1.7 Mean Squared Error and Error Rate
1.8 Bias-Variance Tradeoff
1.8.1 Definitions
1.8.2 Tradeoff Table
1.9 Data Collection
1.10 Bayes Classifier
1.11 K-Nearest Neighbors
1.11.1 Algorithm
1.11.2 Bias-Variance Tradeoff in KNN
1.12 The Validation Set Approach
1.12.1 Algorithm
1.12.2 Pros and Cons
1.13 Leave-One-Out Cross-Validation
1.13.1 Algorithm
1.13.2 Pros and Cons
1.14 K-Fold Cross-Validation
1.14.1 Algorithm
1.14.2 Model Comparison
2. Linear Models (Learning Objective 2)
2.1 Simple Linear Regression
2.1.1 Theoretical Representation of a Linear Model
2.1.2 Observations vs Predictions (Actuals vs Estimates)
2.1.3 Ordinary Least Squares
2.1.4 Error Term
2.2 Mean Squared Error and Standard Error
2.3 Sum of Squares and R-Squared
2.4 The t-Test
2.5 Intervals and Partial Correlations

| The Actuarial Nexus | All Rights Reserved | © 2025 | Page 2 |

o 0 N

12
13
15
15
16
16
17
17
18
18
18
19
20
21
21
21
22
22
22
23
23
23
24
24
24
25
26
26
26
27
28
29
30
31
33



https://www.theactuarialnexus.com/

2.5.1 Confidence Interval 33

2.5.2 Prediction 34
2.5.3 Prediction Interval 34
2.5.4 Partial Correlations 35
2.6 Multiple Linear Regression 36
2.6.1 Concepts 36
2.6.2 Matrix Notation 37
2.7 The F-Test 38
2.7.1 Definitions 38
2.7.2 Partial F-Test 39
2.8 ANOVA Table 39
2.9 Subset Selection 40
2.10 Choosing the Best Model from Subset Selection 42
2.11 Residual Analysis 42
2.11.1 Information 43
2.11.2 Standardized Residuals 44
2.12 Influential Points 45
2.13 Collinearity 46
2.14 Homoscedasticity and Heteroscedasticity 47
2.14.1 Definitions 47
2.14.2 Breusch-Pagan Test 48
2.15 Ridge Regression 49
2.16 Lasso 51
2.16.1 Definitions 51
2.16.2 A Geometric Interpretation of Ridge Regression and Lasso 52
2.17 Binary Dependent Variables 52
2.18 Logit and Probit Models 54
2.18.1 Logit Models 54
2.18.2 Probit Models 55
2.18.3 Threshold Interpretation 55
2.18.4 Parameter Estimation 56
2.19 Nominal Dependent Variables 57
2.19.1 Generalized Logit Model 57
2.19.2 Other Models 58
2.20 Ordinal Dependent Variables 59
2.21 Poisson Regression 60
2.22 Other Count Models 61
2.23 Generalized Linear Models 62
2.23.1 Definitions 62
2.23.2 Canonical Link Function 63
2.23.3 Linear Regression Sampling Assumptions on GLMs 63

| The Actuarial Nexus | All Rights Reserved | © 2025 | Page 3 |



https://www.theactuarialnexus.com/

2.23.4 Variance Function 64

2.23.5 The Tweedie Distribution 64
2.24 Estimation in GLMs 65
2.24.1 Maximum Likelihood Estimation for Canonical Links 65
2.24.2 Goodness-of-Fit Statistics for GLMs 66
2.24.3 Residual Analysis for GLMs 67

3. Time Series Models (Learning Objective 3) 68
3.1 Introduction to Time Series 69
3.1.1 Key Terms 69
3.1.2 Time Series Models 70
3.2 Stationarity 71
3.2.1 Stationarity 71
3.2.2 White Noise 71
3.2.3 Random Walk 72
3.3 Forecast Evaluation 73
3.3.1 Out-of-Sample Validation Process 73
3.3.2 Statistics for Comparing Forecasts 74
3.4 Autoregressive Models 75
3.4.1 Autocorrelation 75
3.4.2 AR(1) Model 76
3.5 Smoothing 78
3.6 Exponential Smoothing 79
3.7 Seasonal Adjustments 80
3.8 Unit Root Test 81
3.9 ARCH and GARCH Models 82
4. Decision Trees (Learning Objective 4) 83
4.1 Introduction to Decision Trees 84
4.2 Regression Trees 84
4.3 Recursive Binary Splitting 85
4.4 Pruning 86
4.5 Classification Trees 87
4.6 Trees vs Linear Models 88
4.7 Bagging 89
4.8 Random Forests 90
4.9 Boosting 91
5. Unsupervised Learning Techniques (Learning Objective 5) 92
5.1 Introduction to Unsupervised Learning 93
5.2 Principal Components Regression 94
5.2.1 Linear Combinations of Predictors 94
5.2.2 Principal Components Regression 95
5.2.3 Partial Least Squares 95

| The Actuarial Nexus | All Rights Reserved | © 2025 | Page 4 |



https://www.theactuarialnexus.com/

5.3 Principal Component Analysis
5.3.1 Definitions
5.3.2 Methodology
5.3.3 Proportion of Variance Explained
5.4 K-Means Clustering
5.4.1 Definitions
5.4.2 K-Means Clustering Algorithm
5.4.3 Algorithm Visual Example
5.5 Hierarchical Clustering
5.5.1 Definitions
5.5.2 Hierarchical Clustering Algorithm
5.5.3 Calculating Dissimilarity - Linkage Methods
5.5.4 Visual Example

| The Actuarial Nexus | All Rights Reserved | © 2025 | Page 5 |

96
96
97
99
100
100
101
101
102
102
103
103
104



https://www.theactuarialnexus.com/

This document is provided as a free resource for public use. You are welcome to use it
for personal consumption. The following restrictions apply:

1. Non-Commercial Use Only
Any reproduction, distribution, or use for profit or commercial purposes is
prohibited.

2. No Unauthorized Modifications
You may not alter or edit the content and present it as your own without proper
attribution. Please contact admin@theactuarialnexus.com if you would like to
distribute this document for non-commercial purposes.

While every effort has been made to ensure the accuracy of this document, it may
contain typos or errors. Please email admin@theactuarialnexus.com if you encounter
any typos.

This document was authored in association with The Actuarial Nexus, and is not
endorsed by or affiliated with the Society of Actuaries.

Most questions on Exam SRM test a conceptual understanding of the material. As such,
this document includes definitions and explanations to accompany some of the
formulas. The formulas and notation in this document have been kept as close as
possible to those in the source material.

Memorizing the information in this document alone is not sufficient preparation to pass
Exam SRM.

Visit The Actuarial Nexus for a comprehensive study program, including 70+ written
chapters, 800+ practice questions, and powerful analytic tools designed to help you
pass the exam.
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0. Review
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0.1 Sampling Assumptions

Concept Description
E(y;) = p The expected value (mean) of ¥ converges to the
Z population mean, .
Var(y;) = o2 The variance of ¥i converges to the population

variance, 2.

{vi} are independent

The set {¥i} consists of independent variables.

{vi} are normally distributed

The set 1¥i} follows a normal distribution.

_ 2
It and o2 are parameters. The goal is to use statistics, such as ¥ and v to infer

information about parameters.

0.2 Pearson Correlation Coefficient

Concept Description
The Pearson (ordinary) correlation coefficient measures
Definition the strength and direction of the linear relationship
between two continuous variables.
1 mn
r=——+——— (;—Z)(yi — ¥
Formula (n— 1)s,s, ;( i )y — 9)
—1 < r < 0: Negative linear relationship.
Values 7 = 0: No linear relationship.
0 < r < 1: Positive linear relationship.
. It is a dimensionless measure (units of measurement
Properties . . .
removed) and location and scale invariant.
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0.3 Matrices

Cov(X;, X;) = Cov(Xj, X;)

Concept Formula/Notation Notes
Matrices are typically denoted 1 2 3
by uppercase letters such as A=l4 5 ¢
A, B,and C. 78 9
Matrix
If a matrix A has m rows and ' o
n columns, it is referred to as Aisa 3 X 3 matrix with 3
an m x n matrix. rows and 3 columns.
Only square matrices can be
inverted.
-1 _ —1 _
Inverse Al AAT =ATA=]
Inverting matrices by hand is
beyond the scope of the
exam.
x X X
X — 11 12 13
To1 T2 T23
Transpose X', X or X/
T T21
X' = Ti2 T22
T13 T23
() Corixy - covxix,] | - COvVariance measures how
The g |G X Var(Xy) - e Covl X much two variables change
. . ov(X (X Xa) o Var(X together.
Variance-Covariance Cov(Xn, X1) - CovlXn, Xa) Var(X) g o .
Matrix - The matrix is symmetric.

- The variances are always
non-negative.

Matrices are commonly used in multiple linear regression.
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0.3 Maximum Likelihood Estimation

Formula / Description

Terminology
Maximum Maximum likelihood estimation is a method for estimating the
Likelihood parameters of a statistical model by maximizing the likelihood
Estimation that the observed data occurred under the model.

For a random sample X = (z1,22,...,%n) drawn from a

Likelihood distribution with PDF /(% 0), the likelihood function is:

Function N

L(0;x

(6:) L(6;x) = [ [ f(x::0)
1=1
The log-likelihood function is:
Log-Likelihood "
Function (0;x) = log L(0;x) = Zlog f(xi;0)
0(0;x) i=1

where 09(*) is the natural logarithm function (by convention).

The score function is the partial derivative of the log-likelihood
function with respect to the parameter(s):

0l(0;x)
Score Function 90
0l(0;x)
90 For a parameter vector, ¢ = (01,02, ....,0,), the score function is:
ol(0;x) 0l(0;x) 00(0;x)
20, 7 96y, 7 00,
Maximum 0 = arg max L(6;x) = arg m;xxﬁ(&; X)
Likelihood
Estimator The maximum likelihood estimator (MLE) is found by setting the
0 score function to zero and solving for 6. The argmax is the value
of # where the function is maximized.
82
(Fisher) I(0)=—-F {—1(9)}
Information 9606"
Matrix
1(6) A larger value of I1(0) indicates that the data provides more
information about 6, leading to more precise estimates.
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Covariance Matrix
1)~

The asymptotic variance-covariance matrix (covariance matrix) is
~1
the inverse of the information matrix: ().

As the sample size grows, the distribution of the MLE 6
approaches a normal distribution with mean 6 and covariance

matrix £(6) "
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1. Basics of Statistical Learning
(Learning Objective 1)
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1.1

Types of Variables

Terminology

Definition

Example

Input Variable

A variable used to predict the
output variable (a.k.a. predictors,
explanatory variables, exogenous
variables, independent variables,

features, regressors).

In a house price prediction model,
input variables could include the
size of the house, the number of

bedrooms, and the location.

Output
Variable

The variable that you are trying
to predict or explain (a.k.a.
response, outcome of interest,
endogenous variable, explained
variable, outcome, regressand, or
dependent variable).

In a house price prediction model,
the output variable is the price of
the house.

Confounding
Variable

A variable that affects both the
independent variable and the
dependent variable, potentially
leading to a false association
between them.

In a study examining the
relationship between coffee
consumption and heart disease,
smoking can act as a
confounding variable.

People who drink more coffee
might also be more likely to
smoke, and smoking is a known
risk factor for heart disease.

Binary
Variable

A variable that captures the
presence or absence of a
particular attribute, event, or
condition within a dataset.

Gender (male/female), yes/no
responses, or the occurrence of
an event.

Dummy
Variable

A binary (0/1) indicator used in a
regression model to represent
the presence or absence of a

categorical attribute.

Several dummy variables can be
created to represent variables
with more than two categories.

For a color variable with red and
blue, use 1 if blue and 0 if red.

For a color variable with red, blue,
and green, use 1 if blue and 0
otherwise, 1 if green and 0
otherwise. Red is the reference
when both are 0.

Nominal
Variable

A variable that categorizes data
without any intrinsic order.

Blood type (A, B, AB, O) or eye
color (blue, green, brown).
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Ordinal
Variable

A variable that categorizes and
ranks data in a specific order.

Satisfaction ratings (poor, fair,

good, excellent) or education

levels (high school, bachelor's,
master's, doctorate).

Count
Variable

A variable that quantifies the

number of occurrences of an

event within a fixed period or
space.

The number of customer visits to
a store or the number of emails
received per day.

Interaction
Variable

A variable that captures the
combined effect of two variables
when their joint impact on the
outcome is different from their
individual effects.

In a model with "Education” and
"Gender," adding an Education x
Gender variable lets the effect of
education differ between
genders.

Omitted
Variable

A relevant variable left out of a
model, which can bias the results
if it's correlated with included
variables.

Leaving out experience in a wage
model that includes education
may overstate education’s effect
if experience is also related to
wages.

Suppressor
Variable

A variable that increases the
predictive validity of other
variables when included in the
model.

Party hours may act as a
suppressor when added to a
model predicting GPA from SAT
scores.
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1.2 Prediction and Inference
Prediction aims to forecast the output variable based on the input variables. The focus
is on the accuracy of the predictions.

Inference aims to understand the relationship between the input variables and the
output variable. The focus is on interpretability.

In some situations, it is necessary to model for both inference and prediction
simultaneously.

1.3 Decomposition of the Expected Squared Error
The expected squared error, or squared expected difference, is a theoretical measure of

how far predictions, Y, are from actual outcomes, Y':

E[(Y = Y)*] = E[(Y — f(X))*] = (f(X) = f(X))? + Var[]

Terminology Reducible Error Irreducible Error (Noise)
Formula (f(X) = (X)) Vare]
Irreducible error (noise)
Reducible error is the error captures the effects of
Description introduced by the model's unobserved variables or
approximation. inherent randomness in the
data.
Decreased by improving the | In practice, the irreducible error
model, choosing better can never be zero. There are
Comments predictors, or using more always factors affecting the
sophisticated modeling response variable that are not
techniques. included in the model.
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1.4 Parametric and Non-Parametric Methods

A parametric method assumes the data can be modeled by a particular distribution
characterized by a fixed number of parameters. The most popular parametric models
take a linear form.

A non-parametric method does not assume a fixed form or structure for the underlying
data distribution. Instead of having a predetermined number of parameters,
non-parametric models allow the data to dictate the model complexity.

Flexibility refers to the model's capacity to fit a wide variety of shapes and patterns in
the data. Flexible models can model complex and non-linear relationships, but have a
higher risk of overfitting.

Overfitting occurs when a model is too closely fit to the specific features of the training

data, including noise, leading to poor generalization to new, unseen data. An overfit
model has low training error but high test error.

1.5 Supervised vs Unsupervised Learning

Method Supervised Learning Unsupervised Learning

Supervised learning involves

using labeled data, where each Unsupervised learning deals

Definition o : : with data that has no labeled
data point is associated with a
responses.
response measurement.
Goal Predict or classify the response | Discover patterns, relationships,

based on inputs. and groupings in the data.

- Principal Component
Analysis

- K-means Clustering

- Hierarchical Clustering

- Linear Regression

Examples - Logistic Regression
- Decision Trees

Exam SRM Learning Objectives 1-4 Learning Objective 5
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1.6 Regression vs Classification
The response variable plays an important role in selecting the learning method.

Method Regression Classification
Response o . e .
Variable Quantitative (numerical) Qualitative (categorical)
Goal Predict a quantitative outcome. Classify data into categories.

- Linear Regression
(continuous)

Examples - Time Series (continuous)

- Poisson Regression
(discrete)

- Logqistic Regression
- Decision Trees

1.7 Mean Squared Error and Error Rate

Data Training Data Test Data
Mean Squared Error
Regression 1 R
2 ~
— i — J(x; _ 2
Difference between n < (i = S () Ave(yo — f(xo))
observed and predicted B
Example
values. =Admple
Error Rate
Classification 1
— ; s Ave(] i Ai
Proportion of EOSNUERD el # 50)
misclassified training =1 Lxample
observations.
Measures how well a model Measures prediction
Purpose .
fits the training data. accuracy on unseen data.
o Estimated with
Lower values indicate T
Notes - cross-validation if test data
better fit on training data. ; .
is unavailable.
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1.8 Bias-Variance Tradeoff
1.8.1 Definitions

Terminology

Formula/Description

Expected Test MSE

A~

El(yo — f(20))?] = Var[f ()] + Bias[f(z)]* + Var(e)

Measures model generalization to new data.

Var(f (zo)] = E |(f(z0) — E[f(a0)])?

Variance
Measures model sensitivity to fluctuations in the training
data.
Bias[f(xo)] = E[f(l“o)] — f(zo)
Bias

Measures the error introduced by approximating a complex
reality with a simpler model.

Irreducible Error

Var(e)

Represents noise in the data which cannot be explained by

any model.
1.8.2 Tradeoff Table
Mgd.e I Bias Variance | Expected Test MSE Notes
Flexibility
, High (due to high | - Simple models
Low High Low bias) - Leads to underfitting
Medium | Medium | Medium Low (optimal - thimal tra_de-off between
trade-off) bias and variance
. . High (due to high |- Complex models
High Low High variance) - Leads to overfitting
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1.9 Data Collection

Sampling frame error occurs when the sampling frame, or the list from which the
sample is drawn, does not adequately approximate the population of interest. Limited
sampling regions can introduce bias when attempting to extrapolate beyond the
sampled area.

When an omitted variable influences both the dependent variable ¥ and the explanatory
variable z, it can create a spurious relationship. The effects of the omitted variable may
be incorrectly attributed to other included variables, potentially creating a misleading or
false association between those variables and the outcome.

Techniques to handle data that are missing at random:
1. Ignore the problem.
2. If only a few data points are missing, remove the observations with missing data.
3. If missing data are concentrated in one variable, omit the variable.
4. Impute the data by substituting missing values with reasonable estimates.

Traditional statistical techniques are intended for the low-dimensional setting in which
the number of observations is much greater than the number of features (» > P). New
technologies have enabled the collection of an almost unlimited number of features,
enabling analysis around high-dimensional (P > 1) data sets. In practice, while P can
be very large, n can be limited due to cost or sample availability. Applying least squares
regression in a high-dimensional setting can lead to overfitting. Methods such as
forward stepwise selection, lasso, and principal components regression are particularly
useful in high-dimensional settings.
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1.10 Bayes Classifier

Concept

Description

Bayes Classifier

The Bayes classifier is a hypothetical optimal classifier
that assigns the most probable class given a predictor

vector.
Formula Pr(Y = j|X = z)
Minimizes test error by selecting the class with the highest
Goal o L
conditional probability.
Limitations Requires full knowledge of the true conditional probability

distributions, which is rarely available in practice.

Approximation

Approximated using models like logistic regression,
decision trees, and neural networks.

Concept

Description

Bayes Error Rate

The Bayes error rate is the lowest possible test error rate
achievable, even with the optimal classifier. It is similar to
the irreducible error.

Formula

1-F <mjax Pr(Y = | X)>
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1.11 K-Nearest Neighbors
1.11.1 Algorithm
For a new point Zo:

Step Description

1. Choose K Select the number of neighbors.

Measure the distance from Zo to all other

2. Compute Distances observations (e.g., Euclidean distance).

3. Find K Nearest Neighbors Select the K closest points to Zo.

Assign the class based on the majority vote among

4. Classify the Point the K neighbors.

" . 1
The conditional probability PriY =5 | X =2¢) ~ — I(y; = j)
o belongs to class J K g\;o

1.11.2 Bias-Variance Tradeoff in KNN

K Value Bias Variance Behavior

Small K Low High Sensitive to noise; may overfit.

May miss patterns; smoother

Large K High Low predictions.
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1.12 The Validation Set Approach
1.12.1 Algorithm

Step Description

Randomly divide data into training (70-80%) and

1. Data Splitting validation (20-30%) sets.

2. Model Training Fit the model using the training set.

Evaluate the model on the validation set using metrics like
3. Model Validation mean squared error (MSE) or the sum of squared
prediction errors (SSPE).

1.12.2 Pros and Cons

Pros Cons
Simple High variance due to single split
Fast Not all data is used for training
Low computational cost May overestimate test error
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1.13 Leave-One-Out Cross-Validation

1.13.1 Algorithm

Step

Description

1. Data Splitting

For each observation ¢ in the dataset:

- Remove the i-th observation, resulting in the training set
D_;.

- Train the model on D_;.

- Test the model on the removed i-th observation (Zi; yi),
obtaining the prediction ¥i.

2. Model Training

Compute the performance metric (e.g., mean squared
error or error rate) for each iteration.

3. Model Validation

Average the performance metrics over all n iterations to
obtain the final estimate.

For regression, use the predicted residual sum of squares
(PRESS):
1 n

CVim) = - Z(yi — ;)" = %Z MSE;
=1 =1

For classification, use:

1 n
CVin) = - Z Err;
i=1

1.13.2 Pros and Cons

Pros Cons
Nearly unbiased estimate of test error Requires training the model n times
Uses almost all data for training High variance due to similar training sets

No randomness in splits => leads to
consistent results

Computationally expensive for large n
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1.14 K-Fold Cross-Validation
1.14.1 Algorithm

Step Description
Divide the data set into & folds. When k£ = n, k-fold CV is
1. Data Splitting equivalent to LOOCV. Popular choices for k£ are £ = 5 or
k = 10.

For each fold:

- Train the model on k£ — 1 folds.
2. Model Training - Validate the model on the remaining fold.

- Compute the MSE for the predictions on the validation
fold.

Calculate the mean of the MSE values obtained from each
of the & folds.

For regression, use:
1k

i=1
Example

3. Model Validation

For classification, use:

k
1
CViy = z Z Err;
i=1

1.14.2 Model Comparison

LOOCYV has higher variance and lower bias than K-fold CV for £ < n since LOOCV
averages the outputs of n fitted models. These models are highly correlated with each
other.

In terms of the bias-variance tradeoff, K-fold can be considered between the validation
set approach and LOOCV.
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2. Linear Models
(Learning Objective 2)
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2.1 Simple Linear Regression
2.1.1 Theoretical Representation of a Linear Model

Concept Description
Equation y = o+ 512 (approximation)
Dependent Variable (¥) The outcome variable we aim to predict.
Independent Variable () The input variable used for prediction.
Intercept (o) Expected value of ¥ when z = 0.
Slope (/1) The change in ¥ for a one-unit increase in .
Coefficients (or Parameters) Bo, B1

2.1.2 Observations vs Predictions (Actuals vs Estimates)
Concept Description

Actual data points collected from empirical data for

Observed Values (i, Yi) observations i = 1, ....n

: - The value of ¥ predicted by the regression equation
Predicted Value (%) for a given observation, Zi.

Regression Equation Ui = Bo + lei

Estimate from ordinary least squares:

Estimated Intercept (5o or bo) B— g iz
0=Y— P

Estimate from ordinary least squares:

Estimated Slope (31 or b1) B, = Yoy (i — ) (i — 9) _ Sy
' > iy (@ — 7)? Sz
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2.1.3 Ordinary Least Squares

Concept

Description

Terminology

The following refer to the same concept:

Ordinary least squares (OLS)
Method of least squares
Least squares method

Least squares regression

Simple linear regression: One independent variable
Multiple linear regression: More than one
independent variable

Goal

The goal of OLS is to estimate regression coefficients by

minimizing the residual sum of squares (RSS).

Residual (€:)

A residual measures the difference between the
observed value Yi and the predicted value ¥:.

ei =y — U =Y — (Bo+ Pix;)

Residual Sum of Squares
(RSS)

RSS=¢f +e5+...+¢2

=Y e =) (wi— )
=1 =1

Fitted Regression Line
(Line of Best Fit)

@:Bo+31$
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2.1.4 Error Term
The true model is defined as ¥i = Bo + b1 + €.

The error term (disturbance term) is € = & = ¥i — (Bo + Brzi) 1t acknowledges that
observed data points do not perfectly fit the underlying theoretical model, and accounts
for random variation (noise).

Assumptions about the error terms, {Ei}, are made to ensure OLS produces
unbiased estimates. An estimator /! of a parameter / is unbiased if £(/) = 1t

The following assumptions apply to observations,{yz‘}, and errors,{ﬁz‘}:

Observation Assumptions Error Assumptions

1. Elyi] = Bo + Bix; 1. Y = Bo+ Brx; + €

2.1%1,---,%n} are non stochastic 2.1%1,---,Tn} are non stochastic

variables. variables.

3. Var(y) = o’ 3. Ele;] =0 and Var(e) = o’

€ i

4. {Yi} are independent random variables. 4. { ) are independent random

variables.

From the central limit theorem, these assumptions imply that {vi} and {€i} are
approximately normally distributed.
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2.2 Mean Squared Error and Standard Error
The formulas below only apply to simple linear regression (one independent variable).

Concept Description

) The variance of the error term provides a measure of how
Var(e) =0 much the observed values deviate from the true values
due to random noise.

To obtain an unbiased estimator of o2:

Mean Squared Error MSE = s2 = §2 = :— ;)2
e n_Q;(y i)
E I n
Example o o RSS
T n-—2 on—2

The RSE is an estimate of ¢
Residual Standard Error 7

(RSE) RSS
Example RSEZVMSE:\/?:S:&: 5
Standard Error of Bo SE(B.) = « | MSE {l 2 1
Example (Bo) \/ 0 Yo (x; —7)?
Standard Error of /1 SE(f,) = _ MSE _ RSE
Example Yol —x)2  syv/n—1
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2.3 Sum of Squares and R-Squared

Concept

Description

Total Sum of Squares
(T'SS)

Total deviation:
Yi — Y

Measures the total variation in the dependent variable
around its mean. Example.

n

TSS =) (4 —9)°

=1

Residual Sum of Squares
(RSS, ErrorSS, SSE)

Unexplained deviation:
Yi — Yi

Measures the discrepancy between the observed data
and the values predicted by the model. Example.

RSS = (4 — )’
=1

Regression Sum of
Squares
(Regression SS)

Explained deviation:

Y — Y

Measures the variation explained by the regression
model. Example.

n

Regression SS = Z(?)z —9)?

1=1

Decomposition of TSS
(Linear Regression Only)

TSS = RSS + Regression SS

Z(yz —-79)° = Z(?Jz —9:)% + Z(@z —7)°

=1 =1

The cross-product term equals zero in linear regression.
A nonzero cross-product term exists for nonlinear
models.

Coefficient of
Determination or

R-Squared (R?)

R-squared measures the proportion of the variance in the
dependent variable that is explained by the independent
variable.

_TSS—RSS_1
a TSS N

RSS  Regression SS

2
h TSS TSS

Value ranges from 0 to 1.

| The Actuarial Nexus | All Rights Reserved | © 2025 | Page 30 |



https://www.theactuarialnexus.com/questions/examSRM/Q2LtUeuZX0K5vTzvAwW0/question
https://www.theactuarialnexus.com/questions/examSRM/73kk5KIn3UgYqo7Rc4EK/question
https://www.theactuarialnexus.com/questions/examSRM/lhKq6DNnmDG0Ae9zFrYF/question
https://www.theactuarialnexus.com/

2.4 Thet-Test

For Exam SRM, the t-test is mainly used to test the significance of a regression
coefficient, such as the slope, O1.

Concept

Description

Null Hypothesis

Hy: 1 = d, represents the status quo, that 51 is equal to a
specific value d.

H
(F0) In regression, often Ho : p1=0, indicating no relationship
between the predictor and the response.
. H . .
Alternative Competes with 1o, representing a difference from d.
Hypothesis 3 ,
- 51 # d (two-tailed

- b1 < d or B1 > d (one-tailed)

t-Statistic (t-ratio)

_ bi—d
SE(f)

The t-statistic measures how many standard errors the

t

estimate 31 is from the hypothesized value d.

Degrees of Freedom
(df)

df =n—k

For simple regression, df =n — 2 since two parameters, the
intercept and slope are estimated.

Significance Level

()

Probability threshold for rejecting Ho, such as a = 0.05.

- One-tailed: critical value at «.
- Two-tailed: critical value at @/2 in each tail.

See the table on the next page for details.

Decision Rule

Reject Ho if |t[ > critical value from the t-distribution table or
p-value < a. Otherwise fail to reject Ho. See the table on the
next page for details.

Interpretation

- Reject Ho = variable likely significant; keep in model
- Fail to reject o = variable may be excluded from the
model
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Alternative Hypothesis

Reject Null Hypothesis Criteria

H,: B #d 1] > ta,ar2
H,:B>d > tifa
H,: 0 <d t < —tafa
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2.5 Intervals and Partial Correlations

2.5.1 Confidence Interval

A confidence interval is a range of values, derived from sample data, that is likely to
contain the true value of an unknown population parameter.

A 95% confidence interval suggests that if the same population were sampled multiple
times, approximately 95% of the calculated confidence intervals from those samples
would contain the true parameter value.

For simple linear regression with parameters 5o and 51, a 100(1 — @)% confidence
interval for the slope 51 is given by:

B+ tn—2,0/2 Se(él)

For multiple linear regression with P predictors, a 100(1 — @)% confidence interval for
the slope Bi is given by:

A

Bj £ tn(pr1).0/2 - 5€(55)
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2.5.2 Prediction
Prediction (or forecasting) is the process of estimating future values based on
historical data. Let the response variable from a series of known explanatory variables,
X = (1,241, - ... ,x*p), be denoted as:
Yy :60+/81$*1+"'+/3p$*p+6*
The least squares point predictor for Y« is:
g* - 60 +/le*l _|_ tte +/6px*p
For simple linear regression, the least squares point predictor for Yx is denoted:
:g* = 60 + le*

We can decompose the prediction error into the estimation error and the random error:

y*_g* :£50_50)+(/81_61)%14""_}‘(Bp_ﬁp)x*gi+ _ ‘.E* ,
prediction error regression estimation error at i, ..., Tup deviation error

This decomposition allows us to model the distribution of the prediction error, and
construct a prediction interval for Y.

2.5.3 Prediction Interval

A 100(1 — a)% prediction interval (forecast interval) for the dependent variable ¥ at a
given X. is:

Ui £ tn(p+1),0/2 - se(Pred) where se(pred) = s/1 + x/(X’'X)~1x,

The prediction interval is generally wider than the confidence interval for the mean
response because it includes the variability of the individual observations.

For simple linear regression where, ¥« = 5o + 12+, the standard error of the prediction
at . is:

se(pred) = \/MSE % (1 + % + Z;i*(;gi);P)
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2.5.4 Partial Correlations

The partial correlation coefficient measures the strength and direction of the linear
relationship between two variables, while controlling for the effect of one or more other
variables:

t(b;)
tb;)2+n—(p+1)

(Y, | X1, 1, Ty, -, Tp) = 7

Calculating partial correlation coefficients using the t-ratio is efficient and allows all
partial correlation coefficients to be computed from a single regression, though it might
miss nonlinear relationships.

Create added variable plots (partial regression plots) by plotting

Yl T, Ty Ty ys Ty | Tay o i1, T, - -5 Tp to visualize nonlinear
relationships.
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2.6 Multiple Linear Regression
2.6.1 Concepts

Concept Description

Multiple linear regression extends from simple linear
regression and models the relationship between a

Definition dependent variable ¥ and multiple independent variables
T1,To,... ,A’Ep.
Model Form y = Bo+ By + Bowa + ...+ Bpx, + €

Least Squares Method Estimate regression coefficients by minimizing the RSS.

Prediction Y= Bo + lel + BQxQ +---+ Bpxp

RSS=ef+es+...+¢€

Residual Sum of Squares n n
(RSS) =Y =) (vi— )
=1 =1
MSE = s* = 6% = ! Zn:(y. —g)?
n—(p+1) =
Mean Squared Error — ! Z o2 — RSS
Example n—(p+1)= " n-(p+1)

P+ 1 is the number of parameters including the

intercept.
) RSS
Residual Standard Error RSEE=VMSE=Vs2 =s5=6 =,/ — "
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2.6.2 Matrix Notation

Concept Description
Model Form y=XB+¢€
Y1
Y2
y=1|".
Yn
Dependent Variables (¥)
I z11 w2 - Ty
Design Matrix (X) X — T I
Coefficients (83) I Zp1 Tpz o0 Ty
Errors (€)
Bo
I €1
— | B €
B '2 c_ '2
Bp €n

Estimate regression coefficients, 8, by minimizing

Least Squares Method the RSS.

b=p3=(X"X)"'X"y

E[B] = B (unbiased) & Var[B] = o*(X X) ™!
where o2 is the variance-covariance matrix.

Coefficients Estimate (3) A lternativel
ernatively,

B=X"X)"'XTy szyz

= (XTX) (1,1‘1'1, ...,lEip)T

Prediction Estimate y=X3=XX"X)"'X"y
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2.7 TheF-Test
2.7.1 Definitions

While the t-test assesses the significance of individual regression coefficients, the
F-test measures the overall significance of a regression model.

Concept

Description

Null Hypothesis

H0351:52:---:5p=0

(Ho) None of the predictor variables have any effect on the
response variable.
Alternative H, : at least one f3; is non-zero
Hypothesis
yp(Ha) At least one predictor variable is significantly associated with
’ the response variable.
P (T'SS — RSS)/p
F-Statistic RSS/(n —p—1)
Example

The F-statistic measures the ratio of explained variance per
predictor to unexplained variance per degree of freedom.

Decision Rule

Reject Ho if F' > critical value from the F-distribution table.
Otherwise fail to reject Ho. A F-distribution table is not
provided on the exam.

Interpretation

Reject Ho = at least one predictor variable is significant.

Fail to reject Ho = no predictor variables are significant.

| The Actuarial Nexus | All Rights Reserved | © 2025 | Page 38 |



https://www.theactuarialnexus.com/questions/examSRM/w8kFrqlx25EmrpNxW4Z9/question
https://www.theactuarialnexus.com/

2.7.2 Partial F-Test
The partial F-test assesses whether a subset ¢ of the P coefficients is zero.

Concept Description

Ho: Bp—qt1 = Bp—ge2=-.. = p =0
Null Hypothesis

(Ho) The subset of ¢ coefficients are zero. For convenience, the ¢
variables chosen for omission are at the end of the list.
Alternative H, : at least one 3, is non-zero
Hypothesis
(Ha.) At least one of the ¢ coefficients is non-zero.
P (RSSy — RSS)/q
F-Statistic RSS/(n—p—1)

RS Sy uses all variables except the last ¢.

2.8 ANOVA Table

Sum of Degrees of
Squares (SS) Formula Freedom (df) Mean Square (MS)
—~ Reg SS
Regression SS Z(yi — ) p Reg MS = i
=1
- . RSS
Error SS (RSS) Z(yi — ;) n—p-—1 MSE = §* = ———
i=1 n—p-—1
Total (TSS) | > (Wi — ) n—1
1=1
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2.9 Subset Selection

on lowest RSS or highest R?.

3. Choose the best overall model

from Mo, -, M, using selection
criteria.

Method Algorithm Notes
1. Start with the null model Mo with
no predictors.
2. Foreachk=1,2,...,p: - Builds a simple model with
P only key predictors.
) L ) - Risk of overfitting.
Best Subset | @ Fitall models with & - Requires fitting 2” models —
Selection predictors. not feasible for large P.
b. Select the pest one 2based _on - Slower than alternatives:
3. Choose the best overall model from
Mo, ..., M, using selection criteria
(e.9.0»).
1. Start with the null model M.
- More computationally
2.Fork=0,1,...,p—1: efficient than best subset
a. Evaluate all » — k¥ models by selection.
Forward adding one new predictor to M. - With P = 20, it fits only 211
Stepwise b. Choose the one with the lowest models vs. over 1 million for
Selection RSS or highest R? as M+1. best subset selection.
- Performs well in practice but
3. Choose the best overall model doesn't guarantee finding the
from Mo, - My using selection | absolute best model.
criteria.
1. Start with the full model M»
containing all P predictors.
2.Foreachk=p,p—1,..., 1
- a. Evaluate all models formed by
Backward . : - .
, removing one predictor from M. Similar to forward stepwise
Stepwise M lecti
Selection - b. Choose the best /M ;-1 based selection.
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Hybrid : : Combines the benefits of best
Sequentially add variables, but also : :
Approach . subset selection with the
remove any that no longer improve : .
computational efficiency of
the model. :
stepwise methods.
Stepwise 1. Run all simple regressions with one
Regression | variable. Choose the one with the - Stepwise regression is fast

largest t-ratio. If it's below a set
threshold (e.g., 2), stop.

2. Add variables one at a time based
on the most significance. The t-ratio
must be above the threshold.

3. Remove variables one at a time
based on the least significance. The
t-ratio must be below the threshold.
4. Alternate between adding and
removing until no changes meet the
criteria.

but can overfit and miss the
best model.

- It ignores nonlinear effects,
outliers, and joint variable
interactions.

- Relies solely on t-ratios and
lacks expert input.

- Modern tools allow for the
practical use of more complex
algorithms.
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2.10 Choosing the Best Model from Subset Selection

Model

Formula

Variable Definitions

- d:the total number of predictors in the model
including the intercept.
- n:the number of observations in the dataset.

- 62 (MSE): an estimate of the variance of the model's
error .

Mallows's C»
Example

_ RSS,

5—2

Cp —n+2d

C, = % (RSS, + 2d6°)

Lower C» values indicate better fitting models. The two
formulas will identify the same model even if they yield
different values.

Akaike Information
Criterion (AIC)

Example

AIC = % (RSSq + 2d6?)

A lower AIC indicates a better fit, with a penalty for the
number of parameters to discourage overfitting. For linear

models with Gaussian errors, AIC is proportionate to Cp.

Bayesian Information
Criterion (BIC)

Example

BIC = 1 (RSSy + log(n)ds?)

n

A lower BIC indicates a better fit, with a penalty for the
number of parameters to discourage overfitting.
BIC penalizes the number of predictors more heavily than AIC,
especially as the sample size (n) increases.

Adjusted R?
Example

_ RSS/(n—d-1)
TSS/(n—1)
Here, d excludes the intercept term.

Adjusted R? =1

Higher adjusted R? values indicate better fitting models.

R? always increases or stays the same when more predictors
are added to the model, regardless of whether those
predictors are truly relevant. Adjusted R* penalizes the
addition of noise variables to account for the number of
predictors, d, in the model.
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2.11 Residual Analysis

2.11.1 Information

The purpose of residual analysis is to check the residuals for patterns or relationships
with other variables. It also plays an important role in improving model formulation by
identifying additional explanatory variables.

Discrepancies to look for include:

1. Lack of Independence: The deviations {ei} are not independent.

2. Heteroscedasticity: Variability of observations is not constant.

3. Relationships with Explanatory Variables: If an explanatory variable can help
explain ¢, then it can also help predict ¥.

4. Nonnormal Distributions: Significant deviation from normality nullifies usual

inference procedures. Detected through QQ plots.

Unusual Points: Outliers or influential observations may disproportionately affect

the regression model.

i

Three strategies for handling outliers include:
1. Include and Comment
2. Delete the Observation
3. Create a Binary Variable

Steps to follow after a preliminary model fit:
1. Display the distribution of residuals to identify outliers.
2. Assess the correlation between residuals and additional explanatory variables to
identify linear relationships.

3. Plot residuals against additional explanatory variables to detect nonlinear
relationships.
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2.11.2 Standardized Residuals

Name Formula Notes
Standardized e Easy to compute and understand.
Residual ° s approximates the residual standard deviation.
. More precise than the first definition.
Standardized e;
Eemdu?I sV 1 — hy Incorporates the leverage, /i, and uses the
xample
standard error, S€(€i) = s/ 1 — hi;
Best for identifying outliers.
Studentized e; Excludes the ith observation when estimating
Residual e the standard error.
sV 1 — hii
Example

Follows a t-distribution with 7 — (P + 1)
degrees of freedom.
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2.12 Influential Points

Concept Description
Influential Point An influential pqlnt is a data point tha’F hasf a disproportionate
impact on the regression line.
. An outlier is an observation that is unusual in the vertical
Outlier o
direction (unusual response value).
T(xTx)\-1 1
n
The leverage of an observation measures the influence that
the observation's predictor values have on its fitted value.
Average leverage
Leverage

Leverage in simple linear regression
1 x; — T)?
h’ii =—+ ’rg ' ) —\2
Zj:l(xj - I)

A high leverage point is an observation that is unusual in the

horizontal directional (unusual predictor value). It can drag

High Leverage Point the regression line toward itself.

Example

3(p+1)

hii >

1. Include the observation with commentary
2. Delete the observation

3. Choose another variable
4. Use a nonlinear transformation

Addressing High
Leverage Points

Cook's distance measures the change in predicted values
when the i-th observation is removed from the model.

Cook’s Distance

D. — Z?zl(?;j - ?;J'(i))2 D — < €; )2 hi;
Z (p+1)s? b \se(e)) (p+1)(1 - hy)
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2.13 Collinearity

Concept Description
Collinearity (multicollinearity) occurs when two or more
Collinearity predictor variables in a regression model are highly

correlated, making it difficult to isolate their individual effects
on the response variable.

Variance Inflation
Factor (VIF)

Example

VIF; forj=1,2,...,p

:727

The VIF quantifies how much the variance of a regression
coefficient is inflated due to collinearity with other predictors.

VIF; > 90% indicates severe collinearity.

' 1
VIF Adjusted Standard selb) = so/VTF—_ L
Errors (b5) ﬁsxjm
: 1. Center variables
Addressing
Collinearity 2. Acknowledge only

3. Substitute with transformed variables
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2.14 Homoscedasticity and Heteroscedasticity

2.14.1 Definitions

Concept

Description

Homoscedasticity

Homoscedasticity is the condition in which the variance of
the errors is constant across all levels of the independent
variable(s).

Var(e;) = 0® = Var(y;) = o*

Heteroscedasticity

Heteroscedasticity is the condition in which the variance of
the errors is not constant across all levels of the independent
variable(s).

Addressing
Heteroscedasticity

1. Heteroscedasticity-consistent standard errors
2. Weighted least squares
3. Transformation of variables

Heteroscedasticity-
Consistent Standard
Errors

ser(bj) = \/(] + 1)st diagonal element of \//'a\r(b)

Heteroscedasticity-consistent standard errors (robust
standard errors) adjust for heteroscedasticity without
modifying the coefficients themselves.

Weighted Least
Squares

Bwis = (XTWX) ' X"Wy

Weighted least squares assigns different weights to
observations based on the variability of their residuals, giving
less weight to observations with higher variance.

Transformation of
Variables

Transforming the dependent variable ¥ can effectively
address heteroscedasticity by stabilizing the variance of the
error terms.

| The Actuarial Nexus | All Rights Reserved | © 2025 | Page 47 |



https://www.theactuarialnexus.com/

2.14.2 Breusch-Pagan Test

Concept

Description

Purpose

The Breusch-Pagan test is used to detect heteroscedasticity
in a regression model.

Hypothesis Test

HO Y = 0
The variance of the residuals is constant (homoscedastic).

Hy : Var(y;) = o +ziv
The variance of the errors is not constant (heteroscedastic).

Steps

1. Run the regression model and obtain the residuals €.
*¥2 _ 27/.2
2. Compute ¢ = € /s,
*2
3. Regress the standardized squared residuals ¢ on Zi.
_ Regress SS,

Calculate the test statistic as 2
Compare the test statistic to the chi-square
distribution with degrees of freedom equal to the
number of predictors P (excluding the intercept).

o B
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2.15 Ridge Regression

Concept

Description

Shrinkage Methods

Shrinkage methods build on ordinary least squares (OLS) by

adding a penalty to the regression coefficients. The two most

common shrinkage methods are ridge regression and the
lasso.

Ridge Regression

Ridge regression modifies the OLS approach by adding a
shrinkage penalty to the size of the coefficients. Ridge
regression shrinks the coefficients towards zero, but it does
not set any of them to exactly zero.

Ridge Regression
Objective Function

Minimize:

p
RSS+\Y _f

j=1

Residual Sum of
Squares (from OLS)

n p 2
RSS = Z (yz — o — Zﬁj%’j)
i=1 j=1

L2 (Euclidean) Norm

1812 =

The L2 norm represents the straight-line distance from the
origin to the point defined by the vector in P-dimensional
space. Geometrically, it creates the shape of the penalty

region (a circle in 2D, sphere in 3D, etc.).

Tuning Parameter

The tuning parameter, )\, controls the strength of the
shrinkage penalty. Its purpose is to balance the trade-off
between fitting the training data well and keeping the model
coefficients small to avoid overfitting.

Shrinkage Penalty

A8 = A (8]’

As )\ increases, the L2 norm decreases. Geometrically, the
shrinkage penalty uses the L2 norm to push the coefficients
inward.
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Scale Equivariance

Least squares regression is scale equivariant, meaning that
multiplying a predictor variable by a constant does not affect
the relative contribution of that predictor to the model.

Ridge regression is not scale equivariant because the
shrinkage penalty depends on the magnitude of the
coefficients. To address this, it is best to standardize the
predictors before applying ridge regression:

X

Lij — Lj
\/% > i (Tij — Tj)?

xij =

Advantages of Ridge
Regression

—

. Lower test MSE can be achieved compared to OLS.

2. Useful when dealing with datasets with a large number
of predictors.

3. The ability to adjust A allows for optimization of
overall model performance.

4. Ridge regression is computationally more efficient

than best subset selection, and can be computed

almost as quickly as an OLS model.
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2.16 Lasso
2.16.1 Definitions

The concepts below extend from the previous section.

Concept

Description

Least Absolute
Shrinkage and
Selection Operator
(LASSO)

Lasso, or the lasso, modifies the OLS approach by adding a
shrinkage penalty to the size of the coefficients. Unlike ridge
regression, lasso sets some coefficients exactly to zero.

The ability of lasso to set some coefficients exactly to zero
means it can apply feature selection by removing less
important predictors.

Ridge Regression
Objective Function

Minimize:

p
RSS+ A |8

J=1

Residual Sum of
Squares (from OLS)

RSS = Z (.% — Bo — Zﬁj%j)

LT Norm

18l =184l
Jj=1

Geometrically, the L1 norm creates a diamond-shaped
constraint region in parameter space.
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2.16.2 A Geometric Interpretation of Ridge Regression and Lasso
Ridge regression aims to find the coefficient vector that minimizes:

p
in {RSS bject t 2 <
mﬁm{ }  subject to ;/Bj <s

Lasso aims to find the coefficient vector that minimizes:

p
mﬁin {RSS} subject to le 18| <'s

Consider a simple example with two predictors (P = 2).

Ridge Regression and Lasso Constraints

The constraint 5% + 53 < $ forms circular regions and the constraint Bl + [B2] < s
forms diamond-shaped regions for varying values of s. The solution to the optimization
problem is the point where the RSS contour (dotted green curve) first touches a
constraint boundary.

e For ridge regression, the smooth boundary of the circle means the solution is

less likely to intersect at exactly zero (51 = 0 or S2 = 0). Hence, ridge
regression does not perform feature selection, since the coefficients are never
exactly zero.

e For lasso, the diamond-shaped constraint has sharp corners at 51 = 0 and
B2 = 0. When the RSS contour intersects the diamond, it's likely to intersect at a
corner where one of the coefficients is zero. This property makes the lasso
perform feature selection.
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2.17 Binary Dependent Variables

Concept Description
The linear probability model is a regression model that
Definition estimates the probability of a binary outcome as a linear

function of the predictors.

True Model Form

Y = X8+ €

Yi is a binary variable that takes on a value of 0 or 1.

Expected Value

E(y) =x;8=m

where Ti is the probability that the outcome equals 1.

Variance Var(y;) = x;8(1 — x;3)

1. The expected value of the response is not inherently
restricted to the [0, 1] interval, and may not be a valid
probability.

Drawbacks 2. The variance of the error term in the linear probability

model is not constant, leading to heteroscedasticity.
3. Theresponse variable ¥i can only take values of 0 or
1, whereas the residuals are continuous.

Alternative Models

Alternative models (e.g. logit and probit models) of the form

mi = m(x;8) = Pr(y; = 1|x;)

overcome the drawbacks of the linear probability model,
where 7(*) is a predefined function.

Interpretation: The model form specifies that the conditional

probability of ¥i = 1 given the predictors is a function of the
linear combination of the predictors and the coefficients.
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2.18 Logit and Probit Models
2.18.1 Logit Models

Concept Description

Logistic regression (logit regression) is a statistical model
that estimates the probability of a binary outcome by
modeling the log-odds of the event as a linear combination of
predictor variables.

Logistic Regression

Logit Function logit(p) = In (1]'%1))
Logistic Regression . /
Model logit(m;) = x;3 = Bo + frxa + ...0pTip
Example
1 z
m(2) ‘

14 exp(—z) 14e®

Logistic Function

The logistic function maps any real-valued number to the (0,
1) interval, making it suitable for modeling probabilities.

P
Odds 1 —p
p
- In ([ —£—
Log-Odds n (1 — p)
B — Pr(y; = 1zy; = 1)/(1 — Pr(y; = 1y = 1)
Pr(y; = 1]zi; = 0))/(1 = Pr(y; = 1ay; = 0)
Odds Ratio

The odds ratio compares the odds of an event occurring in
two different groups.
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2.18.2 Probit Models

Concept

Description

Probit Regression

Probit regression is a statistical model that estimates the
probability of a binary outcome by mapping a linear
combination of predictor variables through the standard
normal cumulative distribution function.

2.18.3 Threshold Interpretation

Concept

Description

Underlying Linear
Model

The logit and probit models can be interpreted to have an
underlying linear model:

yi =xiB+€
where Y; is a continuous variable that captures the

underlying continuous process, but is not directly observable
from the data.

Threshold Model
Example

o ifyr<o
S FRR TR
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2.18.4 Parameter Estimation

Concept Description
Log-Likelihood n / /
Function for a Binary I(B) = Z lyiln7(x;8) + (1 — y;) In(1 — 7(x;3))]
Variable i=1
Likelihood Ratio Test LRT =2 (L(BMLE) - LO)
R2
2 _
o =T
Max-Scaled R?
exp(Lo/n)
Ri=1- : R, =1 —exp(Lo/n)”
exp(L(Brre)/n)
L(( —L
Pseudo- R? Pseudo-R? = (Brp) 0

Lmaz - LO
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2.19 Nominal Dependent Variables
2.19.1 Generalized Logit Model

Concept

Description

Nominal Dependent
Variable

A nominal dependent variable is a categorical outcome
whose values represent distinct, unordered groups with no
inherent ranking.

Creating Dummy
Variables

A dummy variable can be added to a regression model when

a qualitative predictor is binary. When a qualitative predictor

has more than two levels, multiple dummy variables can be
created.

Generalized Logit
Model

For the J-th category (J = 1,2, ...,¢) and i-th observation,
define the linear predictor as:

Vz’,j = X;Bj

Baseline Category

(c)

1
B > k1 exp(Vir)

Category c is the baseline category, which anchors all
comparisons. Assume B.=0,

P(y; = c)

exp(Vi ;)

Plyi=j)=m; = <=
Category Probabilities 2 k=1 exP(Vig)
Example .
Represents an estimate of the probability of outcome J from
linear predictors.
Py = j)
Log-Odds H P(y; = c) K o = Xib;
Interpretation
Example Each B; captures the change in the log-odds of category J
versus c for a unit change in predictor k.
— = 0 1 H
Special Case When ¢ = 2 and B , the generalized logit model reduces

to the logit model.
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2.19.2 Other Models

Concept Description

The multinomial logit model assumes the same set of

coefficients, 3, for explanatory variables across all
alternatives:

. /
Vij = Xij

The generalized logit model is a special case of the

Multinomial Logit multinomial logit model.

Model Pr(yz — h) .
(P =) s =10

A feature of the multinomial logit model is the independence
of irrelevant alternatives, which implies that the ratio of the
probabilities of choosing any two alternatives J and k is
independent of the presence or characteristics of other
alternatives.

The nested logit model addresses the issue of independence
of irrelevant alternatives by creating nested structures.

Nested Logit Model | It decomposes the probability of selecting a specific category
into two components: the probability of selecting a particular
nest and the conditional probability of choosing an option
within that nest.

A mixed logit model is a multinomial logit model that relies

3.
Mixed Logit Model on both S and 7.

Vi= X;,1,j,6 + Xg,zﬁj
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2.20 Ordinal Dependent Variables

Concept

Description

Ordinal Dependent

An ordinal dependent variable is a categorical outcome
whose values represent a natural ordering among the

Variable .
categories.
Cumulative probabilities are used to model how explanatory
variables influence the probability of being at or below each
Cumulative category level of an ordinal outcome.
Probability

For an ordinal variable Y with ¢ categories:

Cumulative Logit

Pr(y <j)=m+m+---+m, j=12,...,c
- : Pr(y < j)

logit(Pr(y < =1

oeiPrly =) n<1—Pr(ij)

_m( Mt Mt )
T Tt

Cumulative Logit
Model

logit(Pr(y < j)) = o

< A1

ap S ap < -

Proportional Odds
Model

logit(Pr(y < j)) = a; +x;8

Cumulative Probit
Model

Pr(y; < j) =Pr(y; < o) = (o — x;0)
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2.21 Poisson Regression

Concept

Description

Poisson Regression

Poisson regression is a type of generalized linear model used
to model count data. It assumes that the response variable Y
follows a Poisson distribution.

Exposure

E[yz] =F; X u
Ely;] = p; = exp(x}8)

FE; represents the exposure for the i-th observation and  is
the mean from the Poisson distribution. This adjustment is
made to account for different levels of exposure among
observations.

Logarithmic Link
Function

In(p;) = In(E;) +x;8

Partial Derivative

aE[yz] v 1
al’z’j E[yz]

:Bj

Bi represents the proportional change in the mean for a
one-unit change in Tij.

Goodness-of-Fit

General Form Pearson's Chi-Square

Statistic
>~ (observation — estimate)? n < \2
. (nj = np;)
estimate Z —_—
npj

J=1

Pearson Goodness-of-Fit

Pearson Residual Statistic
o Y s =
S/ =2
=1
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2.22 Other Count Models

Concept

Description

Drawbacks of Poisson
Regression

The Poisson regression model's simplicity can be too
restrictive due to its assumption of equidispersion (mean
equals variance).

To address this, a common adjustment is to assume
Var(y;) = ¢ui, where ¢ > 0 accounts for dispersion.

Negative Binomial
Distribution

The negative binomial distribution models the number of
successes until an experience is stopped.

Advantages of using a dependent variable that follows the
negative binomial distribution:

1. It has more flexibility due to more parameters.

2. The Poisson distribution is a special case of the
negative binomial distribution.

3. The negative binomial distribution can be derived as a
mixture of Poisson distributions with a
gamma-distributed rate parameter .

4. The negative binomial distribution allows for
straightforward estimation of features.

Zero-Inflated Models

Zero-inflated models are useful for understanding the
probability of observing zero counts as a combination of
genuine zeros from the count distribution and inflated zeros
from non-reporting.

Hurdle Models

Hurdle models offer another approach to handle datasets
with an excess number of zeros. These models are motivated
by sequential decision-making processes. For example, in
healthcare, an individual’'s decision to seek care (first hurdle)
is distinct from the amount of care received (second hurdle).

Heterogeneity Models

Heterogeneity models introduce one or more random
parameters (e.g. i, the heterogeneity component) to capture
unobserved characteristics in the model.

Latent Class Models

Latent class models aim to classify and homogenize
observations by using a discrete random variable to modify
basic count distributions. This means the classification is not
directly observed but inferred through the model.
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2.23 Generalized Linear Models

2.23.1 Definitions

Concept

Description

Generalized Linear
Model

In ordinary linear regression, the response variable and
residuals are assumed to be normally distributed with
constant variance.

Generalized linear models (GLMs) extend this framework by
allowing the response to follow any distribution in the linear
exponential family.

The linear exponential family is a class of probability
distribution functions that can be expressed in the form:

yt — b(0)
Linear Exponential f(y;0,0) =exp (T + S(y, ®)
Family
Ely] = pn=10(0) Var(y) = ¢b"(0)
For an observation i with P predictors, the systematic
Systematic component is:
Component

N = Xé@ = 21581 + Tiofe + -+ Ty

Link Function
Example

The link function is 9(*) where:
ni = g(p;) = X,

The purpose of the link function is to connect the mean of the
response variable, #i, to the linear predictor, 7.

Mean Function

The inverse of the link function, g_l(‘), is the mean function:
pi =g~ (xi8)

It is used to obtain the mean response, /i = E[yz‘], from the
linear predictor.
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2.23.2 Canonical Link Function
The canonical link function 9(°) is a specific type of link function where:

g(p) =0 = ()" ()

This relationship ensures that the linear predictor 7] is equal to the canonical parameter
0, leading to more straightforward interpretations and simpler computations.

Below are mean functions ?'(¢) and canonical link functions 9() for common
distributions in the linear exponential family:

Distribution Mean Function ©'(9) Canonical Link 9(#)
Normal 0 7
0
Bernoulli € In ( K )
1+ef 1—p

Poisson ¢! In(p)
G 1 1
amma -5 p

Inverse Gaussian (—26)"1/2 1

242

2.23.3 Linear Regression Sampling Assumptions on GLMs

Linear Regression Generalized Linear Model
Ely] = Bo + Brz1i + ... + BpTip Generalized through the link function.
{1, .-, Tip} are nonstochastic variables. Also applies to GLMs.
Var(y:) = o Se:;7;<?é)llc>:wﬁ17;<’i:t))le.
{vi} are independent random variables. Also applies to GLMs.
{v:} are normally distributed. Not required for GLMs.
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2.23.4 Variance Function

Distribution Variance Function V(1)
Normal 1
Bernoulli w(l — p)
Poisson M
2
Gamma 7!
Inverse Gaussian ,u3

2.23.5 The Tweedie Distribution

Concept Description
. The Tweedie distribution is a flexible family of probability
The Tweedie S : :
T distributions that includes several special cases such as the
Distribution : : . o
normal, Poisson, gamma, and inverse Gaussian distributions.
L[ pr
PDF fs(y) = exp (—— ( +y- +5(y, 0)
¢ \2—-p p—1
Mean E[Sn] =
Var(Sy) = ou®
The power parameter P determines the specific type of
Variance distribution where 1 < p < 2,
From the variance function table, the Tweedie distribution
can be viewed as a choice between the Poisson and gamma
distributions.
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2.24 Estimation in GLMs
2.24.1 Maximum Likelihood Estimation for Canonical Links

Concept Description
Linear Exponential -0 _ y0 — b(0)
Family (PDF) f(y;0,¢) = exp <7¢ + 5y, 9)
Linear Exponential "
Family Log-Likelihood U(B) = Z log f(yi; 6i, ¢:)
Function j
Log-Likelihood " (y(xB8) — b(x,0
Function for l(B) = Z ( L )¢- (xi5) + S(yia(bi))
Canonical Links i=1 v
- 0%l b (X B
Information Matrix I(B) = l 1 X;
B ==F 5608 Z:: ofw; -
Overdispersion occurs when the observed variability in the
response variable is greater than what is expected under the
assumed distribution of the GLM.
Overdisperson In the presence of overdispersion, the variance can be
approximated by:
Var(y;) = o?¢b" (0;) /wi
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2.24.2 Goodness-of-Fit Statistics for GLMs
Concept Description

Z(yz -9)° = Z(yz —9:)% + Z(@z —7)%+2 Z(yz = 9:)(% — )

% %

Sum of Sqrares In linear regression, the cross-product term equals zero
Example because the residuals (¥; — ¥:) are uncorrelated with the

fitted values (7). For nonlinear models, the cross-product is
rarely zero.

2 - (yi — ﬂi)z
X = AN
; ou(fii)
Pearson Chi-Square
Statistic

In nonlinear models, R? is not applicable, due to the
cross-product term (T'SS # RSS + Regression SS). The
Pearson chi-square statistic is an alternative to R*.

D(6) = 2¢ [I(saturated model) — I(fitted model)]

Deviance Statistic ] - ]
The deviance statistic measures the difference between the

Example
fitted model and the saturated model (the model with the
best possible fit).
Normal Distribution

D(i) = (4 — fu)’

Bernoulli Distribution
Deviance Statistic : 1 —
(Specific Cases) D(7) = Z [yz In (gfl—> + (1 —y)In (1 — 72)]

(3

Poisson Distribution

D(jp) =) [yz In (%) + (yi — ﬂi)]

. (2
(2
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2.24.3 Residual Analysis for GLMs

Concept

Description

Raw Residuals

In linear models, residuals are the difference between
observed responses and fitted values. For GLMs, these are
termed raw residuals and are denoted ¥i — /. Raw residuals
are not reliable for GLMs due to heteroscedasticity.

Cox-Snell Residuals

~

e; = R(yi;x;,0)

Pearson Residuals

R(ys: xi,0) = Yi T Hi

v/ Var(y;)

Anscombe Residuals

h(y:) — E[h(y;)]
Var(h(y;))

R(y;;x;,0) =

Deviance Residuals

R(ys;%x4,0) = sign(y; — ﬂi)\/Q [lﬂ f(yi; Oisar) — In f(yi; éi)}
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3. Time Series Models
(Learning Objective 3)
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3.1 Introduction to Time Series
3.1.1 Key Terms
Term Definition Example
An ordered sequence of random
Stochastic variables indexed by time or space, Evolution of a stock price
Process used to model random evolution over over time.
time.
Longitudinal Data consisting .Of repeated Blood pressure recorded
measurements over time for the same :
Data ) for patients over 10 years.
subjects.
Time Series A sequence of data points recorded at Daily temperature

regular intervals, indexed by time t.

recordings over a year.

Cross-Sectional

Data collected at a single point in

Income, education, and
occupation data from a

entities over time.

Data time across multiple subjects. survey of 1,000 individuals
at one time.
A combination of cross-sectional and Yearly income data for
Panel Data longitudinal data. Tracks multiple multiple households

tracked over 5 years.
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3.1.2 Time Series Models

Concept Description

Time series models capture and predict the behavior of
Time Series Models variables over time to identify patterns, trends, and seasonal
effects.

- Trends (1%) reflect long-term movements.

- Seasonal patterns (5t) capture periodic fluctuations.

- Irregular or random patterns (€¢) represent unpredictable
short-term changes.

—— Trend

— Seasonal
50 {{=—— Random

—— Combined

40

Time Series Components

Forecasting
Components 30

20
10

(]

Model Forms Yy =T+ S; + & yy =1, X Sy + & yp =1y X Sy X &

1. Linear trend: ¥+ = Bo + Bit + &
2. Quadratic trend: ¥+ = Bo + Bit + Bot® + ;.

Trend Examples 3. Binary trend: ¥ = Bo + B12¢ + €t where # = {0, 1},
4. Regime-switching trend: A trend that switches between two
different regimes at a specified time.
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3.2 Stationarity
3.2.1 Stationarity

Concept Definition
1. The mean £(¥t) is constant and does not depend on t.
2. The covariance C'ov(¥s, yt) depends only on the lag |t —s.
Weak Stationarity

An implication of the second point is constant variance:
Cov(ys, yi) = Var(y,) = Var(y,) = o (homoscedasticity).

Strong Stationarity

The entire distribution, and not just the mean and variance, of
Yt is constant over time.

Detecting
Stationarity

Use a control chart with an upper control limit (e.g. ¥ + 35y)
and a lower control limit (e.g. ¥ — 35y).

3.2.2 White Noise

Concept Definition
White noise:

1. Resembles a stationary series, {y:}, with no discernible
pattern over time (i.i.d. random variables with zero
mean and constant variance).

Definition Used as a benchmark for randomness.

w N

Once all systematic patterns, trends, and correlations
have been filtered out from a time series, the remaining
residuals ought to resemble white noise (verify with a

plot).

Forecast Interval for
White Noise

_ 1
yEitr_ 102571+ T
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3.2.3 Random Walk

Concept Definition
A random walk is a time series, {¥}, where each value is the
previous value plus a random step (i.e. white noise, {Ct}).
Definition The random walk is non-stationary because both the mean

and variance depend on t:
Ely] = yo + tae
Var(y,) =Var(yo+c +ca+ -+ )

Forecast Estimate

Yr41 = yr +1c

The point estimate for a forecast / lead-time units in the
future,
Yr+1 = Yr + Cry1 + Cryo + 0+ Cryy,

95% Forecast Interval
Example

yr + 16+ 25,1

Y1+ is expected to be in this interval approximately 95% of
the time.

Detecting a Random
Walk

1. Use a control chart.

2. If the series follows a random walk model, the
differenced series should follow a white noise
process.

3. Arandom walk model will exhibit a higher standard
deviation in the original series than in the differenced
series.
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3.3 Forecast Evaluation
3.3.1 Out-of-Sample Validation Process

Step Description

Split the sample of size T" into two subsamples:
1. Divide the Sample - Model Development Subsample: t = 1,..., T}
- Model Validation Subsample: t =11 +1,...,T1 + 15

Using the model development subsample (t = 1, ..., 1Y),

2. Fitthe Model fit a candidate model to the dataset.

With the model from Step 2 and the dependent variables
3. Forecast up to and including ¢ — 1, forecast the dependent variable
Yfort=T1+1,....,Th + 715

Use actual observations and the fitted values from Step 3
to compute one-step forecast residuals (¢t = Y+ — Ut) for
the model validation subsample. Summarize these
residuals with comparison statistics.

4. Compute Residuals

Repeat Steps 2 through 4 for each candidate model.
5. Choose a Model Choose the model with the smallest set of comparison
statistics.
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3.3.2 Statistics for Comparing Forecasts

Example

Statistic Formula
1 Th+T»
ME = — e
Mean Error (ME) T, Z !
t=T1+1

Measures recent trends not anticipated by the model.

Mean Percentage Error
(MPE)
Example

Th+T>

1
vpE — 20 3 &
2 Yt

Measures error relative to the actual value, indicating trends.

Mean Square Error
(MSE)
Example

1 T1+T»
MSE=— Y ¢

2 t=T1+1

Detects more patterns than ME.

Mean Absolute Error
(MAE)
Example

1 T +1T%
MAE:E Z ey
t=T1+1

Detects more patterns than ME, with units same as the
dependent variable.

Mean Absolute
Percentage Error
(MAPE)

Example

100 1Lt

MAPE = — Z

2

€t

Yt

t=T1+1

Similar to MAE, MAPE detects more than trend patterns.
Similar to MPE, MAPE examines error relative to the actual
value.
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3.4 Autoregressive Models

3.4.1 Autocorrelation

Concept

Definition

Definition

Autocorrelation is a measure of how much a time series is
linearly correlated with a lagged version of itself.

T
Correlation Statistic _ 1 = =
(1) " T Ty 2 D
Lag-1 Autocorrelation — Zthz(yt_1 — )y — 9)
() D SN
Example -
Lag-k Autocorrelation _— Zz:k+1(yt—k )
(Tk) k= T 2
Example 218~ 9)

Interpretation of 7k

- Positive autocorrelation: a high value at time t implies
high value at time t + k

- Negative autocorrelation: a high value at time ¢
implies a low value at time ¢ + k, indicating a
mean-reverting behavior

- Zero autocorrelation: implies no linear relationship
between the values of the series at different times,
suggesting that the series behaves like white noise
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3.4.2 AR(1) Model

Autoregressive Model

Concept Definition
An order 1 autoregressive model (AR(l)) is a time series
Order 1 process that depends linearly on the immediately preceding

value plus random noise.

Y = Bo+ Pryi—1 + €, t=2 T

PECEEEE

51 must lie strictly between-1and 1 (=1 < 51 < 1)to

Stationarit
y ensure that the AR(1) model is stationary.
Case: B1 = 1 The model simplest to a random walk:
ase. i Y — Y1 = Bo + &
. The model reduces to a white noise process:
Case: 51 =0

Y = Po+ €

Lag-k Autocorrelation
Function
(Pk)

Cov (Y, Yi—r) Cov (s, Yi—r)
= Corr(ys, Yi—k) = —
. (86814 v/ Var(y;) Var (y;—r,) oy

P =0 when f1 = 0 (white noise)

Fitting a Model

Match observed autocorrelations, 7k, with theoretical
expectations, Pk, to determine if an autoregressive model is a
good fit.

Conditional Least
Squares Estimates

Bl ~ r, and Bo ~y(l—m)

Residuals

€t = Yp — (Bo + Blyt—l)

Variance

oy(1 - ;) =0’

Mean Squared Error
Example

1 T
2 _ —\2
° _T—3Z(€t_€)

t=2

Smoothed Series

Y = Bo + P1ye—1
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K—Step Ahead /y\T—Hc = BO + Blg//\T—l—k—l

Forecast and Forecast
R A N 52(k—1
Interval yT+k;l:ta/2-s\/1+ﬁ%+ﬂf+---+ﬁf( )
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3.5 Smoothing

Concept Definition
. Smoothing techniques are used to reduce noise and better
Smoothing : . : .
reveal the underlying trend in a time series.
. + Y1+ Y . — Y
§ = Yt T Yt—1 . Yi—kt1 _ 8,1 + Yt kyt k

Moving Average
(Running Average)

The adjustment term accounts for a new data point entering the
average and an old data point leaving the average.

Consider the Model
Yy = Bo+ Pit + €

Smoothed Series Trend Estimate
Double Smoothing O L o Yk A 2(8%) — 3y
Example k Prr = E_ 1
Doubly Smoothed Series

§(1) I 5(1) Forecast
§§2) — ¢ z kil Yr+1 = 57 + Bl

T
WSSr(b, ., bp) = Y wi (ye — (b + Uz + -+ + Dpaw))”

Weighted Least t=1

Squares (WLS)

A generalization of ordinary least squares that accounts for
variability in the observations.

Yp — 811
One-Step
Prediction Error A measure of how well a forecasting model predicts the next
observation.
S fS d a
um of Square _ 3
One-Step tz_; v 1)
Prediction Errors B
Example

Used to select the optimal smoothing parameter, w.
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3.6 Exponential Smoothing

Concept Definition
. Exponential smoothing builds on simple moving averages by
Definition . )
assuming that the most recent observations are more relevant.
o =& + wye—1 + ...+ Wy +wlyo
e
1/(1 —
Formula /(1= w)

§t = §t—1 + (1 — w)(yt — §t—1> = (1 — w)yt -+ w§t_1

Double Exponential
Smoothing

Example

Consider a model with a trend component;
T, = By + Bt

Smoothed Series

(1) a(

St

Doubly Smoothed Series

§(2) _

;=

(1-— w)§§1) + wés

= (1 —w)y + w5,

1)
1

A

(2)

t—1

Intercept Estimate
A (1 (2
or =23 = &

Trend Estimate

w2
1,7 = " (ST ST)
Forecast

Yr1 = BO,T + Bl,Tl
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3.7 Seasonal Adjustments

Concept

Definition

Definition

Seasonal time series models capture patterns that repeat over
fixed intervals of time (e.g. yearly cycles).

Seasonal Base

The seasonal base is the period over which a seasonal pattern
repeats itself (e.g. for monthly data exhibiting yearly seasonality,

(SB) the seasonal base is 12 months).
S = Z (a;sin(fit +b;)) = Z (B1i sin(fit) + B2 cos(fit))
Seasonal =1 =1
Component :
f = 21
" SB
. Yy =Po+ S+ e =Po+ Z (Buisin(fit) + Ba; cos(fit)) + e
Regression p—
Formula
Run multiple linear regression with P = 2m variables.
Seasonal Seasonal autoregressive models (SAR models) extend the
Autoregressive autoregressive model by only incorporating lagged values at
Model seasonal periods.
Ve = Bo + BrYi—sB + BoYi—2s8 + -+ + BpYi—psp + &
SAR(P) e.g. SAR(1), SB=12 (monthly data with yearly seasonality):
Yr = Bo + Biyi—12 + &
The Holt-Winters seasonal additive model is an exponential
smoothing model that accounts for level, trend, and seasonality,
Holt-Winters using weighted averages, W1, W2, W3, that update over time.
Seasonal Additive
Model Yy =B+ Oit + S+ €&

Yr41 = bor + b1l + §T(l)
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3.8 Unit Root Test

Concept Definition
A unit root is a characteristic of a time series that
Definition indicates that the series is non-stationary. A unit root test

is used to determine the presence of a unit root.

Consider the Time Series Model

Yo = o + O(Ye—1 — po) + (@ + (1 — 9)t) + &

Parameters

Ho: intercept term
H1:time trend
¢: autoregressive parameter
€¢: error term

Special Cases

Random Walk (¢ = 1)
Ye = p1 + Y1 + &

AR(1) (¢ < 1l and 11 = 0)
Yy = Bo + oY1 + €&

Linear Trend (¢ = 0)
Y = po + pat + €

Dickey-Fuller Test

The Dickey-Fuller (DF) test is a t-test used to determine
whether a time series has a unit root.

Running a regression model where Yt is potentially a
random walk can be problematic due to non-stationarity.

Instead, use least squares on the differenced model:
Ye— Y1 = Po+ (@ —Dye1 + Bit + &

Hy : ¢ =1 (unit root / random walk)
H,:p<1

Augmented Dickey-Fuller
Test

The DF test assumes the errors are not autocorrelated. To
address this, the augmented Dickey-Fuller test includes
lagged differences on the right hand side of the equation

to account for autocorrelation in the error terms:

> 6w — )
j=1
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3.9 ARCH and GARCH Models

Concept Definition

Volatility clustering in time series occurs when periods of high
volatility are followed by more high volatility, and periods of low
Definition volatility are followed by more low volatility.

ARCH and GARCH models address changing variance over time.

Variance. o} = Vari (@) = El(er — Blalf1)) |04
ARCH (p) ol =w+ i€ |+ Yol 5+ ...+ fypeffp = w +vy(B)e
ARCH(1) ol =w+ Y€,

P q
2 _ 2 2
o, =W+ E Yi€r_; + g 0j0;_;

i=1 j=1

The GARCH model captures both short-term and long-term
patterns in volatility.

GARCH (p,q)
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4. Decision Trees
(Learning Objective 4)
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4.1 Introduction to Decision Trees

Concept Description

Decision Node

An internal node that splits into two or more branches.
(Internal Node)

Leaf Node The final output node that doesn’t split further and contains the
(Terminal Node) class label or the continuous value.

Branch A connection between nodes representing the outcome of a
(Edge) test at a decision node.

4.2 Regression Trees

Concept Description

A regression tree is a type of decision tree used for predicting

Definition : .
(continuous) numerical values.

1. Divide the predictor space of X1; X2, .-, X} into J
distinct boxes (or regions) 1, Ra, ..., Ry,

Building a 2. For every observation within region %j, the regression
Regression Tree tree makes the same prediction. This prediction is
typically the mean of the response values, YR;, for the
training observations in £

Select the regions to minimize the RSS:

RSS =3 > (yi—9r,)°

Goal j=1i€R;

Minimizing the RSS finds the optimal splits that reduce the
within-region variance.
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4.3 Recursive Binary Splitting
Concept Description

Recursive binary splitting is a process used to create a
Definition regression tree, without having to evaluate every possible way to
partition the feature space into Jboxes.

1. Begin with the entire predictor space and progressively
split it into smaller and smaller regions.

. At each step, make the best possible split based on a
criterion, such as minimizing RSS.

3. Apply the process recursively to each sub-region.

Approach 2
Summary

1. For each Xj, evaluate different potential cutpoints s. For
a given J and s, partition the data into two regions:
Rl(ja S) and R2<j7 S).

2. Calculate the RSS for this split as:

~ 2 N 2
Approach Detail Z (v = Ur,)” + Z (Yi — Urs)

i:x;€R1(4,5) i:x; € Ra(],s)

Identify the pair (J, 5) that results in the smallest RSS and

split the dataset into regions £21(J; $) and £2(J, s).
3. Apply the same process recursively to each resulting
region until a stopping criterion is met.

Binary splitting can lead to overfitting, due to using potentially

Overfitting small nodes with few data points.

Pruning can mitigate the risk of overfitting.
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4.4 Pruning

Concept

Description

Definition

Cost complexity pruning (weakest link pruning) involves
removing leaves of a decision tree to prevent overfitting to
training data and improve generalization to test data.

The primary goal of pruning is to select a subtree that minimizes
the test error to strike a better balance between bias and
variance.

Approach

—_—

Use recursive binary splitting to grow a full decision tree
To using training data.
2. For various tuning parameters, «, create subtrees 7' such

that:
T

Z Z — Jr,,)} + T

m=1i:x;ERm

3. Select the optimal value of a using K-fold
cross-validation by minimizing the average MSE across
the K folds.

4. The subtree in step 2 with the optimal « is the pruned
tree that balances complexity and performance.

Selecting «

The tuning parameter « acts as a regularization term that
balances the trade-off between the complexity of the tree and its
fit to the training data.

When o = 0, the criterion reduces to the SSE. This often leads
to overfitting because the tree will have many leaves, each
potentially capturing noise in the data.

- When « is large, the term a|T| becomes significant. This
encourages smaller, simpler trees. If a is very large, the pruning
process might remove many branches, potentially leading to
underfitting.

Find an « that provides a good balance between the SSE and
the complexity penalty by minimizing the average
cross-validated MSE (step 3).
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4.5 Classification Trees

Concept

Description

Building a
Classification Tree

A classification tree is also constructed by recursively splitting
the data into subsets based on feature values. Each split is
chosen to maximize the most commonly occurring class.

Node Purity

Node purity measures how similar the response values are
within a node.

Classification Error

A simple measure of node impurity, indicating the proportion of
observations that do not belong to the most commonly
occurring class.

Rate E =1—max(pmx)
Example k
where Pk is the proportion of observations in region m that
belong to class k.
K
Gini Index G = Dk (1 = Pk
Example k=1
where Pk is defined above and K is the number of classes.
K
Entropy D == pmilog(pms)
(Cross-Entropy) k=1
Example where Pmk is defined above and K is the number of classes.
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4.6 Trees vs Linear Models

non-experts

Concept Regression Trees Linear Regression Models
M p
Model Form f(X) = Z Cm * L(XeRm) J(X) =B+ Z X5
m=1 Jj=1
Easier to explain and . .
Explainability understand, even by More difficult to explain and

understand

Decision-Making

Mirrors human
decision-making process

Does not mirror human
decision-making process

Qualitative Data

Does not require dummy
variables

Requires dummy variables

Predictive Accuracy

Lower

Higher

Changes in Data

Small changes can lead to
significant changes in the tree
structure

More robust to changes in
data
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4.7 Bagging

Concept Description
Bagging (bootstrap aggregation) reduces the high variance
Definition of decision trees by averaging predictions from multiple

models trained on bootstrapped datasets.

Bootstrap Method

Involves sampling with replacement from a single dataset to
create multiple bootstrapped training sets.

Original Training Set

1,2,3,4,56,7,8,9
Bootstrap 3

Bootstrap 2
2,4,6,8,55,7,1,9 7,3,1,4,9,2,6,8,5

Bootstrap 1
3,56,3,2,8,1,7,4

Average Predictions

Using population data:
1 B
favg(x) = E Z fb(x)
b=1
Using bootstrapped data:

£ 1 = rxb
fonsl2) = 5 3 F(x)
b=1

Regression Trees

Build B unpruned regression trees from B bootstrapped
training sets and average their predictions.

Each tree has high variance, but low bias. Averaging the
trees reduces the high variance while maintaining low bias.

Classification Trees

Use majority vote (most common class) among B
predictions to determine the predicted class.

Out-of-Bag (OOB)

Fit the model with 2/3 of data; remaining 1/3 (OOB) used for
testing. For large B, the OOB error is comparable to the
LOOCYV error and more computationally efficient than CV.
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4.8 Random Forests

Bagging grows multiple decision trees using bootstrap samples and considers all
predictors, P, at each split. This often leads to highly correlated trees, especially when
strong predictors are in the dataset. As a result, the variance reduction from averaging
is limited.

Random forests solve this by adding randomness. At each split, only a random subset

of predictors (" < p, typically 7 ~ \/1_7) is considered. This prevents strong predictors
from dominating every tree, leading to more decorrelated trees. When " = P, random
forests are equivalent to bagging.

The selection of m is crucial for balancing bias and variance in the model. A smaller m
is useful when a large number of predictors are correlated. Random forests (7 < p)
typically lead to a slight improvement over bagging (¢ = P). Similar to bagging, a large
number of trees B will not lead to overfitting.
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4.9 Boosting

Concept Description
Boosting builds models sequentially, leveraging the information
Definition from previously constructed models to correct the errors of its
predecessors.
1. Set the initial prediction function f(@) =0 and the
residuals i = Yi for all training data points :.
2. Forb=1,2,..., B repeat the following steps:
- Fitaregression tree f* with d splits (resulting in
d + 1 terminal nodes) to the training data (X,7).
_ - Update the prediction function by adding a
Algorithm shrunken version of the new tree:

f(x)  fla) + Af*(x)

- Update the residuals: 7i <~ i — Af ()
3. The final boosted model is given by:

fla) =Y Mf(x)

Number of Trees
(B)

Unlike bagging and random forests, boosting can overfit if the
number of trees B is too large, though this overfitting occurs
slowly. Use cross-validation to select the optimal value for B.

Shrinkage
Parameter (\)

The shrinkage parameter (learning rate), A € [0, 1], ensures that
the model learns slowly and avoids overfitting. Typical values are
0.071 or 0.001. A very small A can necessitate a larger B to
achieve good performance.

Interaction Depth

(d)

The interaction depth controls the complexity of each tree in the
boosted ensemble. Often, d = 1 works well, making each tree a
stump with a single split.

Performance

When evaluating the test error as a function of the total number
of trees and the interaction depth d, we observe the following:

- Stumps (d = 1) perform well if a sufficient number of them
are used.

- The model with stumps outperforms the model with trees of
depth two (d = 2).

- Both models outperform a random forest.

| The Actuarial Nexus | All Rights Reserved | © 2025 | Page 91 |



https://www.theactuarialnexus.com/

5. Unsupervised Learning Techniques
(Learning Objective 5)
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5.1 Introduction to Unsupervised Learning

Concept

Definition

Unsupervised Learning

Unsupervised learning is a type of learning algorithm that

focuses solely on the features X1, X2, - - -, Xp without
considering the response variable, Y.

The goal is to uncover patterns, groupings, or structure in
the data without predefined labels.

Principal Component
Analysis

Principal component analysis (PCA) is a dimensionality
reduction method that transforms a large set of variables
into a smaller one that still contains most of the original
data's information.

K-Means Clustering

K-means clustering partitions the data into a predefined
number of clusters by minimizing the variance within each
cluster.

Hierarchical Clustering

Hierarchical clustering builds a tree-like structure of
clusters by iteratively merging or splitting clusters based on
their similarities.
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5.2 Principal Components Regression
5.2.1 Linear Combinations of Predictors

Concept

Description

Original Predictors

X1, Xo, ..., X,

Linear Combination

21, 2oy L where M < p

p
Zim = Z PimX;
=1

Selecting Djm

Principal Component Analysis or Partial Least Squares

Regression Model

M
Yi = ‘90 + Z‘gmzim + €

m=1

Goal

Reduce P + 1 coefficients (50; - - -5 Bp) to M + 1

coefficients (%o, - - -, 0r)
M p M
Z OmZim = Z BjTij B = Z Om®im
m=1 Jj=1 m=1

Bias-Variance Tradeoff

Reducing M, where M < P, introduces bias but
significantly reduces variance.

| The Actuarial Nexus | All Rights Reserved | © 2025 | Page 94 |



https://www.theactuarialnexus.com/

5.2.2 Principal Components Regression

Concept Description
Principal components regression combines principal
Definition component analysis with linear regression by using principal
components as predictors.
1. PCA applied to the predictors X1, Xp to reduce
dimensionality (unsupervised)
Steps
2. Regression on selected principal components
Z, ---s Zm (supervised)
. Directions with greatest variance in predictors are most
Assumption

associated with the response Y.

Dimensionality
Reduction

Uses only the first M principal components where M < p to
reduce overfitting and improve generalization.

Bias-Variance Tradeoff

Bias decreases and variance increases as more principal
components are included.

Performance

PCR performs well when few principal components are
needed. Many components can lead to overfitting.

5.2.3 Partial Least Squares

In PCR, the response Y is not used to determine the principal component directions, so
there is no guarantee that the directions explaining the predictors will also be effective
for predicting the response. Partial least squares (PLS) is a supervised method that
aims to overcome this limitation by incorporating the response variable in the
identification of new feature directions. In practice, PLS does not perform much better
than ridge regression or PCR. PLS can reduce bias at the cost of increased variance.
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5.3 Principal Component Analysis

5.3.1 Definitions

Concept Description
Principal component analysis (PCA) transforms the
Definition original variables into a new set of uncorrelated variables,

called principal components, ordered by the amount of
variance they explain in the data.

Original Features

X1, Xo, ... X,

The m-th Principal
Component (PC)
(Zm)

p
Zm = Z ¢ijj = ¢1mX1 + ¢2mX2 4+ gbmep
j=1

Loading Vector

(bm - <¢1m7 ¢2m7 L) ¢pm)T

Pjm reflects the weight of the original feature X in
forming the principal component Zm where:

(Prm)
p
> -
Jj=1
p
Zim = Z QimTij = P1mTi1 + QamTiz + -+ + OpmTip

Score j=1
(%im)

The scores are the values of the principal components for
each observation in the dataset.
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5.3.2 Methodology
The goal of PCA is to choose the loading vectors @ that maximize the variance of the
principal components Zm.

Consider the optimization problem for finding the first principal component (m = 1):

2
1 b P
max — 1T subject to 2 =1
D11,921,-,Pp1 | T Z <]21 (/)Jl ”) J Z gbﬂ

n
i=1 j=1

Once Z1 has been determined, the second principal component, Z2, is the linear
combination of X1, - - -» Xp that has the maximum variance while being uncorrelated
with Z1.

Visually, Z1 is the vector that defines the line that is as close as possible to the data. In
a two-dimensional example (P = 2), once the loading vector @1 is found, there is only
one possible direction (up to a sign flip) for %3, which is orthogonal to ®:1.

First and Second Principal Components

EEm First Principal Component
mmm Second Principal Component
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In higher-dimensional datasets (? > 2), multiple principal components can be
identified, each being orthogonal to all previously determined components.

Once the principal components are computed, they can be used to create a biplot,
displaying both the scores of observations and the loadings of variables in a
reduced-dimensional space.

Biplot of Principal Components

o
o
[=
9]
c
o
a
=
5]
O
©
=
o
c
=
o

0
Principal Component 1
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5.3.3 Proportion of Variance Explained

Concept Description
The proportion of variance explained (PVE) measures
Definition how much of the total data variance is captured by each

principal component.

Total Variance

Z\/ar Z Zz:x”

For simpI|C|ty, assume the varlables have mean zero.

Variance of the m-th PC

1 — Ry i
- > 2, = " >, (Z ¢jml’z’j>
i=1 i=1 \j=1

PVE of the m-th PC

2
n p
sz Y (X0 fmy)

2 n .92 P n 9
j=1 D et L3 j=1 D i1 Ly

PVE as R’
Approximation for X

2
?:1 D ict (xij - Zﬁz] 1 ZZm¢Jm) _y RSS
=1 2i1 T B TSS

=1

Scree Plot
Example

A scree plot visualizes the PVE for each PC. Look for an
elbow point where the explained variance drops
significantly to determine the number of PCs for the
model.
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5.4 K-Means Clustering

5.4.1 Definitions

Concept

Description

Goal

Given a set of observations {%1, %2, .., Zn} where each
observation is a P-dimensional vector, K-means clustering
aims to partition the n observations into K pre-determined
clusters, C1,Ca, ..., Ck .

Properties

Every observation belongs to one and only one cluster.
Cl U CQ U...u Ck == {1, 2, ,’I?,}

The clusters are non-overlapping.
C’kﬂCk/:Q) for aHk:;«ék:’

Euclidean Distance

Euclidean distance is the straight-line distance between two
points, calculated as:

d=/(x2—21)2 + (Y2 — 91)?

Within-Cluster Variation
Example

W(C) = ﬁ D> (@i — i)

1,i’€C j=1

The most common choice for this measure is the squared
Euclidean distance, d°.

Optimization Goal

K K P
. : 1 9
omin { E W(Ck)} = min {,;1 Gl E E (zij — xir5) }

""""" i,i'€Cy, j=1

Local Minimum

The final solution may be a local minimum rather than a
global minimum.

The algorithm is often run multiple times, and the solution
with the lowest within-cluster variation is selected.

Handling Outliers

Clustering algorithms may not be suitable when a small
subset of observations are significantly different from the
rest. Mixture models offer a more flexible approach for
handling outliers.
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5.4.2 K-Means Clustering Algorithm

Step Description

e Randomly assign a number from 1 to K to each
1. Initialization DTN L .
observation, indicating the initial cluster assignment.

Repeat the following steps until the cluster assignments
stop changing:
. a. For each of the K clusters, compute the cluster
2. Iteration :
centroid. Example.

b. Assign each observation to the cluster whose centroid
is closest, based on Euclidean distance. Example.

5.4.3 Algorithm Visual Example

Initial Data Points (Unassigned) Step 1: Random Initial Assignment Iteration 1, Step 2a: Compute Initial Centroids

14
o

Feature 2
o
'S
Feature 2
Feature 2
o
'S

(X0) 0.2 0.4 0.6 0.8 1.0 0.0 0.2

B 0.4 H 0.8 1.0 0.0 0.2 0.4
Feature 1 Feature 1

Iteration 2, Step 2a: Compute New Centroids

Feature 1

Iteration 2, Step 2b: Assign Points to Nearest Centroid

Iteration 1, Step 2b: Assign Points to Nearest Centroid

0.6

Feature 2
Feature 2
Feature 2

o
rS

0.4 0.6 I h 0.4 y J ! ¥ 0.4
Feature 1 Feature 1 Feature 1

| The Actuarial Nexus | All Rights Reserved | © 2025 | Page 101 |



https://www.theactuarialnexus.com/questions/examSRM/f5XZmY3e4jKOaZkvbxb9/question
https://www.theactuarialnexus.com/questions/examSRM/bKAUAnAb7bk4nz3Cwtaq/question
https://www.theactuarialnexus.com/

5.5 Hierarchical Clustering

5.5.1 Definitions

Concept

Description

Hierarchical
Clustering

Hierarchical clustering produces a dendrogram to show cluster
arrangements and merging order. Unlike k-means clustering,
hierarchical clustering does not require the number of clusters
to be specified in advance.

Dendrogram

A dendrogram is a tree-like diagram that shows the sequences

of merges. Each leaf node represents a single observation, and

each internal node represents a cluster formed by merging two
clusters.

Node Height

The height of the nodes in the dendrogram indicates the level of
dissimilarity (or distance) at which clusters are merged.

The most common dissimilarity measure is Euclidean distance.

Agglomerative
Clustering

Agglomerative (bottom-up) clustering is the most common
type of hierarchical clustering, starting with each observation as
its own cluster and merging (fusing) the most similar clusters
step-by-step.
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5.5.2 Hierarchical Clustering Algorithm

Step Description

Start with n observations, each as its own cluster. Compute all

1. Initialization pairwise dissimilarities between the observations.

Fori:n,n—l,...,Q

a. Identify closest clusters: Examine pairwise intercluster
dissimilarities among the : clusters and identify the two clusters
with the smallest dissimilarity. Fuse them.

b. Update dissimilarities: Update the pairwise dissimilarities
among the remaining 7 — 1 clusters.

2. lteration

5.5.3 Calculating Dissimilarity - Linkage Methods

Concept Linkage Method Characteristics
Complete | Maximum intercluster dissimilarity. Produces compact clusters;
Linkage Example. sensitive to outliers.
Single Minimal intercluster dissimilarity. Can produce elongated or
Linkage Example. chained clusters; less compact.
Average Mean intercluster dissimilarity. Balanced clusters; less sensitive
Linkage Example. to outliers.
Can produce inversions, where
Centroid Dissimilarity between the centroids | clusters are fused below either of
Linkage of the clusters. Example. the individual clusters in the
dendrogram.

Intercluster dissimilarity measures how different two clusters are, using the maximum,
minimum, or average pairwise distance between observations depending on the linkage
method (complete, single, or average, respectively).
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5.5.4 Visual Example
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The second image shows the resulting dendrogram from a hierarchical clustering
algorithm on the data set from the first image.
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