
M A N N I N G

Chris Richardson

List of Patterns

Application architecture patterns

Monolithic architecture (40)
Microservice architecture (40)

Decomposition patterns

Decompose by business capability (51)
Decompose by subdomain (54)

Messaging style patterns

Messaging (85)
Remote procedure invocation (72)

Reliable communications patterns

Circuit breaker (78)

Service discovery patterns

3rd party registration (85)
Client-side discovery (83)
Self-registration (82)
Server-side discovery (85)

Transactional messaging patterns

Polling publisher (98)
Transaction log tailing (99)
Transactional outbox (98)

Data consistency patterns

Saga (114)

Business logic design patterns

Aggregate (150)
Domain event (160)
Domain model (150)
Event sourcing (184)
Transaction script (149)

Querying patterns

API composition (223)
Command query responsibility segregation
(228)

External API patterns

API gateway (259)
Backends for frontends (265)

Testing patterns

Consumer-driven contract test (302)
Consumer-side contract test (303)
Service component test (335)

Security patterns

Access token (354)

Cross-cutting concerns patterns

Externalized configuration (361)
Microservice chassis (379)

Observability patterns

Application metrics (373)
Audit logging (377)
Distributed tracing (370)
Exception tracking (376)
Health check API (366)
Log aggregation (368)

Deployment patterns

Deploy a service as a container (393)
Deploy a service as a VM (390)
Language-specific packaging format (387)
Service mesh (380)
Serverless deployment (416)
Sidecar (410)

Refactoring to microservices patterns

Anti-corruption layer (447)
Strangler application (432)

Microservices Patterns

Microservices Patterns
WITH EXAMPLES IN JAVA

CHRIS RICHARDSON

M A N N I N G
SHELTER ISLAND

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2019 by Chris Richardson. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co. Development editor: Marina Michaels
20 Baldwin Road Technical development editor: Christian Mennerich
PO Box 761 Review editor: Aleksandar Dragosavljević
Shelter Island, NY 11964 Project editor: Lori Weidert

Copy editor: Corbin Collins
Proofreader: Alyson Brener

Technical proofreader: Andy Miles
Typesetter: Dennis Dalinnik

Cover designer: Marija Tudor

ISBN: 9781617294549
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – DP – 23 22 21 20 19 18

www.manning.com

 Where you see wrong or inequality or injustice, speak out, because this is your country.
This is your democracy. Make it. Protect it. Pass it on.

 — Thurgood Marshall, Justice of the Supreme Court

brief contents
1 ■ Escaping monolithic hell 1

2 ■ Decomposition strategies 33

3 ■ Interprocess communication in a microservice
architecture 65

4 ■ Managing transactions with sagas 110

5 ■ Designing business logic in a microservice
architecture 146

6 ■ Developing business logic with event sourcing 183

7 ■ Implementing queries in a microservice architecture 220

8 ■ External API patterns 253

9 ■ Testing microservices: Part 1 292

10 ■ Testing microservices: Part 2 318

11 ■ Developing production-ready services 348

12 ■ Deploying microservices 383

13 ■ Refactoring to microservices 428
vii

contents
preface xvii
acknowledgments xx
about this book xxii
about the cover illustration xxvi

1 Escaping monolithic hell 1

1.1 The slow march toward monolithic hell 2
The architecture of the FTGO application 3 ■ The benefits of the
monolithic architecture 4 ■ Living in monolithic hell 4

1.2 Why this book is relevant to you 7
1.3 What you’ll learn in this book 7
1.4 Microservice architecture to the rescue 8

Scale cube and microservices 8 ■ Microservices as a form of
modularity 11 ■ Each service has its own database 12
The FTGO microservice architecture 12 ■ Comparing the
microservice architecture and SOA 13

1.5 Benefits and drawbacks of the microservice
architecture 14
Benefits of the microservice architecture 14 ■ Drawbacks of the
microservice architecture 17
ix

CONTENTSx
1.6 The Microservice architecture pattern language 19
Microservice architecture is not a silver bullet 19 ■ Patterns and
pattern languages 20 ■ Overview of the Microservice architecture
pattern language 23

1.7 Beyond microservices: Process and organization 29
Software development and delivery organization 29 ■ Software
development and delivery process 30 ■ The human side of
adopting microservices 31

2 Decomposition strategies 33
2.1 What is the microservice architecture exactly? 34

What is software architecture and why does it matter? 34
Overview of architectural styles 37 ■ The microservice architecture
is an architectural style 40

2.2 Defining an application’s microservice architecture 44
Identifying the system operations 45 ■ Defining services by
applying the Decompose by business capability pattern 51
Defining services by applying the Decompose by sub-domain
pattern 54 ■ Decomposition guidelines 56 ■ Obstacles to
decomposing an application into services 57 ■ Defining service
APIs 61

3 Interprocess communication in a microservice architecture 65
3.1 Overview of interprocess communication in a microservice

architecture 66
Interaction styles 67 ■ Defining APIs in a microservice
architecture 68 ■ Evolving APIs 69 ■ Message formats 71

3.2 Communicating using the synchronous Remote
procedure invocation pattern 72
Using REST 73 ■ Using gRPC 76 ■ Handling partial failure
using the Circuit breaker pattern 77 ■ Using service discovery 80

3.3 Communicating using the Asynchronous messaging
pattern 85
Overview of messaging 86 ■ Implementing the interaction styles
using messaging 87 ■ Creating an API specification for a
messaging-based service API 89 ■ Using a message broker 90
Competing receivers and message ordering 94 ■ Handling
duplicate messages 95 ■ Transactional messaging 97
Libraries and frameworks for messaging 100

CONTENTS xi
3.4 Using asynchronous messaging to improve
availability 103
Synchronous communication reduces availability 103
Eliminating synchronous interaction 104

4 Managing transactions with sagas 110

4.1 Transaction management in a microservice
architecture 111
The need for distributed transactions in a microservice
architecture 112 ■ The trouble with distributed
transactions 112 ■ Using the Saga pattern to maintain
data consistency 114

4.2 Coordinating sagas 117
Choreography-based sagas 118 ■ Orchestration-based sagas 121

4.3 Handling the lack of isolation 126
Overview of anomalies 127 ■ Countermeasures for handling the
lack of isolation 128

4.4 The design of the Order Service and
the Create Order Saga 132
The OrderService class 133 ■ The implementation of the Create
Order Saga 135 ■ The OrderCommandHandlers class 142
The OrderServiceConfiguration class 143

5 Designing business logic in a microservice architecture 146

5.1 Business logic organization patterns 147
Designing business logic using the Transaction script pattern 149
Designing business logic using the Domain model pattern 150
About Domain-driven design 151

5.2 Designing a domain model using the
DDD aggregate pattern 152
The problem with fuzzy boundaries 153 ■ Aggregates have
explicit boundaries 154 ■ Aggregate rules 155 ■ Aggregate
granularity 158 ■ Designing business logic with aggregates 159

5.3 Publishing domain events 160
Why publish change events? 160 ■ What is a domain
event? 161 ■ Event enrichment 161 ■ Identifying domain
events 162 ■ Generating and publishing domain events 164
Consuming domain events 167

CONTENTSxii
5.4 Kitchen Service business logic 168
The Ticket aggregate 169

5.5 Order Service business logic 173
The Order Aggregate 175 ■ The OrderService class 180

6 Developing business logic with event sourcing 183
6.1 Developing business logic using event sourcing 184

The trouble with traditional persistence 185 ■ Overview of event
sourcing 186 ■ Handling concurrent updates using optimistic
locking 193 ■ Event sourcing and publishing events 194
Using snapshots to improve performance 195 ■ Idempotent
message processing 197 ■ Evolving domain events 198
Benefits of event sourcing 199 ■ Drawbacks of event
sourcing 200

6.2 Implementing an event store 202
How the Eventuate Local event store works 203 ■ The Eventuate
client framework for Java 205

6.3 Using sagas and event sourcing together 209
Implementing choreography-based sagas using event sourcing 210
Creating an orchestration-based saga 211 ■ Implementing an
event sourcing-based saga participant 213 ■ Implementing saga
orchestrators using event sourcing 216

7 Implementing queries in a microservice architecture 220
7.1 Querying using the API composition pattern 221

The findOrder() query operation 221 ■ Overview of the API
composition pattern 222 ■ Implementing the findOrder() query
operation using the API composition pattern 224 ■ API
composition design issues 225 ■ The benefits and drawbacks
of the API composition pattern 227

7.2 Using the CQRS pattern 228
Motivations for using CQRS 229 ■ Overview of CQRS 232
The benefits of CQRS 235 ■ The drawbacks of CQRS 236

7.3 Designing CQRS views 236
Choosing a view datastore 237 ■ Data access module design 239
Adding and updating CQRS views 241

7.4 Implementing a CQRS view with AWS DynamoDB 242
The OrderHistoryEventHandlers module 243
Data modeling and query design with DynamoDB 244
The OrderHistoryDaoDynamoDb class 249

CONTENTS xiii
8 External API patterns 253

8.1 External API design issues 254
API design issues for the FTGO mobile client 255 ■ API design
issues for other kinds of clients 258

8.2 The API gateway pattern 259
Overview of the API gateway pattern 259 ■ Benefits and
drawbacks of an API gateway 267 ■ Netflix as an example
of an API gateway 267 ■ API gateway design issues 268

8.3 Implementing an API gateway 271
Using an off-the-shelf API gateway product/service 271
Developing your own API gateway 273 ■ Implementing an
API gateway using GraphQL 279

9 Testing microservices: Part 1 292

9.1 Testing strategies for microservice architectures 294
Overview of testing 294 ■ The challenge of testing
microservices 299 ■ The deployment pipeline 305

9.2 Writing unit tests for a service 307
Developing unit tests for entities 309 ■ Writing unit tests for value
objects 310 ■ Developing unit tests for sagas 310 ■ Writing
unit tests for domain services 312 ■ Developing unit tests for
controllers 313 ■ Writing unit tests for event and message
handlers 315

10 Testing microservices: Part 2 318

10.1 Writing integration tests 319
Persistence integration tests 321 ■ Integration testing REST-based
request/response style interactions 322 ■ Integration testing
publish/subscribe-style interactions 326 ■ Integration contract
tests for asynchronous request/response interactions 330

10.2 Developing component tests 335
Defining acceptance tests 336 ■ Writing acceptance tests using
Gherkin 337 ■ Designing component tests 339 ■ Writing
component tests for the FTGO Order Service 340

10.3 Writing end-to-end tests 345
Designing end-to-end tests 345 ■ Writing end-to-end tests 346
Running end-to-end tests 346

CONTENTSxiv
11 Developing production-ready services 348
11.1 Developing secure services 349

Overview of security in a traditional monolithic application 350
Implementing security in a microservice architecture 353

11.2 Designing configurable services 360
Using push-based externalized configuration 362 ■ Using pull-
based externalized configuration 363

11.3 Designing observable services 364
Using the Health check API pattern 366 ■ Applying the Log
aggregation pattern 368 ■ Using the Distributed tracing
pattern 370 ■ Applying the Application metrics pattern 373
Using the Exception tracking pattern 376 ■ Applying the Audit
logging pattern 377

11.4 Developing services using the Microservice chassis
pattern 378
Using a microservice chassis 379 ■ From microservice chassis to
service mesh 380

12 Deploying microservices 383
12.1 Deploying services using the Language-specific packaging

format pattern 386
Benefits of the Service as a language-specific package pattern 388
Drawbacks of the Service as a language-specific package
pattern 389

12.2 Deploying services using the Service as a virtual machine
pattern 390
The benefits of deploying services as VMs 392 ■ The drawbacks of
deploying services as VMs 392

12.3 Deploying services using the Service as a container
pattern 393
Deploying services using Docker 395 ■ Benefits of deploying
services as containers 398 ■ Drawbacks of deploying services
as containers 399

12.4 Deploying the FTGO application with Kubernetes 399
Overview of Kubernetes 399 ■ Deploying the Restaurant service
on Kubernetes 402 ■ Deploying the API gateway 405
Zero-downtime deployments 406 ■ Using a service mesh
to separate deployment from release 407

CONTENTS xv
12.5 Deploying services using the Serverless deployment
pattern 415
Overview of serverless deployment with AWS Lambda 416
Developing a lambda function 417 ■ Invoking lambda
functions 417 ■ Benefits of using lambda functions 418
Drawbacks of using lambda functions 419

12.6 Deploying a RESTful service using AWS Lambda
and AWS Gateway 419
The design of the AWS Lambda version of Restaurant Service 419
Packaging the service as ZIP file 424 ■ Deploying lambda
functions using the Serverless framework 425

13 Refactoring to microservices 428
13.1 Overview of refactoring to microservices 429

Why refactor a monolith? 429 ■ Strangling the monolith 430

13.2 Strategies for refactoring a monolith to
microservices 433
Implement new features as services 434 ■ Separate presentation
tier from the backend 436 ■ Extract business capabilities into
services 437

13.3 Designing how the service and the monolith
collaborate 443
Designing the integration glue 444 ■ Maintaining data
consistency across a service and a monolith 449 ■ Handling
authentication and authorization 453

13.4 Implementing a new feature as a service: handling
misdelivered orders 455
The design of Delayed Delivery Service 456 ■ Designing the
integration glue for Delayed Delivery Service 457

13.5 Breaking apart the monolith: extracting delivery
management 459
Overview of existing delivery management functionality 460
Overview of Delivery Service 462 ■ Designing the Delivery Service
domain model 463 ■ The design of the Delivery Service integration
glue 465 ■ Changing the FTGO monolith to interact with Delivery
Service 467

index 473

preface
One of my favorite quotes is

The future is already here—it’s just not very evenly distributed.

—William Gibson, science fiction author

The essence of that quote is that new ideas and technology take a while to diffuse
through a community and become widely adopted. A good example of the slow diffu-
sion of ideas is the story of how I discovered microservices. It began in 2006, when,
after being inspired by a talk given by an AWS evangelist, I started down a path that
ultimately led to my creating the original Cloud Foundry. (The only thing in common
with today’s Cloud Foundry is the name.) Cloud Foundry was a Platform-as-a-Service
(PaaS) for automating the deployment of Java applications on EC2. Like every other
enterprise Java application that I’d built, my Cloud Foundry had a monolith architec-
ture consisting of a single Java Web Application Archive (WAR) file.

 Bundling a diverse and complex set of functions such as provisioning, configura-
tion, monitoring, and management into a monolith created both development and
operations challenges. You couldn’t, for example, change the UI without testing and
redeploying the entire application. And because the monitoring and management
component relied on a Complex Event Processing (CEP) engine which maintained
in-memory state we couldn’t run multiple instances of the application! That’s embar-
rassing to admit, but all I can say is that I am a software developer, and, “let he who is
without sin cast the first stone.”
xvii

PREFACExviii
 Clearly, the application had quickly outgrown its monolith architecture, but what was
the alternative? The answer had been out in the software community for some time at
companies such as eBay and Amazon. Amazon had, for example, started to migrate away
from the monolith around 2002 (https://plus.google.com/110981030061712822816/
posts/AaygmbzVeRq). The new architecture replaced the monolith with a collection
of loosely coupled services. Services are owned by what Amazon calls two-pizza teams—
teams small enough to be fed by two pizzas.

 Amazon had adopted this architecture to accelerate the rate of software develop-
ment so that the company could innovate faster and compete more effectively. The
results are impressive: Amazon reportedly deploys changes into production every 11.6
seconds!

 In early 2010, after I’d moved on to other projects, the future of software architec-
ture finally caught up with me. That’s when I read the book The Art of Scalability:
Scalable Web Architecture, Processes, and Organizations for the Modern Enterprise (Addison-
Wesley Professional, 2009) by Michael T. Fisher and Martin L. Abbott. A key idea in
that book is the scale cube, which, as described in chapter 2, is a three-dimensional
model for scaling an application. The Y-axis scaling defined by the scale cube func-
tionally decomposes an application into services. In hindsight, this was quite obvious,
but for me at the time, it was an a-ha moment! I could have solved the challenges I was
facing two years earlier by architecting Cloud Foundry as a set of services!

 In April 2012, I gave my first talk on this architectural approach, called “Decom-
posing Applications of Deployability and Scalability” (www.slideshare.net/chris.e
.richardson/decomposing-applications-for-scalability-and-deployability-april-2012). At
the time, there wasn’t a generally accepted term for this kind of architecture. I some-
times called it modular, polyglot architecture, because the services could be written in
different languages.

 But in another example of how the future is unevenly distributed, the term micro-
service was used at a software architecture workshop in 2011 to describe this kind of
architecture (https://en.wikipedia.org/wiki/Microservices). I first encountered the
term when I heard Fred George give a talk at Oredev 2013, and I liked it!

 In January 2014, I created the https://microservices.io website to document archi-
tecture and design patterns that I had encountered. Then in March 2014, James Lewis
and Martin Fowler published a blog post about microservices (https://martinfowler
.com/articles/microservices.html). By popularizing the term microservices, the blog
post caused the software community to consolidate around the concept.

 The idea of small, loosely coupled teams, rapidly and reliably developing and deliv-
ering microservices is slowly diffusing through the software community. But it’s likely
that this vision of the future is quite different from your daily reality. Today, business-
critical enterprise applications are typically large monoliths developed by large teams.
Software releases occur infrequently and are often painful for everyone involved. IT
often struggles to keep up with the needs of the business. You’re wondering how on
earth you can adopt the microservice architecture.

https://plus.google.com/110981030061712822816/posts/AaygmbzVeRq
https://plus.google.com/110981030061712822816/posts/AaygmbzVeRq
http://www.slideshare.net/chris.e.richardson/decomposing-applications-for-scalability-and-deployability-april-2012
http://www.slideshare.net/chris.e.richardson/decomposing-applications-for-scalability-and-deployability-april-2012
http://www.slideshare.net/chris.e.richardson/decomposing-applications-for-scalability-and-deployability-april-2012
https://en.wikipedia.org/wiki/Microservices
https://microservices.io
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html

PREFACE xix
 The goal of this book is to answer that question. It will give you a good understand-
ing of the microservice architecture, its benefits and drawbacks, and when to use it.
The book describes how to solve the numerous design challenges you’ll face, includ-
ing how to manage distributed data. It also covers how to refactor a monolithic appli-
cation to a microservice architecture. But this book is not a microservices manifesto.
Instead, it’s organized around a collection of patterns. A pattern is a reusable solution
to a problem that occurs in a particular context. The beauty of a pattern is that
besides describing the benefits of the solution, it also describes the drawbacks and the
issues you must address in order to successfully implement a solution. In my experi-
ence, this kind of objectivity when thinking about solutions leads to much better deci-
sion making. I hope you’ll enjoy reading this book and that it teaches you how to
successfully develop microservices.

acknowledgments
Although writing is a solitary activity, it takes a large number of people to turn rough
drafts into a finished book.

 First, I want to thank Erin Twohey and Michael Stevens from Manning for their
persistent encouragement to write another book. I would also like to thank my devel-
opment editors, Cynthia Kane and Marina Michaels. Cynthia Kane got me started and
worked with me on the first few chapters. Marina Michaels took over from Cynthia
and worked with me to the end. I’ll be forever grateful for Marina’s meticulous and
constructive critiques of my chapters. And I want to thank the rest of the Manning
team who’s been involved in getting this book published.

 I’d like to thank my technical development editor, Christian Mennerich, my tech-
nical proofreader, Andy Miles, and all my external reviewers: Andy Kirsch, Antonio
Pessolano, Areg Melik-Adamyan, Cage Slagel, Carlos Curotto, Dror Helper, Eros
Pedrini, Hugo Cruz, Irina Romanenko, Jesse Rosalia, Joe Justesen, John Guthrie,
Keerthi Shetty, Michele Mauro, Paul Grebenc, Pethuru Raj, Potito Coluccelli, Shobha
Iyer, Simeon Leyzerzon, Srihari Sridharan, Tim Moore, Tony Sweets, Trent Whiteley,
Wes Shaddix, William E. Wheeler, and Zoltan Hamori.

 I also want to thank everyone who purchased the MEAP and provided feedback in
the forum or to me directly.

 I want to thank the organizers and attendees of all of the conferences and meetups
at which I’ve spoken for the chance to present and revise my ideas. And I want to
thank my consulting and training clients around the world for giving me the opportu-
nity to help them put my ideas into practice.
xx

ACKNOWLEDGMENTS xxi
 I want to thank my colleagues Andrew, Valentin, Artem, and Stanislav at Eventuate,
Inc., for their contributions to the Eventuate product and open source projects.

 Finally, I’d like to thank my wife, Laura, and my children, Ellie, Thomas, and Janet
for their support and understanding over the last 18 months. While I’ve been glued to
my laptop, I’ve missed out on going to Ellie’s soccer games, watching Thomas learn-
ing to fly on his flight simulator, and trying new restaurants with Janet.

 Thank you all!

about this book
The goal of this book is to teach you how to successfully develop applications using
the microservice architecture.

 Not only does it discuss the benefits of the microservice architecture, it also
describes the drawbacks. You’ll learn when you should consider using the monolithic
architecture and when it makes sense to use microservices.

Who should read this book
The focus of this book is on architecture and development. It’s meant for anyone
responsible for developing and delivering software, such as developers, architects,
CTOs, or VPs of engineering.

 The book focuses on explaining the microservice architecture patterns and other
concepts. My goal is for you to find this material accessible, regardless of the technol-
ogy stack you use. You only need to be familiar with the basics of enterprise applica-
tion architecture and design. In particular, you need to understand concepts like
three-tier architecture, web application design, relational databases, interprocess com-
munication using messaging and REST, and the basics of application security. The
code examples, though, use Java and the Spring framework. In order to get the most
out of them, you should be familiar with the Spring framework.

xxii

ABOUT THIS BOOK xxiii
Roadmap
This book consists of 13 chapters:

■ Chapter 1 describes the symptoms of monolithic hell, which occurs when a
monolithic application outgrows its architecture, and advises on how to escape
by adopting the microservice architecture. It also provides an overview of the
microservice architecture pattern language, which is the organizing theme for
most of the book.

■ Chapter 2 explains why software architecture is important and describes the
patterns you can use to decompose an application into a collection of services.
It also explains how to overcome the various obstacles you typically encounter
along the way.

■ Chapter 3 describes the different patterns for robust, interprocess communica-
tion in a microservice architecture. It explains why asynchronous, message-
based communication is often the best choice.

■ Chapter 4 explains how to maintain data consistency across services by using
the Saga pattern. A saga is a sequence of local transactions coordinated using
asynchronous messaging.

■ Chapter 5 describes how to design the business logic for a service using the
domain-driven design (DDD) Aggregate and Domain event patterns.

■ Chapter 6 builds on chapter 5 and explains how to develop business logic using
the Event sourcing pattern, an event-centric way to structure the business logic
and persist domain objects.

■ Chapter 7 describes how to implement queries that retrieve data scattered
across multiple services by using either the API composition pattern or the
Command query responsibility segregation (CQRS) pattern.

■ Chapter 8 covers the external API patterns for handling requests from a diverse
collection of external clients, such as mobile applications, browser-based Java-
Script applications, and third-party applications.

■ Chapter 9 is the first of two chapters on automated testing techniques for micro-
services. It introduces important testing concepts such as the test pyramid, which
describes the relative proportions of each type of test in your test suite. It also
shows how to write unit tests, which form the base of the testing pyramid.

■ Chapter 10 builds on chapter 9 and describes how to write other types of tests in
the test pyramid, including integration tests, consumer contract tests, and com-
ponent tests.

■ Chapter 11 covers various aspects of developing production-ready services,
including security, the Externalized configuration pattern, and the service
observability patterns. The service observability patterns include Log aggrega-
tion, Application metrics, and Distributed tracing.

■ Chapter 12 describes the various deployment patterns that you can use to
deploy services, including virtual machines, containers, and serverless. It also

ABOUT THIS BOOKxxiv
discusses the benefits of using a service mesh, a layer of networking software
that mediates communication in a microservice architecture.

■ Chapter 13 explains how to incrementally refactor a monolithic architecture to
a microservice architecture by applying the Strangler application pattern: imple-
menting new features as services and extracting modules out of the monolith
and converting them to services.

As you progress through these chapters, you’ll learn about different aspects of the
microservice architecture.

About the code
This book contains many examples of source code both in numbered listings and
inline with normal text. In both cases, source code is formatted in a fixed-width font
like this to separate it from ordinary text. Sometimes code is also in bold to high-
light code that has changed from previous steps in the chapter, such as when a new
feature adds to an existing line of code. In many cases, the original source code has
been reformatted; the publisher has added line breaks and reworked indentation to
accommodate the available page space in the book. In rare cases, even this was not
enough, and listings include line-continuation markers (➥). Additionally, comments
in the source code have often been removed from the listings when the code is
described in the text. Code annotations accompany many of the listings, highlighting
important concepts.

 Every chapter, except chapters 1, 2, and 13, contains code from the companion
example application. You can find the code for this application in a GitHub reposi-
tory: https://github.com/microservices-patterns/ftgo-application.

Book forum
The purchase of Microservices Patterns includes free access to a private web forum
run by Manning Publications where you can make comments about the book, ask
technical questions, share your solutions to exercises, and receive help from the
author and from other users. To access the forum and subscribe to it, point your web
browser to https://forums.manning.com/forums/microservices-patterns. You can
also learn more about Manning’s forums and the rules of conduct at https://forums
.manning.com/forums/about.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It’s not a commitment to any specific amount of participation on the part of the
author, whose contribution to the forum remains voluntary (and unpaid). We suggest
you try asking the author some challenging questions lest his interest stray! The forum
and the archives of previous discussions will be accessible from the publisher’s website
as long as the book is in print.

https://github.com/microservices-patterns/ftgo-application
https://forums.manning.com/forums/microservices-patterns
https://forums.manning.com/forums/about
https://forums.manning.com/forums/about
https://forums.manning.com/forums/about

ABOUT THIS BOOK xxv
Other online resources
Another great resource for learning the microservice architecture is my website http://
microservices.io.

 Not only does it contain the complete pattern language, it also has links to other
resources such as articles, presentations, and example code.

About the author
Chris Richardson is a developer and architect. He is a Java Champion, a JavaOne rock
star, and the author of POJOs in Action (Manning, 2006), which describes how to build
enterprise Java applications with frameworks such as Spring and Hibernate.

 Chris was also the founder of the original CloudFoundry.com, an early Java PaaS
for Amazon EC2.

 Today, he is a recognized thought leader in microservices and speaks regularly at
international conferences. Chris is the creator of Microservices.io, a pattern language
for microservices. He provides microservices consulting and training to organizations
around the world that are adopting the microservice architecture. Chris is working on
his third startup: Eventuate.io, an application platform for developing transactional
microservices.

http://microservices.io
http://microservices.io

about the cover illustration
Jefferys

The figure on the cover of Microservices Patterns is captioned “Habit of a Morisco
Slave in 1568.” The illustration is taken from Thomas Jefferys’ A Collection of the Dresses
of Different Nations, Ancient and Modern (four volumes), London, published between
1757 and 1772. The title page states that these are hand-colored copperplate engrav-
ings, heightened with gum arabic.

 Thomas Jefferys (1719–1771) was called “Geographer to King George III.” He was
an English cartographer who was the leading map supplier of his day. He engraved
and printed maps for government and other official bodies and produced a wide
range of commercial maps and atlases, especially of North America. His work as a map
maker sparked an interest in local dress customs of the lands he surveyed and
mapped, which are brilliantly displayed in this collection. Fascination with faraway
lands and travel for pleasure were relatively new phenomena in the late 18th century,
and collections such as this one were popular, introducing both the tourist as well as
the armchair traveler to the inhabitants of other countries.

 The diversity of the drawings in Jefferys’ volumes speaks vividly of the uniqueness
and individuality of the world’s nations some 200 years ago. Dress codes have changed
since then, and the diversity by region and country, so rich at the time, has faded away.
It’s now often hard to tell the inhabitants of one continent from another. Perhaps, try-
ing to view it optimistically, we’ve traded a cultural and visual diversity for a more var-
ied personal life—or a more varied and interesting intellectual and technical life.
xxvi

ABOUT THE COVER ILLUSTRATION xxvii
 At a time when it’s difficult to tell one computer book from another, Manning cel-
ebrates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of regional life of two centuries ago, brought back to life by
Jeffreys’ pictures.

Escaping monolithic hell
It was only Monday lunchtime, but Mary, the CTO of Food to Go, Inc. (FTGO), was
already feeling frustrated. Her day had started off really well. She had spent the
previous week with other software architects and developers at an excellent confer-
ence learning about the latest software development techniques, including contin-
uous deployment and the microservice architecture. Mary had also met up with her
former computer science classmates from North Carolina A&T State and shared
technology leadership war stories. The conference had left her feeling empowered
and eager to improve how FTGO develops software.

This chapter covers
 The symptoms of monolithic hell and how to

escape it by adopting the microservice
architecture

 The essential characteristics of the microservice
architecture and its benefits and drawbacks

 How microservices enable the DevOps style of
development of large, complex applications

 The microservice architecture pattern language
and why you should use it
1

2 CHAPTER 1 Escaping monolithic hell
 Unfortunately, that feeling had quickly evaporated. She had just spent the first
morning back in the office in yet another painful meeting with senior engineering
and business people. They had spent two hours discussing why the development team
was going to miss another critical release date. Sadly, this kind of meeting had become
increasingly common over the past few years. Despite adopting agile, the pace of devel-
opment was slowing down, making it next to impossible to meet the business’s goals.
And, to make matters worse, there didn’t seem to be a simple solution.

 The conference had made Mary realize that FTGO was suffering from a case of
monolithic hell and that the cure was to adopt the microservice architecture. But the
microservice architecture and the associated state-of-the-art software development
practices described at the conference felt like an elusive dream. It was unclear to Mary
how she could fight today’s fires while simultaneously improving the way software was
developed at FTGO.

 Fortunately, as you will learn in this book, there is a way. But first, let’s look at the
problems that FTGO is facing and how they got there.

1.1 The slow march toward monolithic hell
Since its launch in late 2005, FTGO had grown by leaps and bounds. Today, it’s one of
the leading online food delivery companies in the United States. The business even
plans to expand overseas, although those plans are in jeopardy because of delays in
implementing the necessary features.

 At its core, the FTGO application is quite simple. Consumers use the FTGO web-
site or mobile application to place food orders at local restaurants. FTGO coordinates
a network of couriers who deliver the orders. It’s also responsible for paying couriers
and restaurants. Restaurants use the FTGO website to edit their menus and manage
orders. The application uses various web services, including Stripe for payments,
Twilio for messaging, and Amazon Simple Email Service (SES) for email.

 Like many other aging enterprise applications, the FTGO application is a mono-
lith, consisting of a single Java Web Application Archive (WAR) file. Over the years, it
has become a large, complex application. Despite the best efforts of the FTGO devel-
opment team, it’s become an example of the Big Ball of Mud pattern (www.laputan
.org/mud/). To quote Foote and Yoder, the authors of that pattern, it’s a “haphaz-
ardly structured, sprawling, sloppy, duct-tape and bailing wire, spaghetti code jungle.”
The pace of software delivery has slowed. To make matters worse, the FTGO applica-
tion has been written using some increasingly obsolete frameworks. The FTGO appli-
cation is exhibiting all the symptoms of monolithic hell.

 The next section describes the architecture of the FTGO application. Then it
talks about why the monolithic architecture worked well initially. We’ll get into how
the FTGO application has outgrown its architecture and how that has resulted in
monolithic hell.

http://www.laputan.org/mud/
http://www.laputan.org/mud/
http://www.laputan.org/mud/

3The slow march toward monolithic hell
1.1.1 The architecture of the FTGO application

FTGO is a typical enterprise Java application. Figure 1.1 shows its architecture. The
FTGO application has a hexagonal architecture, which is an architectural style
described in more detail in chapter 2. In a hexagonal architecture, the core of the
application consists of the business logic. Surrounding the business logic are various
adapters that implement UIs and integrate with external systems.

The business logic consists of modules, each of which is a collection of domain
objects. Examples of the modules include Order Management, Delivery Management,
Billing, and Payments. There are several adapters that interface with the external sys-
tems. Some are inbound adapters, which handle requests by invoking the business
logic, including the REST API and Web UI adapters. Others are outbound adapters,
which enable the business logic to access the MySQL database and invoke cloud ser-
vices such as Twilio and Stripe.

 Despite having a logically modular architecture, the FTGO application is packaged
as a single WAR file. The application is an example of the widely used monolithic style

Invoked by mobile applications

Twilio

messaging

service

Cloud services

FTGO application

AWS SES

email

service

Stripe

payment

service

Adapters invoke
cloud services.

Twilio

adapter
Courier REST

API

Web

UI

MySQL

adapter

Restaurant
management

Payments

Billing

Notification

Order
management

Delivery
management

Amazon

SES

adapter

Stripe

adapter

Consumer

Restaurant

MySQL

Figure 1.1 The FTGO application has a hexagonal architecture. It consists of business logic
surrounded by adapters that implement UIs and interface with external systems, such as mobile
applications and cloud services for payments, messaging, and email.

4 CHAPTER 1 Escaping monolithic hell
of software architecture, which structures a system as a single executable or deploy-
able component. If the FTGO application were written in the Go language (GoLang),
it would be a single executable. A Ruby or NodeJS version of the application would be
a single directory hierarchy of source code. The monolithic architecture isn’t inher-
ently bad. The FTGO developers made a good decision when they picked monolithic
architecture for their application.

1.1.2 The benefits of the monolithic architecture

In the early days of FTGO, when the application was relatively small, the application’s
monolithic architecture had lots of benefits:

 Simple to develop—IDEs and other developer tools are focused on building a sin-
gle application.

 Easy to make radical changes to the application—You can change the code and the
database schema, build, and deploy.

 Straightforward to test—The developers wrote end-to-end tests that launched the
application, invoked the REST API, and tested the UI with Selenium.

 Straightforward to deploy—All a developer had to do was copy the WAR file to a
server that had Tomcat installed.

 Easy to scale—FTGO ran multiple instances of the application behind a load
balancer.

Over time, though, development, testing, deployment, and scaling became much more
difficult. Let’s look at why.

1.1.3 Living in monolithic hell

Unfortunately, as the FTGO developers have discovered, the monolithic architecture
has a huge limitation. Successful applications like the FTGO application have a habit
of outgrowing the monolithic architecture. Each sprint, the FTGO development team
implemented a few more stories, which made the code base larger. Moreover, as the
company became more successful, the size of the development team steadily grew.
Not only did this increase the growth rate of the code base, it also increased the man-
agement overhead.

 As figure 1.2 shows, the once small, simple FTGO application has grown over the
years into a monstrous monolith. Similarly, the small development team has now
become multiple Scrum teams, each of which works on a particular functional area.
As a result of outgrowing its architecture, FTGO is in monolithic hell. Development is
slow and painful. Agile development and deployment is impossible. Let’s look at why
this has happened.

COMPLEXITY INTIMIDATES DEVELOPERS

A major problem with the FTGO application is that it’s too complex. It’s too large for
any developer to fully understand. As a result, fixing bugs and correctly implementing
new features have become difficult and time consuming. Deadlines are missed.

5The slow march toward monolithic hell
To make matters worse, this overwhelming complexity tends to be a downward spiral.
If the code base is difficult to understand, a developer won’t make changes correctly.
Each change makes the code base incrementally more complex and harder to under-
stand. The clean, modular architecture shown earlier in figure 1.1 doesn’t reflect real-
ity. FTGO is gradually becoming a monstrous, incomprehensible, big ball of mud.

 Mary remembers recently attending a conference where she met a developer who
was writing a tool to analyze the dependencies between the thousands of JARs in their
multimillion lines-of-code (LOC) application. At the time, that tool seemed like some-
thing FTGO could use. Now she’s not so sure. Mary suspects a better approach is to
migrate to an architecture that is better suited to a complex application: microservices.

DEVELOPMENT IS SLOW

As well as having to fight overwhelming complexity, FTGO developers find day-to-day
development tasks slow. The large application overloads and slows down a developer’s
IDE. Building the FTGO application takes a long time. Moreover, because it’s so large,
the application takes a long time to start up. As a result, the edit-build-run-test loop
takes a long time, which badly impacts productivity.

PATH FROM COMMIT TO DEPLOYMENT IS LONG AND ARDUOUS

Another problem with the FTGO application is that deploying changes into produc-
tion is a long and painful process. The team typically deploys updates to production
once a month, usually late on a Friday or Saturday night. Mary keeps reading that the
state-of-the-art for Software-as-a-Service (SaaS) applications is continuous deployment:

Large
development
organization

Single code base creates
communication and

coordination overhead.

Large, complex
unreliable, difficult

to maintain

The path from code commit to
production is arduous.

Changes sit in a queue until
they can be manually tested.

Order management team

Restaurant management team

Delivery management team

FTGO development

Production

Jenkins
Cl

Backlog

Deployment pipeline

Source

code

repository

Manual
testing

FTGO

application

Figure 1.2 A case of monolithic hell. The large FTGO developer team commits their changes to a
single source code repository. The path from code commit to production is long and arduous and
involves manual testing. The FTGO application is large, complex, unreliable, and difficult to maintain.

6 CHAPTER 1 Escaping monolithic hell
deploying changes to production many times a day during business hours. Apparently,
as of 2011, Amazon.com deployed a change into production every 11.6 seconds with-
out ever impacting the user! For the FTGO developers, updating production more
than once a month seems like a distant dream. And adopting continuous deployment
seems next to impossible.

 FTGO has partially adopted agile. The engineering team is divided into squads
and uses two-week sprints. Unfortunately, the journey from code complete to running
in production is long and arduous. One problem with so many developers committing
to the same code base is that the build is frequently in an unreleasable state. When the
FTGO developers tried to solve this problem by using feature branches, their attempt
resulted in lengthy, painful merges. Consequently, once a team completes its sprint, a
long period of testing and code stabilization follows.

 Another reason it takes so long to get changes into production is that testing takes
a long time. Because the code base is so complex and the impact of a change isn’t well
understood, developers and the Continuous Integration (CI) server must run the
entire test suite. Some parts of the system even require manual testing. It also takes a
while to diagnose and fix the cause of a test failure. As a result, it takes a couple of days
to complete a testing cycle.

SCALING IS DIFFICULT

The FTGO team also has problems scaling its application. That’s because different
application modules have conflicting resource requirements. The restaurant data, for
example, is stored in a large, in-memory database, which is ideally deployed on servers
with lots of memory. In contrast, the image processing module is CPU intensive and
best deployed on servers with lots of CPU. Because these modules are part of the same
application, FTGO must compromise on the server configuration.

DELIVERING A RELIABLE MONOLITH IS CHALLENGING

Another problem with the FTGO application is the lack of reliability. As a result, there
are frequent production outages. One reason it’s unreliable is that testing the applica-
tion thoroughly is difficult, due to its large size. This lack of testability means bugs
make their way into production. To make matters worse, the application lacks fault iso-
lation, because all modules are running within the same process. Every so often, a bug
in one module—for example, a memory leak—crashes all instances of the applica-
tion, one by one. The FTGO developers don’t enjoy being paged in the middle of the
night because of a production outage. The business people like the loss of revenue
and trust even less.

LOCKED INTO INCREASINGLY OBSOLETE TECHNOLOGY STACK

The final aspect of monolithic hell experienced by the FTGO team is that the archi-
tecture forces them to use a technology stack that’s becoming increasingly obsolete. The
monolithic architecture makes it difficult to adopt new frameworks and languages. It
would be extremely expensive and risky to rewrite the entire monolithic application so
that it would use a new and presumably better technology. Consequently, developers

7What you’ll learn in this book
are stuck with the technology choices they made at the start of the project. Quite
often, they must maintain an application written using an increasingly obsolete tech-
nology stack.

 The Spring framework has continued to evolve while being backward compatible,
so in theory FTGO might have been able to upgrade. Unfortunately, the FTGO applica-
tion uses versions of frameworks that are incompatible with newer versions of Spring.
The development team has never found the time to upgrade those frameworks. As a
result, major parts of the application are written using increasingly out-of-date frame-
works. What’s more, the FTGO developers would like to experiment with non-JVM
languages such as GoLang and NodeJS. Sadly, that’s not possible with a monolithic
application.

1.2 Why this book is relevant to you
It’s likely that you’re a developer, architect, CTO, or VP of engineering. You’re responsi-
ble for an application that has outgrown its monolithic architecture. Like Mary at
FTGO, you’re struggling with software delivery and want to know how to escape
monolith hell. Or perhaps you fear that your organization is on the path to mono-
lithic hell and you want to know how to change direction before it’s too late. If you
need to escape or avoid monolithic hell, this is the book for you.

 This book spends a lot of time explaining microservice architecture concepts. My
goal is for you to find this material accessible, regardless of the technology stack you
use. All you need is to be familiar with the basics of enterprise application architecture
and design. In particular, you need to know the following:

 Three-tier architecture
 Web application design
 How to develop business logic using object-oriented design
 How to use an RDBMS: SQL and ACID transactions
 How to use interprocess communication using a message broker and REST APIs
 Security, including authentication and authorization

The code examples in this book are written using Java and the Spring framework.
That means in order to get the most out of the examples, you need to be familiar with
the Spring framework too.

1.3 What you’ll learn in this book
By the time you finish reading this book you’ll understand the following:

 The essential characteristics of the microservice architecture, its benefits and
drawbacks, and when to use it

 Distributed data management patterns
 Effective microservice testing strategies
 Deployment options for microservices
 Strategies for refactoring a monolithic application into a microservice architecture

8 CHAPTER 1 Escaping monolithic hell
You’ll also be able to do the following:

 Architect an application using the microservice architecture pattern
 Develop the business logic for a service
 Use sagas to maintain data consistency across services
 Implement queries that span services
 Effectively test microservices
 Develop production-ready services that are secure, configurable, and observable
 Refactor an existing monolithic application to services

1.4 Microservice architecture to the rescue
Mary has come to the conclusion that FTGO must migrate to the microservice
architecture.

 Interestingly, software architecture has very little to do with functional require-
ments. You can implement a set of use cases—an application’s functional require-
ments—with any architecture. In fact, it’s common for successful applications, such as
the FTGO application, to be big balls of mud.

 Architecture matters, however, because of how it affects the so-called quality of ser-
vice requirements, also called nonfunctional requirements, quality attributes, or ilities. As
the FTGO application has grown, various quality attributes have suffered, most nota-
bly those that impact the velocity of software delivery: maintainability, extensibility,
and testability.

 On the one hand, a disciplined team can slow down the pace of its descent toward
monolithic hell. Team members can work hard to maintain the modularity of their
application. They can write comprehensive automated tests. On the other hand, they
can’t avoid the issues of a large team working on a single monolithic application. Nor
can they solve the problem of an increasingly obsolete technology stack. The best a
team can do is delay the inevitable. To escape monolithic hell, they must migrate to a
new architecture: the Microservice architecture.

 Today, the growing consensus is that if you’re building a large, complex applica-
tion, you should consider using the microservice architecture. But what are micro-
services exactly? Unfortunately, the name doesn’t help because it overemphasizes size.
There are numerous definitions of the microservice architecture. Some take the name
too literally and claim that a service should be tiny—for example, 100 LOC. Others
claim that a service should only take two weeks to develop. Adrian Cockcroft, formerly
of Netflix, defines a microservice architecture as a service-oriented architecture com-
posed of loosely coupled elements that have bounded contexts. That’s not a bad defi-
nition, but it is a little dense. Let’s see if we can do better.

1.4.1 Scale cube and microservices

My definition of the microservice architecture is inspired by Martin Abbott and
Michael Fisher’s excellent book, The Art of Scalability (Addison-Wesley, 2015). This

9Microservice architecture to the rescue
book describes a useful, three-dimensional scalability model: the scale cube, shown in
figure 1.3.

The model defines three ways to scale an application: X, Y, and Z.

X-AXIS SCALING LOAD BALANCES REQUESTS ACROSS MULTIPLE INSTANCES

X-axis scaling is a common way to scale a monolithic application. Figure 1.4 shows
how X-axis scaling works. You run multiple instances of the application behind a
load balancer. The load balancer distributes requests among the N identical instances of
the application. This is a great way of improving the capacity and availability of an
application.

Z-AXIS SCALING ROUTES REQUESTS BASED ON AN ATTRIBUTE OF THE REQUEST

Z-axis scaling also runs multiple instances of the monolith application, but unlike X-axis
scaling, each instance is responsible for only a subset of the data. Figure 1.5 shows how
Z-axis scaling works. The router in front of the instances uses a request attribute to
route it to the appropriate instance. An application might, for example, route requests
using userId.

 In this example, each application instance is responsible for a subset of users. The
router uses the userId specified by the request Authorization header to select one of

Microservices

Y-axis scaling,

a.k.a. functional

decomposition

Scale by splitting

things that are

different, such as

by function.

X-axis scaling,

a.k.a. horizontal duplication

Scale by cloning.

Z-axis scaling,

a.k.a. data partitioning

Scale by splitting

similar things, such as

by customer ID.
One

instance

Many

instances

One

partition

Many

partitions

Monolith

Figure 1.3 The scale cube defines three separate ways to scale an application: X-axis
scaling load balances requests across multiple, identical instances; Z-axis scaling routes
requests based on an attribute of the request; Y-axis functionally decomposes an application
into services.

10 CHAPTER 1 Escaping monolithic hell
the N identical instances of the application. Z-axis scaling is a great way to scale an
application to handle increasing transaction and data volumes.

Y-AXIS SCALING FUNCTIONALLY DECOMPOSES AN APPLICATION INTO SERVICES

X- and Z-axis scaling improve the application’s capacity and availability. But neither
approach solves the problem of increasing development and application complexity. To
solve those, you need to apply Y-axis scaling, or functional decomposition. Figure 1.6 shows
how Y-axis scaling works: by splitting a monolithic application into a set of services.

Application

instance 1

N identical application

instances

Application

instance 2

Load

balancer
Client

Request

Application

instance 3

Route requests using a
load balancing algorithm.

Figure 1.4 X-axis scaling runs multiple, identical instances of the monolithic
application behind a load balancer.

Application

instance 1

N identical application

instances

Application

instance 2
Client Router

Request:

GET /...
Authorization: userId:password

Application

instance 3

Users: a–h

Users: i-p

Users: r–z

Uses the userId to decide
where to route requests

Each instance is responsible
for a subset of the users.

Figure 1.5 Z-axis scaling runs multiple identical instances of the monolithic application behind
a router, which routes based on a request attribute . Each instance is responsible for a subset
of the data.

11Microservice architecture to the rescue
A service is a mini application that implements narrowly focused functionality, such as
order management, customer management, and so on. A service is scaled using X-axis
scaling, though some services may also use Z-axis scaling. For example, the Order ser-
vice consists of a set of load-balanced service instances.

 The high-level definition of microservice architecture (microservices) is an archi-
tectural style that functionally decomposes an application into a set of services. Note
that this definition doesn’t say anything about size. Instead, what matters is that each
service has a focused, cohesive set of responsibilities. Later in the book I discuss what
that means.

 Now let’s look at how the microservice architecture is a form of modularity.

1.4.2 Microservices as a form of modularity

Modularity is essential when developing large, complex applications. A modern appli-
cation like FTGO is too large to be developed by an individual. It’s also too complex
to be understood by a single person. Applications must be decomposed into modules
that are developed and understood by different people. In a monolithic application,
modules are defined using a combination of programming language constructs (such
as Java packages) and build artifacts (such as Java JAR files). However, as the FTGO
developers have discovered, this approach tends not to work well in practice. Long-
lived, monolithic applications usually degenerate into big balls of mud.

 The microservice architecture uses services as the unit of modularity. A service has
an API, which is an impermeable boundary that is difficult to violate. You can’t bypass

Order

Service

Application

Customer

Service
Client

Review

Service

Order

requests

Customer

requests

Review

requests

Order

Service

instance 1

Order service

Order

Service

instance 2

Order

Service

instance 3

Load

balancer

Request

Y-axis scaling functionality decomposes
an application into services.

Each service is typically scaled using
X-axis and possibly Z-axis scaling.

Figure 1.6 Y-axis scaling splits the application into a set of services. Each service is responsible for
a particular function. A service is scaled using X-axis scaling and, possibly, Z-axis scaling.

12 CHAPTER 1 Escaping monolithic hell
the API and access an internal class as you can with a Java package. As a result, it’s
much easier to preserve the modularity of the application over time. There are other
benefits of using services as building blocks, including the ability to deploy and scale
them independently.

1.4.3 Each service has its own database

A key characteristic of the microservice architecture is that the services are loosely
coupled and communicate only via APIs. One way to achieve loose coupling is by each
service having its own datastore. In the online store, for example, Order Service has a
database that includes the ORDERS table, and Customer Service has its database, which
includes the CUSTOMERS table. At development time, developers can change a service’s
schema without having to coordinate with developers working on other services. At
runtime, the services are isolated from each other—for example, one service will
never be blocked because another service holds a database lock.

Now that we’ve defined the microservice architecture and described some of its essen-
tial characteristics, let’s look at how this applies to the FTGO application.

1.4.4 The FTGO microservice architecture

The rest of this book discusses the FTGO application’s microservice architecture in
depth. But first let’s quickly look at what it means to apply Y-axis scaling to this applica-
tion. If we apply Y-axis decomposition to the FTGO application, we get the architec-
ture shown in figure 1.7. The decomposed application consists of numerous frontend
and backend services. We would also apply X-axis and, possibly Z-axis scaling, so that
at runtime there would be multiple instances of each service.

 The frontend services include an API gateway and the Restaurant Web UI. The API
gateway, which plays the role of a facade and is described in detail in chapter 8, provides
the REST APIs that are used by the consumers’ and couriers’ mobile applications. The
Restaurant Web UI implements the web interface that’s used by the restaurants to man-
age menus and process orders.

 The FTGO application’s business logic consists of numerous backend services.
Each backend service has a REST API and its own private datastore. The backend ser-
vices include the following:

 Order Service—Manages orders
 Delivery Service—Manages delivery of orders from restaurants to consumers

Don’t worry: Loose coupling doesn’t make Larry Ellison richer
The requirement for each service to have its own database doesn’t mean it has its
own database server. You don’t, for example, have to spend 10 times more on Oracle
RDBMS licenses. Chapter 2 explores this topic in depth.

13Microservice architecture to the rescue
 Restaurant Service—Maintains information about restaurants
 Kitchen Service—Manages the preparation of orders
 Accounting Service—Handles billing and payments

Many services correspond to the modules described earlier in this chapter. What’s dif-
ferent is that each service and its API are very clearly defined. Each one can be inde-
pendently developed, tested, deployed, and scaled. Also, this architecture does a good
job of preserving modularity. A developer can’t bypass a service’s API and access its
internal components. Chapter 13 describes how to transform an existing monolithic
application into microservices.

1.4.5 Comparing the microservice architecture and SOA

Some critics of the microservice architecture claim it’s nothing new—it’s service-
oriented architecture (SOA). At a very high level, there are some similarities. SOA
and the microservice architecture are architectural styles that structure a system as a
set of services. But as table 1.1 shows, once you dig deep, you encounter significant
differences.

Amazon
SES

Adapter

Twilio
Adapter

Stripe
Adapter

The API Gateway routes
requests from the mobile
applications to services.

Services have APIs. A service’s data is private.

Services corresponding
to business capabilities/
domain-driven design

(DDD) subdomains

API

Gateway

Restaurant

Web UI

Order

Service

Courier

REST
API

REST
API

REST
API

Consumer

Restaurant

Restaurant

Service

REST
API

Accounting

Service

REST
API

Notification

Service

REST
API

Kitchen

Service

REST
API

Delivery

Service

REST
API

Figure 1.7 Some of the services of the microservice architecture-based version of the FTGO
application. An API Gateway routes requests from the mobile applications to services. The services
collaborate via APIs.

14 CHAPTER 1 Escaping monolithic hell
SOA and the microservice architecture usually use different technology stacks. SOA
applications typically use heavyweight technologies such as SOAP and other WS* stan-
dards. They often use an ESB, a smart pipe that contains business and message-processing
logic to integrate the services. Applications built using the microservice architecture
tend to use lightweight, open source technologies. The services communicate via dumb
pipes, such as message brokers or lightweight protocols like REST or gRPC.

 SOA and the microservice architecture also differ in how they treat data. SOA
applications typically have a global data model and share databases. In contrast, as
mentioned earlier, in the microservice architecture each service has its own database.
Moreover, as described in chapter 2, each service is usually considered to have its own
domain model.

 Another key difference between SOA and the microservice architecture is the size
of the services. SOA is typically used to integrate large, complex, monolithic applica-
tions. Although services in a microservice architecture aren’t always tiny, they’re
almost always much smaller. As a result, a SOA application usually consists of a few
large services, whereas a microservices-based application typically consists of dozens or
hundreds of smaller services.

1.5 Benefits and drawbacks of the microservice
architecture
Let’s first consider the benefits and then we’ll look at the drawbacks.

1.5.1 Benefits of the microservice architecture

The microservice architecture has the following benefits:

 It enables the continuous delivery and deployment of large, complex applications.
 Services are small and easily maintained.
 Services are independently deployable.
 Services are independently scalable.
 The microservice architecture enables teams to be autonomous.
 It allows easy experimenting and adoption of new technologies.
 It has better fault isolation.

Table 1.1 Comparing SOA with microservices

SOA Microservices

Inter-service
communication

Smart pipes, such as Enterprise Ser-
vice Bus, using heavyweight protocols,
such as SOAP and the other WS*
standards.

Dumb pipes, such as a message
broker, or direct service-to-service
communication, using lightweight
protocols such as REST or gRPC

Data Global data model and shared data-
bases

Data model and database per service

Typical service Larger monolithic application Smaller service

15Benefits and drawbacks of the microservice architecture
Let’s look at each benefit.

ENABLES THE CONTINUOUS DELIVERY AND DEPLOYMENT OF LARGE, COMPLEX APPLICATIONS

The most important benefit of the microservice architecture is that it enables continu-
ous delivery and deployment of large, complex applications. As described later in sec-
tion 1.7, continuous delivery/deployment is part of DevOps, a set of practices for the
rapid, frequent, and reliable delivery of software. High-performing DevOps organiza-
tions typically deploy changes into production with very few production issues.

 There are three ways that the microservice architecture enables continuous deliv-
ery/deployment:

 It has the testability required by continuous delivery/deployment—Automated testing is
a key practice of continuous delivery/deployment. Because each service in a
microservice architecture is relatively small, automated tests are much easier to
write and faster to execute. As a result, the application will have fewer bugs.

 It has the deployability required by continuous delivery/deployment—Each service can
be deployed independently of other services. If the developers responsible for a
service need to deploy a change that’s local to that service, they don’t need to
coordinate with other developers. They can deploy their changes. As a result,
it’s much easier to deploy changes frequently into production.

 It enables development teams to be autonomous and loosely coupled—You can structure
the engineering organization as a collection of small (for example, two-pizza)
teams. Each team is solely responsible for the development and deployment of
one or more related services. As figure 1.8 shows, each team can develop, deploy,
and scale their services independently of all the other teams. As a result, the
development velocity is much higher.

The ability to do continuous delivery and deployment has several business benefits:

 It reduces the time to market, which enables the business to rapidly react to
feedback from customers.

 It enables the business to provide the kind of reliable service today’s customers
have come to expect.

 Employee satisfaction is higher because more time is spent delivering valuable
features instead of fighting fires.

As a result, the microservice architecture has become the table stakes of any business
that depends upon software technology.

EACH SERVICE IS SMALL AND EASILY MAINTAINED

Another benefit of the microservice architecture is that each service is relatively small.
The code is easier for a developer to understand. The small code base doesn’t slow
down the IDE, making developers more productive. And each service typically starts a
lot faster than a large monolith does, which also makes developers more productive
and speeds up deployments.

16 CHAPTER 1 Escaping monolithic hell
SERVICES ARE INDEPENDENTLY SCALABLE

Each service in a microservice architecture can be scaled independently of other ser-
vices using X-axis cloning and Z-axis partitioning. Moreover, each service can be
deployed on hardware that’s best suited to its resource requirements. This is quite dif-
ferent than when using a monolithic architecture, where components with wildly dif-
ferent resource requirements—for example, CPU-intensive vs. memory-intensive—
must be deployed together.

BETTER FAULT ISOLATION

The microservice architecture has better fault isolation. For example, a memory leak
in one service only affects that service. Other services will continue to handle requests
normally. In comparison, one misbehaving component of a monolithic architecture
will bring down the entire system.

EASILY EXPERIMENT WITH AND ADOPT NEW TECHNOLOGIES

Last but not least, the microservice architecture eliminates any long-term commit-
ment to a technology stack. In principle, when developing a new service, the develop-
ers are free to pick whatever language and frameworks are best suited for that service.

Small, autonomous,
loosely coupled teams

Each service has
its own source
code repository.

Each service has
its own automated

deployment pipeline.

Small, simple,
reliable, easy to

maintain services

Order management team

Restaurant management team

Delivery management team

FTGO development

Production

Jenkins Cl

Deployment pipeline

Order Service

source code

repository

Order Service

Jenkins Cl

Deployment pipeline

Restaurant Service

source code

repository

Restaurant Service

Jenkins Cl

Deployment pipeline

Delivery Service

source code

repository

Delivery Service

Figure 1.8 The microservices-based FTGO application consists of a set of loosely coupled services.
Each team develops, tests, and deploys their services independently.

17Benefits and drawbacks of the microservice architecture
In many organizations, it makes sense to restrict the choices, but the key point is that
you aren’t constrained by past decisions.

 Moreover, because the services are small, rewriting them using better languages
and technologies becomes practical. If the trial of a new technology fails, you can
throw away that work without risking the entire project. This is quite different than
when using a monolithic architecture, where your initial technology choices severely
constrain your ability to use different languages and frameworks in the future.

1.5.2 Drawbacks of the microservice architecture

Certainly, no technology is a silver bullet, and the microservice architecture has a
number of significant drawbacks and issues. Indeed most of this book is about how to
address these drawbacks and issues. As you read about the challenges, don’t worry.
Later in this book I describe ways to address them.

 Here are the major drawbacks and issues of the microservice architecture:

 Finding the right set of services is challenging.
 Distributed systems are complex, which makes development, testing, and deploy-

ment difficult.
 Deploying features that span multiple services requires careful coordination.
 Deciding when to adopt the microservice architecture is difficult.

Let’s look at each one in turn.

FINDING THE RIGHT SERVICES IS CHALLENGING

One challenge with using the microservice architecture is that there isn’t a concrete,
well-defined algorithm for decomposing a system into services. As with much of soft-
ware development, it’s something of an art. To make matters worse, if you decompose
a system incorrectly, you’ll build a distributed monolith, a system consisting of coupled
services that must be deployed together. A distributed monolith has the drawbacks of
both the monolithic architecture and the microservice architecture.

DISTRIBUTED SYSTEMS ARE COMPLEX

Another issue with using the microservice architecture is that developers must deal
with the additional complexity of creating a distributed system. Services must use an
interprocess communication mechanism. This is more complex than a simple method
call. Moreover, a service must be designed to handle partial failure and deal with the
remote service either being unavailable or exhibiting high latency.

 Implementing use cases that span multiple services requires the use of unfamiliar
techniques. Each service has its own database, which makes it a challenge to implement
transactions and queries that span services. As described in chapter 4, a microservices-
based application must use what are known as sagas to maintain data consistency
across services. Chapter 7 explains that a microservices-based application can’t retrieve
data from multiple services using simple queries. Instead, it must implement queries
using either API composition or CQRS views.

18 CHAPTER 1 Escaping monolithic hell
 IDEs and other development tools are focused on building monolithic applica-
tions and don’t provide explicit support for developing distributed applications. Writ-
ing automated tests that involve multiple services is challenging. These are all issues
that are specific to the microservice architecture. Consequently, your organization’s
developers must have sophisticated software development and delivery skills in order
to successfully use microservices.

 The microservice architecture also introduces significant operational complexity.
Many more moving parts—multiple instances of different types of service—must be
managed in production. To successfully deploy microservices, you need a high level of
automation. You must use technologies such as the following:

 Automated deployment tooling, like Netflix Spinnaker
 An off-the-shelf PaaS, like Pivotal Cloud Foundry or Red Hat OpenShift
 A Docker orchestration platform, like Docker Swarm or Kubernetes

I describe the deployment options in more detail in chapter 12.

DEPLOYING FEATURES SPANNING MULTIPLE SERVICES NEEDS CAREFUL COORDINATION

Another challenge with using the microservice architecture is that deploying features
that span multiple services requires careful coordination between the various develop-
ment teams. You have to create a rollout plan that orders service deployments based
on the dependencies between services. That’s quite different than a monolithic archi-
tecture, where you can easily deploy updates to multiple components atomically.

DECIDING WHEN TO ADOPT IS DIFFICULT

Another issue with using the microservice architecture is deciding at what point during
the lifecycle of the application you should use this architecture. When developing the
first version of an application, you often don’t have the problems that this architec-
ture solves. Moreover, using an elaborate, distributed architecture will slow down
development. That can be a major dilemma for startups, where the biggest problem is
usually how to rapidly evolve the business model and accompanying application.
Using the microservice architecture makes it much more difficult to iterate rapidly. A
startup should almost certainly begin with a monolithic application.

 Later on, though, when the problem is how to handle complexity, that’s when it
makes sense to functionally decompose the application into a set of microservices.
You may find refactoring difficult because of tangled dependencies. Chapter 13 goes
over strategies for refactoring a monolithic application into microservices.

 As you can see, the microservice architecture offer many benefits, but also has some
significant drawbacks. Because of these issues, adopting a microservice architecture
should not be undertaken lightly. But for complex applications, such as a consumer-
facing web application or SaaS application, it’s usually the right choice. Well-known
sites like eBay (www.slideshare.net/RandyShoup/the-ebay-architecture-striking-a-
balance-between-site-stability-feature-velocity-performance-and-cost), Amazon.com,
Groupon, and Gilt have all evolved from a monolithic architecture to a microservice
architecture.

http://www.slideshare.net/RandyShoup/the-ebay-architecture-striking-a-balance-between-site-stability-feature-velocity-performance-and-cost
http://www.slideshare.net/RandyShoup/the-ebay-architecture-striking-a-balance-between-site-stability-feature-velocity-performance-and-cost
http://Amazon.com

19The Microservice architecture pattern language
 You must address numerous design and architectural issues when using the micro-
service architecture. What’s more, many of these issues have multiple solutions, each
with a different set of trade-offs. There is no one single perfect solution. To help guide
your decision making, I’ve created the Microservice architecture pattern language. I ref-
erence this pattern language throughout the rest of the book as I teach you about the
microservice architecture. Let’s look at what a pattern language is and why it’s helpful.

1.6 The Microservice architecture pattern language
Architecture and design are all about making decisions. You need to decide whether
the monolithic or microservice architecture is the best fit for your application. When
making these decisions you have lots of trade-offs to consider. If you pick the microser-
vice architecture, you’ll need to address lots of issues.

 A good way to describe the various architectural and design options and improve
decision making is to use a pattern language. Let’s first look at why we need patterns
and a pattern language, and then we’ll take a tour of the Microservice architecture
pattern language.

1.6.1 Microservice architecture is not a silver bullet

Back in 1986, Fred Brooks, author of The Mythical Man-Month (Addison-Wesley Profes-
sional, 1995), said that in software engineering, there are no silver bullets. That means
there are no techniques or technologies that if adopted would give you a tenfold
boost in productivity. Yet decades years later, developers are still arguing passionately
about their favorite silver bullets, absolutely convinced that their favorite technology
will give them a massive boost in productivity.

 A lot of arguments follow the suck/rock dichotomy (http://nealford.com/memeagora/
2009/08/05/suck-rock-dichotomy.html), a term coined by Neal Ford that describes
how everything in the software world either sucks or rocks, with no middle ground.
These arguments have this structure: if you do X, then a puppy will die, so therefore
you must do Y. For example, synchronous versus reactive programming, object-oriented
versus functional, Java versus JavaScript, REST versus messaging. Of course, reality is
much more nuanced. Every technology has drawbacks and limitations that are often
overlooked by its advocates. As a result, the adoption of a technology usually follows
the Gartner hype cycle (https://en.wikipedia.org/wiki/Hype_cycle), in which an emerg-
ing technology goes through five phases, including the peak of inflated expectations (it
rocks), followed by the trough of disillusionment (it sucks), and ending with the plateau
of productivity (we now understand the trade-offs and when to use it).

 Microservices are not immune to the silver bullet phenomenon. Whether this
architecture is appropriate for your application depends on many factors. Conse-
quently, it’s bad advice to advise always using the microservice architecture, but it’s
equally bad advice to advise never using it. As with many things, it depends.

 The underlying reason for these polarized and hyped arguments about technology is
that humans are primarily driven by their emotions. Jonathan Haidt, in his excellent

http://nealford.com/memeagora/2009/08/05/suck-rock-dichotomy.html
http://nealford.com/memeagora/2009/08/05/suck-rock-dichotomy.html
http://nealford.com/memeagora/2009/08/05/suck-rock-dichotomy.html
https://en.wikipedia.org/wiki/Hype_cycle

20 CHAPTER 1 Escaping monolithic hell
book The Righteous Mind: Why Good People Are Divided by Politics and Religion (Vintage,
2013), uses the metaphor of an elephant and its rider to describe how the human mind
works. The elephant represents the emotion part of the human brain. It makes most of
the decisions. The rider represents the rational part of the brain. It can sometimes influ-
ence the elephant, but it mostly provides justifications for the elephant’s decisions.

 We—the software development community—need to overcome our emotional
nature and find a better way of discussing and applying technology. A great way to dis-
cuss and describe technology is to use the pattern format, because it’s objective. When
describing a technology in the pattern format, you must, for example, describe the
drawbacks. Let’s take a look at the pattern format.

1.6.2 Patterns and pattern languages

A pattern is a reusable solution to a problem that occurs in a particular context. It’s an
idea that has its origins in real-world architecture and that has proven to be useful in
software architecture and design. The concept of a pattern was created by Christo-
pher Alexander, a real-world architect. He also created the concept of a pattern lan-
guage, a collection of related patterns that solve problems within a particular domain.
His book A Pattern Language: Towns, Buildings, Construction (Oxford University Press,
1977) describes a pattern language for architecture that consists of 253 patterns. The
patterns range from solutions to high-level problems, such as where to locate a city
(“Access to water”), to low-level problems, such as how to design a room (“Light on
two sides of every room”). Each of these patterns solves a problem by arranging physi-
cal objects that range in scope from cities to windows.

 Christopher Alexander’s writings inspired the software community to adopt the
concept of patterns and pattern languages. The book Design Patterns: Elements of Reus-
able Object-Oriented Software (Addison-Wesley Professional, 1994), by Erich Gamma,
Richard Helm, Ralph Johnson, and John Vlissides is a collection of object-oriented
design patterns. The book popularized patterns among software developers. Since the
mid-1990s, software developers have documented numerous software patterns. A soft-
ware pattern solves a software architecture or design problem by defining a set of col-
laborating software elements.

 Let’s imagine, for example, that you’re building a banking application that must
support a variety of overdraft policies. Each policy defines limits on the balance of an
account and the fees charged for an overdrawn account. You can solve this problem
using the Strategy pattern, which is a well-known pattern from the classic Design Pat-
terns book. The solution defined by the Strategy pattern consists of three parts:

 A strategy interface called Overdraft that encapsulates the overdraft algorithm
 One or more concrete strategy classes, one for each particular context
 The Account class that uses the algorithm

The Strategy pattern is an object-oriented design pattern, so the elements of the solution
are classes. Later in this section, I describe high-level design patterns, where the solu-
tion consists of collaborating services.

21The Microservice architecture pattern language
 One reason why patterns are valuable is because a pattern must describe the con-
text within which it applies. The idea that a solution is specific to a particular context
and might not work well in other contexts is an improvement over how technology
used to typically be discussed. For example, a solution that solves the problem at the
scale of Netflix might not be the best approach for an application with fewer users.

 The value of a pattern, however, goes far beyond requiring you to consider the
context of a problem. It forces you to describe other critical yet frequently overlooked
aspects of a solution. A commonly used pattern structure includes three especially
valuable sections:

 Forces
 Resulting context
 Related patterns

Let’s look at each of these, starting with forces.

FORCES: THE ISSUES THAT YOU MUST ADDRESS WHEN SOLVING A PROBLEM

The forces section of a pattern describes the forces (issues) that you must address
when solving a problem in a given context. Forces can conflict, so it might not be
possible to solve all of them. Which forces are more important depends on the con-
text. You have to prioritize solving some forces over others. For example, code must
be easy to understand and have good performance. Code written in a reactive style
has better performance than synchronous code, yet is often more difficult to under-
stand. Explicitly listing the forces is useful because it makes clear which issues need
to be solved.

RESULTING CONTEXT: THE CONSEQUENCES OF APPLYING A PATTERN

The resulting context section of a pattern describes the consequences of applying the
pattern. It consists of three parts:

 Benefits—The benefits of the pattern, including the forces that have been resolved
 Drawbacks—The drawbacks of the pattern, including the unresolved forces
 Issues—The new problems that have been introduced by applying the pattern

The resulting context provides a more complete and less biased view of the solution,
which enables better design decisions.

RELATED PATTERNS: THE FIVE DIFFERENT TYPES OF RELATIONSHIPS

The related patterns section of a pattern describes the relationship between the pattern
and other patterns. There are five types of relationships between patterns:

 Predecessor—A predecessor pattern is a pattern that motivates the need for this
pattern. For example, the Microservice architecture pattern is the predecessor
to the rest of the patterns in the pattern language, except the monolithic archi-
tecture pattern.

 Successor—A pattern that solves an issue that has been introduced by this pat-
tern. For example, if you apply the Microservice architecture pattern, you must

22 CHAPTER 1 Escaping monolithic hell
then apply numerous successor patterns, including service discovery patterns
and the Circuit breaker pattern.

 Alternative—A pattern that provides an alternative solution to this pattern. For
example, the Monolithic architecture pattern and the Microservice architec-
ture pattern are alternative ways of architecting an application. You pick one or
the other.

 Generalization—A pattern that is a general solution to a problem. For example,
in chapter 12 you’ll learn about the different implementations of the Single ser-
vice per host pattern.

 Specialization—A specialized form of a particular pattern. For example, in chap-
ter 12 you’ll learn that the Deploy a service as a container pattern is a specializa-
tion of Single service per host.

In addition, you can organize patterns that tackle issues in a particular problem area
into groups. The explicit description of related patterns provides valuable guidance
on how to effectively solve a particular problem. Figure 1.9 shows how the relation-
ships between patterns is visually represented.

The different kinds of relationships between patterns shown in figure 1.9 are repre-
sented as follows:

 Represents the predecessor-successor relationship
 Patterns that are alternative solutions to the same problem
 Indicates that one pattern is a specialization of another pattern
 Patterns that apply to a particular problem area

Pattern

Problem area
Deployment

Monolithic

architecture

Key

Microservice

architecture

Single service

per host

Service-per-container

General

Alternative A

Predecessor

Specific

Alternative B

Successor

Figure 1.9 The visual representation of different types of relationships
between the patterns: a successor pattern solves a problem created by applying
the predecessor pattern; two or more patterns can be alternative solutions to
the same problem; one pattern can be a specialization of another pattern; and
patterns that solve problems in the same area can be grouped, or generalized.

23The Microservice architecture pattern language
A collection of patterns related through these relationships sometimes form what is
known as a pattern language. The patterns in a pattern language work together to
solve problems in a particular domain. In particular, I’ve created the Microservice
architecture pattern language. It’s a collection of interrelated software architecture
and design patterns for microservices. Let’s take a look at this pattern language.

1.6.3 Overview of the Microservice architecture pattern language

The Microservice architecture pattern language is a collection of patterns that help
you architect an application using the microservice architecture. Figure 1.10 shows
the high-level structure of the pattern language. The pattern language first helps
you decide whether to use the microservice architecture. It describes the monolithic
architecture and the microservice architecture, along with their benefits and draw-
backs. Then, if the microservice architecture is a good fit for your application, the
pattern language helps you use it effectively by solving various architecture and
design issues.

 The pattern language consists of several groups of patterns. On the left in figure 1.10
is the application architecture patterns group, the Monolithic architecture pattern
and the Microservice architecture pattern. Those are the patterns we’ve been discussing

General

Alternative A

Predecessor

Specific

Alternative B

Successor

Decomposition

Application infrastructure patterns

Communication patterns

Infrastructure patterns

Microservice patterns

Application

architecture

Application patterns

Testing

Observability

Maintaining

data consistency

Database

architecture

Key

Querying

Security
Cross-cutting

concerns Reliability

External

API

Communication style

Discovery

Transactional messaging

Problem area

Deployment

Monolithic

architecture

Microservice

architecture

Figure 1.10 A high-level view of the Microservice architecture pattern language showing the different problem
areas that the patterns solve. On the left are the application architecture patterns: Monolithic architecture and
Microservice architecture. All the other groups of patterns solve problems that result from choosing the
Microservice architecture pattern.

24 CHAPTER 1 Escaping monolithic hell
in this chapter. The rest of the pattern language consists of groups of patterns that are
solutions to issues that are introduced by using the Microservice architecture pattern.

 The patterns are also divided into three layers:

 Infrastructure patterns —These solve problems that are mostly infrastructure issues
outside of development.

 Application infrastructure —These are for infrastructure issues that also impact
development.

 Application patterns—These solve problems faced by developers.

These patterns are grouped together based on the kind of problem they solve. Let’s
look at the main groups of patterns.

PATTERNS FOR DECOMPOSING AN APPLICATION INTO SERVICES

Deciding how to decompose a system into a set of services is very much an art, but
there are a number of strategies that can help. The two decomposition patterns
shown in figure 1.11 are different strategies you can use to define your application’s
architecture.

Chapter 2 describes these patterns in detail.

COMMUNICATION PATTERNS

An application built using the microservice architecture is a distributed system. Conse-
quently, interprocess communication (IPC) is an important part of the microservice
architecture. You must make a variety of architectural and design decisions about how
your services communicate with one another and the outside world. Figure 1.12 shows
the communication patterns, which are organized into five groups:

 Communication style—What kind of IPC mechanism should you use?
 Discovery—How does a client of a service determine the IP address of a service

instance so that, for example, it makes an HTTP request?
 Reliability—How can you ensure that communication between services is reli-

able even though services can be unavailable?
 Transactional messaging—How should you integrate the sending of messages and

publishing of events with database transactions that update business data?
 External API—How do clients of your application communicate with the services?

Decompose by

business capability

Decompose by

subdomain

General

Alternative A

Predecessor

Specific

Alternative B

Successor

Key

Problem area

Figure 1.11 There are two
decomposition patterns: Decompose
by business capability, which organizes
services around business capabilities,
and Decompose by subdomain, which
organizes services around domain-
driven design (DDD) subdomains.

25The Microservice architecture pattern language
Chapter 3 looks at the first four groups of patterns: communication style, discovery,
reliability, and transaction messaging. Chapter 8 looks at the external API patterns.

DATA CONSISTENCY PATTERNS FOR IMPLEMENTING TRANSACTION MANAGEMENT

As mentioned earlier, in order to ensure loose coupling, each service has its own data-
base. Unfortunately, having a database per service introduces some significant issues. I
describe in chapter 4 that the traditional approach of using distributed transactions
(2PC) isn’t a viable option for a modern application. Instead, an application needs to
maintain data consistency by using the Saga pattern. Figure 1.13 shows data-related
patterns.

 Chapters 4, 5, and 6 describe these patterns in more detail.

PATTERNS FOR QUERYING DATA IN A MICROSERVICE ARCHITECTURE

The other issue with using a database per service is that some queries need to join
data that’s owned by multiple services. A service’s data is only accessible via its API, so
you can’t use distributed queries against its database. Figure 1.14 shows a couple of
patterns you can use to implement queries.

Polling

publisher

Transaction

log tailing

Transactional messaging

Transactional

outbox

Messaging
Remote procedure

invocation

Circuit

breaker

Communication style

Reliability
Domain-specific

Self registration
Client-side

discovery

Discovery External API

3rd-party

registration

API gateway

Backend for

frontendServer-side

discovery

Service registry

General

Alternative A

Predecessor

Specific

Alternative B

Successor

Key

Problem area

Figure 1.12 The five groups of communication patterns

26 CHAPTER 1 Escaping monolithic hell
Sometimes you can use the API composition pattern, which invokes the APIs of one or
more services and aggregates results. Other times, you must use the Command query
responsibility segregation (CQRS) pattern, which maintains one or more easily queried
replicas of the data. Chapter 7 looks at the different ways of implementing queries.

SERVICE DEPLOYMENT PATTERNS

Deploying a monolithic application isn’t always easy, but it is straightforward in the
sense that there is a single application to deploy. You have to run multiple instances of
the application behind a load balancer.

 In comparison, deploying a microservices-based application is much more com-
plex. There may be tens or hundreds of services that are written in a variety of lan-
guages and frameworks. There are many more moving parts that need to be managed.
Figure 1.15 shows the deployment patterns.

 The traditional, and often manual, way of deploying applications in a language-
specific packaging format, for example WAR files, doesn’t scale to support a microser-
vice architecture. You need a highly automated deployment infrastructure. Ideally,
you should use a deployment platform that provides the developer with a simple UI
(command-line or GUI) for deploying and managing their services. The deployment
platform will typically be based on virtual machines (VMs), containers, or serverless
technology. Chapter 12 looks at the different deployment options.

Database per

service
Saga

Event

sourcing

Domain

event

Aggregate

General

Alternative A

Predecessor

Specific

Alternative B

Successor

Key

Problem area

Figure 1.13 Because each service has its own database, you must use the Saga pattern to maintain
data consistency across services.

CQRS
API

composition

Database

per service

General

Alternative A

Predecessor

Specific

Alternative B

Successor

Key

Problem area

Figure 1.14 Because each service has its own database, you must use one
of the querying patterns to retrieve data scattered across multiple services.

27The Microservice architecture pattern language
OBSERVABILITY PATTERNS PROVIDE INSIGHT INTO APPLICATION BEHAVIOR

A key part of operating an application is understanding its runtime behavior and trouble-
shooting problems such as failed requests and high latency. Though understanding and
troubleshooting a monolithic application isn’t always easy, it helps that requests are han-
dled in a simple, straightforward way. Each incoming request is load balanced to a par-
ticular application instance, which makes a few calls to the database and returns a
response. For example, if you need to understand how a particular request was handled,
you look at the log file of the application instance that handled the request.

 In contrast, understanding and diagnosing problems in a microservice architec-
ture is much more complicated. A request can bounce around between multiple ser-
vices before a response is finally returned to a client. Consequently, there isn’t one log
file to examine. Similarly, problems with latency are more difficult to diagnose because
there are multiple suspects.

 You can use the following patterns to design observable services:

 Health check API—Expose an endpoint that returns the health of the service.
 Log aggregation—Log service activity and write logs into a centralized logging

server, which provides searching and alerting.

Traditional approach of deploying
services using their language-specific

packaging, such as WAR files

Automated, self-service
platform for deploying
and managing services

A modern approach,
which runs your code
without you having to
worry about managing

the infrastructure

A modern approach, which
encapsulates a service’s

technology stack

Single service

per host

Multiple services

per host

Serverless

deployment

Service-per-container

Service-per-VM
Service deployment

platform

General

Alternative A

Predecessor

Specific

Alternative B

Successor

Key

Problem area

Figure 1.15 Several patterns for deploying microservices. The traditional approach is to deploy
services in a language-specific packaging format. There are two modern approaches to deploying
services. The first deploys services as VM or containers. The second is the serverless approach.
You simply upload the service’s code and the serverless platform runs it. You should use a service
deployment platform, which is an automated, self-service platform for deploying and managing
services.

28 CHAPTER 1 Escaping monolithic hell
 Distributed tracing—Assign each external request a unique ID and trace requests
as they flow between services.

 Exception tracking—Report exceptions to an exception tracking service, which
deduplicates exceptions, alerts developers, and tracks the resolution of each
exception.

 Application metrics—Maintain metrics, such as counters and gauges, and expose
them to a metrics server.

 Audit logging—Log user actions.

Chapter 11 describes these patterns in more detail.

PATTERNS FOR THE AUTOMATED TESTING OF SERVICES

The microservice architecture makes individual services easier to test because they’re
much smaller than the monolithic application. At the same time, though, it’s import-
ant to test that the different services work together while avoiding using complex,
slow, and brittle end-to-end tests that test multiple services together. Here are patterns
for simplifying testing by testing services in isolation:

 Consumer-driven contract test—Verify that a service meets the expectations of its
clients.

 Consumer-side contract test—Verify that the client of a service can communicate
with the service.

 Service component test—Test a service in isolation.

Chapters 9 and 10 describe these testing patterns in more detail.

PATTERNS FOR HANDLING CROSS-CUTTING CONCERNS

In a microservice architecture, there are numerous concerns that every service must
implement, including the observability patterns and discovery patterns. It must also
implement the Externalized Configuration pattern, which supplies configuration
parameters such as database credentials to a service at runtime. When developing a
new service, it would be too time consuming to reimplement these concerns from
scratch. A much better approach is to apply the Microservice Chassis pattern and
build services on top of a framework that handles these concerns. Chapter 11
describes these patterns in more detail.

SECURITY PATTERNS

In a microservice architecture, users are typically authenticated by the API gateway. It
must then pass information about the user, such as identity and roles, to the services it
invokes. A common solution is to apply the Access token pattern. The API gateway
passes an access token, such as JWT (JSON Web Token), to the services, which can val-
idate the token and obtain information about the user. Chapter 11 discusses the
Access token pattern in more detail.

 Not surprisingly, the patterns in the Microservice architecture pattern language
are focused on solving architect and design problems. You certainly need the right

29Beyond microservices: Process and organization
architecture in order to successfully develop software, but it’s not the only concern.
You must also consider process and organization.

1.7 Beyond microservices: Process and organization
For a large, complex application, the microservice architecture is usually the best
choice. But in addition to having the right architecture, successful software develop-
ment requires you to also have organization, and development and delivery processes.
Figure 1.16 shows the relationships between process, organization, and architecture.

I’ve already described the microservice architecture. Let’s look at organization and
process.

1.7.1 Software development and delivery organization

Success inevitably means that the engineering team will grow. On the one hand, that’s
a good thing because more developers can get more done. The trouble with large
teams is, as Fred Brooks wrote in The Mythical Man-Month, the communication over-
head of a team of size N is O(N 2). If the team gets too large, it will become inefficient,
due to the communication overhead. Imagine, for example, trying to do a daily standup
with 20 people.

 The solution is to refactor a large single team into a team of teams. Each team is
small, consisting of no more than 8–12 people. It has a clearly defined business-oriented
mission: developing and possibly operating one or more services that implement a
feature or a business capability. The team is cross-functional and can develop, test,
and deploy its services without having to frequently communicate or coordinate with
other teams.

Enables

Enables

Architecture:

Microservice

architecture

Organization:

Small, autonomous,

cross-functional teams

Process:

DevOps/continuous delivery/deployment

Enables
Rapid, frequent,

and reliable delivery

of software

Figure 1.16 The rapid, frequent, and reliable delivery of large,
complex applications requires a combination of DevOps, which
includes continuous delivery/deployment, small, autonomous
teams, and the microservice architecture.

30 CHAPTER 1 Escaping monolithic hell
The velocity of the team of teams is significantly higher than that of a single large
team. As described earlier in section 1.5.1, the microservice architecture plays a key
role in enabling the teams to be autonomous. Each team can develop, deploy, and
scale their services without coordinating with other teams. Moreover, it’s very clear
who to contact when a service isn’t meeting its SLA.

 What’s more, the development organization is much more scalable. You grow the
organization by adding teams. If a single team becomes too large, you split it and its
associated service or services. Because the teams are loosely coupled, you avoid the
communication overhead of a large team. As a result, you can add people without
impacting productivity.

1.7.2 Software development and delivery process

Using the microservice architecture with a waterfall development process is like driv-
ing a horse-drawn Ferrari—you squander most of the benefit of using microservices. If
you want to develop an application with the microservice architecture, it’s essential
that you adopt agile development and deployment practices such as Scrum or Kan-
ban. Better yet, you should practice continuous delivery/deployment, which is a part
of DevOps.

 Jez Humble (https://continuousdelivery.com/) defines continuous delivery as
follows:

Continuous Delivery is the ability to get changes of all types—including new features,
configuration changes, bug fixes and experiments—into production, or into the hands of
users, safely and quickly in a sustainable way.

A key characteristic of continuous delivery is that software is always releasable. It
relies on a high level of automation, including automated testing. Continuous
deployment takes continuous delivery one step further in the practice of automati-
cally deploying releasable code into production. High-performing organizations

The reverse Conway maneuver
In order to effectively deliver software when using the microservice architecture, you
need to take into account Conway’s law (https://en.wikipedia.org/wiki/Conway%27s
_law), which states the following:

Organizations which design systems … are constrained to produce designs
which are copies of the communication structures of these organizations.

Melvin Conway

In other words, your application’s architecture mirrors the structure of the organiza-
tion that developed it. It’s important, therefore, to apply Conway’s law in reverse
(www.thoughtworks.com/radar/techniques/inverse-conway-maneuver) and design
your organization so that its structure mirrors your microservice architecture. By doing
so, you ensure that your development teams are as loosely coupled as the services.

https://en.wikipedia.org/wiki/Conway%27s_law
https://en.wikipedia.org/wiki/Conway%27s_law
https://en.wikipedia.org/wiki/Conway%27s_law
https://continuousdelivery.com/
http://www.thoughtworks.com/radar/techniques/inverse-conway-maneuver

31Beyond microservices: Process and organization
that practice continuous deployment deploy multiple times per day into produc-
tion, have far fewer production outages, and recover quickly from any that do occur
(https://puppet.com/ resources/whitepaper/state-of-devops-report). As described ear-
lier in section 1.5.1, the microservice architecture directly supports continuous
delivery/deployment.

1.7.3 The human side of adopting microservices

Adopting the microservice architecture changes your architecture, your organization,
and your development processes. Ultimately, though, it changes the working environ-
ment of people, who are, as mentioned earlier, emotional creatures. If ignored, their
emotions can make the adoption of microservices a bumpy ride. Mary and the other
FTGO leaders will struggle to change how FTGO develops software.

 The best-selling book Managing Transitions (Da Capo Lifelong Books, 2017,
https://wmbridges.com/books) by William and Susan Bridges introduces the con-
cept of a transition, which refers to the process of how people respond emotionally to a
change. It describes a three-stage Transition Model:

1 Ending, Losing, and Letting Go—The period of emotional upheaval and resis-
tance when people are presented with a change that forces them out of their
comfort zone. They often mourn the loss of the old way of doing things. For
example, when people reorganize into cross-functional teams, they miss their
former teammates. Similarly, a data modeling group that owns the global data
model will be threatened by the idea of each service having its own data
model.

Move fast without breaking things
The goal of continuous delivery/deployment (and, more generally, DevOps) is to rap-
idly yet reliably deliver software. Four useful metrics for assessing software develop-
ment are as follows:

 Deployment frequency—How often software is deployed into production
 Lead time—Time from a developer checking in a change to that change being

deployed
 Mean time to recover—Time to recover from a production problem
 Change failure rate—Percentage of changes that result in a production problem

In a traditional organization, the deployment frequency is low, and the lead time is
high. Stressed-out developers and operations people typically stay up late into the
night fixing last-minute issues during the maintenance window. In contrast, a DevOps
organization releases software frequently, often multiple times per day, with far fewer
production issues. Amazon, for example, deployed changes into production every
11.6 seconds in 2014 (www.youtube.com/watch?v=dxk8b9rSKOo), and Netflix had
a lead time of 16 minutes for one software component (https://medium.com/netflix-
techblog/how-we-build-code-at-netflix-c5d9bd727f15).

https://puppet.com/resources/whitepaper/state-of-devops-report
http://www.youtube.com/watch?v=dxk8b9rSKOo
https://medium.com/netflix-techblog/how-we-build-code-at-netflix-c5d9bd727f15
https://medium.com/netflix-techblog/how-we-build-code-at-netflix-c5d9bd727f15
https://wmbridges.com/books

32 CHAPTER 1 Escaping monolithic hell
2 The Neutral Zone—The intermediate stage between the old and new ways of doing
things, where people are often confused. They are often struggling to learn the
new way of doing things.

3 The New Beginning—The final stage where people have enthusiastically embraced
the new way of doing things and are starting to experience the benefits.

The book describes how best to manage each stage of the transition and increase the
likelihood of successfully implementing the change. FTGO is certainly suffering from
monolithic hell and needs to migrate to a microservice architecture. It must also
change its organization and development processes. In order for FTGO to successfully
accomplish this, however, it must take into account the transition model and consider
people’s emotions.

 In the next chapter, you’ll learn about the goal of software architecture and how to
decompose an application into services.

Summary
 The Monolithic architecture pattern structures the application as a single deploy-

able unit.
 The Microservice architecture pattern decomposes a system into a set of inde-

pendently deployable services, each with its own database.
 The monolithic architecture is a good choice for simple applications, but micro-

service architecture is usually a better choice for large, complex applications.
 The microservice architecture accelerates the velocity of software development

by enabling small, autonomous teams to work in parallel.
 The microservice architecture isn’t a silver bullet—there are significant draw-

backs, including complexity.
 The Microservice architecture pattern language is a collection of patterns that

help you architect an application using the microservice architecture. It helps
you decide whether to use the microservice architecture, and if you pick the
microservice architecture, the pattern language helps you apply it effectively.

 You need more than just the microservice architecture to accelerate software
delivery. Successful software development also requires DevOps and small,
autonomous teams.

 Don’t forget about the human side of adopting microservices. You need to con-
sider employees’ emotions in order to successfully transition to a microservice
architecture.

Decomposition strategies
Sometimes you have to be careful what you wish for. After an intense lobbying
effort, Mary had finally convinced the business that migrating to a microservice
architecture was the right thing to do. Feeling a mixture of excitement and some
trepidation, Mary had a morning-long meeting with her architects to discuss where
to begin. During the discussion, it became apparent that some aspects of the Micro-
service architecture pattern language, such as deployment and service discovery,
were new and unfamiliar, yet straightforward. The key challenge, which is the
essence of the microservice architecture, is the functional decomposition of the
application into services. The first and most important aspect of the architecture is,

This chapter covers
 Understanding software architecture and why it’s

important

 Decomposing an application into services by
applying the decomposition patterns Decompose
by business capability and Decompose by
subdomain

 Using the bounded context concept from domain-
driven design (DDD) to untangle data and make
decomposition easier
33

34 CHAPTER 2 Decomposition strategies
therefore, the definition of the services. As they stood around the whiteboard, the
FTGO team wondered exactly how to do that!

 In this chapter, you’ll learn how to define a microservice architecture for an appli-
cation. I describe strategies for decomposing an application into services. You’ll learn
that services are organized around business concerns rather than technical concerns.
I also show how to use ideas from domain-driven design (DDD) to eliminate god
classes, which are classes that are used throughout an application and cause tangled
dependencies that prevent decomposition.

 I begin this chapter by defining the microservice architecture in terms of software
architecture concepts. After that, I describe a process for defining a microservice
architecture for an application starting from its requirements. I discuss strategies for
decomposing an application into a collection of services, obstacles to it, and how to
overcome them. Let’s start by examining the concept of software architecture.

2.1 What is the microservice architecture exactly?
Chapter 1 describes how the key idea of the microservice architecture is functional
decomposition. Instead of developing one large application, you structure the appli-
cation as a set of services. On one hand, describing the microservice architecture as a
kind of functional decomposition is useful. But on the other hand, it leaves several
questions unanswered, including how does the microservice architecture relate to the
broader concepts of software architecture? What’s a service? And how important is the
size of a service?

 In order to answer those questions, we need to take a step back and look at what is
meant by software architecture. The architecture of a software application is its high-level
structure, which consists of constituent parts and the dependencies between those
parts. As you’ll see in this section, an application’s architecture is multidimensional, so
there are multiple ways to describe it. The reason architecture is important is because
it determines the application’s software quality attributes or -ilities. Traditionally, the
goal of architecture has been scalability, reliability, and security. But today it’s import-
ant that the architecture also enables the rapid and safe delivery of software. You’ll
learn that the microservice architecture is an architecture style that gives an applica-
tion high maintainability, testability, and deployability.

 I begin this section by describing the concept of software architecture and why it’s
important. Next, I discuss the idea of an architectural style. Then I define the micro-
service architecture as a particular architectural style. Let’s start by looking at the con-
cept of software architecture.

2.1.1 What is software architecture and why does it matter?

Architecture is clearly important. There are at least two conferences dedicated to the
topic: O’Reilly Software Architecture Conference (https://conferences.oreilly.com/
software-architecture) and the SATURN conference (https://resources.sei.cmu.edu/
news-events/events/saturn/). Many developers have the goal of becoming an archi-
tect. But what is architecture and why does it matter?

https://conferences.oreilly.com/software-architecture
https://conferences.oreilly.com/software-architecture
https://conferences.oreilly.com/software-architecture
https://resources.sei.cmu.edu/news-events/events/saturn/
https://resources.sei.cmu.edu/news-events/events/saturn/
https://resources.sei.cmu.edu/news-events/events/saturn/

35What is the microservice architecture exactly?
 To answer that question, I first define what is meant by the term software architecture.
After that, I discuss how an application’s architecture is multidimensional and is best
described using a collection of views or blueprints. I then describe that software archi-
tecture matters because of its impact on the application’s software quality attributes.

A DEFINITION OF SOFTWARE ARCHITECTURE

There are numerous definitions of software architecture. For example, see https://
en.wikiquote.org/wiki/Software_architecture to read some of them. My favorite defi-
nition comes from Len Bass and colleagues at the Software Engineering Institute
(www.sei.cmu.edu), who played a key role in establishing software architecture as a
discipline. They define software architecture as follows:

The software architecture of a computing system is the set of structures needed to reason about
the system, which comprise software elements, relations among them, and properties of both.

Documenting Software Architectures by Bass et al.

That’s obviously a quite abstract definition. But its essence is that an application’s
architecture is its decomposition into parts (the elements) and the relationships (the
relations) between those parts. Decomposition is important for a couple of reasons:

 It facilitates the division of labor and knowledge. It enables multiple people (or
multiple teams) with possibly specialized knowledge to work productively together
on an application.

 It defines how the software elements interact.

It’s the decomposition into parts and the relationships between those parts that deter-
mine the application’s -ilities.

THE 4+1 VIEW MODEL OF SOFTWARE ARCHITECTURE

More concretely, an application’s architecture can be viewed from multiple perspec-
tives, in the same way that a building’s architecture can be viewed from structural,
plumbing, electrical, and other perspectives. Phillip Krutchen wrote a classic paper
describing the 4+1 view model of software architecture, “Architectural Blueprints—
The ‘4+1’ View Model of Software Architecture” (www.cs.ubc.ca/~gregor/teaching/
papers/4+1view-architecture.pdf). The 4+1 model, shown in Figure 2.1, defines four
different views of a software architecture. Each describes a particular aspect of the
architecture and consists of a particular set of software elements and relationships
between them.

 The purpose of each view is as follows:

 Logical view—The software elements that are created by developers. In object-
oriented languages, these elements are classes and packages. The relations
between them are the relationships between classes and packages, including
inheritance, associations, and depends-on.

 Implementation view—The output of the build system. This view consists of mod-
ules, which represent packaged code, and components, which are executable

https://en.wikiquote.org/wiki/Software_architecture
https://en.wikiquote.org/wiki/Software_architecture
https://en.wikiquote.org/wiki/Software_architecture
http://www.sei.cmu.edu
http://www.cs.ubc.ca/~gregor/teaching/papers/4+1view-architecture.pdf
http://www.cs.ubc.ca/~gregor/teaching/papers/4+1view-architecture.pdf
http://www.cs.ubc.ca/~gregor/teaching/papers/4+1view-architecture.pdf

36 CHAPTER 2 Decomposition strategies
or deployable units consisting of one or more modules. In Java, a module is a
JAR file, and a component is typically a WAR file or an executable JAR file. The
relations between them include dependency relationships between modules
and composition relationships between components and modules.

 Process view—The components at runtime. Each element is a process, and the
relations between processes represent interprocess communication.

 Deployment—How the processes are mapped to machines. The elements in this
view consist of (physical or virtual) machines and the processes. The relations
between machines represent networking. This view also describes the relation-
ship between processes and machines.

In addition to these four views, there are the scenarios—the +1 in the 4+1 model—
that animate views. Each scenario describes how the various architectural components
within a particular view collaborate in order to handle a request. A scenario in the log-
ical view, for example, shows how the classes collaborate. Similarly, a scenario in the
process view shows how the processes collaborate.

 The 4+1 view model is an excellent way to describe an applications’s architec-
ture. Each view describes an important aspect of the architecture, and the scenarios

Logical

view

Implementation

view

Process

view

Deployment

view

Scenarios

What developers create
Elements: Classes and packages
Relations: The relationships

between them

What is produced by the build system
Elements: Modules, (JAR files) and

components (WAR files
or executables)

Relations: Their dependencies

Running components
Elements: Processes
Relations: Inter-process

communication

Processes running on “machines”
Elements: Machines and processes
Relations: Networking

Animate the views.

Figure 2.1 The 4+1 view model describes an application’s architecture using four views,
along with scenarios that show how the elements within each view collaborate to handle
requests.

37What is the microservice architecture exactly?
illustrate how the elements of a view collaborate. Let’s now look at why architecture
is important.

WHY ARCHITECTURE MATTERS

An application has two categories of requirements. The first category includes the
functional requirements, which define what the application must do. They’re usually
in the form of use cases or user stories. Architecture has very little to do with the func-
tional requirements. You can implement functional requirements with almost any
architecture, even a big ball of mud.

 Architecture is important because it enables an application to satisfy the second
category of requirements: its quality of service requirements. These are also known as
quality attributes and are the so-called -ilities. The quality of service requirements
define the runtime qualities such as scalability and reliability. They also define devel-
opment time qualities including maintainability, testability, and deployability. The
architecture you choose for your application determines how well it meets these
quality requirements.

2.1.2 Overview of architectural styles

In the physical world, a building’s architecture often follows a particular style, such as
Victorian, American Craftsman, or Art Deco. Each style is a package of design deci-
sions that constrains a building’s features and building materials. The concept of
architectural style also applies to software. David Garlan and Mary Shaw (An Introduc-
tion to Software Architecture, January 1994, https://www.cs.cmu.edu/afs/cs/project/
able/ftp/intro_softarch/intro_softarch.pdf), pioneers in the discipline of software
architecture, define an architectural style as follows:

An architectural style, then, defines a family of such systems in terms of a pattern of
structural organization. More specifically, an architectural style determines the vocabulary
of components and connectors that can be used in instances of that style, together with a
set of constraints on how they can be combined.

A particular architectural style provides a limited palette of elements (components)
and relations (connectors) from which you can define a view of your application’s
architecture. An application typically uses a combination of architectural styles. For
example, later in this section I describe how the monolithic architecture is an archi-
tectural style that structures the implementation view as a single (executable/deploy-
able) component. The microservice architecture structures an application as a set of
loosely coupled services.

THE LAYERED ARCHITECTURAL STYLE

The classic example of an architectural style is the layered architecture. A layered archi-
tecture organizes software elements into layers. Each layer has a well-defined set of
responsibilities. A layered architecture also constraints the dependencies between the
layers. A layer can only depend on either the layer immediately below it (if strict layer-
ing) or any of the layers below it.

https://www.cs.cmu.edu/afs/cs/project/able/ftp/intro_softarch/intro_softarch.pdf
https://www.cs.cmu.edu/afs/cs/project/able/ftp/intro_softarch/intro_softarch.pdf
https://www.cs.cmu.edu/afs/cs/project/able/ftp/intro_softarch/intro_softarch.pdf

38 CHAPTER 2 Decomposition strategies
 You can apply the layered architecture to any of the four views discussed earlier.
The popular three-tier architecture is the layered architecture applied to the logical
view. It organizes the application’s classes into the following tiers or layers:

 Presentation layer—Contains code that implements the user interface or exter-
nal APIs

 Business logic layer—Contains the business logic
 Persistence layer—Implements the logic of interacting with the database

The layered architecture is a great example of an architectural style, but it does have
some significant drawbacks:

 Single presentation layer—It doesn’t represent the fact that an application is likely
to be invoked by more than just a single system.

 Single persistence layer—It doesn’t represent the fact that an application is likely
to interact with more than just a single database.

 Defines the business logic layer as depending on the persistence layer—In theory, this
dependency prevents you from testing the business logic without the database.

Also, the layered architecture misrepresents the dependencies in a well-designed
application. The business logic typically defines an interface or a repository of inter-
faces that define data access methods. The persistence tier defines DAO classes that
implement the repository interfaces. In other words, the dependencies are the reverse
of what’s depicted by a layered architecture.

 Let’s look at an alternative architecture that overcomes these drawbacks: the hex-
agonal architecture.

ABOUT THE HEXAGONAL ARCHITECTURE STYLE

Hexagonal architecture is an alternative to the layered architectural style. As figure 2.2
shows, the hexagonal architecture style organizes the logical view in a way that places
the business logic at the center. Instead of the presentation layer, the application has
one or more inbound adapters that handle requests from the outside by invoking the
business logic. Similarly, instead of a data persistence tier, the application has one or
more outbound adapters that are invoked by the business logic and invoke external
applications. A key characteristic and benefit of this architecture is that the business
logic doesn’t depend on the adapters. Instead, they depend upon it.

 The business logic has one or more ports. A port defines a set of operations and is
how the business logic interacts with what’s outside of it. In Java, for example, a port is
often a Java interface. There are two kinds of ports: inbound and outbound ports. An
inbound port is an API exposed by the business logic, which enables it to be invoked
by external applications. An example of an inbound port is a service interface, which
defines a service’s public methods. An outbound port is how the business logic invokes
external systems. An example of an output port is a repository interface, which defines a
collection of data access operations.

39What is the microservice architecture exactly?
Surrounding the business logic are adapters. As with ports, there are two types of
adapters: inbound and outbound. An inbound adapter handles requests from the out-
side world by invoking an inbound port. An example of an inbound adapter is a
Spring MVC Controller that implements either a set of REST endpoints or a set of
web pages. Another example is a message broker client that subscribes to messages.
Multiple inbound adapters can invoke the same inbound port.

 An outbound adapter implements an outbound port and handles requests from
the business logic by invoking an external application or service. An example of an
outbound adapter is a data access object (DAO) class that implements operations for
accessing a database. Another example would be a proxy class that invokes a remote
service. Outbound adapters can also publish events.

 An important benefit of the hexagonal architectural style is that it decouples the
business logic from the presentation and data access logic in the adapters. The busi-
ness logic doesn’t depend on either the presentation logic or the data access logic.

Business logic

Browser

Message broker

Outbound adapter

Outbound port

Outbound adapter

Inbound port

Inbound adapter Inbound adapter

Some

controller

class

Message

consumer

Messaging

interface

Foo

service

Repository

interface

DAO

Database

Message

producer

Figure 2.2 An example of a hexagonal architecture, which consists of the business logic and one or
more adapters that communicate with external systems. The business logic has one or more ports.
Inbound adapters, which handled requests from external systems, invoke an inbound port. An
outbound adapter implements an outbound port, and invokes an external system.

40 CHAPTER 2 Decomposition strategies
Because of this decoupling, it’s much easier to test the business logic in isolation.
Another benefit is that it more accurately reflects the architecture of a modern appli-
cation. The business logic can be invoked via multiple adapters, each of which imple-
ments a particular API or UI. The business logic can also invoke multiple adapters,
each one of which invokes a different external system. Hexagonal architecture is a
great way to describe the architecture of each service in a microservice architecture.

 The layered and hexagonal architectures are both examples of architectural styles.
Each defines the building blocks of an architecture and imposes constraints on the
relationships between them. The hexagonal architecture and the layered architec-
ture, in the form of a three-tier architecture, organize the logical view. Let’s now
define the microservice architecture as an architectural style that organizes the imple-
mentation view.

2.1.3 The microservice architecture is an architectural style

I’ve discussed the 4+1 view model and architectural styles, so I can now define mono-
lithic and microservice architecture. They’re both architectural styles. Monolithic
architecture is an architectural style that structures the implementation view as a sin-
gle component: a single executable or WAR file. This definition says nothing about
the other views. A monolithic application can, for example, have a logical view that’s
organized along the lines of a hexagonal architecture.

The microservice architecture is also an architectural style. It structures the imple-
mentation view as a set of multiple components: executables or WAR files. The com-
ponents are services, and the connectors are the communication protocols that
enable those services to collaborate. Each service has its own logical view architecture,
which is typically a hexagonal architecture. Figure 2.3 shows a possible microservice
architecture for the FTGO application. The services in this architecture correspond to
business capabilities, such as Order management and Restaurant management.

Later in this chapter, I describe what is meant by business capability . The connectors
between services are implemented using interprocess communication mechanisms
such as REST APIs and asynchronous messaging. Chapter 3 discusses interprocess
communication in more detail.

Pattern: Monolithic architecture
Structure the application as a single executable/deployable component. See http://
microservices.io/patterns/ monolithic.html.

Pattern: Microservice architecture
Structure the application as a collection of loosely coupled, independently deployable
services. See http://microservices.io/patterns/microservices.html.

http://microservices.io/patterns/microservices.html
http://microservices.io/patterns/monolithic.html
http://microservices.io/patterns/monolithic.html
http://microservices.io/patterns/monolithic.html

41What is the microservice architecture exactly?
A key constraint imposed by the microservice architecture is that the services are
loosely coupled. Consequently, there are restrictions on how the services collaborate.
In order to explain those restrictions, I’ll attempt to define the term service, describe
what it means to be loosely coupled, and tell you why this matters.

WHAT IS A SERVICE?
A service is a standalone, independently deployable software component that imple-
ments some useful functionality. Figure 2.4 shows the external view of a service, which in
this example is the Order Service. A service has an API that provides its clients access to
its functionality. There are two types of operations: commands and queries. The API
consists of commands, queries, and events. A command, such as createOrder(), per-
forms actions and updates data. A query, such as findOrderById(), retrieves data. A ser-
vice also publishes events, such as OrderCreated, which are consumed by its clients.

 A service’s API encapsulates its internal implementation. Unlike in a monolith, a
developer can’t write code that bypasses its API. As a result, the microservice architec-
ture enforces the application’s modularity.

 Each service in a microservice architecture has its own architecture and, potentially,
technology stack. But a typical service has a hexagonal architecture. Its API is imple-
mented by adapters that interact with the service’s business logic. The operations

Amazon
SES

Adapter

Twilio
Adapter

Stripe
Adapter

The API Gateway routes
requests from the mobile
applications to services.

Services have APIs. A service’s data is private.

Services corresponding
to business capabilities/

DDD subdomains

API

Gateway

Restaurant

Web UI

Order

Service

Courier

REST
API

REST
API

REST
API

Consumer

Restaurant

Restaurant

Service

REST
API

Accounting

Service

REST
API

Notification

Service

REST
API

Kitchen

Service

REST
API

Delivery

Service

REST
API

Figure 2.3 A possible microservice architecture for the FTGO application. It consists of numerous
services.

42 CHAPTER 2 Decomposition strategies
adapter invokes the business logic, and the events adapter publishes events emitted by
the business logic.

 Later in chapter 12, when I discuss deployment technologies, you’ll see that the
implementation view of a service can take many forms. The component might be a
standalone process, a web application or OSGI bundle running in a container, or a
serverless cloud function. An essential requirement, however, is that a service has an
API and is independently deployable.

WHAT IS LOOSE COUPLING?
An important characteristic of the microservice architecture is that the services are
loosely coupled (https://en.wikipedia.org/wiki/Loose_coupling). All interaction with a
service happens via its API, which encapsulates its implementation details. This enables
the implementation of the service to change without impacting its clients. Loosely
coupled services are key to improving an application’s development time attributes,
including its maintainability and testability. They are much easier to understand, change,
and test.

 The requirement for services to be loosely coupled and to collaborate only via APIs
prohibits services from communicating via a database. You must treat a service’s
persistent data like the fields of a class and keep them private. Keeping the data pri-
vate enables a developer to change their service’s database schema without having to

Order Service

Invokes

Subscribes to events

Order

Service

client

Defines operations

Publishes events when data changes

Commands:

createOrder()
...
Queries:

findOrderbyId()
...

Order

event

publisher

Service API

Order created

Order cancelled

Figure 2.4 A service has an API that encapsulates the implementation. The API defines
operations, which are invoked by clients. There are two types of operations: commands update
data, and queries retrieve data. When its data changes, a service publishes events that clients
can subscribe to.

https://en.wikipedia.org/wiki/Loose_coupling

43What is the microservice architecture exactly?
spend time coordinating with developers working on other services. Not sharing data-
base tables also improves runtime isolation. It ensures, for example, that one service
can’t hold database locks that block another service. Later on, though, you’ll learn
that one downside of not sharing databases is that maintaining data consistency and
querying across services are more complex.

THE ROLE OF SHARED LIBRARIES

Developers often package functionality in a library (module) so that it can be reused
by multiple applications without duplicating code. After all, where would we be today
without Maven or npm repositories? You might be tempted to also use shared libraries
in microservice architecture. On the surface, it looks like a good way to reduce code
duplication in your services. But you need to ensure that you don’t accidentally intro-
duce coupling between your services.

 Imagine, for example, that multiple services need to update the Order business
object. One approach is to package that functionality as a library that’s used by multi-
ple services. On one hand, using a library eliminates code duplication. On the other
hand, consider what happens when the requirements change in a way that affects the
Order business object. You would need to simultaneously rebuild and redeploy those
services. A much better approach would be to implement functionality that’s likely to
change, such as Order management, as a service.

 You should strive to use libraries for functionality that’s unlikely to change. For
example, in a typical application it makes no sense for every service to implement a
generic Money class. Instead, you should create a library that’s used by the services.

THE SIZE OF A SERVICE IS MOSTLY UNIMPORTANT

One problem with the term microservice is that the first thing you hear is micro. This
suggests that a service should be very small. This is also true of other size-based terms
such as miniservice or nanoservice. In reality, size isn’t a useful metric.

 A much better goal is to define a well-designed service to be a service capable of
being developed by a small team with minimal lead time and with minimal collabora-
tion with other teams. In theory, a team might only be responsible for a single service,
so that service is by no means micro. Conversely, if a service requires a large team or
takes a long time to test, it probably makes sense to split the team and the service. Or
if you constantly need to change a service because of changes to other services or if it’s
triggering changes in other services, that’s a sign that it’s not loosely coupled. You
might even have built a distributed monolith.

 The microservice architecture structures an application as a set of small, loosely
coupled services. As a result, it improves the development time attributes—main-
tainability, testability, deployability, and so on—and enables an organization to
develop better software faster. It also improves an application’s scalability, although
that’s not the main goal. To develop a microservice architecture for your application,
you need to identify the services and determine how they collaborate. Let’s look at
how to do that.

44 CHAPTER 2 Decomposition strategies
2.2 Defining an application’s microservice architecture
How should we define a microservice architecture? As with any software development
effort, the starting points are the written requirements, hopefully domain experts, and
perhaps an existing application. Like much of software development, defining an
architecture is more art than science. This section describes a simple, three-step pro-
cess, shown in figure 2.5, for defining an application’s architecture. It’s important to
remember, though, that it’s not a process you can follow mechanically. It’s likely to be
iterative and involve a lot of creativity.

An application exists to handle requests, so the first step in defining its architecture is
to distill the application’s requirements into the key requests. But instead of describing
the requests in terms of specific IPC technologies such as REST or messaging, I use

Order

Service

FTGO FTGO

Restaurant

Service

Kitchen

Service

...

Order

Service

Iterate

verifyOrder()

Restaurant

Service

Kitchen

Service

Functional requirements

createOrder()

createTicket()

acceptOrder()

createOrder()

acceptOrder()

FTGO

As a consumer

I want to place an order

so that I can ...

createOrder()

acceptOrder()

As a restaurant

I want to accept an order

so that I can ...

Step 1: Identify system operations

Step 2: Identify services Step 3: Define service APIs and collaborations

The starting point are the requirements,
such as the user stories.

A system operation represents
an external request.

Figure 2.5 A three-step process for defining an application’s microservice architecture

45Defining an application’s microservice architecture
the more abstract notion of system operation. A system operation is an abstraction of a
request that the application must handle. It’s either a command, which updates data,
or a query, which retrieves data. The behavior of each command is defined in terms
of an abstract domain model, which is also derived from the requirements. The sys-
tem operations become the architectural scenarios that illustrate how the services
collaborate.

 The second step in the process is to determine the decomposition into services.
There are several strategies to choose from. One strategy, which has its origins in the
discipline of business architecture, is to define services corresponding to business
capabilities. Another strategy is to organize services around domain-driven design sub-
domains. The end result is services that are organized around business concepts
rather than technical concepts.

 The third step in defining the application’s architecture is to determine each ser-
vice’s API. To do that, you assign each system operation identified in the first step to a
service. A service might implement an operation entirely by itself. Alternatively, it
might need to collaborate with other services. In that case, you determine how the ser-
vices collaborate, which typically requires services to support additional operations.
You’ll also need to decide which of the IPC mechanisms I describe in chapter 3 to
implement each service’s API.

 There are several obstacles to decomposition. The first is network latency. You
might discover that a particular decomposition would be impractical due to too many
round-trips between services. Another obstacle to decomposition is that synchronous
communication between services reduces availability. You might need to use the con-
cept of self-contained services, described in chapter 3. The third obstacle is the
requirement to maintain data consistency across services. You’ll typically need to use
sagas, discussed in chapter 4. The fourth and final obstacle to decomposition is so-
called god classes, which are used throughout an application. Fortunately, you can use
concepts from domain-driven design to eliminate god classes.

 This section first describes how to identity an application’s operations. After that,
we’ll look at strategies and guidelines for decomposing an application into services,
and at obstacles to decomposition and how to address them. Finally, I’ll describe how
to define each service’s API.

2.2.1 Identifying the system operations

The first step in defining an application’s architecture is to define the system opera-
tions. The starting point is the application’s requirements, including user stories and
their associated user scenarios (note that these are different from the architectural
scenarios). The system operations are identified and defined using the two-step pro-
cess shown in figure 2.6. This process is inspired by the object-oriented design process
covered in Craig Larman’s book Applying UML and Patterns (Prentice Hall, 2004) (see
www.craiglarman.com/wiki/index.php?title=Book_Applying_UML_and_Patterns for
details). The first step creates the high-level domain model consisting of the key classes

http://www.craiglarman.com/wiki/index.php?title=Book_Applying_UML_and_Patterns

46 CHAPTER 2 Decomposition strategies
that provide a vocabulary with which to describe the system operations. The second
step identifies the system operations and describes each one’s behavior in terms of the
domain model.

The domain model is derived primarily from the nouns of the user stories, and the sys-
tem operations are derived mostly from the verbs. You could also define the domain
model using a technique called Event Storming, which I talk about in chapter 5.
The behavior of each system operation is described in terms of its effect on one or
more domain objects and the relationships between them. A system operation can
create, update, or delete domain objects, as well as create or destroy relationships
between them.

 Let’s look at how to define a high-level domain model. After that I’ll define the sys-
tem operations in terms of the domain model.

CREATING A HIGH-LEVEL DOMAIN MODEL

The first step in the process of defining the system operations is to sketch a high-
level domain model for the application. Note that this domain model is much sim-
pler than what will ultimately be implemented. The application won’t even have a
single domain model because, as you’ll soon learn, each service has its own domain
model. Despite being a drastic simplification, a high-level domain model is useful at
this stage because it defines the vocabulary for describing the behavior of the system
operations.

 A domain model is created using standard techniques such as analyzing the nouns
in the stories and scenarios and talking to the domain experts. Consider, for example,

Functional requirements

FTGO

As a consumer

I want to place an order

so that I can ...

createOrder()

acceptOrder()

As a restaurant

I want to accept an order

so that I can ...

Step 2

High-level domain model

Step 1

Order

Maps to

System operations are defined

in terms of domain model.

Domain model

derived from

requirements

Restaurant

Delivery

Figure 2.6 System operations are derived from the application’s requirements using a two-step process. The first
step is to create a high-level domain model. The second step is to define the system operations, which are defined
in terms of the domain model.

47Defining an application’s microservice architecture
the Place Order story. We can expand that story into numerous user scenarios includ-
ing this one:

Given a consumer
And a restaurant
And a delivery address/time that can be served by that restaurant
And an order total that meets the restaurant's order minimum

When the consumer places an order for the restaurant
Then consumer's credit card is authorized
And an order is created in the PENDING_ACCEPTANCE state
And the order is associated with the consumer
And the order is associated with the restaurant

The nouns in this user scenario hint at the existence of various classes, including
Consumer, Order, Restaurant, and CreditCard.

 Similarly, the Accept Order story can be expanded into a scenario such as this one:

Given an order that is in the PENDING_ACCEPTANCE state
and a courier that is available to deliver the order

When a restaurant accepts an order with a promise to prepare by a particular
time

Then the state of the order is changed to ACCEPTED
And the order's promiseByTime is updated to the promised time
And the courier is assigned to deliver the order

This scenario suggests the existence of Courier and Delivery classes. The end result
after a few iterations of analysis will be a domain model that consists, unsurprisingly,
of those classes and others, such as MenuItem and Address. Figure 2.7 is a class dia-
gram that shows the key classes.

Consumer Order

state
...

creditcardId
...

deliveryTime quantity name
price

street1
street2
city
state
zip

name
...

available
...

lat
lon

Restaurant Courier Location

PaymentInfo DeliveryInfo OrderLineItem MenuItem Address

Placed by For

Assigned to

Paid usingPays using

Figure 2.7 The key classes in the FTGO domain model

48 CHAPTER 2 Decomposition strategies
The responsibilities of each class are as follows:

 Consumer—A consumer who places orders.
 Order—An order placed by a consumer. It describes the order and tracks its status.
 OrderLineItem—A line item of an Order.
 DeliveryInfo—The time and place to deliver an order.
 Restaurant—A restaurant that prepares orders for delivery to consumers.
 MenuItem—An item on the restaurant’s menu.
 Courier—A courier who deliver orders to consumers. It tracks the availability of

the courier and their current location.
 Address—The address of a Consumer or a Restaurant.
 Location—The latitude and longitude of a Courier.

A class diagram such as the one in figure 2.7 illustrates one aspect of an application’s
architecture. But it isn’t much more than a pretty picture without the scenarios to ani-
mate it. The next step is to define the system operations, which correspond to archi-
tectural scenarios.

DEFINING SYSTEM OPERATIONS

Once you’ve defined a high-level domain model, the next step is to identify the requests
that the application must handle. The details of the UI are beyond the scope of this
book, but you can imagine that in each user scenario, the UI will make requests to the
backend business logic to retrieve and update data. FTGO is primarily a web applica-
tion, which means that most requests are HTTP-based, but it’s possible that some clients
might use messaging. Instead of committing to a specific protocol, therefore, it makes
sense to use the more abstract notion of a system operation to represent requests.

 There are two types of system operations:

 Commands—System operations that create, update, and delete data
 Queries—System operations that read (query) data

Ultimately, these system operations will correspond to REST, RPC, or messaging
endpoints, but for now thinking of them abstractly is useful. Let’s first identify some
commands.

 A good starting point for identifying system commands is to analyze the verbs in the
user stories and scenarios. Consider, for example, the Place Order story. It clearly sug-
gests that the system must provide a Create Order operation. Many other stories individ-
ually map directly to system commands. Table 2.1 lists some of the key system commands.

Table 2.1 Key system commands for the FTGO application

Actor Story Command Description

Consumer Create Order createOrder() Creates an order

Restaurant Accept Order acceptOrder() Indicates that the restaurant has
accepted the order and is committed
to preparing it by the indicated time

49Defining an application’s microservice architecture
A command has a specification that defines its parameters, return value, and behavior
in terms of the domain model classes. The behavior specification consists of precondi-
tions that must be true when the operation is invoked, and post-conditions that are
true after the operation is invoked. Here, for example, is the specification of the
createOrder() system operation:

The preconditions mirror the givens in the Place Order user scenario described ear-
lier. The post-conditions mirror the thens from the scenario. When a system operation
is invoked it will verify the preconditions and perform the actions required to make
the post-conditions true.

 Here’s the specification of the acceptOrder() system operation:

Restaurant Order Ready
for Pickup

noteOrderReadyForPickup() Indicates that the order is ready for
pickup

Courier Update
Location

noteUpdatedLocation() Updates the current location of the
courier

Courier Delivery
picked up

noteDeliveryPickedUp() Indicates that the courier has
picked up the order

Courier Delivery
delivered

noteDeliveryDelivered() Indicates that the courier has deliv-
ered the order

Operation createOrder (consumer id, payment method, delivery address, delivery time,
restaurant id, order line items)

Returns orderId, …

Preconditions The consumer exists and can place orders.
 The line items correspond to the restaurant’s menu items.
 The delivery address and time can be serviced by the restaurant.

Post-conditions The consumer’s credit card was authorized for the order total.
 An order was created in the PENDING_ACCEPTANCE state.

Operation acceptOrder(restaurantId, orderId, readyByTime)

Returns —

Preconditions The order.status is PENDING_ACCEPTANCE.
 A courier is available to deliver the order.

Post-conditions The order.status was changed to ACCEPTED.
 The order.readyByTime was changed to the readyByTime.
 The courier was assigned to deliver the order.

Table 2.1 Key system commands for the FTGO application (continued)

Actor Story Command Description

50 CHAPTER 2 Decomposition strategies
Its pre- and post-conditions mirror the user scenario from earlier.
 Most of the architecturally relevant system operations are commands. Sometimes,

though, queries, which retrieve data, are also important.
 Besides implementing commands, an application must also implement queries.

The queries provide the UI with the information a user needs to make decisions. At
this stage, we don’t have a particular UI design for FTGO application in mind, but
consider, for example, the flow when a consumer places an order:

1 User enters delivery address and time.
2 System displays available restaurants.
3 User selects restaurant.
4 System displays menu.
5 User selects item and checks out.
6 System creates order.

This user scenario suggests the following queries:

 findAvailableRestaurants(deliveryAddress, deliveryTime)—Retrieves the
restaurants that can deliver to the specified delivery address at the specified time

 findRestaurantMenu(id)—Retrieves information about a restaurant including
the menu items

Of the two queries, findAvailableRestaurants() is probably the most architecturally
significant. It’s a complex query involving geosearch. The geosearch component of
the query consists of finding all points—restaurants—that are near a location—the
delivery address. It also filters out those restaurants that are closed when the order
needs to be prepared and picked up. Moreover, performance is critical, because this
query is executed whenever a consumer wants to place an order.

 The high-level domain model and the system operations capture what the applica-
tion does. They help drive the definition of the application’s architecture. The behav-
ior of each system operation is described in terms of the domain model. Each
important system operation represents an architecturally significant scenario that’s
part of the description of the architecture.

 Once the system operations have been defined, the next step is to identify the
application’s services. As mentioned earlier, there isn’t a mechanical process to follow.
There are, however, various decomposition strategies that you can use. Each one
attacks the problem from a different perspective and uses its own terminology. But
with all strategies, the end result is the same: an architecture consisting of services that
are primarily organized around business rather than technical concepts.

 Let’s look at the first strategy, which defines services corresponding to business
capabilities.

51Defining an application’s microservice architecture
2.2.2 Defining services by applying the Decompose by business
capability pattern

One strategy for creating a microservice architecture is to decompose by business
capability. A concept from business architecture modeling, a business capability is some-
thing that a business does in order to generate value. The set of capabilities for a given
business depends on the kind of business. For example, the capabilities of an insur-
ance company typically include Underwriting, Claims management, Billing, Compliance,
and so on. The capabilities of an online store include Order management, Inventory
management, Shipping, and so on.

BUSINESS CAPABILITIES DEFINE WHAT AN ORGANIZATION DOES

An organization’s business capabilities capture what an organization’s business is.
They’re generally stable, as opposed to how an organization conducts its business, which
changes over time, sometimes dramatically. That’s especially true today, with the rapidly
growing use of technology to automate many business processes. For example, it wasn’t
that long ago that you deposited checks at your bank by handing them to a teller. It then
became possible to deposit checks using an ATM. Today you can conveniently deposit
most checks using your smartphone. As you can see, the Deposit check business capabil-
ity has remained stable, but the manner in which it’s done has drastically changed.

IDENTIFYING BUSINESS CAPABILITIES

An organization’s business capabilities are identified by analyzing the organization’s
purpose, structure, and business processes. Each business capability can be thought of
as a service, except it’s business-oriented rather than technical. Its specification con-
sists of various components, including inputs, outputs, and service-level agreements.
For example, the input to an Insurance underwriting capability is the consumer’s
application, and the outputs include approval and price.

 A business capability is often focused on a particular business object. For example,
the Claim business object is the focus of the Claim management capability. A capability
can often be decomposed into sub-capabilities. For example, the Claim management
capability has several sub-capabilities, including Claim information management, Claim
review, and Claim payment management.

 It is not difficult to imagine that the business capabilities for FTGO include the
following:

 Supplier management
– Courier management—Managing courier information
– Restaurant information management—Managing restaurant menus and other

information, including location and open hours

Pattern: Decompose by business capability
Define services corresponding to business capabilities. See http://microservices.io/
patterns/decomposition/decompose-by-business-capability.html.

http://microservices.io/patterns/decomposition/decompose-by-business-capability.html
http://microservices.io/patterns/decomposition/decompose-by-business-capability.html
http://microservices.io/patterns/decomposition/decompose-by-business-capability.html

52 CHAPTER 2 Decomposition strategies
 Consumer management—Managing information about consumers
 Order taking and fulfillment

– Order management—Enabling consumers to create and manage orders
– Restaurant order management—Managing the preparation of orders at a

restaurant
– Logistics
– Courier availability management—Managing the real-time availability of couri-

ers to delivery orders
– Delivery management—Delivering orders to consumers

 Accounting
– Consumer accounting—Managing billing of consumers
– Restaurant accounting—Managing payments to restaurants
– Courier accounting—Managing payments to couriers

 …

The top-level capabilities include Supplier management, Consumer management,
Order taking and fulfillment, and Accounting. There will likely be many other top-
level capabilities, including marketing-related capabilities. Most top-level capabilities
are decomposed into sub-capabilities. For example, Order taking and fulfillment is
decomposed into five sub-capabilities.

 On interesting aspect of this capability hierarchy is that there are three restaurant-
related capabilities: Restaurant information management, Restaurant order manage-
ment, and Restaurant accounting. That’s because they represent three very different
aspects of restaurant operations.

 Next we’ll look at how to use business capabilities to define services.

FROM BUSINESS CAPABILITIES TO SERVICES

Once you’ve identified the business capabilities, you then define a service for each
capability or group of related capabilities. Figure 2.8 shows the mapping from capabil-
ities to services for the FTGO application. Some top-level capabilities, such as the
Accounting capability, are mapped to services. In other cases, sub-capabilities are
mapped to services.

 The decision of which level of the capability hierarchy to map to services, because
is somewhat subjective. My justification for this particular mapping is as follows:

 I mapped the sub-capabilities of Supplier management to two services, because
Restaurants and Couriers are very different types of suppliers.

 I mapped the Order taking and fulfillment capability to three services that are
each responsible for different phases of the process. I combined the Courier
availability management and Delivery management capabilities and mapped
them to a single service because they’re deeply intertwined.

 I mapped the Accounting capability to its own service, because the different
types of accounting seem similar.

53Defining an application’s microservice architecture
Later on, it may make sense to separate payments (of Restaurants and Couriers) and
billing (of Consumers).

 A key benefit of organizing services around capabilities is that because they’re sta-
ble, the resulting architecture will also be relatively stable. The individual components
of the architecture may evolve as the how aspect of the business changes, but the archi-
tecture remains unchanged.

 Having said that, it’s important to remember that the services shown in figure 2.8
are merely the first attempt at defining the architecture. They may evolve over time as
we learn more about the application domain. In particular, an important step in the
architecture definition process is investigating how the services collaborate in each of
the key architectural services. You might, for example, discover that a particular
decomposition is inefficient due to excessive interprocess communication and that
you must combine services. Conversely, a service might grow in complexity to the

Courier ServiceCourier management

Consumer management

Supplier management

Capability hierarchy Services

Couriers and restaurants
are very different
kinds of suppliers

=> different services.

Three different services
handling different

phases of the order
taking and fulfillment

Treat payments and
billing the same for now.

Restaurant Service
Restaurant information

management

Order ServiceOrder management

Order taking and fulfillment

Accounting

Kitchen Service
Restaurant order

ticket management

Consumer Service

Delivery Service

Consumer accounting

Restaurant accounting

Courier accounting

Accounting Service

Logistics

Delivery management

Courier availability

management

Figure 2.8 Mapping FTGO business capabilities to services. Capabilities at various levels of the
capability hierarchy are mapped to services.

54 CHAPTER 2 Decomposition strategies
point where it becomes worthwhile to split it into multiple services. What’s more, in
section 2.2.5, I describe several obstacles to decomposition that might cause you to
revisit your decision.

 Let’s take a look at another way to decompose an application that is based on
domain-driven design.

2.2.3 Defining services by applying the Decompose by
sub-domain pattern

DDD, as described in the excellent book Domain-driven design by Eric Evans
(Addison-Wesley Professional, 2003), is an approach for building complex software
applications that is centered on the development of an object-oriented domain
model. A domain mode captures knowledge about a domain in a form that can be
used to solve problems within that domain. It defines the vocabulary used by the
team, what DDD calls the Ubiquitous Language. The domain model is closely mir-
rored in the design and implementation of the application. DDD has two concepts
that are incredibly useful when applying the microservice architecture: subdomains
and bounded contexts.

DDD is quite different than the traditional approach to enterprise modeling, which
creates a single model for the entire enterprise. In such a model there would be, for
example, a single definition of each business entity, such as customer, order, and so
on. The problem with this kind of modeling is that getting different parts of an orga-
nization to agree on a single model is a monumental task. Also, it means that from the
perspective of a given part of the organization, the model is overly complex for their
needs. Moreover, the domain model can be confusing because different parts of the
organization might use either the same term for different concepts or different terms
for the same concept. DDD avoids these problems by defining multiple domain mod-
els, each with an explicit scope.

 DDD defines a separate domain model for each subdomain. A subdomain is a part
of the domain, DDD’s term for the application’s problem space. Subdomains are iden-
tified using the same approach as identifying business capabilities: analyze the busi-
ness and identify the different areas of expertise. The end result is very likely to be
subdomains that are similar to the business capabilities. The examples of subdomains
in FTGO include Order taking, Order management, Kitchen management, Delivery,
and Financials. As you can see, these subdomains are very similar to the business capa-
bilities described earlier.

Pattern: Decompose by subdomain
Define services corresponding to DDD subdomains. See http://microservices.io
/patterns/decomposition/decompose-by-subdomain.html.

http://microservices.io/patterns/decomposition/decompose-by-subdomain.html
http://microservices.io/patterns/decomposition/decompose-by-subdomain.html
http://microservices.io/patterns/decomposition/decompose-by-subdomain.html

55Defining an application’s microservice architecture
 DDD calls the scope of a domain model a bounded context. A bounded context
includes the code artifacts that implement the model. When using the microservice
architecture, each bounded context is a service or possibly a set of services. We can
create a microservice architecture by applying DDD and defining a service for each
subdomain. Figure 2.9 shows how the subdomains map to services, each with its own
domain model.

DDD and the microservice architecture are in almost perfect alignment. The DDD
concept of subdomains and bounded contexts maps nicely to services within a micro-
service architecture. Also, the microservice architecture’s concept of autonomous
teams owning services is completely aligned with the DDD’s concept of each domain
model being owned and developed by a single team. Even better, as I describe later in
this section, the concept of a subdomain with its own domain model is a great way to
eliminate god classes and thereby make decomposition easier.

 Decompose by subdomain and Decompose by business capability are the two main
patterns for defining an application’s microservice architecture. There are, however,
some useful guidelines for decomposition that have their roots in object-oriented
design. Let’s take a look at them.

Accounting Service

Accounting

domain model

Kitchen Service

.... Service

Order taking

subdomain

Maps to

Maps to

Maps to

Maps to

Maps to

Kitchen

subdomain

Accounting

subdomain

Delivery

subdomain

....

subdomain

Kitchen

domain model

Delivery Service

Delivery

domain model

Order Service
FTGO domain

Order

domain model

Figure 2.9 From subdomains to services: each subdomain of the FTGO application domain
is mapped to a service, which has its own domain model.

56 CHAPTER 2 Decomposition strategies
2.2.4 Decomposition guidelines

So far in this chapter, we’ve looked at the main ways to define a microservice architec-
ture. We can also adapt and use a couple of principles from object-oriented design
when applying the microservice architecture pattern. These principles were created
by Robert C. Martin and described in his classic book Designing Object Oriented C++
Applications Using The Booch Method (Prentice Hall, 1995). The first principle is the Sin-
gle Responsibility Principle (SRP), for defining the responsibilities of a class. The sec-
ond principle is the Common Closure Principle (CCP), for organizing classes into
packages. Let’s take a look at these principles and see how they can be applied to the
microservice architecture.

SINGLE RESPONSIBILITY PRINCIPLE

One of the main goals of software architecture and design is determining the respon-
sibilities of each software element. The Single Responsibility Principle is as follows:

A class should have only one reason to change.

 Robert C. Martin

Each responsibility that a class has is a potential reason for that class to change. If a
class has multiple responsibilities that change independently, the class won’t be stable.
By following the SRP, you define classes that each have a single responsibility and
hence a single reason for change.

 We can apply SRP when defining a microservice architecture and create small,
cohesive services that each have a single responsibility. This will reduce the size of the
services and increase their stability. The new FTGO architecture is an example of SRP
in action. Each aspect of getting food to a consumer—order taking, order prepara-
tion, and delivery—is the responsibility of a separate service.

COMMON CLOSURE PRINCIPLE

The other useful principle is the Common Closure Principle:

The classes in a package should be closed together against the same kinds of changes. A
change that affects a package affects all the classes in that package.

Robert C. Martin

The idea is that if two classes change in lockstep because of the same underlying rea-
son, then they belong in the same package. Perhaps, for example, those classes imple-
ment a different aspect of a particular business rule. The goal is that when that
business rule changes, developers only need to change code in a small number of
packages (ideally only one). Adhering to the CCP significantly improves the maintain-
ability of an application.

 We can apply CCP when creating a microservice architecture and package compo-
nents that change for the same reason into the same service. Doing this will minimize

57Defining an application’s microservice architecture
the number of services that need to be changed and deployed when some require-
ment changes. Ideally, a change will only affect a single team and a single service. CCP
is the antidote to the distributed monolith anti-pattern.

 SRP and CCP are 2 of the 11 principles developed by Bob Martin. They’re particu-
larly useful when developing a microservice architecture. The remaining nine princi-
ples are used when designing classes and packages. For more information about SRP,
CCP, and the other OOD principles, see the article “The Principles of Object Ori-
ented Design” on Bob Martin’s website (http://butunclebob.com/ArticleS.UncleBob
.PrinciplesOfOod).

 Decomposition by business capability and by subdomain along with SRP and CCP
are good techniques for decomposing an application into services. In order to apply
them and successfully develop a microservice architecture, you must solve some trans-
action management and interprocess communication issues.

2.2.5 Obstacles to decomposing an application into services

On the surface, the strategy of creating a microservice architecture by defining ser-
vices corresponding to business capabilities or subdomains looks straightforward. You
may, however, encounter several obstacles:

 Network latency
 Reduced availability due to synchronous communication
 Maintaining data consistency across services
 Obtaining a consistent view of the data
 God classes preventing decomposition

Let’s take a look at each obstacle, starting with network latency.

NETWORK LATENCY

Network latency is an ever-present concern in a distributed system. You might discover
that a particular decomposition into services results in a large number of round-trips
between two services. Sometimes, you can reduce the latency to an acceptable amount
by implementing a batch API for fetching multiple objects in a single round trip. But
in other situations, the solution is to combine services, replacing expensive IPC with
language-level method or function calls.

SYNCHRONOUS INTERPROCESS COMMUNICATION REDUCES AVAILABILITY

Another problem is how to implement interservice communication in a way that
doesn’t reduce availability. For example, the most straightforward way to implement
the createOrder() operation is for the Order Service to synchronously invoke the
other services using REST. The drawback of using a protocol like REST is that it
reduces the availability of the Order Service. It won’t be able to create an order if any
of those other services are unavailable. Sometimes this is a worthwhile trade-off, but in
chapter 3 you’ll learn that using asynchronous messaging, which eliminates tight cou-
pling and improves availability, is often a better choice.

http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod
http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod
http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod

58 CHAPTER 2 Decomposition strategies
MAINTAINING DATA CONSISTENCY ACROSS SERVICES

Another challenge is maintaining data consistency across services. Some system opera-
tions need to update data in multiple services. For example, when a restaurant accepts
an order, updates must occur in both the Kitchen Service and the Delivery Service.
The Kitchen Service changes the status of the Ticket. The Delivery Service sched-
ules delivery of the order. Both of these updates must be done atomically.

 The traditional solution is to use a two-phase, commit-based, distributed trans-
action management mechanism. But as you’ll see in chapter 4, this is not a good
choice for modern applications, and you must use a very different approach to trans-
action management, a saga. A saga is a sequence of local transactions that are coordi-
nated using messaging. Sagas are more complex than traditional ACID transactions
but they work well in many situations. One limitation of sagas is that they are eventu-
ally consistent. If you need to update some data atomically, then it must reside within
a single service, which can be an obstacle to decomposition.

OBTAINING A CONSISTENT VIEW OF THE DATA

Another obstacle to decomposition is the inability to obtain a truly consistent view of
data across multiple databases. In a monolithic application, the properties of ACID
transactions guarantee that a query will return a consistent view of the database. In
contrast, in a microservice architecture, even though each service’s database is consis-
tent, you can’t obtain a globally consistent view of the data. If you need a consistent
view of some data, then it must reside in a single service, which can prevent decompo-
sition. Fortunately, in practice this is rarely a problem.

GOD CLASSES PREVENT DECOMPOSITION

Another obstacle to decomposition is the existence of so-called god classes. God classes
are the bloated classes that are used throughout an application (http://wiki.c2.com/
?GodClass). A god class typically implements business logic for many different aspects
of the application. It normally has a large number of fields mapped to a database
table with many columns. Most applications have at least one of these classes, each
representing a concept that’s central to the domain: accounts in banking, orders in
e-commerce, policies in insurance, and so on. Because a god class bundles together
state and behavior for many different aspects of an application, it’s an insurmountable
obstacle to splitting any business logic that uses it into services.

 The Order class is a great example of a god class in the FTGO application. That’s
not surprising—after all, the purpose of FTGO is to deliver food orders to customers.
Most parts of the system involve orders. If the FTGO application had a single domain
model, the Order class would be a very large class. It would have state and behavior
corresponding to many different parts of the application. Figure 2.10 shows the struc-
ture of this class that would be created using traditional modeling techniques.

 As you can see, the Order class has fields and methods corresponding to order pro-
cessing, restaurant order management, delivery, and payments. This class also has a
complex state model, due to the fact that one model has to describe state transitions

http://wiki.c2.com/?GodClass
http://wiki.c2.com/?GodClass
http://wiki.c2.com/?GodClass

59Defining an application’s microservice architecture
from disparate parts of the application. In its current form, this class makes it extremely
difficult to split code into services.

 One solution is to package the Order class into a library and create a central Order
database. All services that process orders use this library and access the access data-
base. The trouble with this approach is that it violates one of the key principles of the
microservice architecture and results in undesirable, tight coupling. For example, any
change to the Order schema requires the teams to update their code in lockstep.

 Another solution is to encapsulate the Order database in an Order Service, which
is invoked by the other services to retrieve and update orders. The problem with that
design is that the Order Service would be a data service with an anemic domain
model containing little or no business logic. Neither of these options is appealing, but
fortunately, DDD provides a solution.

 A much better approach is to apply DDD and treat each service as a separate sub-
domain with its own domain model. This means that each of the services in the FTGO
application that has anything to do with orders has its own domain model with its
version of the Order class. A great example of the benefit of multiple domain mod-
els is the Delivery Service. Its view of an Order, shown in figure 2.11, is extremely
simple: pickup address, pickup time, delivery address, and delivery time. Moreover,
rather than call it an Order, the Delivery Service uses the more appropriate name of
Delivery.

Order

OrderLineItem

Address Courier Consumer Restaurant PaymentInfo

OrderTotal
deliveryTime
status

<<delivery>>
pickupTime

<<billing>>
transactionid

<<orderTaking>>
create()
cancel()

<<restaurant>>
accept()
reject()
noteReadyForPickup()

<<delivery>>
assignCourier()
notePickedUp()
noteDelivered()

Figure 2.10 The Order god class is bloated with numerous responsibilities.

60 CHAPTER 2 Decomposition strategies
The Delivery Service isn’t interested in any of the other attributes of an order.
 The Kitchen Service also has a much simpler view of an order. Its version of an

Order is called a Ticket. As figure 2.12 shows, a Ticket simply consist of a status, the
requestedDeliveryTime, a prepareByTime, and a list of line items that tell the
restaurant what to prepare. It’s unconcerned with the consumer, payment, delivery,
and so on.

The Order service has the most complex view of an order, shown in figure 2.13. Even
though it has quite a few fields and methods, it’s still much simpler than the original
version.

The Order class in each domain model represents different aspects of the same Order
business entity. The FTGO application must maintain consistency between these differ-
ent objects in different services. For example, once the Order Service has authorized

Delivery Address

Pickup location

Delivery location

Assigned to

Courier

status
scheduledPickupTime
ScheduledDeliveryTime

Figure 2.11 The Delivery Service domain model

Ticket

status
requestedDeliveryTime
preparedByTime

TicketLineItem

quantity
item

Figure 2.12 The Kitchen Service domain model

Order

OrderLineItem

Address Consumer RestaurantPaymentInfo

status
orderTotal
deliveryTime
...

Figure 2.13 The Order Service domain model

61Defining an application’s microservice architecture
the consumer’s credit card, it must trigger the creation of the Ticket in the Kitchen
Service. Similarly, if the restaurant rejects the order via the Kitchen Service, it must
be cancelled in the Order Service service, and the customer credited in the billing
service. In chapter 4, you’ll learn how to maintain consistency between services, using
the previously mentioned event-driven mechanism sagas.

 As well as creating technical challenges, having multiple domain models also
impacts the implementation of the user experience. An application must translate
between the user experience, which is its own domain model, and the domain models
of each of the services. In the FTGO application, for example, the Order status dis-
played to a consumer is derived from Order information stored in multiple services.
This translation is often handled by the API gateway, discussed in chapter 8. Despite
these challenges, it’s essential that you identify and eliminate god classes when defin-
ing a microservice architecture.

 We’ll now look at how to define the service APIs.

2.2.6 Defining service APIs

So far, we have a list of system operations and a list of a potential services. The next
step is to define each service’s API: its operations and events. A service API operation
exists for one of two reasons: some operations correspond to system operations. They
are invoked by external clients and perhaps by other services. The other operations
exist to support collaboration between services. These operations are only invoked by
other services.

 A service publishes events primarily to enable it to collaborate with other ser-
vices. Chapter 4 describes how events can be used to implement sagas, which main-
tain data consistency across services. And chapter 7 discusses how events can be used
to update CQRS views, which support efficient querying. An application can also use
events to notify external clients. For example, it could use WebSockets to deliver
events to a browser.

 The starting point for defining the service APIs is to map each system operation to
a service. After that, we decide whether a service needs to collaborate with others to
implement a system operation. If collaboration is required, we then determine what
APIs those other services must provide in order to support the collaboration. Let’s
begin by looking at how to assign system operations to services.

ASSIGNING SYSTEM OPERATIONS TO SERVICES

The first step is to decide which service is the initial entry point for a request. Many
system operations neatly map to a service, but sometimes the mapping is less obvious.
Consider, for example, the noteUpdatedLocation() operation, which updates the
courier location. On one hand, because it’s related to couriers, this operation should
be assigned to the Courier service. On the other hand, it’s the Delivery Service
that needs the courier location. In this case, assigning an operation to a service that
needs the information provided by the operation is a better choice. In other situations,

62 CHAPTER 2 Decomposition strategies
it might make sense to assign an operation to the service that has the information nec-
essary to handle it.

 Table 2.2 shows which services in the FTGO application are responsible for which
operations.

After having assigned operations to services, the next step is to decide how the services
collaborate in order to handle each system operation.

DETERMINING THE APIS REQUIRED TO SUPPORT COLLABORATION BETWEEN SERVICES

Some system operations are handled entirely by a single service. For example, in the
FTGO application, the Consumer Service handles the createConsumer() operation
entirely by itself. But other system operations span multiple services. The data needed
to handle one of these requests might, for instance, be scattered around multiple ser-
vices. For example, in order to implement the createOrder() operation, the Order
Service must invoke the following services in order to verify its preconditions and
make the post-conditions become true:

 Consumer Service—Verify that the consumer can place an order and obtain their
payment information.

 Restaurant Service—Validate the order line items, verify that the delivery
address/time is within the restaurant’s service area, verify order minimum is
met, and obtain prices for the order line items.

 Kitchen Service—Create the Ticket.
 Accounting Service—Authorize the consumer’s credit card.

Similarly, in order to implement the acceptOrder() system operation, the Kitchen
Service must invoke the Delivery Service to schedule a courier to deliver the order.
Table 2.3 shows the services, their revised APIs, and their collaborators. In order to
fully define the service APIs, you need to analyze each system operation and deter-
mine what collaboration is required.

Table 2.2 Mapping system operations to services in the FTGO application

Service Operations

Consumer Service createConsumer()

Order Service createOrder()

Restaurant Service findAvailableRestaurants()

Kitchen Service acceptOrder()

 noteOrderReadyForPickup()

Delivery Service noteUpdatedLocation()

 noteDeliveryPickedUp()

 noteDeliveryDelivered()

63Defining an application’s microservice architecture
So far, we’ve identified the services and the operations that each service implements.
But it’s important to remember that the architecture we’ve sketched out is very
abstract. We’ve not selected any specific IPC technology. Moreover, even though the
term operation suggests some kind of synchronous request/response-based IPC mecha-
nism, you’ll see that asynchronous messaging plays a significant role. Throughout this
book I describe architecture and design concepts that influence how these services
collaborate.

 Chapter 3 describes specific IPC technologies, including synchronous communica-
tion mechanisms such as REST, and asynchronous messaging using a message broker.
I discuss how synchronous communication can impact availability and introduce the
concept of a self-contained service, which doesn’t invoke other services synchronously.
One way to implement a self-contained service is to use the CQRS pattern, covered in
chapter 7. The Order Service could, for example, maintain a replica of the data owned
by the Restaurant Service in order to eliminate the need for it to synchronously
invoke the Restaurant Service to validate an order. It keeps the replica up-to-date by
subscribing to events published by the Restaurant Service whenever it updates
its data.

 Chapter 4 introduces the saga concept and how it uses asynchronous messaging
for coordinating the services that participate in the saga. As well as reliably updating

Table 2.3 The services, their revised APIs, and their collaborators

Service Operations Collaborators

Consumer Service verifyConsumerDetails() —

Order Service createOrder() Consumer Service

verifyConsumerDetails()

 Restaurant Service

verifyOrderDetails()

 Kitchen Service

createTicket()

 Accounting Service

authorizeCard()

Restaurant
Service

 findAvailableRestaurants()

 verifyOrderDetails()

—

Kitchen Service createTicket()

 acceptOrder()

 noteOrderReadyForPickup()

 Delivery Service

scheduleDelivery()

Delivery Service scheduleDelivery()

 noteUpdatedLocation()

 noteDeliveryPickedUp()

 noteDeliveryDelivered()

—

Accounting
Service

 authorizeCard() —

64 CHAPTER 2 Decomposition strategies
data scattered across multiple services, a saga is also a way to implement a self-contained
service. For example, I describe how the createOrder() operation is implemented
using a saga, which invokes services such as the Consumer Service, Kitchen Service,
and Accounting Service using asynchronous messaging.

 Chapter 8 describes the concept of an API gateway, which exposes an API to exter-
nal clients. An API gateway might implement a query operation using the API compo-
sition pattern, described in chapter 7, rather than simply route it to the service. Logic
in the API gateway gathers the data needed by the query by calling multiple services
and combining the results. In this situation, the system operation is assigned to the
API gateway rather than a service. The services need to implement the query opera-
tions needed by the API gateway.

Summary
 Architecture determines your application’s -ilities, including maintainability,

testability, and deployability, which directly impact development velocity.
 The microservice architecture is an architecture style that gives an application

high maintainability, testability, and deployability.
 Services in a microservice architecture are organized around business concerns—

business capabilities or subdomains—rather than technical concerns.
 There are two patterns for decomposition:

– Decompose by business capability, which has its origins in business archi-
tecture

– Decompose by subdomain, based on concepts from domain-driven design
 You can eliminate god classes, which cause tangled dependencies that prevent

decomposition, by applying DDD and defining a separate domain model for
each service.

Interprocess
communication in

a microservice architecture
Mary and her team, like most other developers, had some experience with inter-
process communication (IPC) mechanisms. The FTGO application has a REST API
that’s used by mobile applications and browser-side JavaScript. It also uses various

This chapter covers
 Applying the communication patterns: Remote

procedure invocation, Circuit breaker, Client-side
discovery, Self registration, Server-side discovery,
Third party registration, Asynchronous messaging,
Transactional outbox, Transaction log tailing,
Polling publisher

 The importance of interprocess communication in
a microservice architecture

 Defining and evolving APIs

 The various interprocess communication options
and their trade-offs

 The benefits of services that communicate using
asynchronous messaging

 Reliably sending messages as part of a database
transaction
65

66 CHAPTER 3 Interprocess communication in a microservice architecture
cloud services, such as the Twilio messaging service and the Stripe payment service.
But within a monolithic application like FTGO, modules invoke one another via
language-level method or function calls. FTGO developers generally don’t need to
think about IPC unless they’re working on the REST API or the modules that inte-
grate with cloud services.

 In contrast, as you saw in chapter 2, the microservice architecture structures an
application as a set of services. Those services must often collaborate in order to han-
dle a request. Because service instances are typically processes running on multiple
machines, they must interact using IPC. It plays a much more important role in a
microservice architecture than it does in a monolithic application. Consequently, as
they migrate their application to microservices, Mary and the rest of the FTGO devel-
opers will need to spend a lot more time thinking about IPC.

 There’s no shortage of IPC mechanisms to chose from. Today, the fashionable
choice is REST (with JSON). It’s important, though, to remember that there are no
silver bullets. You must carefully consider the options. This chapter explores various
IPC options, including REST and messaging, and discusses the trade-offs.

 The choice of IPC mechanism is an important architectural decision. It can impact
application availability. What’s more, as I explain in this chapter and the next, IPC
even intersects with transaction management. I favor an architecture consisting of
loosely coupled services that communicate with one another using asynchronous mes-
saging. Synchronous protocols such as REST are used mostly to communicate with
other applications.

 I begin this chapter with an overview of interprocess communication in micro-
service architecture. Next, I describe remote procedure invocation-based IPC, of which
REST is the most popular example. I cover important topics including service discov-
ery and how to handle partial failure. After that, I describe asynchronous messaging-
based IPC. I also talk about scaling consumers while preserving message ordering,
correctly handling duplicate messages, and transactional messaging. Finally, I go
through the concept of self-contained services that handle synchronous requests with-
out communicating with other services in order to improve availability.

3.1 Overview of interprocess communication in a
microservice architecture
There are lots of different IPC technologies to choose from. Services can use
synchronous request/response-based communication mechanisms, such as HTTP-
based REST or gRPC. Alternatively, they can use asynchronous, message-based com-
munication mechanisms such as AMQP or STOMP. There are also a variety of differ-
ent messages formats. Services can use human-readable, text-based formats such as JSON
or XML. Alternatively, they could use a more efficient binary format such as Avro or
Protocol Buffers.

 Before getting into the details of specific technologies, I want to bring up several
design issues you should consider. I start this section with a discussion of interaction

67Overview of interprocess communication in a microservice architecture
styles, which are a technology-independent way of describing how clients and services
interact. Next I discuss the importance of precisely defining APIs in a microservice
architecture, including the concept of API-first design. After that, I discuss the
important topic of API evolution. Finally, I discuss different options for message for-
mats and how they can determine ease of API evolution. Let’s begin by looking at
interaction styles.

3.1.1 Interaction styles

It’s useful to first think about the style of interaction between a service and its clients
before selecting an IPC mechanism for a service’s API. Thinking first about the inter-
action style will help you focus on the requirements and avoid getting mired in the
details of a particular IPC technology. Also, as described in section 3.4, the choice of
interaction style impacts the availability of your application. Furthermore, as you’ll see
in chapters 9 and 10, it helps you select the appropriate integration testing strategy.

 There are a variety of client-service interaction styles. As table 3.1 shows, they can
be categorized in two dimensions. The first dimension is whether the interaction is
one-to-one or one-to-many:

 One-to-one—Each client request is processed by exactly one service.
 One-to-many—Each request is processed by multiple services.

The second dimension is whether the interaction is synchronous or asynchronous:

 Synchronous—The client expects a timely response from the service and might
even block while it waits.

 Asynchronous—The client doesn’t block, and the response, if any, isn’t necessar-
ily sent immediately.

The following are the different types of one-to-one interactions:

 Request/response—A service client makes a request to a service and waits for a
response. The client expects the response to arrive in a timely fashion. It might
event block while waiting. This is an interaction style that generally results in
services being tightly coupled.

 Asynchronous request/response—A service client sends a request to a service, which
replies asynchronously. The client doesn’t block while waiting, because the ser-
vice might not send the response for a long time.

Table 3.1 The various interaction styles can be characterized in two dimensions: one-to-one vs one-to-
many and synchronous vs asynchronous.

one-to-one one-to-many

Synchronous Request/response —

Asynchronous Asynchronous request/response
One-way notifications

Publish/subscribe
Publish/async responses

68 CHAPTER 3 Interprocess communication in a microservice architecture
 One-way notifications—A service client sends a request to a service, but no reply
is expected or sent.

It’s important to remember that the synchronous request/response interaction style is
mostly orthogonal to IPC technologies. A service can, for example, interact with
another service using request/response style interaction with either REST or messag-
ing. Even if two services are communicating using a message broker, the client service
might be blocked waiting for a response. It doesn’t necessarily mean they’re loosely
coupled. That’s something I revisit later in this chapter when discussing the impact of
inter-service communication on availability.

 The following are the different types of one-to-many interactions:

 Publish/subscribe—A client publishes a notification message, which is consumed
by zero or more interested services.

 Publish/async responses—A client publishes a request message and then waits for
a certain amount of time for responses from interested services.

Each service will typically use a combination of these interaction styles. Many of the
services in the FTGO application have both synchronous and asynchronous APIs for
operations, and many also publish events.

 Let’s look at how to define a service’s API.

3.1.2 Defining APIs in a microservice architecture

APIs or interfaces are central to software development. An application is comprised of
modules. Each module has an interface that defines the set of operations that mod-
ule’s clients can invoke. A well-designed interface exposes useful functionality while
hiding the implementation. It enables the implementation to change without impact-
ing clients.

 In a monolithic application, an interface is typically specified using a program-
ming language construct such as a Java interface. A Java interface specifies a set of
methods that a client can invoke. The implementation class is hidden from the client.
Moreover, because Java is a statically typed language, if the interface changes to be
incompatible with the client, the application won’t compile.

 APIs and interfaces are equally important in a microservice architecture. A ser-
vice’s API is a contract between the service and its clients. As described in chapter 2, a
service’s API consists of operations, which clients can invoke, and events, which are
published by the service. An operation has a name, parameters, and a return type. An
event has a type and a set of fields and is, as described in section 3.3, published to a
message channel.

 The challenge is that a service API isn’t defined using a simple programming lan-
guage construct. By definition, a service and its clients aren’t compiled together. If a
new version of a service is deployed with an incompatible API, there’s no compilation
error. Instead, there will be runtime failures.

69Overview of interprocess communication in a microservice architecture
 Regardless of which IPC mechanism you choose, it’s important to precisely define
a service’s API using some kind of interface definition language (IDL). Moreover, there
are good arguments for using an API-first approach to defining services (see www
.programmableweb.com/news/how-to-design-great-apis-api-first-design-and-raml/how-to/
2015/07/10 for more). First you write the interface definition. Then you review the
interface definition with the client developers. Only after iterating on the API defini-
tion do you then implement the service. Doing this up-front design increases your
chances of building a service that meets the needs of its clients.

The nature of the API definition depends on which IPC mechanism you’re using. For
example, if you’re using messaging, the API consists of the message channels, the mes-
sage types, and the message formats. If you’re using HTTP, the API consists of the
URLs, the HTTP verbs, and the request and response formats. Later in this chapter,
I explain how to define APIs.

 A service’s API is rarely set in stone. It will likely evolve over time. Let’s take a look
at how to do that and consider the issues you’ll face.

3.1.3 Evolving APIs

APIs invariably change over time as new features are added, existing features are
changed, and (perhaps) old features are removed. In a monolithic application, it’s rel-
atively straightforward to change an API and update all the callers. If you’re using a
statically typed language, the compiler helps by giving a list of compilation errors. The
only challenge may be the scope of the change. It might take a long time to change a
widely used API.

 In a microservices-based application, changing a service’s API is a lot more diffi-
cult. A service’s clients are other services, which are often developed by other teams.
The clients may even be other applications outside of the organization. You usually
can’t force all clients to upgrade in lockstep with the service. Also, because modern
applications are usually never down for maintenance, you’ll typically perform a rolling
upgrade of your service, so both old and new versions of a service will be running
simultaneously.

 It’s important to have a strategy for dealing with these challenges. How you handle
a change to an API depends on the nature of the change.

API-first design is essential
Even in small projects, I’ve seen problems occur because components don’t agree
on an API. For example, on one project the backend Java developer and the AngularJS
frontend developer both said they had completed development. The application, how-
ever, didn’t work. The REST and WebSocket API used by the frontend application to
communicate with the backend was poorly defined. As a result, the two applications
couldn’t communicate!

http://www.programmableweb.com/news/how-to-design-great-apis-api-first-design-and-raml/how-to/2015/07/10
http://www.programmableweb.com/news/how-to-design-great-apis-api-first-design-and-raml/how-to/2015/07/10
http://www.programmableweb.com/news/how-to-design-great-apis-api-first-design-and-raml/how-to/2015/07/10
http://www.programmableweb.com/news/how-to-design-great-apis-api-first-design-and-raml/how-to/2015/07/10

70 CHAPTER 3 Interprocess communication in a microservice architecture
USE SEMANTIC VERSIONING

The Semantic Versioning specification (http://semver.org) is a useful guide to ver-
sioning APIs. It’s a set of rules that specify how version numbers are used and incre-
mented. Semantic versioning was originally intended to be used for versioning of
software packages, but you can use it for versioning APIs in a distributed system.

 The Semantic Versioning specification (Semvers) requires a version number to
consist of three parts: MAJOR.MINOR.PATCH. You must increment each part of a version
number as follows:

 MAJOR—When you make an incompatible change to the API
 MINOR—When you make backward-compatible enhancements to the API
 PATCH—When you make a backward-compatible bug fix

There are a couple of places you can use the version number in an API. If you’re
implementing a REST API, you can, as mentioned below, use the major version as
the first element of the URL path. Alternatively, if you’re implementing a service
that uses messaging, you can include the version number in the messages that it
publishes. The goal is to properly version APIs and to evolve them in a controlled
fashion. Let’s look at how to handle minor and major changes.

MAKING MINOR, BACKWARD-COMPATIBLE CHANGES

Ideally, you should strive to only make backward-compatible changes. Backward-
compatible changes are additive changes to an API:

 Adding optional attributes to request
 Adding attributes to a response
 Adding new operations

If you only ever make these kinds of changes, older clients will work with newer services,
provided that they observe the Robustness principle (https://en.wikipedia.org/wiki/
Robustness_principle), which states: “Be conservative in what you do, be liberal in
what you accept from others.” Services should provide default values for missing
request attributes. Similarly, clients should ignore any extra response attributes. In
order for this to be painless, clients and services must use a request and response for-
mat that supports the Robustness principle. Later in this section, I describe how text-
based formats such as JSON and XML generally make it easier to evolve APIs.

MAKING MAJOR, BREAKING CHANGES

Sometimes you must make major, incompatible changes to an API. Because you can’t
force clients to upgrade immediately, a service must simultaneously support old and
new versions of an API for some period of time. If you’re using an HTTP-based IPC
mechanism, such as REST, one approach is to embed the major version number in the
URL. For example, version 1 paths are prefixed with '/v1/…', and version 2 paths
with '/v2/…'.

https://en.wikipedia.org/wiki/Robustness_principle
https://en.wikipedia.org/wiki/Robustness_principle
https://en.wikipedia.org/wiki/Robustness_principle
http://semver.org

71Overview of interprocess communication in a microservice architecture
 Another option is to use HTTP’s content negotiation mechanism and include the
version number in the MIME type. For example, a client would request version 1.x of
an Order using a request like this:

GET /orders/xyz HTTP/1.1
Accept: application/vnd.example.resource+json; version=1
...

This request tells the Order Service that the client expects a version 1.x response.
 In order to support multiple versions of an API, the service’s adapters that imple-

ment the APIs will contain logic that translates between the old and new versions.
Also, as described in chapter 8, the API gateway will almost certainly use versioned
APIs. It may even have to support numerous older versions of an API.

 Now we’ll look at the issue of message formats, the choice of which can impact how
easy evolving an API will be.

3.1.4 Message formats

The essence of IPC is the exchange of messages. Messages usually contain data, and so
an important design decision is the format of that data. The choice of message format
can impact the efficiency of IPC, the usability of the API, and its evolvability. If you’re
using a messaging system or protocols such as HTTP, you get to pick your message for-
mat. Some IPC mechanisms—such as gRPC, which you’ll learn about shortly—might
dictate the message format. In either case, it’s essential to use a cross-language mes-
sage format. Even if you’re writing your microservices in a single language today, it’s
likely that you’ll use other languages in the future. You shouldn’t, for example, use
Java serialization.

 There are two main categories of message formats: text and binary. Let’s look at
each one.

TEXT-BASED MESSAGE FORMATS

The first category is text-based formats such as JSON and XML. An advantage of these
formats is that not only are they human readable, they’re self describing. A JSON mes-
sage is a collection of named properties. Similarly, an XML message is effectively a col-
lection of named elements and values. This format enables a consumer of a message
to pick out the values of interest and ignore the rest. Consequently, many changes to
the message schema can easily be backward-compatible.

 The structure of XML documents is specified by an XML schema (www.w3.org/
XML/Schema). Over time, the developer community has come to realize that JSON also
needs a similar mechanism. One popular option is to use the JSON Schema standard
(http://json-schema.org). A JSON schema defines the names and types of a message’s
properties and whether they’re optional or required. As well as being useful documenta-
tion, a JSON schema can be used by an application to validate incoming messages.

 A downside of using a text-based messages format is that the messages tend to be
verbose, especially XML. Every message has the overhead of containing the names of

http://json-schema.org
http://www.w3.org/XML/Schema
http://www.w3.org/XML/Schema
http://www.w3.org/XML/Schema

72 CHAPTER 3 Interprocess communication in a microservice architecture
the attributes in addition to their values. Another drawback is the overhead of parsing
text, especially when messages are large. Consequently, if efficiency and performance
are important, you may want to consider using a binary format.

BINARY MESSAGE FORMATS

There are several different binary formats to choose from. Popular formats include
Protocol Buffers (https://developers.google.com/protocol-buffers/docs/overview)
and Avro (https://avro.apache.org). Both formats provide a typed IDL for defining
the structure of your messages. A compiler then generates the code that serializes and
deserializes the messages. You’re forced to take an API-first approach to service
design! Moreover, if you write your client in a statically typed language, the compiler
checks that it uses the API correctly.

 One difference between these two binary formats is that Protocol Buffers uses
tagged fields, whereas an Avro consumer needs to know the schema in order to inter-
pret messages. As a result, handling API evolution is easier with Protocol Buffers
than with Avro. This blog post (http://martin.kleppmann.com/2012/12/05/schema-
evolution-in-avro-protocol-buffers-thrift.html) is an excellent comparison of Thrift,
Protocol Buffers, and Avro.

 Now that we’ve looked at message formats, let’s look at specific IPC mechanisms
that transport the messages, starting with the Remote procedure invocation (RPI)
pattern.

3.2 Communicating using the synchronous Remote
procedure invocation pattern
When using a remote procedure invocation-based IPC mechanism, a client sends a
request to a service, and the service processes the request and sends back a response.
Some clients may block waiting for a response, and others might have a reactive, non-
blocking architecture. But unlike when using messaging, the client assumes that the
response will arrive in a timely fashion.

 Figure 3.1 shows how RPI works. The business logic in the client invokes a proxy
interface , implemented by an RPI proxy adapter class. The RPI proxy makes a request to
the service. The request is handled by an RPI server adapter class, which invokes the
service’s business logic via an interface. It then sends back a reply to the RPI proxy,
which returns the result to the client’s business logic.

The proxy interface usually encapsulates the underlying communication protocol.
There are numerous protocols to choose from. In this section, I describe REST and

Pattern: Remote procedure invocation
A client invokes a service using a synchronous, remote procedure invocation-based
protocol, such as REST (http://microservices.io/patterns/communication-style/
messaging.html).

https://developers.google.com/protocol-buffers/docs/overview
https://avro.apache.org
http://martin.kleppmann.com/2012/12/05/schema-evolution-in-avro-protocol-buffers-thrift.html
http://martin.kleppmann.com/2012/12/05/schema-evolution-in-avro-protocol-buffers-thrift.html
http://microservices.io/patterns/communication-style/messaging.html
http://microservices.io/patterns/communication-style/messaging.html
http://microservices.io/patterns/communication-style/messaging.html

73Communicating using the synchronous Remote procedure invocation pattern
gRPC. I cover how to improve the availability of your services by properly handling
partial failure and explain why a microservices-based application that uses RPI must
use a service discovery mechanism.

 Let’s first take a look at REST.

3.2.1 Using REST

Today, it’s fashionable to develop APIs in the RESTful style (https://en.wikipedia
.org/wiki/Representational_state_transfer). REST is an IPC mechanism that (almost
always) uses HTTP. Roy Fielding, the creator of REST, defines REST as follows:

REST provides a set of architectural constraints that, when applied as a whole, emphasizes
scalability of component interactions, generality of interfaces, independent deployment of
components, and intermediary components to reduce interaction latency, enforce security,
and encapsulate legacy systems.

www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

A key concept in REST is a resource, which typically represents a single business
object, such as a Customer or Product, or a collection of business objects. REST
uses the HTTP verbs for manipulating resources, which are referenced using a
URL. For example, a GET request returns the representation of a resource, which is
often in the form of an XML document or JSON object, although other formats
such as binary can be used. A POST request creates a new resource, and a PUT
request updates a resource. The Order Service, for example, has a POST /orders
endpoint for creating an Order and a GET /orders/{orderId} endpoint for retriev-
ing an Order.

Business logic

invokes

Business logic

Proxy interface Service interface

Client Service

RPI

proxy

Request

Reply

RPI

server

Figure 3.1 The client’s business logic invokes an interface that is implemented by an RPI proxy
adapter class. The RPI proxy class makes a request to the service. The RPI server adapter class
handles the request by invoking the service’s business logic.

https://en.wikipedia.org/wiki/Representational_state_transfer
https://en.wikipedia.org/wiki/Representational_state_transfer
https://en.wikipedia.org/wiki/Representational_state_transfer
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

74 CHAPTER 3 Interprocess communication in a microservice architecture
 Many developers claim their HTTP-based APIs are RESTful. But as Roy Fielding
describes in a blog post, not all of them actually are (http://roy.gbiv.com/untangled/
2008/rest-apis-must-be-hypertext-driven). To understand why, let’s take a look at the
REST maturity model.

THE REST MATURITY MODEL

Leonard Richardson (no relation to your author) defines a very useful maturity model
for REST (http://martinfowler.com/articles/richardsonMaturityModel.html) that con-
sists of the following levels:

 Level 0—Clients of a level 0 service invoke the service by making HTTP POST
requests to its sole URL endpoint. Each request specifies the action to perform,
the target of the action (for example, the business object), and any parameters.

 Level 1—A level 1 service supports the idea of resources. To perform an action
on a resource, a client makes a POST request that specifies the action to per-
form and any parameters.

 Level 2—A level 2 service uses HTTP verbs to perform actions: GET to retrieve,
POST to create, and PUT to update. The request query parameters and body, if
any, specify the actions' parameters. This enables services to use web infrastruc-
ture such as caching for GET requests.

 Level 3—The design of a level 3 service is based on the terribly named
HATEOAS (Hypertext As The Engine Of Application State) principle. The
basic idea is that the representation of a resource returned by a GET request
contains links for performing actions on that resource. For example, a client
can cancel an order using a link in the representation returned by the GET
request that retrieved the order. The benefits of HATEOAS include no longer
having to hard-wire URLs into client code (www.infoq.com/news/2009/04/
hateoas-restful-api-advantages).

I encourage you to review the REST APIs at your organization to see which level they
correspond to.

SPECIFYING REST APIS
As mentioned earlier in section 3.1, you must define your APIs using an interface defi-
nition language (IDL). Unlike older communication protocols like CORBA and
SOAP, REST did not originally have an IDL. Fortunately, the developer community
has rediscovered the value of an IDL for RESTful APIs. The most popular REST IDL is
the Open API Specification (www.openapis.org), which evolved from the Swagger
open source project. The Swagger project is a set of tools for developing and docu-
menting REST APIs. It includes tools that generate client stubs and server skeletons
from an interface definition.

THE CHALLENGE OF FETCHING MULTIPLE RESOURCES IN A SINGLE REQUEST

REST resources are usually oriented around business objects, such as Consumer and
Order. Consequently, a common problem when designing a REST API is how to

http://www.infoq.com/news/2009/04/hateoas-restful-api-advantages
http://www.infoq.com/news/2009/04/hateoas-restful-api-advantages
http://www.infoq.com/news/2009/04/hateoas-restful-api-advantages
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
http://martinfowler.com/articles/richardsonMaturityModel.html
http://www.openapis.org

75Communicating using the synchronous Remote procedure invocation pattern
enable the client to retrieve multiple related objects in a single request. For example,
imagine that a REST client wanted to retrieve an Order and the Order's Consumer. A
pure REST API would require the client to make at least two requests, one for the
Order and another for its Consumer. A more complex scenario would require even
more round-trips and suffer from excessive latency.

 One solution to this problem is for an API to allow the client to retrieve related
resources when it gets a resource. For example, a client could retrieve an Order and its
Consumer using GET /orders/order-id-1345?expand=consumer. The query parame-
ter specifies the related resources to return with the Order. This approach works well
in many scenarios but it’s often insufficient for more complex scenarios. It’s also
potentially time consuming to implement. This has led to the increasing popularity of
alternative API technologies such as GraphQL (http://graphql.org) and Netflix Falcor
(http://netflix.github.io/falcor/), which are designed to support efficient data fetching.

THE CHALLENGE OF MAPPING OPERATIONS TO HTTP VERBS

Another common REST API design problem is how to map the operations you want
to perform on a business object to an HTTP verb. A REST API should use PUT for
updates, but there may be multiple ways to update an order, including cancelling it,
revising the order, and so on. Also, an update might not be idempotent, which is a
requirement for using PUT. One solution is to define a sub-resource for updating a
particular aspect of a resource. The Order Service, for example, has a POST /orders/
{orderId}/cancel endpoint for cancelling orders, and a POST /orders/{orderId}/
revise endpoint for revising orders. Another solution is to specify a verb as a URL
query parameter. Sadly, neither solution is particularly RESTful.

 This problem with mapping operations to HTTP verbs has led to the growing pop-
ularity of alternatives to REST, such as gPRC, discussed shortly in section 3.2.2. But
first let’s look at the benefits and drawbacks of REST.

BENEFITS AND DRAWBACKS OF REST
There are numerous benefits to using REST:

 It’s simple and familiar.
 You can test an HTTP API from within a browser using, for example, the Post-

man plugin, or from the command line using curl (assuming JSON or some
other text format is used).

 It directly supports request/response style communication.
 HTTP is, of course, firewall friendly.
 It doesn’t require an intermediate broker, which simplifies the system’s archi-

tecture.

There are some drawbacks to using REST:

 It only supports the request/response style of communication.
 Reduced availability. Because the client and service communicate directly with-

out an intermediary to buffer messages, they must both be running for the
duration of the exchange.

http://graphql.org
http://netflix.github.io/falcor/

76 CHAPTER 3 Interprocess communication in a microservice architecture
 Clients must know the locations (URLs) of the service instances(s). As described
in section 3.2.4, this is a nontrivial problem in a modern application. Clients must
use what is known as a service discovery mechanism to locate service instances.

 Fetching multiple resources in a single request is challenging.
 It’s sometimes difficult to map multiple update operations to HTTP verbs.

Despite these drawbacks, REST seems to be the de facto standard for APIs, though
there are a couple of interesting alternatives. GraphQL, for example, implements
flexible, efficient data fetching. Chapter 8 discusses GraphQL and covers the API
gateway pattern.

 gRPC is another alternative to REST. Let’s take a look at how it works.

3.2.2 Using gRPC

As mentioned in the preceding section, one challenge with using REST is that
because HTTP only provides a limited number of verbs, it’s not always straightforward
to design a REST API that supports multiple update operations. An IPC technology
that avoids this issue is gRPC (www.grpc.io), a framework for writing cross-language
clients and servers (see https://en.wikipedia.org/wiki/Remote_procedure_call for
more). gRPC is a binary message-based protocol, and this means—as mentioned ear-
lier in the discussion of binary message formats—you’re forced to take an API-first
approach to service design. You define your gRPC APIs using a Protocol Buffers-based
IDL, which is Google’s language-neutral mechanism for serializing structured data.
You use the Protocol Buffer compiler to generate client-side stubs and server-side skel-
etons. The compiler can generate code for a variety of languages, including Java, C#,
NodeJS, and GoLang. Clients and servers exchange binary messages in the Protocol
Buffers format using HTTP/2.

 A gRPC API consists of one or more services and request/response message defini-
tions. A service definition is analogous to a Java interface and is a collection of strongly
typed methods. As well as supporting simple request/response RPC, gRPC support
streaming RPC. A server can reply with a stream of messages to the client. Alterna-
tively, a client can send a stream of messages to the server.

 gRPC uses Protocol Buffers as the message format. Protocol Buffers is, as men-
tioned earlier, an efficient, compact, binary format. It’s a tagged format. Each field of
a Protocol Buffers message is numbered and has a type code. A message recipient can
extract the fields that it needs and skip over the fields that it doesn’t recognize. As a
result, gRPC enables APIs to evolve while remaining backward-compatible.

 Listing 3.1 shows an excerpt of the gRPC API for the Order Service. It defines sev-
eral methods, including createOrder(). This method takes a CreateOrderRequest as
a parameter and returns a CreateOrderReply.

service OrderService {
rpc createOrder(CreateOrderRequest) returns (CreateOrderReply) {}

Listing 3.1 An excerpt of the gRPC API for the Order Service

https://en.wikipedia.org/wiki/Remote_procedure_call
http://www.grpc.io

77Communicating using the synchronous Remote procedure invocation pattern
rpc cancelOrder(CancelOrderRequest) returns (CancelOrderReply) {}
rpc reviseOrder(ReviseOrderRequest) returns (ReviseOrderReply) {}
...

}

message CreateOrderRequest {
int64 restaurantId = 1;
int64 consumerId = 2;
repeated LineItem lineItems = 3;
...

}

message LineItem {
string menuItemId = 1;
int32 quantity = 2;

}

message CreateOrderReply {
int64 orderId = 1;

}
...

CreateOrderRequest and CreateOrderReply are typed messages. For example, Create-
OrderRequest message has a restaurantId field of type int64. The field’s tag value is 1.

 gRPC has several benefits:

 It’s straightforward to design an API that has a rich set of update operations.
 It has an efficient, compact IPC mechanism, especially when exchanging large

messages.
 Bidirectional streaming enables both RPI and messaging styles of communication.
 It enables interoperability between clients and services written in a wide range

of languages.

gRPC also has several drawbacks:

 It takes more work for JavaScript clients to consume gRPC-based API than
REST/JSON-based APIs.

 Older firewalls might not support HTTP/2.

gRPC is a compelling alternative to REST, but like REST, it’s a synchronous communi-
cation mechanism, so it also suffers from the problem of partial failure. Let’s take a
look at what that is and how to handle it.

3.2.3 Handling partial failure using the Circuit breaker pattern

In a distributed system, whenever a service makes a synchronous request to another
service, there is an ever-present risk of partial failure. Because the client and the ser-
vice are separate processes, a service may not be able to respond in a timely way to a
client’s request. The service could be down because of a failure or for maintenance.
Or the service might be overloaded and responding extremely slowly to requests.

78 CHAPTER 3 Interprocess communication in a microservice architecture
Because the client is blocked waiting for a response, the danger is that the failure
could cascade to the client’s clients and so on and cause an outage.

Consider, for example, the scenario shown in figure 3.2, where the Order Service is
unresponsive. A mobile client makes a REST request to an API gateway, which, as dis-
cussed in chapter 8, is the entry point into the application for API clients. The API
gateway proxies the request to the unresponsive Order Service.

A naive implementation of the OrderServiceProxy would block indefinitely, waiting
for a response. Not only would that result in a poor user experience, but in many
applications it would consume a precious resource, such as a thread. Eventually the
API gateway would run out of resources and become unable to handle requests. The
entire API would be unavailable.

 It’s essential that you design your services to prevent partial failures from cascading
throughout the application. There are two parts to the solution:

 You must use design RPI proxies, such as OrderServiceProxy, to handle unre-
sponsive remote services.

 You need to decide how to recover from a failed remote service.

First we’ll look at how to write robust RPI proxies.

Pattern: Circuit breaker
An RPI proxy that immediately rejects invocations for a timeout period after the num-
ber of consecutive failures exceeds a specified threshold. See http://microservices
.io/patterns/reliability/circuit-breaker.html.

API

gateway

Unresponsive remote service

Mobile

app

Order

Service

Order

Service

proxy

Create

order

endpoint

POST/orders POST/orders

Figure 3.2 An API gateway must protect itself from unresponsive services, such as the Order
Service.

http://microservices.io/patterns/reliability/circuit-breaker.html
http://microservices.io/patterns/reliability/circuit-breaker.html
http://microservices.io/patterns/reliability/circuit-breaker.html

79Communicating using the synchronous Remote procedure invocation pattern
DEVELOPING ROBUST RPI PROXIES

Whenever one service synchronously invokes another service, it should protect itself
using the approach described by Netflix (http://techblog.netflix.com/2012/02/fault-
tolerance-in-high-volume.html). This approach consists of a combination of the fol-
lowing mechanisms:

 Network timeouts—Never block indefinitely and always use timeouts when wait-
ing for a response. Using timeouts ensures that resources are never tied up
indefinitely.

 Limiting the number of outstanding requests from a client to a service—Impose an upper
bound on the number of outstanding requests that a client can make to a par-
ticular service. If the limit has been reached, it’s probably pointless to make
additional requests, and those attempts should fail immediately.

 Circuit breaker pattern—Track the number of successful and failed requests,
and if the error rate exceeds some threshold, trip the circuit breaker so that
further attempts fail immediately. A large number of requests failing suggests
that the service is unavailable and that sending more requests is pointless.
After a timeout period, the client should try again, and, if successful, close the
circuit breaker.

Netflix Hystrix (https://github.com/Netflix/Hystrix) is an open source library that
implements these and other patterns. If you’re using the JVM, you should definitely
consider using Hystrix when implementing RPI proxies. And if you’re running in a
non-JVM environment, you should use an equivalent library. For example, the Polly
library is popular in the .NET community (https://github.com/App-vNext/Polly).

RECOVERING FROM AN UNAVAILABLE SERVICE

Using a library such as Hystrix is only part of the solution. You must also decide on a
case-by-case basis how your services should recover from an unresponsive remote ser-
vice. One option is for a service to simply return an error to its client. For example,
this approach makes sense for the scenario shown in figure 3.2, where the request to
create an Order fails. The only option is for the API gateway to return an error to the
mobile client.

 In other scenarios, returning a fallback value, such as either a default value or a
cached response, may make sense. For example, chapter 7 describes how the API gate-
way could implement the findOrder() query operation by using the API composition
pattern. As figure 3.3 shows, its implementation of the GET /orders/{orderId} end-
point invokes several services, including the Order Service, Kitchen Service, and
Delivery Service, and combines the results.

 It’s likely that each service’s data isn’t equally important to the client. The data
from the Order Service is essential. If this service is unavailable, the API gateway
should return either a cached version of its data or an error. The data from the other
services is less critical. A client can, for example, display useful information to the user
even if the delivery status was unavailable. If the Delivery Service is unavailable,

http://techblog.netflix.com/2012/02/fault-tolerance-in-high-volume.html
http://techblog.netflix.com/2012/02/fault-tolerance-in-high-volume.html
https://github.com/Netflix/Hystrix
https://github.com/App-vNext/Polly

80 CHAPTER 3 Interprocess communication in a microservice architecture
the API gateway should return either a cached version of its data or omit it from the
response.

 It’s essential that you design your services to handle partial failure, but that’s not
the only problem you need to solve when using RPI. Another problem is that in order
for one service to invoke another service using RPI, it needs to know the network
location of a service instance. On the surface this sounds simple, but in practice it’s
a challenging problem. You must use a service discovery mechanism. Let’s look at
how that works.

3.2.4 Using service discovery

Say you’re writing some code that invokes a service that has a REST API. In order to
make a request, your code needs to know the network location (IP address and port)
of a service instance. In a traditional application running on physical hardware, the
network locations of service instances are usually static. For example, your code could
read the network locations from a configuration file that’s occasionally updated. But
in a modern, cloud-based microservices application, it’s usually not that simple. As is
shown in figure 3.4, a modern application is much more dynamic.

 Service instances have dynamically assigned network locations. Moreover, the set of
service instances changes dynamically because of autoscaling, failures, and upgrades.
Consequently, your client code must use a service discovery.

API

gateway

How to handle each
unresponsive service?

Unresponsive
service

Mobile

app

Get

order

endpoint

Get/orders/xyz

Order

Service

Order

Service

proxy

GET/orders/xyz

Kitchen

Service

Kitchen

Service

proxy

GET/tickets?orderId=xyz

Delivery

Service

Delivery

Service

proxy

GET/deliveries?orderId-xyz

...

Service

...

Service

proxy

Figure 3.3 The API gateway implements the GET /orders/{orderId} endpoint using API
composition. It calls several services, aggregates their responses, and sends a response to the
mobile app. The code that implements the endpoint must have a strategy for handling the failure
of each service that it calls.

81Communicating using the synchronous Remote procedure invocation pattern
OVERVIEW OF SERVICE DISCOVERY

As you’ve just seen, you can’t statically configure a client with the IP addresses of the
services. Instead, an application must use a dynamic service discovery mechanism. Ser-
vice discovery is conceptually quite simple: its key component is a service registry,
which is a database of the network locations of an application’s service instances.

 The service discovery mechanism updates the service registry when service instances
start and stop. When a client invokes a service, the service discovery mechanism que-
ries the service registry to obtain a list of available service instances and routes the
request to one of them.

 There are two main ways to implement service discovery:

 The services and their clients interact directly with the service registry.
 The deployment infrastructure handles service discovery. (I talk more about

that in chapter 12.)

Let’s look at each option.

APPLYING THE APPLICATION-LEVEL SERVICE DISCOVERY PATTERNS

One way to implement service discovery is for the application’s services and their cli-
ents to interact with the service registry. Figure 3.5 shows how this works. A service
instance registers its network location with the service registry. A service client invokes
a service by first querying the service registry to obtain a list of service instances. It
then sends a request to one of those instances.

Service

instance 1

Order service

10.232.23.1

10.232.23.2

10.232.23.3

Service

instance 2

Service

client

Service

instance 3

?

Dynamically
assigned IP

Dynamically created
and destroyed

Figure 3.4 Service instances have dynamically assigned IP addresses.

82 CHAPTER 3 Interprocess communication in a microservice architecture
This approach to service discovery is a combination of two patterns. The first pat-
tern is the Self registration pattern. A service instance invokes the service registry’s
registration API to register its network location. It may also supply a health check
URL, described in more detail in chapter 11. The health check URL is an API end-
point that the service registry invokes periodically to verify that the service instance
is healthy and available to handle requests. A service registry may require a service
instance to periodically invoke a “heartbeat” API in order to prevent its registration
from expiring.

The second pattern is the Client-side discovery pattern. When a service client wants to
invoke a service, it queries the service registry to obtain a list of the service’s instances.
To improve performance, a client might cache the service instances. The service client

Pattern: Self registration
A service instance registers itself with the service registry. See http://microser-
vices.io/patterns/self-registration.html.

Service

instance 1

Order service

10.232.23.1

Load balance request

10.232.23.1
10.232.23.2
10.232.23.3

10.232.23.2

Register("order-service", "10.232.23.1")

Query("order-service")

Query API Registration API

10.232.23.3

Service

instance 2

Service

instance 3

Service
discovery library

Service

client

Service

order-service

order-service

order-service

...

Service registry

IP address

10.232.23.1

10.232.23.2

10.232.23.3

...

RPC/rest
client Service

discovery libraryService
discovery library

Service
discovery library

Client-side discovery

Self registration pattern

Figure 3.5 The service registry keeps track of the service instances. Clients query the service
registry to find network locations of available service instances.

http://microservices.io/patterns/self-registration.html
http://microservices.io/patterns/self-registration.html

83Communicating using the synchronous Remote procedure invocation pattern
then uses a load-balancing algorithm, such as a round-robin or random, to select a ser-
vice instance. It then makes a request to a select service instance.

Application-level service discovery has been popularized by Netflix and Pivotal. Netflix
developed and open sourced several components: Eureka, a highly available service
registry, the Eureka Java client, and Ribbon, a sophisticated HTTP client that supports
the Eureka client. Pivotal developed Spring Cloud, a Spring-based framework that
makes it remarkably easy to use the Netflix components. Spring Cloud-based services
automatically register with Eureka, and Spring Cloud-based clients automatically use
Eureka for service discovery.

 One benefit of application-level service discovery is that it handles the scenario
when services are deployed on multiple deployment platforms. Imagine, for example,
you’ve deployed only some of services on Kubernetes, discussed in chapter 12, and the
rest is running in a legacy environment. Application-level service discovery using
Eureka, for example, works across both environments, whereas Kubernetes-based ser-
vice discovery only works within Kubernetes.

 One drawback of application-level service discovery is that you need a service dis-
covery library for every language—and possibly framework—that you use. Spring
Cloud only helps Spring developers. If you’re using some other Java framework or a
non-JVM language such as NodeJS or GoLang, you must find some other service dis-
covery framework. Another drawback of application-level service discovery is that
you’re responsible for setting up and managing the service registry, which is a distrac-
tion. As a result, it’s usually better to use a service discovery mechanism that’s pro-
vided by the deployment infrastructure.

APPLYING THE PLATFORM-PROVIDED SERVICE DISCOVERY PATTERNS

Later in chapter 12 you’ll learn that many modern deployment platforms such as
Docker and Kubernetes have a built-in service registry and service discovery mecha-
nism. The deployment platform gives each service a DNS name, a virtual IP (VIP)
address, and a DNS name that resolves to the VIP address. A service client makes a
request to the DNS name/VIP, and the deployment platform automatically routes the
request to one of the available service instances. As a result, service registration, ser-
vice discovery, and request routing are entirely handled by the deployment platform.
Figure 3.6 shows how this works.

 The deployment platform includes a service registry that tracks the IP addresses of
the deployed services. In this example, a client accesses the Order Service using the

Pattern: Client-side discovery
A service client retrieves the list of available service instances from the service reg-
istry and load balances across them. See http://microservices.io/patterns/client-
side-discovery.html.

http://microservices.io/patterns/client-side-discovery.html
http://microservices.io/patterns/client-side-discovery.html

84 CHAPTER 3 Interprocess communication in a microservice architecture
DNS name order-service, which resolves to the virtual IP address 10.1.3.4. The
deployment platform automatically load balances requests across the three instances
of the Order Service.

 This approach is a combination of two patterns:

 3rd party registration pattern—Instead of a service registering itself with the ser-
vice registry, a third party called the registrar, which is typically part of the
deployment platform, handles the registration.

 Server-side discovery pattern—Instead of a client querying the service registry, it
makes a request to a DNS name, which resolves to a request router that queries
the service registry and load balances requests.

Service

order-service

order-service

order-service

...

Service registry

IP address

10.232.23.1

10.232.23.2

10.232.23.3

...

Service

client

GET http://order-service/...

Deployment platform

RPC/rest

client

Service

instance 1

Order service

Observes

10.232.23.1

10.232.24.99

Service

instance 2

Service

instance 3

Platform

router

Queries Updates

10.232.23.2

10.232.23.3

Registrar

3rd party registrationServer-side discovery

Service DNS name
resolves to service VIP

Service virtual IP address (VIP)

Figure 3.6 The platform is responsible for service registration, discovery, and request routing. Service
instances are registered with the service registry by the registrar. Each service has a network location,
a DNS name/virtual IP address. A client makes a request to the service’s network location. The router
queries the service registry and load balances requests across the available service instances.

85Communicating using the Asynchronous messaging pattern
The key benefit of platform-provided service discovery is that all aspects of service dis-
covery are entirely handled by the deployment platform. Neither the services nor the
clients contain any service discovery code. Consequently, the service discovery mecha-
nism is readily available to all services and clients regardless of which language or
framework they’re written in.

 One drawback of platform-provided service discovery is that it only supports the
discovery of services that have been deployed using the platform. For example, as
mentioned earlier when describing application-level discovery, Kubernetes-based dis-
covery only works for services running on Kubernetes. Despite this limitation, I rec-
ommend using platform-provided service discovery whenever possible.

 Now that we’ve looked at synchronous IPC using REST or gRPC, let’s take a look at
the alternative: asynchronous, message-based communication.

3.3 Communicating using the Asynchronous messaging
pattern
When using messaging, services communicate by asynchronously exchanging mes-
sages. A messaging-based application typically uses a message broker, which acts as an
intermediary between the services, although another option is to use a brokerless
architecture, where the services communicate directly with each other. A service client
makes a request to a service by sending it a message. If the service instance is expected
to reply, it will do so by sending a separate message back to the client. Because the
communication is asynchronous, the client doesn’t block waiting for a reply. Instead,
the client is written assuming that the reply won’t be received immediately.

I start this section with an overview of messaging. I show how to describe a messaging
architecture independently of messaging technology. Next I compare and contrast

Pattern: 3rd party registration
Service instances are automatically registered with the service registry by a third party.
See http://microservices.io/patterns/3rd-party-registration.html.

Pattern: Server-side discovery
A client makes a request to a router, which is responsible for service discovery. See
http://microservices.io/patterns/server-side-discovery.html.

Pattern: Messaging
A client invokes a service using asynchronous messaging. See http://microservices
.io/patterns/communication-style/messaging.html.

http://microservices.io/patterns/3rd-party-registration.html
http://microservices.io/patterns/server-side-discovery.html
http://microservices.io/patterns/communication-style/messaging.html
http://microservices.io/patterns/communication-style/messaging.html
http://microservices.io/patterns/communication-style/messaging.html

86 CHAPTER 3 Interprocess communication in a microservice architecture
brokerless and broker-based architectures and describe the criteria for selecting a
message broker. I then discuss several important topics, including scaling consum-
ers while preserving message ordering, detecting and discarding duplicate messages,
and sending and receiving messages as part of a database transaction. Let’s begin by
looking at how messaging works.

3.3.1 Overview of messaging

A useful model of messaging is defined in the book Enterprise Integration Patterns
(Addison-Wesley Professional, 2003) by Gregor Hohpe and Bobby Woolf. In this
model, messages are exchanged over message channels. A sender (an application or
service) writes a message to a channel, and a receiver (an application or service) reads
messages from a channel. Let’s look at messages and then look at channels.

ABOUT MESSAGES

A message consists of a header and a message body (www.enterpriseintegrationpatterns
.com/Message.html). The header is a collection of name-value pairs, metadata that
describes the data being sent. In addition to name-value pairs provided by the mes-
sage’s sender, the message header contains name-value pairs, such as a unique message
id generated by either the sender or the messaging infrastructure, and an optional
return address, which specifies the message channel that a reply should be written to.
The message body is the data being sent, in either text or binary format.

 There are several different kinds of messages:

 Document—A generic message that contains only data. The receiver decides how
to interpret it. The reply to a command is an example of a document message.

 Command—A message that’s the equivalent of an RPC request. It specifies the
operation to invoke and its parameters.

 Event—A message indicating that something notable has occurred in the sender.
An event is often a domain event, which represents a state change of a domain
object such as an Order, or a Customer.

The approach to the microservice architecture described in this book uses commands
and events extensively.

 Let’s now look at channels, the mechanism by which services communicate.

ABOUT MESSAGE CHANNELS

As figure 3.7 shows, messages are exchanged over channels (www.enterpriseintegra-
tionpatterns.com/MessageChannel.html). The business logic in the sender invokes a
sending port interface, which encapsulates the underlying communication mechanism.
The sending port is implemented by a message sender adapter class, which sends a mes-
sage to a receiver via a message channel. A message channel is an abstraction of the
messaging infrastructure. A message handler adapter class in the receiver is invoked to
handle the message. It invokes a receiving port interface implemented by the consumer’s

http://www.enterpriseintegrationpatterns.com/Message.html
http://www.enterpriseintegrationpatterns.com/Message.html
http://www.enterpriseintegrationpatterns.com/Message.html
http://www.enterpriseintegrationpatterns.com/MessageChannel.html
http://www.enterpriseintegrationpatterns.com/MessageChannel.html

87Communicating using the Asynchronous messaging pattern
business logic. Any number of senders can send messages to a channel. Similarly, any
number of receivers can receive messages from a channel.

 There are two kinds of channels: point-to-point (www.enterpriseintegrationpatterns
.com/PointToPointChannel.html) and publish-subscribe (www.enterpriseintegration-
patterns.com/PublishSubscribeChannel.html):

 A point-to-point channel delivers a message to exactly one of the consumers that
is reading from the channel. Services use point-to-point channels for the one-
to-one interaction styles described earlier. For example, a command message is
often sent over a point-to-point channel.

 A publish-subscribe channel delivers each message to all of the attached consum-
ers. Services use publish-subscribe channels for the one-to-many interaction
styles described earlier. For example, an event message is usually sent over a
publish-subscribe channel.

3.3.2 Implementing the interaction styles using messaging

One of the valuable features of messaging is that it’s flexible enough to support all the
interaction styles described in section 3.1.1. Some interaction styles are directly imple-
mented by messaging. Others must be implemented on top of messaging.

 Let’s look at how to implement each interaction style, starting with request/response
and asynchronous request/response.

IMPLEMENTING REQUEST/RESPONSE AND ASYNCHRONOUS REQUEST/RESPONSE

When a client and service interact using either request/response or asynchronous
request/response, the client sends a request and the service sends back a reply. The

Business

logic

invokes

invokes

Business logic

Sending port Receiving port
Sender Receiver

Message

sender

Message

Message

channel

ReceivesSends

Header

Body

Messaging

infrastructure

Message

handler

Service

Figure 3.7 The business logic in the sender invokes a sending port interface, which is implemented by a message
sender adapter. The message sender sends a message to a receiver via a message channel. The message channel
is an abstraction of messaging infrastructure. A message handler adapter in the receiver is invoked to handle the
message. It invokes the receiving port interface implemented by the receiver’s business logic.

http://www.enterpriseintegrationpatterns.com/PointToPointChannel.html
http://www.enterpriseintegrationpatterns.com/PointToPointChannel.html
http://www.enterpriseintegrationpatterns.com/PointToPointChannel.html
http://www.enterpriseintegrationpatterns.com/PublishSubscribeChannel.html
http://www.enterpriseintegrationpatterns.com/PublishSubscribeChannel.html

88 CHAPTER 3 Interprocess communication in a microservice architecture
difference between the two interaction styles is that with request/response the client
expects the service to respond immediately, whereas with asynchronous request/
response there is no such expectation. Messaging is inherently asynchronous, so only
provides asynchronous request/response. But a client could block until a reply is
received.

 The client and service implement the asynchronous request/response style inter-
action by exchanging a pair of messages. As figure 3.8 shows, the client sends a com-
mand message, which specifies the operation to perform, and parameters, to a point-
to-point messaging channel owned by a service. The service processes the requests
and sends a reply message, which contains the outcome, to a point-to-point channel
owned by the client.

The client must tell the service where to send a reply message and must match reply mes-
sages to requests. Fortunately, solving these two problems isn’t that difficult. The client
sends a command message that has a reply channel header. The server writes the reply mes-
sage, which contains a correlation id that has the same value as message identifier, to the reply
channel. The client uses the correlation id to match the reply message with the request.

 Because the client and service communicate using messaging, the interaction is
inherently asynchronous. In theory, a messaging client could block until it receives a
reply, but in practice the client will process replies asynchronously. What’s more,
replies are typically processed by any one of the client’s instances.

Request

Sends

Reads

Reads

Sends

MessageId: msgId
ReturnAddress: ReplyChannel

Body

CorrelationId:msgId

Body

Request channel

Reply channel

Reply
Specifies

Client Service

Client sends message containing
msgId and a reply channel.

Service sends reply to the specified reply
channel. The reply contains a correlationId,
which is the request’s msgId.

Figure 3.8 Implementing asynchronous request/response by including a reply channel and message
identifier in the request message. The receiver processes the message and sends the reply to the
specified reply channel.

89Communicating using the Asynchronous messaging pattern
IMPLEMENTING ONE-WAY NOTIFICATIONS

Implementing one-way notifications is straightforward using asynchronous messaging.
The client sends a message, typically a command message, to a point-to-point channel
owned by the service. The service subscribes to the channel and processes the mes-
sage. It doesn’t send back a reply.

IMPLEMENTING PUBLISH/SUBSCRIBE

Messaging has built-in support for the publish/subscribe style of interaction. A client
publishes a message to a publish-subscribe channel that is read by multiple consum-
ers. As described in chapters 4 and 5, services use publish/subscribe to publish
domain events, which represent changes to domain objects. The service that publishes
the domain events owns a publish-subscribe channel, whose name is derived from the
domain class. For example, the Order Service publishes Order events to an Order
channel, and the Delivery Service publishes Delivery events to a Delivery chan-
nel. A service that’s interested in a particular domain object’s events only has to sub-
scribe to the appropriate channel.

IMPLEMENTING PUBLISH/ASYNC RESPONSES

The publish/async responses interaction style is a higher-level style of interaction that’s
implemented by combining elements of publish/subscribe and request/response. A cli-
ent publishes a message that specifies a reply channel header to a publish-subscribe
channel. A consumer writes a reply message containing a correlation id to the reply
channel. The client gathers the responses by using the correlation id to match the reply
messages with the request.

 Each service in your application that has an asynchronous API will use one or
more of these implementation techniques. A service that has an asynchronous API for
invoking operations will have a message channel for requests. Similarly, a service that
publishes events will publish them to an event message channel.

 As described in section 3.1.2, it’s important to write an API specification for a ser-
vice. Let’s look at how to do that for an asynchronous API.

3.3.3 Creating an API specification for a messaging-based service API

The specification for a service’s asynchronous API must, as figure 3.9 shows, specify
the names of the message channels, the message types that are exchanged over each
channel, and their formats. You must also describe the format of the messages using a
standard such as JSON, XML, or Protobuf. But unlike with REST and Open API, there
isn’t a widely adopted standard for documenting the channels and the message types.
Instead, you need to write an informal document.

 A service’s asynchronous API consists of operations, invoked by clients, and events,
published by the services. They’re documented in different ways. Let’s take a look at
each one, starting with operations.

90 CHAPTER 3 Interprocess communication in a microservice architecture
DOCUMENTING ASYNCHRONOUS OPERATIONS

A service’s operations can be invoked using one of two different interaction styles:

 Request/async response-style API—This consists of the service’s command message
channel, the types and formats of the command message types that the service
accepts, and the types and formats of the reply messages sent by the service.

 One-way notification-style API—This consists of the service’s command message
channel and the types and format of the command message types that the ser-
vice accepts.

A service may use the same request channel for both asynchronous request/response
and one-way notification.

DOCUMENTING PUBLISHED EVENTS

A service can also publish events using a publish/subscribe interaction style. The spec-
ification of this style of API consists of the event channel and the types and formats of
the event messages that are published by the service to the channel.

 The messages and channels model of messaging is a great abstraction and a good
way to design a service’s asynchronous API. But in order to implement a service you
need to choose a messaging technology and determine how to implement your design
using its capabilities. Let’s take a look at what’s involved.

3.3.4 Using a message broker

A messaging-based application typically uses a message broker, an infrastructure service
through which the service communicates. But a broker-based architecture isn’t the
only messaging architecture. You can also use a brokerless-based messaging architec-
ture, in which the services communicate with one another directly. The two approaches,
shown in figure 3.10, have different trade-offs, but usually a broker-based architecture
is a better approach.

Service

Command

query

API

Service API

Replies

R R

Events

R

Event

publisher

«Command channel»

«Event channel»

«Reply channel»

Commands

C C C

Figure 3.9 A service’s asynchronous API consists of message channels and command, reply, and
event message types.

91Communicating using the Asynchronous messaging pattern
This book focuses on broker-based architecture, but it’s worthwhile to take a quick look
at the brokerless architecture, because there may be scenarios where you find it useful.

BROKERLESS MESSAGING

In a brokerless architecture, services can exchange messages directly. ZeroMQ (http://
zeromq.org) is a popular brokerless messaging technology. It’s both a specification
and a set of libraries for different languages. It supports a variety of transports, includ-
ing TCP, UNIX-style domain sockets, and multicast.

 The brokerless architecture has some benefits:

 Allows lighter network traffic and better latency, because messages go directly
from the sender to the receiver, instead of having to go from the sender to the
message broker and from there to the receiver

 Eliminates the possibility of the message broker being a performance bottle-
neck or a single point of failure

 Features less operational complexity, because there is no message broker to set
up and maintain

As appealing as these benefits may seem, brokerless messaging has significant drawbacks:

 Services need to know about each other’s locations and must therefore use one
of the discovery mechanisms describer earlier in section 3.2.4.

 It offers reduced availability, because both the sender and receiver of a message
must be available while the message is being exchanged.

 Implementing mechanisms, such as guaranteed delivery, is more challenging.

Service

Service

Service

Service

Service

Service

Message brokerVs.

Brokerless architecture Broker-based architecture

Figure 3.10 The services in brokerless architecture communicate directly, whereas the services
in a broker-based architecture communicate via a message broker.

http://zeromq.org
http://zeromq.org
http://zeromq.org

92 CHAPTER 3 Interprocess communication in a microservice architecture
In fact, some of these drawbacks, such as reduced availability and the need for service
discovery, are the same as when using synchronous, response/response.

 Because of these limitations, most enterprise applications use a message broker-
based architecture. Let’s look at how that works.

OVERVIEW OF BROKER-BASED MESSAGING

A message broker is an intermediary through which all messages flow. A sender writes
the message to the message broker, and the message broker delivers it to the receiver.
An important benefit of using a message broker is that the sender doesn’t need to
know the network location of the consumer. Another benefit is that a message broker
buffers messages until the consumer is able to process them.

 There are many message brokers to chose from. Examples of popular open source
message brokers include the following:

 ActiveMQ (http://activemq.apache.org)
 RabbitMQ (https://www.rabbitmq.com)
 Apache Kafka (http://kafka.apache.org)

There are also cloud-based messaging services, such as AWS Kinesis (https://aws.amazon
.com/kinesis/) and AWS SQS (https://aws.amazon.com/sqs/).

 When selecting a message broker, you have various factors to consider, including
the following:

 Supported programming languages—You probably should pick one that supports a
variety of programming languages.

 Supported messaging standards—Does the message broker support any standards,
such as AMQP and STOMP, or is it proprietary?

 Messaging ordering—Does the message broker preserve ordering of messages?
 Delivery guarantees—What kind of delivery guarantees does the broker make?
 Persistence—Are messages persisted to disk and able to survive broker crashes?
 Durability—If a consumer reconnects to the message broker, will it receive the

messages that were sent while it was disconnected?
 Scalability—How scalable is the message broker?
 Latency—What is the end-to-end latency?
 Competing consumers—Does the message broker support competing consumers?

Each broker makes different trade-offs. For example, a very low-latency broker might
not preserve ordering, make no guarantees to deliver messages, and only store mes-
sages in memory. A messaging broker that guarantees delivery and reliably stores
messages on disk will probably have higher latency. Which kind of message broker is
the best fit depends on your application’s requirements. It’s even possible that differ-
ent parts of your application will have different messaging requirements.

 It’s likely, though, that messaging ordering and scalability are essential. Let’s now
look at how to implement message channels using a message broker.

http://activemq.apache.org
https://www.rabbitmq.com
http://kafka.apache.org
https://aws.amazon.com/kinesis/
https://aws.amazon.com/kinesis/
https://aws.amazon.com/kinesis/
https://aws.amazon.com/sqs/

93Communicating using the Asynchronous messaging pattern
IMPLEMENTING MESSAGE CHANNELS USING A MESSAGE BROKER

Each message broker implements the message channel concept in a different way. As
table 3.2 shows, JMS message brokers such as ActiveMQ have queues and topics.
AMQP-based message brokers such as RabbitMQ have exchanges and queues. Apache
Kafka has topics, AWS Kinesis has streams, and AWS SQS has queues. What’s more,
some message brokers offer more flexible messaging than the message and channels
abstraction described in this chapter.

Almost all the message brokers described here support both point-to-point and publish-
subscribe channels. The one exception is AWS SQS, which only supports point-to-point
channels.

 Now let’s look at the benefits and drawbacks of broker-based messaging.

BENEFITS AND DRAWBACKS OF BROKER-BASED MESSAGING

There are many advantages to using broker-based messaging:

 Loose coupling—A client makes a request by simply sending a message to the
appropriate channel. The client is completely unaware of the service instances.
It doesn’t need to use a discovery mechanism to determine the location of a ser-
vice instance.

 Message buffering—The message broker buffers messages until they can be pro-
cessed. With a synchronous request/response protocol such as HTTP, both the
client and service must be available for the duration of the exchange. With mes-
saging, though, messages will queue up until they can be processed by the con-
sumer. This means, for example, that an online store can accept orders from
customers even when the order-fulfillment system is slow or unavailable. The
messages will simply queue up until they can be processed.

 Flexible communication—Messaging supports all the interaction styles described
earlier.

 Explicit interprocess communication—RPC-based mechanism attempts to make invok-
ing a remote service look the same as calling a local service. But due to the laws
of physics and the possibility of partial failure, they’re in fact quite different.

Table 3.2 Each message broker implements the message channel concept in a different way.

Message broker Point-to-point channel Publish-subscribe channel

JMS Queue Topic

Apache Kafka Topic Topic

AMQP-based brokers, such as
RabbitMQ

Exchange + Queue Fanout exchange and a queue per
consumer

AWS Kinesis Stream Stream

AWS SQS Queue —

94 CHAPTER 3 Interprocess communication in a microservice architecture
Messaging makes these differences very explicit, so developers aren’t lulled into
a false sense of security.

There are some downsides to using messaging:

 Potential performance bottleneck—There is a risk that the message broker could be
a performance bottleneck. Fortunately, many modern message brokers are
designed to be highly scalable.

 Potential single point of failure—It’s essential that the message broker is highly
available—otherwise, system reliability will be impacted. Fortunately, most mod-
ern brokers have been designed to be highly available.

 Additional operational complexity—The messaging system is yet another system
component that must be installed, configured, and operated.

Let’s look at some design issues you might face.

3.3.5 Competing receivers and message ordering

One challenge is how to scale out message receivers while preserving message order-
ing. It’s a common requirement to have multiple instances of a service in order to pro-
cess messages concurrently. Moreover, even a single service instance will probably use
threads to concurrently process multiple messages. Using multiple threads and service
instances to concurrently process messages increases the throughput of the applica-
tion. But the challenge with processing messages concurrently is ensuring that each
message is processed once and in order.

 For example, imagine that there are three instances of a service reading from the
same point-to-point channel and that a sender publishes Order Created, Order Updated,
and Order Cancelled event messages sequentially. A simplistic messaging implementa-
tion could concurrently deliver each message to a different receiver. Because of delays
due to network issues or garbage collections, messages might be processed out of order,
which would result in strange behavior. In theory, a service instance might process the
Order Cancelled message before another service processes the Order Created message!

 A common solution, used by modern message brokers like Apache Kafka and AWS
Kinesis, is to use sharded (partitioned) channels. Figure 3.11 shows how this works.
There are three parts to the solution:

1 A sharded channel consists of two or more shards, each of which behaves like
a channel.

2 The sender specifies a shard key in the message’s header, which is typically an
arbitrary string or sequence of bytes. The message broker uses a shard key to
assign the message to a particular shard/partition. It might, for example, select
the shard by computing the hash of the shard key modulo the number of shards.

3 The messaging broker groups together multiple instances of a receiver and
treats them as the same logical receiver. Apache Kafka, for example, uses the
term consumer group. The message broker assigns each shard to a single receiver.
It reassigns shards when receivers start up and shut down.

95Communicating using the Asynchronous messaging pattern
In this example, each Order event message has the orderId as its shard key. Each event
for a particular order is published to the same shard, which is read by a single consumer
instance. As a result, these messages are guaranteed to be processed in order.

3.3.6 Handling duplicate messages

Another challenge you must tackle when using messaging is dealing with duplicate
messages. A message broker should ideally deliver each message only once, but guar-
anteeing exactly-once messaging is usually too costly. Instead, most message brokers
promise to deliver a message at least once.

 When the system is working normally, a message broker that guarantees at-least-
once delivery will deliver each message only once. But a failure of a client, network, or
message broker can result in a message being delivered multiple times. Say a client
crashes after processing a message and updating its database—but before acknowledg-
ing the message. The message broker will deliver the unacknowledged message again,
either to that client when it restarts or to another replica of the client.

 Ideally, you should use a message broker that preserves ordering when redeliver-
ing messages. Imagine that the client processes an Order Created event followed by
an Order Cancelled event for the same Order, and that somehow the Order Created
event wasn’t acknowledged. The message broker should redeliver both the Order Cre-
ated and Order Cancelled events. If it only redelivers the Order Created, the client
may undo the cancelling of the Order.

 There are a couple of different ways to handle duplicate messages:

 Write idempotent message handlers.
 Track messages and discard duplicates.

Let’s look at each option.

Routes based on a
hash of the shard-key

Receiver A

instance 1

Receiver A

instance 2

Receiver

Shard

assignment

Receiver

...

Router

Shard 0

Channel

Logical receiver A

Shard 1

Shard ...

Create order

request

Shard-key:orderId
Sender

Figure 3.11 Scaling consumers while preserving message ordering by using a sharded (partitioned) message
channel. The sender includes the shard key in the message. The message broker writes the message to a shard
determined by the shard key. The message broker assigns each partition to an instance of the replicated receiver.

96 CHAPTER 3 Interprocess communication in a microservice architecture
WRITING IDEMPOTENT MESSAGE HANDLERS

If the application logic that processes messages is idempotent, then duplicate mes-
sages are harmless. Application logic is idempotent if calling it multiple times with the
same input values has no additional effect. For instance, cancelling an already-cancelled
order is an idempotent operation. So is creating an order with a client-supplied ID.
An idempotent message handler can be safely executed multiple times, provided that
the message broker preserves ordering when redelivering messages.

 Unfortunately, application logic is often not idempotent. Or you may be using a
message broker that doesn’t preserve ordering when redelivering messages. Duplicate
or out-of-order messages can cause bugs. In this situation, you must write message
handlers that track messages and discard duplicate messages.

TRACKING MESSAGES AND DISCARDING DUPLICATES

Consider, for example, a message handler that authorizes a consumer credit card. It
must authorize the card exactly once for each order. This example of application logic
has a different effect each time it’s invoked. If duplicate messages caused the message
handler to execute this logic multiple times, the application would behave incorrectly.
The message handler that executes this kind of application logic must become idem-
potent by detecting and discarding duplicate messages.

 A simple solution is for a message consumer to track the messages that it has pro-
cessed using the message id and discard any duplicates. It could, for example, store
the message id of each message that it consumed in a database table. Figure 3.12
shows how to do this using a dedicated table.

When a consumer handles a message, it records the message id in the database table as
part of the transaction that creates and updates business entities. In this example, the
consumer inserts a row containing the message id into a PROCESSED_MESSAGES table. If a
message is a duplicate, the INSERT will fail and the consumer can discard the message.

MSG_ID

PROCESSED_MESSAGE table

INSERT

INSERT will fail for
duplicate messages.

UPDATE

Application table

xyz

Transaction

Message

id: xyz
Consumer

Figure 3.12 A consumer detects and discards duplicate messages by recording the IDs of
processed messages in a database table. If a message has been processed before, the INSERT
into the PROCESSED_MESSAGES table will fail.

97Communicating using the Asynchronous messaging pattern
 Another option is for a message handler to record message ids in an application
table instead of a dedicated table. This approach is particularly useful when using a
NoSQL database that has a limited transaction model, so it doesn’t support updat-
ing two tables as part of a database transaction. Chapter 7 shows an example of this
approach.

3.3.7 Transactional messaging

A service often needs to publish messages as part of a transaction that updates the
database. For instance, throughout this book you see examples of services that publish
domain events whenever they create or update business entities. Both the database
update and the sending of the message must happen within a transaction. Otherwise,
a service might update the database and then crash, for example, before sending the
message. If the service doesn’t perform these two operations atomically, a failure
could leave the system in an inconsistent state.

 The traditional solution is to use a distributed transaction that spans the database
and the message broker. But as you’ll learn in chapter 4, distributed transactions
aren’t a good choice for modern applications. Moreover, many modern brokers such
as Apache Kafka don’t support distributed transactions.

 As a result, an application must use a different mechanism to reliably publish mes-
sages. Let’s look at how that works.

USING A DATABASE TABLE AS A MESSAGE QUEUE

Let’s imagine that your application is using a relational database. A straightforward
way to reliably publish messages is to apply the Transactional outbox pattern. This
pattern uses a database table as a temporary message queue. As figure 3.13 shows, a
service that sends messages has an OUTBOX database table. As part of the database

Order

Service

Read

OUTBOX
table

Publish

... ...

ORDER table

INSERT,
UPDATE,DELETE

INSERT

Database

Message

relay

Transaction

OUTBOX table

Message

broker

Figure 3.13 A service reliably publishes a message by inserting it into an OUTBOX table as part of the transaction
that updates the database. The Message Relay reads the OUTBOX table and publishes the messages to a
message broker.

98 CHAPTER 3 Interprocess communication in a microservice architecture
transaction that creates, updates, and deletes business objects, the service sends mes-
sages by inserting them into the OUTBOX table. Atomicity is guaranteed because this is a
local ACID transaction.

 The OUTBOX table acts a temporary message queue. The MessageRelay is a compo-
nent that reads the OUTBOX table and publishes the messages to a message broker.

You can use a similar approach with some NoSQL databases. Each business entity
stored as a record in the database has an attribute that is a list of messages that need
to be published. When a service updates an entity in the database, it appends a mes-
sage to that list. This is atomic because it’s done with a single database operation. The
challenge, though, is efficiently finding those business entities that have events and
publishing them.

 There are a couple of different ways to move messages from the database to the
message broker. We’ll look at each one.

PUBLISHING EVENTS BY USING THE POLLING PUBLISHER PATTERN

If the application uses a relational database, a very simple way to publish the messages
inserted into the OUTBOX table is for the MessageRelay to poll the table for unpub-
lished messages. It periodically queries the table:

SELECT * FROM OUTBOX ORDERED BY ... ASC

Next, the MessageRelay publishes those messages to the message broker, sending one
to its destination message channel. Finally, it deletes those messages from the OUTBOX
table:

BEGIN
DELETE FROM OUTBOX WHERE ID in (....)
COMMIT

Polling the database is a simple approach that works reasonably well at low scale. The
downside is that frequently polling the database can be expensive. Also, whether you
can use this approach with a NoSQL database depends on its querying capabilities.
That’s because rather than querying an OUTBOX table, the application must query the

Pattern: Transactional outbox
Publish an event or message as part of a database transaction by saving it in an OUT-
BOX in the database. See http://microservices.io/patterns/data/transactional-out-
box.html.

Pattern: Polling publisher
Publish messages by polling the outbox in the database. See http://microser-
vices.io/patterns/data/polling-publisher.html.

http://microservices.io/patterns/data/transactional-outbox.html
http://microservices.io/patterns/data/transactional-outbox.html
http://microservices.io/patterns/data/polling-publisher.html
http://microservices.io/patterns/data/polling-publisher.html

99Communicating using the Asynchronous messaging pattern
business entities, and that may or may not be possible to do efficiently. Because of
these drawbacks and limitations, it’s often better—and in some cases, necessary—to
use the more sophisticated and performant approach of tailing the database transac-
tion log.

PUBLISHING EVENTS BY APPLYING THE TRANSACTION LOG TAILING PATTERN

A sophisticated solution is for MessageRelay to tail the database transaction log (also
called the commit log). Every committed update made by an application is repre-
sented as an entry in the database’s transaction log. A transaction log miner can read
the transaction log and publish each change as a message to the message broker. Fig-
ure 3.14 shows how this approach works.

The Transaction Log Miner reads the transaction log entries. It converts each relevant
log entry corresponding to an inserted message into a message and publishes that mes-
sage to the message broker. This approach can be used to publish messages written to
an OUTBOX table in an RDBMS or messages appended to records in a NoSQL database.

Pattern: Transaction log tailing
Publish changes made to the database by tailing the transaction log. See http://micro-
services.io/patterns/data/transaction-log-tailing.html.

Database

OUTBOX table

Transaction log
Transaction log

miner

INSERT INTO OUTBOX ...

Message

broker

Changes Publish

Order

Service

Committed inserts into
the OUTBOX table are

recorded in the database’s
transaction log.

Reads the transaction log

Figure 3.14 A service publishes messages inserted into the OUTBOX table by mining
the database’s transaction log.

http://microservices.io/patterns/data/transaction-log-tailing.html
http://microservices.io/patterns/data/transaction-log-tailing.html

100 CHAPTER 3 Interprocess communication in a microservice architecture
There are a few examples of this approach in use:

 Debezium (http://debezium.io)—An open source project that publishes data-
base changes to the Apache Kafka message broker.

 LinkedIn Databus (https://github.com/linkedin/databus)—An open source proj-
ect that mines the Oracle transaction log and publishes the changes as events.
LinkedIn uses Databus to synchronize various derived data stores with the sys-
tem of record.

 DynamoDB streams (http://docs.aws.amazon.com/amazondynamodb/latest/
developerguide/Streams.html)—DynamoDB streams contain the time-ordered
sequence of changes (creates, updates, and deletes) made to the items in a
DynamoDB table in the last 24 hours. An application can read those changes
from the stream and, for example, publish them as events.

 Eventuate Tram (https://github.com/eventuate-tram/eventuate-tram-core)—Your
author’s very own open source transaction messaging library that uses MySQL
binlog protocol, Postgres WAL, or polling to read changes made to an OUTBOX
table and publish them to Apache Kafka.

Although this approach is obscure, it works remarkably well. The challenge is that
implementing it requires some development effort. You could, for example, write low-
level code that calls database-specific APIs. Alternatively, you could use an open source
framework such as Debezium that publishes changes made by an application to MySQL,
Postgres, or MongoDB to Apache Kafka. The drawback of using Debezium is that its
focus is capturing changes at the database level and that APIs for sending and receiving
messages are outside of its scope. That’s why I created the Eventuate Tram framework,
which provides the messaging APIs as well as transaction tailing and polling.

3.3.8 Libraries and frameworks for messaging

A service needs to use a library to send and receive messages. One approach is to use
the message broker’s client library, although there are several problems with using
such a library directly:

 The client library couples business logic that publishes messages to the message
broker APIs.

 A message broker’s client library is typically low level and requires many lines of
code to send or receive a message. As a developer, you don’t want to repeatedly
write boilerplate code. Also, as the author of this book I don’t want the example
code cluttered with low-level boilerplate.

 The client library usually provides only the basic mechanism to send and
receive messages and doesn’t support the higher-level interaction styles.

A better approach is to use a higher-level library or framework that hides the low-level
details and directly supports the higher-level interaction styles. For simplicity, the
examples in this book use my Eventuate Tram framework. It has a simple, easy-to-
understand API that hides the complexity of using the message broker. Besides an API

http://debezium.io
https://github.com/linkedin/databus
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Streams.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Streams.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Streams.html
https://github.com/eventuate-tram/eventuate-tram-core

101Communicating using the Asynchronous messaging pattern
for sending and receiving messages, Eventuate Tram also supports higher-level inter-
action styles such as asynchronous request/response and domain event publishing.

Eventuate Tram also implements two important mechanisms:

 Transactional messaging—It publishes messages as part of a database transaction.
 Duplicate message detection—The Eventuate Tram message consumer detects and

discards duplicate messages, which is essential for ensuring that a consumer
processes messages exactly once, as discussed in section 3.3.6.

Let’s take a look at the Eventuate Tram APIs.

BASIC MESSAGING

The basic messaging API consists of two Java interfaces: MessageProducer and Message-
Consumer. A producer service uses the MessageProducer interface to publish messages
to message channels. Here’s an example of using this interface:

MessageProducer messageProducer = ...;
String channel = ...;
String payload = ...;
messageProducer.send(destination, MessageBuilder.withPayload(payload).build())

A consumer service uses the MessageConsumer interface to subscribe to messages:

MessageConsumer messageConsumer;
messageConsumer.subscribe(subscriberId, Collections.singleton(destination),

message -> { ... })

MessageProducer and MessageConsumer are the foundation of the higher-level APIs
for asynchronous request/response and domain event publishing.

 Let’s talk about how to publish and subscribe to events.

What!? Why the Eventuate frameworks?
The code samples in this book use the open source Eventuate frameworks I’ve devel-
oped for transactional messaging, event sourcing, and sagas. I chose to use my
frameworks because, unlike with, say, dependency injection and the Spring frame-
work, there are no widely adopted frameworks for many of the features the microser-
vice architecture requires. Without the Eventuate Tram framework, many examples
would have to use the low-level messaging APIs directly, making them much more
complicated and obscuring important concepts. Or they would use a framework that
isn’t widely adopted, which would also provoke criticism.

Instead, the examples use the Eventuate Tram frameworks, which have a simple,
easy-to-understand API that hides the implementation details. You can use these
frameworks in your applications. Alternatively, you can study the Eventuate Tram
frameworks and reimplement the concepts yourself.

102 CHAPTER 3 Interprocess communication in a microservice architecture
DOMAIN EVENT PUBLISHING

Eventuate Tram has APIs for publishing and consuming domain events. Chapter 5
explains that domain events are events that are emitted by an aggregate (business
object) when it’s created, updated, or deleted. A service publishes a domain event
using the DomainEventPublisher interface. Here is an example:

DomainEventPublisher domainEventPublisher;

String accountId = ...;

DomainEvent domainEvent = new AccountDebited(...);

domainEventPublisher.publish("Account", accountId, Collections.singletonList(
domainEvent));

A service consumes domain events using the DomainEventDispatcher. An example
follows:

DomainEventHandlers domainEventHandlers = DomainEventHandlersBuilder
.forAggregateType("Order")
.onEvent(AccountDebited.class, domainEvent -> { ... })
.build();

new DomainEventDispatcher("eventDispatcherId",
domainEventHandlers,
messageConsumer);

Events aren’t the only high-level messaging pattern supported by Eventuate Tram. It
also supports command/reply-based messaging.

COMMAND/REPLY-BASED MESSAGING

A client can send a command message to a service using the CommandProducer inter-
face. For example

CommandProducer commandProducer = ...;

Map<String, String> extraMessageHeaders = Collections.emptyMap();

String commandId = commandProducer.send("CustomerCommandChannel",
new DoSomethingCommand(),
"ReplyToChannel",
extraMessageHeaders);

A service consumes command messages using the CommandDispatcher class. Command-
Dispatcher uses the MessageConsumer interface to subscribe to specified events. It dis-
patches each command message to the appropriate handler method. Here’s an example:

CommandHandlers commandHandlers =CommandHandlersBuilder
.fromChannel(commandChannel)
.onMessage(DoSomethingCommand.class, (command) -

> { ... ; return withSuccess(); })
.build();

103Using asynchronous messaging to improve availability
CommandDispatcher dispatcher = new CommandDispatcher("subscribeId",
commandHandlers, messageConsumer, messageProducer);

Throughout this book, you’ll see code examples that use these APIs for sending and
receiving messages.

 As you’ve seen, the Eventuate Tram framework implements transactional messag-
ing for Java applications. It provides a low-level API for sending and receiving messages
transactionally. It also provides the higher-level APIs for publishing and consuming
domain events and for sending and processing commands.

 Let’s now look at a service design approach that uses asynchronous messaging to
improve availability.

3.4 Using asynchronous messaging to improve availability
As you’ve seen, a variety of IPC mechanisms have different trade-offs. One particular
trade-off is how your choice of IPC mechanism impacts availability. In this section,
you’ll learn that synchronous communication with other services as part of request
handling reduces application availability. As a result, you should design your services
to use asynchronous messaging whenever possible.

 Let’s first look at the problem with synchronous communication and how it
impacts availability.

3.4.1 Synchronous communication reduces availability

REST is an extremely popular IPC mechanism. You may be tempted to use it for inter-
service communication. The problem with REST, though, is that it’s a synchronous
protocol: an HTTP client must wait for the service to send a response. Whenever
services communicate using a synchronous protocol, the availability of the applica-
tion is reduced.

 To see why, consider the scenario shown in figure 3.15. The Order Service has a
REST API for creating an Order. It invokes the Consumer Service and the Restaurant
Service to validate the Order. Both of those services also have REST APIs.

Client
Order

Service

Consumer

Service

Restaurant

Service

POST/orders

GET/consumers/id

GET/restaurant/id

Figure 3.15 The Order Service invokes other services using REST. It’s straightforward, but it
requires all the services to be simultaneously available, which reduces the availability of the API.

104 CHAPTER 3 Interprocess communication in a microservice architecture
The sequence of steps for creating an order is as follows:

1 Client makes an HTTP POST /orders request to the Order Service.
2 Order Service retrieves consumer information by making an HTTP GET

/consumers/id request to the Consumer Service.
3 Order Service retrieves restaurant information by making an HTTP GET

/restaurant/id request to the Restaurant Service.
4 Order Taking validates the request using the consumer and restaurant infor-

mation.
5 Order Taking creates an Order.
6 Order Taking sends an HTTP response to the client.

Because these services use HTTP, they must all be simultaneously available in order
for the FTGO application to process the CreateOrder request. The FTGO application
couldn’t create orders if any one of these three services is down. Mathematically
speaking, the availability of a system operation is the product of the availability of the
services that are invoked by that operation. If the Order Service and the two services
that it invokes are 99.5% available, the overall availability is 99.5%3 = 98.5%, which is
significantly less. Each additional service that participates in handling a request fur-
ther reduces availability.

 This problem isn’t specific to REST-based communication. Availability is reduced
whenever a service can only respond to its client after receiving a response from
another service. This problem exists even if services communicate using request/
response style interaction over asynchronous messaging. For example, the availability
of the Order Service would be reduced if it sent a message to the Consumer Service
via a message broker and then waited for a response.

 If you want to maximize availability, you must minimize the amount of synchro-
nous communication. Let’s look at how to do that.

3.4.2 Eliminating synchronous interaction

There are a few different ways to reduce the amount of synchronous communication
with other services while handling synchronous requests. One solution is to avoid the
problem entirely by defining services that only have asynchronous APIs. That’s not
always possible, though. For example, public APIs are commonly RESTful. Services
are therefore sometimes required to have synchronous APIs.

 Fortunately, there are ways to handle synchronous requests without making syn-
chronous requests. Let’s talk about the options.

USE ASYNCHRONOUS INTERACTION STYLES

Ideally, all interactions should be done using the asynchronous interaction styles
described earlier in this chapter. For example, say a client of the FTGO application
used an asynchronous request/asynchronous response style of interaction to create
orders. A client creates an order by sending a request message to the Order Service.

105Using asynchronous messaging to improve availability
This service then asynchronously exchanges messages with other services and eventu-
ally sends a reply message to the client. Figure 3.16 shows the design.

The client and the services communicate asynchronously by sending messages via
messaging channels. No participant in this interaction is ever blocked waiting for a
response.

 Such an architecture would be extremely resilient, because the message broker
buffers messages until they can be consumed. The problem, however, is that services
often have an external API that uses a synchronous protocol such as REST, so it must
respond to requests immediately.

 If a service has a synchronous API, one way to improve availability is to replicate
data. Let’s see how that works.

REPLICATE DATA

One way to minimize synchronous requests during request processing is to replicate
data. A service maintains a replica of the data that it needs when processing requests.
It keeps the replica up-to-date by subscribing to events published by the services that
own the data. For example, Order Service could maintain a replica of data owned by
Consumer Service and Restaurant Service. This would enable Order Service to
handle a request to create an order without having to interact with those services.
Figure 3.17 shows the design.

 Consumer Service and Restaurant Service publish events whenever their data
changes. Order Service subscribes to those events and updates its replica.

 In some situations, replicating data is a useful approach. For example, chapter 5
describes how Order Service replicates data from Restaurant Service so that it can
validate and price menu items. One drawback of replication is that it can sometimes
require the replication of large amounts of data, which is inefficient. For example, it
may not be practical for Order Service to maintain a replica of the data owned by
Consumer Service, due to the large number of consumers. Another drawback of

Client

Consumer

Service

Restaurant

Service

Order request

channel

Consumer request

channel

Order Service

reply channel

Restaurant request

channel

Create order

request

Create order

response

Order

Service

Client reply
channel

Figure 3.16 The FTGO application has higher availability if its services communicate using asynchronous
messaging instead of synchronous calls.

106 CHAPTER 3 Interprocess communication in a microservice architecture
replication is that it doesn’t solve the problem of how a service updates data owned by
other services.

 One way to solve that problem is for a service to delay interacting with other ser-
vices until after it responds to its client. We’ll next look at how that works.

FINISH PROCESSING AFTER RETURNING A RESPONSE

Another way to eliminate synchronous communication during request processing is
for a service to handle a request as follows:

1 Validate the request using only the data available locally.
2 Update its database, including inserting messages into the OUTBOX table.
3 Return a response to its client.

While handling a request, the service doesn’t synchronously interact with any other
services. Instead, it asynchronously sends messages to other services. This approach
ensures that the services are loosely coupled. As you’ll learn in the next chapter, this is
often implemented using a saga.

 For example, if Order Service uses this approach, it creates an order in a PENDING
state and then validates the order asynchronously by exchanging messages with other
services. Figure 3.18 shows what happens when the createOrder() operation is
invoked. The sequence of events is as follows:

1 Order Service creates an Order in a PENDING state.
2 Order Service returns a response to its client containing the order ID.
3 Order Service sends a ValidateConsumerInfo message to Consumer Service.

Services publish events
when their data changes.

Replicated data enables Order Service to
handle the createOrder() request without

synchronously invoking services.

Restaurant

Service

Consumer event

channel

Restaurant event

channel

Order

Service

Consumer

Service

Consumer Service database

«table»
CONSUMERS

createOrder()

Restaurant Service database

«table»
RESTAURANTS

Order Service database

«table»
ORDERS

«table»
CONSUMERS

«table»
RESTAURANTS

Figure 3.17 Order Service is self-contained because it has replicas of the consumer and restaurant data.

107Using asynchronous messaging to improve availability
4 Order Service sends a ValidateOrderDetails message to Restaurant Service.
5 Consumer Service receives a ValidateConsumerInfo message, verifies the con-

sumer can place an order, and sends a ConsumerValidated message to Order
Service.

6 Restaurant Service receives a ValidateOrderDetails message, verifies the
menu item are valid and that the restaurant can deliver to the order’s delivery
address, and sends an OrderDetailsValidated message to Order Service.

7 Order Service receives ConsumerValidated and OrderDetailsValidated and
changes the state of the order to VALIDATED.

8 …

Order Service can receive the ConsumerValidated and OrderDetailsValidated mes-
sages in either order. It keeps track of which message it receives first by changing the
state of the order. If it receives the ConsumerValidated first, it changes the state of the
order to CONSUMER_VALIDATED, whereas if it receives the OrderDetailsValidated mes-
sage first, it changes its state to ORDER_DETAILS_VALIDATED. Order Service changes
the state of the Order to VALIDATED when it receives the other message.

Synchronous

Key

Asynchronous
Order Service

Client

Consumer Service Restaurant Service ...

createOrder

AsynchronousSynchronous

create order

update order

update order

createOrder

ValidateConsumerInfo

ValidateOrderDetails

ConsumerValidated

OrderDetailsValidated

...

Figure 3.18 Order Service creates an order without invoking any other service. It then asynchronously
validates the newly created Order by exchanging messages with other services, including Consumer Service
and Restaurant Service.

108 CHAPTER 3 Interprocess communication in a microservice architecture
 After the Order has been validated, Order Service completes the rest of the order-
creation process, discussed in the next chapter. What’s nice about this approach is
that even if Consumer Service is down, for example, Order Service still creates orders
and responds to its clients. Eventually, Consumer Service will come back up and pro-
cess any queued messages, and orders will be validated.

 A drawback of a service responding before fully processing a request is that it
makes the client more complex. For example, Order Service makes minimal guaran-
tees about the state of a newly created order when it returns a response. It creates the
order and returns immediately before validating the order and authorizing the con-
sumer’s credit card. Consequently, in order for the client to know whether the order
was successfully created, either it must periodically poll or Order Service must send it
a notification message. As complex as it sounds, in many situations this is the pre-
ferred approach—especially because it also addresses the distributed transaction man-
agement issues I discuss in the next chapter. In chapters 4 and 5, for example, I
describe how Order Service uses this approach.

Summary
 The microservice architecture is a distributed architecture, so interprocess

communication plays a key role.
 It’s essential to carefully manage the evolution of a service’s API. Backward-

compatible changes are the easiest to make because they don’t impact clients. If
you make a breaking change to a service’s API, it will typically need to support
both the old and new versions until its clients have been upgraded.

 There are numerous IPC technologies, each with different trade-offs. One key
design decision is to choose either a synchronous remote procedure invocation
pattern or the asynchronous Messaging pattern. Synchronous remote proce-
dure invocation-based protocols, such as REST, are the easiest to use. But ser-
vices should ideally communicate using asynchronous messaging in order to
increase availability.

 In order to prevent failures from cascading through a system, a service client
that uses a synchronous protocol must be designed to handle partial failures,
which are when the invoked service is either down or exhibiting high latency. In
particular, it must use timeouts when making requests, limit the number of out-
standing requests, and use the Circuit breaker pattern to avoid making calls to a
failing service.

 An architecture that uses synchronous protocols must include a service discov-
ery mechanism in order for clients to determine the network location of a ser-
vice instance. The simplest approach is to use the service discovery mechanism
implemented by the deployment platform: the Server-side discovery and 3rd
party registration patterns. But an alternative approach is to implement service
discovery at the application level: the Client-side discovery and Self registration

109Summary
patterns. It’s more work, but it does handle the scenario where services are run-
ning on multiple deployment platforms.

 A good way to design a messaging-based architecture is to use the messages and
channels model, which abstracts the details of the underlying messaging system.
You can then map that design to a specific messaging infrastructure, which is
typically message broker–based.

 One key challenge when using messaging is atomically updating the database
and publishing a message. A good solution is to use the Transactional outbox
pattern and first write the message to the database as part of the database trans-
action. A separate process then retrieves the message from the database using
either the Polling publisher pattern or the Transaction log tailing pattern and
publishes it to the message broker.

Managing transactions
with sagas
When Mary started investigating the microservice architecture, one of her biggest
concerns was how to implement transactions that span multiple services. Transac-
tions are an essential ingredient of every enterprise application. Without transac-
tions it would be impossible to maintain data consistency.

 ACID (Atomicity, Consistency, Isolation, Durability) transactions greatly simplify
the job of the developer by providing the illusion that each transaction has exclu-
sive access to the data. In a microservice architecture, transactions that are within a
single service can still use ACID transactions. The challenge, however, lies in imple-
menting transactions for operations that update data owned by multiple services.

This chapter covers
 Why distributed transactions aren’t a good fit for

modern applications

 Using the Saga pattern to maintain data
consistency in a microservice architecture

 Coordinating sagas using choreography and
orchestration

 Using countermeasures to deal with the lack of
isolation
110

111Transaction management in a microservice architecture
For example, as described in chapter 2, the createOrder() operation spans numer-
ous services, including Order Service, Kitchen Service, and Accounting Service.
Operations such as these need a transaction management mechanism that works
across services.

 Mary discovered that, as mentioned in chapter 2, the traditional approach to dis-
tributed transaction management isn’t a good choice for modern applications.
Instead of an ACID transactions, an operation that spans services must use what’s
known as a saga, a message-driven sequence of local transactions, to maintain data
consistency. One challenge with sagas is that they are ACD (Atomicity, Consistency,
Durability). They lack the isolation feature of traditional ACID transactions. As a
result, an application must use what are known as countermeasures, design techniques
that prevent or reduce the impact of concurrency anomalies caused by the lack of
isolation.

 In many ways, the biggest obstacle that Mary and the FTGO developers will face
when adopting microservices is moving from a single database with ACID transactions
to a multi-database architecture with ACD sagas. They’re used to the simplicity of the
ACID transaction model. But in reality, even monolithic applications such as the FTGO
application typically don’t use textbook ACID transactions. For example, many appli-
cations use a lower transaction isolation level in order to improve performance. Also,
many important business processes, such as transferring money between accounts at
different banks, are eventually consistent. Not even Starbucks uses two-phase commit
(www.enterpriseintegrationpatterns.com/ramblings/18_starbucks.html).

 I begin this chapter by looking at the challenges of transaction management in the
microservice architecture and explain why the traditional approach to distributed
transaction management isn’t an option. Next I explain how to maintain data consis-
tency using sagas. After that I look at the two different ways of coordinating sagas:
choreography, where participants exchange events without a centralized point of con-
trol, and orchestration, where a centralized controller tells the saga participants what
operation to perform. I discuss how to use countermeasures to prevent or reduce the
impact of concurrency anomalies caused by the lack of isolation between sagas. Finally, I
describe the implementation of an example saga.

 Let’s start by taking a look at the challenge of managing transactions in a micro-
service architecture.

4.1 Transaction management in a microservice
architecture
Almost every request handled by an enterprise application is executed within a data-
base transaction. Enterprise application developers use frameworks and libraries that
simplify transaction management. Some frameworks and libraries provide a program-
matic API for explicitly beginning, committing, and rolling back transactions. Other
frameworks, such as the Spring framework, provide a declarative mechanism. Spring
provides an @Transactional annotation that arranges for method invocations to be

www.enterpriseintegrationpatterns.com/ramblings/18_starbucks.html

112 CHAPTER 4 Managing transactions with sagas
automatically executed within a transaction. As a result, it’s straightforward to write
transactional business logic.

 Or, to be more precise, transaction management is straightforward in a monolithic
application that accesses a single database. Transaction management is more chal-
lenging in a complex monolithic application that uses multiple databases and mes-
sage brokers. And in a microservice architecture, transactions span multiple services,
each of which has its own database. In this situation, the application must use a more
elaborate mechanism to manage transactions. As you’ll learn, the traditional approach
of using distributed transactions isn’t a viable option for modern applications. Instead, a
microservices-based application must use sagas.

 Before I explain sagas, let’s first look at why transaction management is challeng-
ing in a microservice architecture.

4.1.1 The need for distributed transactions in a microservice
architecture

Imagine that you’re the FTGO developer responsible for implementing the create-
Order() system operation. As described in chapter 2, this operation must verify that
the consumer can place an order, verify the order details, authorize the consumer’s
credit card, and create an Order in the database. It’s relatively straightforward to
implement this operation in the monolithic FTGO application. All the data required
to validate the order is readily accessible. What’s more, you can use an ACID transac-
tion to ensure data consistency. You might use Spring’s @Transactional annotation
on the createOrder() service method.

 In contrast, implementing the same operation in a microservice architecture is
much more complicated. As figure 4.1 shows, the needed data is scattered around
multiple services. The createOrder() operation accesses data in numerous services.
It reads data from Consumer Service and updates data in Order Service, Kitchen
Service, and Accounting Service.

 Because each service has its own database, you need to use a mechanism to main-
tain data consistency across those databases.

4.1.2 The trouble with distributed transactions

The traditional approach to maintaining data consistency across multiple services,
databases, or message brokers is to use distributed transactions. The de facto standard
for distributed transaction management is the X/Open Distributed Transaction Pro-
cessing (DTP) Model (X/Open XA—see https://en.wikipedia.org/wiki/X/Open_XA).
XA uses two-phase commit (2PC) to ensure that all participants in a transaction either
commit or rollback. An XA-compliant technology stack consists of XA-compliant data-
bases and message brokers, database drivers, and messaging APIs, and an interprocess
communication mechanism that propagates the XA global transaction ID. Most SQL
databases are XA compliant, as are some message brokers. Java EE applications can,
for example, use JTA to perform distributed transactions.

https://en.wikipedia.org/wiki/X/Open_XA

113Transaction management in a microservice architecture
As simple as this sounds, there are a variety of problems with distributed transac-
tions. One problem is that many modern technologies, including NoSQL databases
such as MongoDB and Cassandra, don’t support them. Also, distributed transactions
aren’t supported by modern message brokers such as RabbitMQ and Apache Kafka.
As a result, if you insist on using distributed transactions, you can’t use many mod-
ern technologies.

 Another problem with distributed transactions is that they are a form of synchro-
nous IPC, which reduces availability. In order for a distributed transaction to commit,
all the participating services must be available. As described in chapter 3, the availabil-
ity is the product of the availability of all of the participants in the transaction. If a dis-
tributed transaction involves two services that are 99.5% available, then the overall
availability is 99%, which is significantly less. Each additional service involved in a dis-
tributed transaction further reduces availability. There is even Eric Brewer’s CAP theo-
rem, which states that a system can only have two of the following three properties:

AccountTicketConsumer

Data consistency required

WritesWrites

createOrder()

Reads

Accounting ServiceKitchen Service

Order

Order Service

Consumer Service

The createOrder() operation reads from
Consumer Service and updates data
in Order Service, Kitchen Service,
and Accounting Service. Order

controller

Figure 4.1 The createOrder() operation updates data in several services. It must use a
mechanism to maintain data consistency across those services.

114 CHAPTER 4 Managing transactions with sagas
consistency, availability, and partition tolerance (https://en.wikipedia.org/wiki/CAP
_theorem). Today, architects prefer to have a system that’s available rather than one
that’s consistent.

 On the surface, distributed transactions are appealing. From a developer’s per-
spective, they have the same programming model as local transactions. But because of
the problems mentioned so far, distributed transactions aren’t a viable technology for
modern applications. Chapter 3 described how to send messages as part of a database
transaction without using distributed transactions. To solve the more complex prob-
lem of maintaining data consistency in a microservice architecture, an application
must use a different mechanism that builds on the concept of loosely coupled, asyn-
chronous services. This is where sagas come in.

4.1.3 Using the Saga pattern to maintain data consistency

Sagas are mechanisms to maintain data consistency in a microservice architecture
without having to use distributed transactions. You define a saga for each system com-
mand that needs to update data in multiple services. A saga is a sequence of local
transactions. Each local transaction updates data within a single service using the
familiar ACID transaction frameworks and libraries mentioned earlier.

The system operation initiates the first step of the saga. The completion of a local
transaction triggers the execution of the next local transaction. Later, in section 4.2,
you’ll see how coordination of the steps is implemented using asynchronous messag-
ing. An important benefit of asynchronous messaging is that it ensures that all the
steps of a saga are executed, even if one or more of the saga’s participants is temporar-
ily unavailable.

 Sagas differ from ACID transactions in a couple of important ways. As I describe in
detail in section 4.3, they lack the isolation property of ACID transactions. Also, because
each local transaction commits its changes, a saga must be rolled back using compensat-
ing transactions. I talk more about compensating transactions later in this section. Let’s
take a look at an example saga.

AN EXAMPLE SAGA: THE CREATE ORDER SAGA

The example saga used throughout this chapter is the Create Order Saga, which is
shown in figure 4.2. The Order Service implements the createOrder() operation
using this saga. The saga’s first local transaction is initiated by the external request to
create an order. The other five local transactions are each triggered by completion of
the previous one.

Pattern: Saga
Maintain data consistency across services using a sequence of local transactions
that are coordinated using asynchronous messaging. See http://microservices.io/
patterns/data/saga.html.

https://en.wikipedia.org/wiki/CAP_theorem
https://en.wikipedia.org/wiki/CAP_theorem
https://en.wikipedia.org/wiki/CAP_theorem
http://microservices.io/patterns/data/saga.html
http://microservices.io/patterns/data/saga.html
http://microservices.io/patterns/data/saga.html

115Transaction management in a microservice architecture
This saga consists of the following local transactions:

1 Order Service—Create an Order in an APPROVAL_PENDING state.
2 Consumer Service—Verify that the consumer can place an order.
3 Kitchen Service—Validate order details and create a Ticket in the CREATE

_PENDING.
4 Accounting Service—Authorize consumer’s credit card.
5 Kitchen Service—Change the state of the Ticket to AWAITING_ACCEPTANCE.
6 Order Service—Change the state of the Order to APPROVED.

Later, in section 4.2, I describe how the services that participate in a saga communi-
cate using asynchronous messaging. A service publishes a message when a local trans-
action completes. This message then triggers the next step in the saga. Not only does
using messaging ensure the saga participants are loosely coupled, it also guarantees
that a saga completes. That’s because if the recipient of a message is temporarily
unavailable, the message broker buffers the message until it can be delivered.

 On the surface, sagas seem straightforward, but there are a few challenges to using
them. One challenge is the lack of isolation between sagas. Section 4.3 describes how
to handle this problem. Another challenge is rolling back changes when an error
occurs. Let’s take a look at how to do that.

SAGAS USE COMPENSATING TRANSACTIONS TO ROLL BACK CHANGES

A great feature of traditional ACID transactions is that the business logic can easily
roll back a transaction if it detects the violation of a business rule. It executes a ROLL-
BACK statement, and the database undoes all the changes made so far. Unfortunately,
sagas can’t be automatically rolled back, because each step commits its changes to the
local database. This means, for example, that if the authorization of the credit card
fails in the fourth step of the Create Order Saga, the FTGO application must explicitly

Order Service

Saga

Create order

Txn:1

Approve order

Txn:6

Consumer Service

Create order

Txn:1

Verify consumer

Txn:2

Kitchen Service

Create ticket

Txn:3

Approve ticket

Txn:5

Accounting Service

Authorize card

Txn:4

Figure 4.2 Creating an Order using a saga. The createOrder() operation is implemented by a
saga that consists of local transactions in several services.

116 CHAPTER 4 Managing transactions with sagas
undo the changes made by the first three steps. You must write what are known as com-
pensating transactions.

 Suppose that the (n + 1)th transaction of a saga fails. The effects of the previous n
transactions must be undone. Conceptually, each of those steps, Ti, has a correspond-
ing compensating transaction, Ci, which undoes the effects of the Ti. To undo the
effects of those first n steps, the saga must execute each Ci in reverse order. The
sequence of steps is T1 … Tn, Cn … C1, as shown in figure 4.3. In this example, Tn+1
fails, which requires steps T1 … Tn to be undone.

The saga executes the compensation transactions in reverse order of the forward
transactions: Cn … C1. The mechanics of sequencing the Cis aren’t any different than
sequencing the Tis. The completion of Ci must trigger the execution of Ci-1.

 Consider, for example, the Create Order Saga. This saga can fail for a variety of
reasons:

 The consumer information is invalid or the consumer isn’t allowed to create
orders.

 The restaurant information is invalid or the restaurant is unable to accept orders.
 The authorization of the consumer’s credit card fails.

If a local transaction fails, the saga’s coordination mechanism must execute compen-
sating transactions that reject the Order and possibly the Ticket. Table 4.1 shows the
compensating transactions for each step of the Create Order Saga. It’s important to
note that not all steps need compensating transactions. Read-only steps, such as verify-
ConsumerDetails(), don’t need compensating transactions. Nor do steps such as
authorizeCreditCard() that are followed by steps that always succeed.

 Section 4.3 discusses how the first three steps of the Create Order Saga are termed
compensatable transactions because they’re followed by steps that can fail, how the
fourth step is termed the saga’s pivot transaction because it’s followed by steps that

Saga

T1 ... Tn

Tn+1
FAILS

Cn ... C

The changes made by T1...Tn
have been committed.

The compensating transactions undo
the changes made by T1...Tn.

1

Figure 4.3 When a step of a saga fails because of a business rule violation, the saga must explicitly
undo the updates made by previous steps by executing compensating transactions.

117Coordinating sagas
never fail, and how the last two steps are termed retriable transactions because they
always succeed.

 To see how compensating transactions are used, imagine a scenario where the
authorization of the consumer’s credit card fails. In this scenario, the saga executes
the following local transactions:

1 Order Service—Create an Order in an APPROVAL_PENDING state.
2 Consumer Service—Verify that the consumer can place an order.
3 Kitchen Service—Validate order details and create a Ticket in the CREATE

_PENDING state.
4 Accounting Service—Authorize consumer’s credit card, which fails.
5 Kitchen Service—Change the state of the Ticket to CREATE_REJECTED.
6 Order Service—Change the state of the Order to REJECTED.

The fifth and sixth steps are compensating transactions that undo the updates made
by Kitchen Service and Order Service, respectively. A saga’s coordination logic is
responsible for sequencing the execution of forward and compensating transactions.
Let’s look at how that works.

4.2 Coordinating sagas
A saga’s implementation consists of logic that coordinates the steps of the saga.
When a saga is initiated by system command, the coordination logic must select and
tell the first saga participant to execute a local transaction. Once that transaction
completes, the saga’s sequencing coordination selects and invokes the next saga
participant. This process continues until the saga has executed all the steps. If any
local transaction fails, the saga must execute the compensating transactions in
reverse order. There are a couple of different ways to structure a saga’s coordina-
tion logic:

 Choreography—Distribute the decision making and sequencing among the saga
participants. They primarily communicate by exchanging events.

Table 4.1 The compensating transactions for the Create Order Saga

Step Service Transaction Compensating transaction

1 Order Service createOrder() rejectOrder()

2 Consumer Service verifyConsumerDetails() —

3 Kitchen Service createTicket() rejectTicket()

4 Accounting Service authorizeCreditCard() —

5 Kitchen Service approveTicket() —

6 Order Service approveOrder() —

118 CHAPTER 4 Managing transactions with sagas
 Orchestration—Centralize a saga’s coordination logic in a saga orchestrator class.
A saga orchestrator sends command messages to saga participants telling them
which operations to perform.

Let’s look at each option, starting with choreography.

4.2.1 Choreography-based sagas

One way you can implement a saga is by using choreography. When using choreogra-
phy, there’s no central coordinator telling the saga participants what to do. Instead,
the saga participants subscribe to each other’s events and respond accordingly. To
show how choreography-based sagas work, I’ll first describe an example. After that, I’ll
discuss a couple of design issues that you must address. Then I’ll discuss the benefits
and drawbacks of using choreography.

IMPLEMENTING THE CREATE ORDER SAGA USING CHOREOGRAPHY

Figure 4.4 shows the design of the choreography-based version of the Create Order
Saga. The participants communicate by exchanging events. Each participant, starting
with the Order Service, updates its database and publishes an event that triggers the
next participant.

Accounting Service

4. createPendingAuthorization()

6. authorizeCard()

Kitchen Service

3. createTicket()

6. approveTicket()

Order

Service

1. createOrder()

7. approveOrder()

Consumer Service

2. verifyConsumerDetails()

Order events

Message broker

Consumer verified

Publish

Key

Subscribe

Consumer events

Ticket events

Credit card events

2

Order created

1

Ticket created

3

Credit card authorized

5

6

4

5a7

5b

Figure 4.4 Implementing the Create Order Saga using choreography. The saga participants communicate by
exchanging events.

119Coordinating sagas
The happy path through this saga is as follows:

1 Order Service creates an Order in the APPROVAL_PENDING state and publishes
an OrderCreated event.

2 Consumer Service consumes the OrderCreated event, verifies that the con-
sumer can place the order, and publishes a ConsumerVerified event.

3 Kitchen Service consumes the OrderCreated event, validates the Order, cre-
ates a Ticket in a CREATE_PENDING state, and publishes the TicketCreated event.

4 Accounting Service consumes the OrderCreated event and creates a Credit-
CardAuthorization in a PENDING state.

5 Accounting Service consumes the TicketCreated and ConsumerVerified
events, charges the consumer’s credit card, and publishes the CreditCard-
Authorized event.

6 Kitchen Service consumes the CreditCardAuthorized event and changes the
state of the Ticket to AWAITING_ACCEPTANCE.

7 Order Service receives the CreditCardAuthorized events, changes the state of
the Order to APPROVED, and publishes an OrderApproved event.

The Create Order Saga must also handle the scenario where a saga participant rejects
the Order and publishes some kind of failure event. For example, the authorization of
the consumer’s credit card might fail. The saga must execute the compensating trans-
actions to undo what’s already been done. Figure 4.5 shows the flow of events when
the AccountingService can’t authorize the consumer’s credit card.

 The sequence of events is as follows:

1 Order Service creates an Order in the APPROVAL_PENDING state and publishes
an OrderCreated event.

2 Consumer Service consumes the OrderCreated event, verifies that the con-
sumer can place the order, and publishes a ConsumerVerified event.

3 Kitchen Service consumes the OrderCreated event, validates the Order, creates
a Ticket in a CREATE_PENDING state, and publishes the TicketCreated event.

4 Accounting Service consumes the OrderCreated event and creates a Credit-
CardAuthorization in a PENDING state.

5 Accounting Service consumes the TicketCreated and ConsumerVerified
events, charges the consumer’s credit card, and publishes a Credit Card
Authorization Failed event.

6 Kitchen Service consumes the Credit Card Authorization Failed event and
changes the state of the Ticket to REJECTED.

7 Order Service consumes the Credit Card Authorization Failed event and
changes the state of the Order to REJECTED.

As you can see, the participants of choreography-based sagas interact using publish/
subscribe. Let’s take a closer look at some issues you’ll need to consider when imple-
menting publish/subscribe-based communication for your sagas.

120 CHAPTER 4 Managing transactions with sagas
RELIABLE EVENT-BASED COMMUNICATION

There are a couple of interservice communication-related issues that you must con-
sider when implementing choreography-based sagas. The first issue is ensuring that a
saga participant updates its database and publishes an event as part of a database
transaction. Each step of a choreography-based saga updates the database and pub-
lishes an event. For example, in the Create Order Saga, Kitchen Service receives a
Consumer Verified event, creates a Ticket, and publishes a Ticket Created event.
It’s essential that the database update and the publishing of the event happen atomi-
cally. Consequently, to communicate reliably, the saga participants must use transac-
tional messaging, described in chapter 3.

 The second issue you need to consider is ensuring that a saga participant must
be able to map each event that it receives to its own data. For example, when Order
Service receives a Credit Card Authorized event, it must be able to look up the
corresponding Order. The solution is for a saga participant to publish events con-
taining a correlation id, which is data that enables other participants to perform the
mapping.

Accounting Service

4. createPendingAuthorization()

6. authorizeCard()

Kitchen Service

3. createTicket()

6. rejectTicket()

Order

Service

1. createOrder()

7. rejectOrder()

Consumer Service

2. verifyConsumerDetails()

Order events

Message broker

Consumer verified

Publish

Key

Subscribe

Consumer events

Ticket events

Credit card events

2

Order created

1

Ticket created

3

Credit card authorization failed

5

6

4

5a7

5b

Figure 4.5 The sequence of events in the Create Order Saga when the authorization of the consumer’s credit
card fails. Accounting Service publishes the Credit Card Authorization Failed event, which causes
Kitchen Service to reject the Ticket, and Order Service to reject the Order.

121Coordinating sagas
 For example, the participants of the Create Order Saga can use the orderId as a
correlation ID that’s passed from one participant to the next. Accounting Service pub-
lishes a Credit Card Authorized event containing the orderId from the Ticket-
Created event. When Order Service receives a Credit Card Authorized event, it uses
the orderId to retrieve the corresponding Order. Similarly, Kitchen Service uses the
orderId from that event to retrieve the corresponding Ticket.

BENEFITS AND DRAWBACKS OF CHOREOGRAPHY-BASED SAGAS

Choreography-based sagas have several benefits:

 Simplicity—Services publish events when they create, update, or delete business
objects.

 Loose coupling —The participants subscribe to events and don’t have direct knowl-
edge of each other.

And there are some drawbacks:

 More difficult to understand—Unlike with orchestration, there isn’t a single place
in the code that defines the saga. Instead, choreography distributes the imple-
mentation of the saga among the services. Consequently, it’s sometimes difficult
for a developer to understand how a given saga works.

 Cyclic dependencies between the services—The saga participants subscribe to each
other’s events, which often creates cyclic dependencies. For example, if you
carefully examine figure 4.4, you’ll see that there are cyclic dependencies, such
as Order Service Accounting Service Order Service. Although this isn’t
necessarily a problem, cyclic dependencies are considered a design smell.

 Risk of tight coupling—Each saga participant needs to subscribe to all events that
affect them. For example, Accounting Service must subscribe to all events that
cause the consumer’s credit card to be charged or refunded. As a result, there’s
a risk that it would need to be updated in lockstep with the order lifecycle
implemented by Order Service.

Choreography can work well for simple sagas, but because of these drawbacks it’s
often better for more complex sagas to use orchestration. Let’s look at how orches-
tration works.

4.2.2 Orchestration-based sagas

Orchestration is another way to implement sagas. When using orchestration, you
define an orchestrator class whose sole responsibility is to tell the saga participants
what to do. The saga orchestrator communicates with the participants using command/
async reply-style interaction. To execute a saga step, it sends a command message to a
participant telling it what operation to perform. After the saga participant has per-
formed the operation, it sends a reply message to the orchestrator. The orchestrator
then processes the message and determines which saga step to perform next.

122 CHAPTER 4 Managing transactions with sagas
 To show how orchestration-based sagas work, I’ll first describe an example. Then
I’ll describe how to model orchestration-based sagas as state machines. I’ll discuss how
to make use of transactional messaging to ensure reliable communication between
the saga orchestrator and the saga participants. I’ll then describe the benefits and
drawbacks of using orchestration-based sagas.

IMPLEMENTING THE CREATE ORDER SAGA USING ORCHESTRATION

Figure 4.6 shows the design of the orchestration-based version of the Create Order
Saga. The saga is orchestrated by the CreateOrderSaga class, which invokes the saga
participants using asynchronous request/response. This class keeps track of the pro-
cess and sends command messages to saga participants, such as Kitchen Service and
Consumer Service. The CreateOrderSaga class reads reply messages from its reply
channel and then determines the next step, if any, in the saga.

Accounting

Service

Kitchen

Service

Consumer

ServiceConsumer Service

request channel
Consumer verified

2

4

6

Verify consumer

1

Approve

restaurant

order

7

Approve

order

8

Create

ticket

3

Authorize

card

5

Card
authorized

Message broker

Order Service

Command message

Key

Reply message

Create order

saga reply channel

Kitchen Service

request channel

Accounting Service

request channel

Order Service

request channel

Create

order saga

orchestrator

Ticket created

Figure 4.6 Implementing the Create Order Saga using orchestration. Order Service
implements a saga orchestrator, which invokes the saga participants using asynchronous request/
response.

123Coordinating sagas
Order Service first creates an Order and a Create Order Saga orchestrator. After that,
the flow for the happy path is as follows:

1 The saga orchestrator sends a Verify Consumer command to Consumer Service.
2 Consumer Service replies with a Consumer Verified message.
3 The saga orchestrator sends a Create Ticket command to Kitchen Service.
4 Kitchen Service replies with a Ticket Created message.
5 The saga orchestrator sends an Authorize Card message to Accounting Service.
6 Accounting Service replies with a Card Authorized message.
7 The saga orchestrator sends an Approve Ticket command to Kitchen Service.
8 The saga orchestrator sends an Approve Order command to Order Service.

Note that in final step, the saga orchestrator sends a command message to Order
Service, even though it’s a component of Order Service. In principle, the Create
Order Saga could approve the Order by updating it directly. But in order to be consis-
tent, the saga treats Order Service as just another participant.

 Diagrams such as figure 4.6 each depict one scenario for a saga, but a saga is likely
to have numerous scenarios. For example, the Create Order Saga has four scenarios.
In addition to the happy path, the saga can fail due to a failure in either Consumer
Service, Kitchen Service, or Accounting Service. It’s useful, therefore, to model a
saga as a state machine, because it describes all possible scenarios.

MODELING SAGA ORCHESTRATORS AS STATE MACHINES

A good way to model a saga orchestrator is as a state machine. A state machine con-
sists of a set of states and a set of transitions between states that are triggered by
events. Each transition can have an action, which for a saga is the invocation of a
saga participant. The transitions between states are triggered by the completion of a
local transaction performed by a saga participant. The current state and the specific
outcome of the local transaction determine the state transition and what action, if
any, to perform. There are also effective testing strategies for state machines. As a
result, using a state machine model makes designing, implementing, and testing
sagas easier.

 Figure 4.7 shows the state machine model for the Create Order Saga. This state
machine consists of numerous states, including the following:

 Verifying Consumer—The initial state. When in this state, the saga is waiting
for the Consumer Service to verify that the consumer can place the order.

 Creating Ticket—The saga is waiting for a reply to the Create Ticket command.
 Authorizing Card—Waiting for Accounting Service to authorize the con-

sumer’s credit card.
 Order Approved—A final state indicating that the saga completed successfully.
 Order Rejected—A final state indicating that the Order was rejected by one of

the participants.

124 CHAPTER 4 Managing transactions with sagas
The state machine also defines numerous state transitions. For example, the state
machine transitions from the Creating Ticket state to either the Authorizing Card
or the Rejected Order state. It transitions to the Authorizing Card state when it
receives a successful reply to the Create Ticket command. Alternatively, if Kitchen
Service couldn’t create the Ticket, the state machine transitions to the Rejected
Order state.

 The state machine’s initial action is to send the VerifyConsumer command to
Consumer Service. The response from Consumer Service triggers the next state tran-
sition. If the consumer was successfully verified, the saga creates the Ticket and tran-
sitions to the Creating Ticket state. But if the consumer verification failed, the saga
rejects the Order and transitions to the Rejecting Order state. The state machine
undergoes numerous other state transitions, driven by the responses from saga partici-
pants, until it reaches a final state of either Order Approved or Order Rejected.

Verifing

consumer

Rejecting

order

Creating

ticket

Authorizing

card

Rejecting

ticket

Approving

ticket

Approving

order

Order

approved

Order

rejected

/Send VerifyConsumer

ConsumerVerificationFailed/

send RejectOrder

Ticket creation failed/

send RejectOrder

ConsumerVerified/

send CreateRestaurantOrder

Ticket created/

send AuthorizeCard

Card authorized/

send ApproveTicket

Ticket approved/

send ApproveOrder

Order approved

Card authorization failed/

send RejectTicket

Figure 4.7 The state machine model for the Create Order Saga

125Coordinating sagas
SAGA ORCHESTRATION AND TRANSACTIONAL MESSAGING

Each step of an orchestration-based saga consists of a service updating a database
and publishing a message. For example, Order Service persists an Order and a
Create Order Saga orchestrator and sends a message to the first saga participant. A
saga participant, such as Kitchen Service, handles a command message by updat-
ing its database and sending a reply message. Order Service processes the partici-
pant’s reply message by updating the state of the saga orchestrator and sending a
command message to the next saga participant. As described in chapter 3, a service
must use transactional messaging in order to atomically update the database and
publish messages. Later on in section 4.4, I’ll describe the implementation of the
Create Order Saga orchestrator in more detail, including how it uses transaction
messaging.

 Let’s take a look at the benefits and drawbacks of using saga orchestration.

BENEFITS AND DRAWBACKS OF ORCHESTRATION-BASED SAGAS

Orchestration-based sagas have several benefits:

 Simpler dependencies—One benefit of orchestration is that it doesn’t introduce
cyclic dependencies. The saga orchestrator invokes the saga participants, but
the participants don’t invoke the orchestrator. As a result, the orchestrator
depends on the participants but not vice versa, and so there are no cyclic
dependencies.

 Less coupling—Each service implements an API that is invoked by the orches-
trator, so it does not need to know about the events published by the saga
participants.

 Improves separation of concerns and simplifies the business logic—The saga coordina-
tion logic is localized in the saga orchestrator. The domain objects are simpler
and have no knowledge of the sagas that they participate in. For example, when
using orchestration, the Order class has no knowledge of any of the sagas, so it
has a simpler state machine model. During the execution of the Create Order
Saga, it transitions directly from the APPROVAL_PENDING state to the APPROVED
state. The Order class doesn’t have any intermediate states corresponding to the
steps of the saga. As a result, the business is much simpler.

Orchestration also has a drawback: the risk of centralizing too much business logic in
the orchestrator. This results in a design where the smart orchestrator tells the dumb
services what operations to do. Fortunately, you can avoid this problem by designing
orchestrators that are solely responsible for sequencing and don’t contain any other
business logic.

 I recommend using orchestration for all but the simplest sagas. Implementing the
coordination logic for your sagas is just one of the design problems you need to solve.
Another, which is perhaps the biggest challenge that you’ll face when using sagas, is
handling the lack of isolation. Let’s take a look at that problem and how to solve it.

126 CHAPTER 4 Managing transactions with sagas
4.3 Handling the lack of isolation
The I in ACID stands for isolation. The isolation property of ACID transactions ensures
that the outcome of executing multiple transactions concurrently is the same as if they
were executed in some serial order. The database provides the illusion that each ACID
transaction has exclusive access to the data. Isolation makes it a lot easier to write busi-
ness logic that executes concurrently.

 The challenge with using sagas is that they lack the isolation property of ACID
transactions. That’s because the updates made by each of a saga’s local transactions
are immediately visible to other sagas once that transaction commits. This behavior
can cause two problems. First, other sagas can change the data accessed by the saga
while it’s executing. And other sagas can read its data before the saga has completed
its updates, and consequently can be exposed to inconsistent data. You can, in fact,
consider a saga to be ACD:

 Atomicity—The saga implementation ensures that all transactions are executed
or all changes are undone.

 Consistency—Referential integrity within a service is handled by local databases.
Referential integrity across services is handled by the services.

 Durability—Handled by local databases.

This lack of isolation potentially causes what the database literature calls anomalies. An
anomaly is when a transaction reads or writes data in a way that it wouldn’t if transac-
tions were executed one at time. When an anomaly occurs, the outcome of executing
sagas concurrently is different than if they were executed serially.

 On the surface, the lack of isolation sounds unworkable. But in practice, it’s com-
mon for developers to accept reduced isolation in return for higher performance. An
RDBMS lets you specify the isolation level for each transaction (https://dev.mysql
.com/doc/refman/5.7/en/innodb-transaction-isolation-levels.html). The default iso-
lation level is usually an isolation level that’s weaker than full isolation, also known as
serializable transactions. Real-world database transactions are often different from
textbook definitions of ACID transactions.

 The next section discusses a set of saga design strategies that deal with the lack of
isolation. These strategies are known as countermeasures. Some countermeasures imple-
ment isolation at the application level. Other countermeasures reduce the business
risk of the lack of isolation. By using countermeasures, you can write saga-based busi-
ness logic that works correctly.

 I’ll begin the section by describing the anomalies that are caused by the lack of iso-
lation. After that, I’ll talk about countermeasures that either eliminate those anoma-
lies or reduce their business risk.

https://dev.mysql.com/doc/refman/5.7/en/innodb-transaction-isolation-levels.html
https://dev.mysql.com/doc/refman/5.7/en/innodb-transaction-isolation-levels.html
https://dev.mysql.com/doc/refman/5.7/en/innodb-transaction-isolation-levels.html

127Handling the lack of isolation
4.3.1 Overview of anomalies

The lack of isolation can cause the following three anomalies:

 Lost updates—One saga overwrites without reading changes made by another saga.
 Dirty reads—A transaction or a saga reads the updates made by a saga that has

not yet completed those updates.
 Fuzzy/nonrepeatable reads—Two different steps of a saga read the same data and

get different results because another saga has made updates.

All three anomalies can occur, but the first two are the most common and the most
challenging. Let’s take a look at those two types of anomaly, starting with lost updates.

LOST UPDATES

A lost update anomaly occurs when one saga overwrites an update made by another
saga. Consider, for example, the following scenario:

1 The first step of the Create Order Saga creates an Order.
2 While that saga is executing, the Cancel Order Saga cancels the Order.
3 The final step of the Create Order Saga approves the Order.

In this scenario, the Create Order Saga ignores the update made by the Cancel Order
Saga and overwrites it. As a result, the FTGO application will ship an order that the
customer had cancelled. Later in this section, I’ll show how to prevent lost updates.

DIRTY READS

A dirty read occurs when one saga reads data that’s in the middle of being updated by
another saga. Consider, for example, a version of the FTGO application store where
consumers have a credit limit. In this application, a saga that cancels an order consists
of the following transactions:

 Consumer Service—Increase the available credit.
 Order Service—Change the state of the Order to cancelled.
 Delivery Service—Cancel the delivery.

Let’s imagine a scenario that interleaves the execution of the Cancel Order and Create
Order Sagas, and the Cancel Order Saga is rolled back because it’s too late to cancel
the delivery. It’s possible that the sequence of transactions that invoke the Consumer
Service is as follows:

1 Cancel Order Saga—Increase the available credit.
2 Create Order Saga—Reduce the available credit.
3 Cancel Order Saga—A compensating transaction that reduces the available credit.

In this scenario, the Create Order Saga does a dirty read of the available credit that
enables the consumer to place an order that exceeds their credit limit. It’s likely that
this is an unacceptable risk to the business.

 Let’s look at how to prevent this and other kinds of anomalies from impacting an
application.

128 CHAPTER 4 Managing transactions with sagas
4.3.2 Countermeasures for handling the lack of isolation

The saga transaction model is ACD, and its lack of isolation can result in anomalies
that cause applications to misbehave. It’s the responsibility of the developer to write
sagas in a way that either prevents the anomalies or minimizes their impact on the
business. This may sound like a daunting task, but you’ve already seen an example of a
strategy that prevents anomalies. An Order’s use of *_PENDING states, such as APPROVAL
_PENDING, is an example of one such strategy. Sagas that update Orders, such as the
Create Order Saga, begin by setting the state of an Order to *_PENDING. The *_PENDING
state tells other transactions that the Order is being updated by a saga and to act
accordingly.

 An Order’s use of *_PENDING states is an example of what the 1998 paper “Seman-
tic ACID properties in multidatabases using remote procedure calls and update prop-
agations” by Lars Frank and Torben U. Zahle calls a semantic lock countermeasure
(https://dl.acm.org/citation.cfm?id=284472.284478). The paper describes how to deal
with the lack of transaction isolation in multi-database architectures that don’t use dis-
tributed transactions. Many of its ideas are useful when designing sagas. It describes a
set of countermeasures for handling anomalies caused by lack of isolation that either
prevent one or more anomalies or minimize their impact on the business. The counter-
measures described by this paper are as follows:

 Semantic lock—An application-level lock.
 Commutative updates—Design update operations to be executable in any order.
 Pessimistic view—Reorder the steps of a saga to minimize business risk.
 Reread value—Prevent dirty writes by rereading data to verify that it’s unchanged

before overwriting it.
 Version file—Record the updates to a record so that they can be reordered.
 By value—Use each request’s business risk to dynamically select the concur-

rency mechanism.

Later in this section, I describe each of these countermeasures, but first I want to
introduce some terminology for describing the structure of a saga that’s useful when
discussing countermeasures.

THE STRUCTURE OF A SAGA

The countermeasures paper mentioned in the last section defines a useful model for
the structure of a saga. In this model, shown in figure 4.8, a saga consists of three types
of transactions:

 Compensatable transactions—Transactions that can potentially be rolled back using
a compensating transaction.

 Pivot transaction—The go/no-go point in a saga. If the pivot transaction com-
mits, the saga will run until completion. A pivot transaction can be a transaction
that’s neither compensatable nor retriable. Alternatively, it can be the last com-
pensatable transaction or the first retriable transaction.

https://dl.acm.org/citation.cfm?id=284472.284478

129Handling the lack of isolation
 Retriable transactions—Transactions that follow the pivot transaction and are guar-
anteed to succeed.

In the Create Order Saga, the createOrder(), verifyConsumerDetails(), and create-
Ticket() steps are compensatable transactions. The createOrder() and create-
Ticket() transactions have compensating transactions that undo their updates. The
verifyConsumerDetails() transaction is read-only, so doesn’t need a compensating
transaction. The authorizeCreditCard() transaction is this saga’s pivot transaction. If
the consumer’s credit card can be authorized, this saga is guaranteed to complete. The
approveTicket() and approveOrder() steps are retriable transactions that follow the
pivot transaction.

 The distinction between compensatable transactions and retriable transactions is
especially important. As you’ll see, each type of transaction plays a different role in the
countermeasures. Chapter 13 states that when migrating to microservices, the mono-
lith must sometimes participate in sagas and that it’s significantly simpler if the mono-
lith only ever needs to execute retriable transactions.

 Let’s now look at each countermeasure, starting with the semantic lock counter-
measure.

COUNTERMEASURE: SEMANTIC LOCK

When using the semantic lock countermeasure, a saga’s compensatable transaction
sets a flag in any record that it creates or updates. The flag indicates that the record

Step

1

2

3

4

5

6

Service

Order Service

Consumer Service

Kitchen Service

Accounting Service

Restaurant Order Service

Order Service

Transaction

createOrder()

verifyConsumerDetails()

createTicket()

authorizeCreditCard()

approveRestaurantOrder()

approveOrder()

Compensation Transaction

rejectOrder()

-

rejectTicket()

-

-

-

Compensatable transactions:
Must support roll back

Pivot transactions:
The saga’s go/no-go transaction.
If it succeeds, then the saga runs
to completion.

Retriable transactions:
Guaranteed to complete

Figure 4.8 A saga consists of three different types of transactions: compensatable transactions,
which can be rolled back, so have a compensating transaction, a pivot transaction, which is the
saga’s go/no-go point, and retriable transactions, which are transactions that don’t need to be
rolled back and are guaranteed to complete.

130 CHAPTER 4 Managing transactions with sagas
isn’t committed and could potentially change. The flag can either be a lock that prevents
other transactions from accessing the record or a warning that indicates that other
transactions should treat that record with suspicion. It’s cleared by either a retriable
transaction—saga is completing successfully—or by a compensating transaction: the
saga is rolling back.

 The Order.state field is a great example of a semantic lock. The *_PENDING states,
such as APPROVAL_PENDING and REVISION_PENDING, implement a semantic lock. They
tell other sagas that access an Order that a saga is in the process of updating the Order.
For instance, the first step of the Create Order Saga, which is a compensatable trans-
action, creates an Order in an APPROVAL_PENDING state. The final step of the Create
Order Saga, which is a retriable transaction, changes the field to APPROVED. A compen-
sating transaction changes the field to REJECTED.

 Managing the lock is only half the problem. You also need to decide on a case-by-
case basis how a saga should deal with a record that has been locked. Consider, for
example, the cancelOrder() system command. A client might invoke this operation
to cancel an Order that’s in the APPROVAL_PENDING state.

 There are a few different ways to handle this scenario. One option is for the cancel-
Order() system command to fail and tell the client to try again later. The main benefit
of this approach is that it’s simple to implement. The drawback, however, is that it
makes the client more complex because it has to implement retry logic.

 Another option is for cancelOrder() to block until the lock is released. A benefit
of using semantic locks is that they essentially recreate the isolation provided by ACID
transactions. Sagas that update the same record are serialized, which significantly
reduces the programming effort. Another benefit is that they remove the burden of
retries from the client. The drawback is that the application must manage locks. It
must also implement a deadlock detection algorithm that performs a rollback of a
saga to break a deadlock and re-execute it.

COUNTERMEASURE: COMMUTATIVE UPDATES

One straightforward countermeasure is to design the update operations to be com-
mutative. Operations are commutative if they can be executed in any order. An
Account’s debit() and credit() operations are commutative (if you ignore overdraft
checks). This countermeasure is useful because it eliminates lost updates.

 Consider, for example, a scenario where a saga needs to be rolled back after a com-
pensatable transaction has debited (or credited) an account. The compensating trans-
action can simply credit (or debit) the account to undo the update. There’s no
possibility of overwriting updates made by other sagas.

COUNTERMEASURE: PESSIMISTIC VIEW

Another way to deal with the lack of isolation is the pessimistic view countermeasure. It
reorders the steps of a saga to minimize business risk due to a dirty read. Consider, for
example, the scenario earlier used to describe the dirty read anomaly. In that scenario,
the Create Order Saga performed a dirty read of the available credit and created an

131Handling the lack of isolation
order that exceeded the consumer credit limit. To reduce the risk of that happening,
this countermeasure would reorder the Cancel Order Saga:

1 Order Service—Change the state of the Order to cancelled.
2 Delivery Service—Cancel the delivery.
3 Customer Service—Increase the available credit.

In this reordered version of the saga, the available credit is increased in a retriable
transaction, which eliminates the possibility of a dirty read.

COUNTERMEASURE: REREAD VALUE

The reread value countermeasure prevents lost updates. A saga that uses this counter-
measure rereads a record before updating it, verifies that it’s unchanged, and then
updates the record. If the record has changed, the saga aborts and possibly restarts. This
countermeasure is a form of the Optimistic Offline Lock pattern (https://martinfowler
.com/eaaCatalog/optimisticOfflineLock.html).

 The Create Order Saga could use this countermeasure to handle the scenario
where the Order is cancelled while it’s in the process of being approved. The transac-
tion that approves the Order verifies that the Order is unchanged since it was created
earlier in the saga. If it’s unchanged, the transaction approves the Order. But if the
Order has been cancelled, the transaction aborts the saga, which causes its compensat-
ing transactions to be executed.

COUNTERMEASURE: VERSION FILE

The version file countermeasure is so named because it records the operations that are
performed on a record so that it can reorder them. It’s a way to turn noncommutative
operations into commutative operations. To see how this countermeasure works, con-
sider a scenario where the Create Order Saga executes concurrently with a Cancel
Order Saga. Unless the sagas use the semantic lock countermeasure, it’s possible that
the Cancel Order Saga cancels the authorization of the consumer’s credit card before
the Create Order Saga authorizes the card.

 One way for the Accounting Service to handle these out-of-order requests is for it
to record the operations as they arrive and then execute them in the correct order. In
this scenario, it would first record the Cancel Authorization request. Then, when the
Accounting Service receives the subsequent Authorize Card request, it would notice
that it had already received the Cancel Authorization request and skip authorizing
the credit card.

COUNTERMEASURE: BY VALUE

The final countermeasure is the by value countermeasure. It’s a strategy for selecting
concurrency mechanisms based on business risk. An application that uses this
countermeasure uses the properties of each request to decide between using sagas
and distributed transactions. It executes low-risk requests using sagas, perhaps apply-
ing the countermeasures described in the preceding section. But it executes high-risk
requests involving, for example, large amounts of money, using distributed transactions.

https://martinfowler.com/eaaCatalog/optimisticOfflineLock.html
https://martinfowler.com/eaaCatalog/optimisticOfflineLock.html
https://martinfowler.com/eaaCatalog/optimisticOfflineLock.html

132 CHAPTER 4 Managing transactions with sagas
This strategy enables an application to dynamically make trade-offs about business
risk, availability, and scalability.

 It’s likely that you’ll need to use one or more of these countermeasures when
implementing sagas in your application. Let’s look at the detailed design and imple-
mentation of the Create Order Saga, which uses the semantic lock countermeasure.

4.4 The design of the Order Service and
the Create Order Saga
Now that we’ve looked at various saga design and implementation issues, let’s see an
example. Figure 4.9 shows the design of Order Service. The service’s business logic
consists of traditional business logic classes, such as Order Service and the Order

Defines the Restaurant Order
Service’s messaging API

Sends commands to
saga participants

Orchestrator for the
Create Order Saga

Processes replies from
saga participants

Handles commands sent by the the
Create Order Saga to the Order Service

OrderServiceRequests

AccountingServiceRequests

ConsumerServiceRequests

KitchenServiceRequests

createOrder()
cancelOrder()
...

Order Service

controller

Order

command

handlers

Command

message

publisher

CreateOrderSagaReplies

Reply

consumer

OrderService

CreateOrder
Saga

OrderService
Proxy

KitchenService
Proxy

Order

createOrder()
cancelOrder()
approveOrder()
rejectOrder()
...

OrderRepository

save()
findById()
...

Figure 4.9 The design of the Order Service and its sagas

133The design of the Order Service and the Create Order Saga
entity. There are also saga orchestrator classes, including the CreateOrderSaga class,
which orchestrates Create Order Saga. Also, because Order Service participates in its
own sagas, it has an OrderCommandHandlers adapter class that handles command mes-
sages by invoking OrderService.

 Some parts of Order Service should look familiar. As in a traditional application,
the core of the business logic is implemented by the OrderService, Order, and Order-
Repository classes. In this chapter, I’ll briefly describe these classes. I describe them
in more detail in chapter 5.

 What’s less familiar about Order Service are the saga-related classes. This service is
both a saga orchestrator and a saga participant. Order Service has several saga orches-
trators, such as CreateOrderSaga. The saga orchestrators send command messages to a
saga participant using a saga participant proxy class, such as KitchenServiceProxy and
OrderServiceProxy. A saga participant proxy defines a saga participant’s messaging
API. Order Service also has an OrderCommandHandlers class, which handles the com-
mand messages sent by sagas to Order Service.

 Let’s look in more detail at the design, starting with the OrderService class.

4.4.1 The OrderService class

The OrderService class is a domain service called by the service’s API layer. It’s
responsible for creating and managing orders. Figure 4.10 shows OrderService and
some of its collaborators. OrderService creates and updates Orders, invokes the
OrderRepository to persist Orders, and creates sagas, such as the CreateOrderSaga,
using the SagaManager. The SagaManager class is one of the classes provided by the
Eventuate Tram Saga framework, which is a framework for writing saga orchestrators
and participants, and is discussed a little later in this section.

createOrder()

...

OrderService

save()
findOne()
...

OrderRepository

create(..)

SagaManager

Order

CreateOrder
Saga

Figure 4.10 OrderService creates and updates Orders, invokes the
OrderRepository to persist Orders, and creates sagas, including the
CreateOrderSaga.

134 CHAPTER 4 Managing transactions with sagas
I’ll discuss this class in more detail in chapter 5. For now, let’s focus on the create-
Order() method. The following listing shows OrderService’s createOrder() method.
This method first creates an Order and then creates an CreateOrderSaga to validate
the order.

@Transactional
public class OrderService {

@Autowired
private SagaManager<CreateOrderSagaState> createOrderSagaManager;

@Autowired
private OrderRepository orderRepository;

@Autowired
private DomainEventPublisher eventPublisher;

public Order createOrder(OrderDetails orderDetails) {
...
ResultWithEvents<Order> orderAndEvents = Order.createOrder(...);
Order order = orderAndEvents.result;
orderRepository.save(order);

eventPublisher.publish(Order.class,
Long.toString(order.getId()),
orderAndEvents.events);

CreateOrderSagaState data =
new CreateOrderSagaState(order.getId(), orderDetails);

createOrderSagaManager.create(data, Order.class, order.getId());

return order;
}

...
}

The createOrder() method creates an Order by calling the factory method Order
.createOrder(). It then persists the Order using the OrderRepository, which is a JPA-
based repository. It creates the CreateOrderSaga by calling SagaManager.create(),
passing a CreateOrderSagaState containing the ID of the newly saved Order and the
OrderDetails. The SagaManager instantiates the saga orchestrator, which causes it to
send a command message to the first saga participant, and persists the saga orchestra-
tor in the database.

 Let’s look at the CreateOrderSaga and its associated classes.

Listing 4.1 The OrderService class and its createOrder() method

Ensure that service
methods are transactional.

Create the
Order.

Persist the Order
in the database.

Publish domain
events.

Create a
CreateOrderSaga.

135The design of the Order Service and the Create Order Saga
4.4.2 The implementation of the Create Order Saga

Figure 4.11 shows the classes that implement the Create Order Saga. The responsibil-
ities of each class are as follows:

 CreateOrderSaga—A singleton class that defines the saga’s state machine. It
invokes the CreateOrderSagaState to create command messages and sends
them to participants using message channels specified by the saga participant
proxy classes, such as KitchenServiceProxy.

Eventuate tram sagas

create()
...

SagaManager

«interface»
SimpleSaga

SagaDefinition

CommandEndpoint

SagaDefinition
getSagaDefinition()

«table»
SAGA_INSTANCE

Eventuate tram

Uses

Implements

Creates

Manages

Invokes

Order database

CreateOrderSaga

replies

OrderService

requests
Stores the state
of saga instances

The state of a saga

Describes a
message channel

Describes the
steps of a saga

Abstract superclass
for saga

orchestrators

orderId
orderDetails
...

CreateOrder
SagaState

CreateOrder
Saga

Kitchen
ServiceProxy

this.sagaDefinition=
step()
.withCompensation(...)
.step()
.invokeParticipant(...)
.step()
.invokeParticipant(...)
.onReply(...)
.withCompensation(...)

OrderService
Proxy

OrderService

The SagaManager handles persisting a saga,
sending the command messages that it

generates, subscribing to reply messages,
and invoking the saga to handle replies.

Figure 4.11 The OrderService's sagas, such as Create Order Saga, are implemented using
the Eventuate Tram Saga framework.

136 CHAPTER 4 Managing transactions with sagas
 CreateOrderSagaState—A saga’s persistent state, which creates command
messages.

 Saga participant proxy classes, such as KitchenServiceProxy—Each proxy class
defines a saga participant’s messaging API, which consists of the command
channel, the command message types, and the reply types.

These classes are written using the Eventuate Tram Saga framework.
 The Eventuate Tram Saga framework provides a domain-specific language (DSL) for

defining a saga’s state machine. It executes the saga’s state machine and exchanges mes-
sages with saga participants using the Eventuate Tram framework. The framework also
persists the saga’s state in the database.

 Let’s take a closer look at the implementation of Create Order Saga, starting with
the CreateOrderSaga class.

THE CREATEORDERSAGA ORCHESTRATOR

The CreateOrderSaga class implements the state machine shown earlier in figure 4.7.
This class implements SimpleSaga, a base interface for sagas. The heart of the Create-
OrderSaga class is the saga definition shown in the following listing. It uses the DSL
provided by the Eventuate Tram Saga framework to define the steps of the Create
Order Saga.

public class CreateOrderSaga implements SimpleSaga<CreateOrderSagaState> {

private SagaDefinition<CreateOrderSagaState> sagaDefinition;

public CreateOrderSaga(OrderServiceProxy orderService,
ConsumerServiceProxy consumerService,
KitchenServiceProxy kitchenService,
AccountingServiceProxy accountingService) {

this.sagaDefinition =
step()
.withCompensation(orderService.reject,

CreateOrderSagaState::makeRejectOrderCommand)
.step()
.invokeParticipant(consumerService.validateOrder,

CreateOrderSagaState::makeValidateOrderByConsumerCommand)
.step()
.invokeParticipant(kitchenService.create,

CreateOrderSagaState::makeCreateTicketCommand)
.onReply(CreateTicketReply.class,

CreateOrderSagaState::handleCreateTicketReply)
.withCompensation(kitchenService.cancel,

CreateOrderSagaState::makeCancelCreateTicketCommand)
.step()
.invokeParticipant(accountingService.authorize,

CreateOrderSagaState::makeAuthorizeCommand)
.step()
.invokeParticipant(kitchenService.confirmCreate,

CreateOrderSagaState::makeConfirmCreateTicketCommand)

Listing 4.2 The definition of the CreateOrderSaga

137The design of the Order Service and the Create Order Saga
.step()
.invokeParticipant(orderService.approve,

CreateOrderSagaState::makeApproveOrderCommand)
.build();

}

@Override
public SagaDefinition<CreateOrderSagaState> getSagaDefinition() {
return sagaDefinition;
}

The CreateOrderSaga’s constructor creates the saga definition and stores it in the
sagaDefinition field. The getSagaDefinition() method returns the saga definition.

 To see how CreateOrderSaga works, let’s look at the definition of the third step of
the saga, shown in the following listing. This step of the saga invokes the Kitchen Ser-
vice to create a Ticket. Its compensating transaction cancels that Ticket. The
step(), invokeParticipant(), onReply(), and withCompensation() methods are
part of the DSL provided by Eventuate Tram Saga.

public class CreateOrderSaga ...

public CreateOrderSaga(..., KitchenServiceProxy kitchenService,
...) {

...

.step()
.invokeParticipant(kitchenService.create,

CreateOrderSagaState::makeCreateTicketCommand)
.onReply(CreateTicketReply.class,

CreateOrderSagaState::handleCreateTicketReply)
.withCompensation(kitchenService.cancel,

CreateOrderSagaState::makeCancelCreateTicketCommand)

...
;

The call to invokeParticipant() defines the forward transaction. It creates the Create-
Ticket command message by calling CreateOrderSagaState.makeCreateTicket-
Command() and sends it to the channel specified by kitchenService.create. The call
to onReply() specifies that CreateOrderSagaState.handleCreateTicketReply()
should be called when a successful reply is received from Kitchen Service. This
method stores the returned ticketId in the CreateOrderSagaState. The call to
withCompensation() defines the compensating transaction. It creates a RejectTicket-
Command command message by calling CreateOrderSagaState.makeCancelCreate-
Ticket() and sends it to the channel specified by kitchenService.create.

 The other steps of the saga are defined in a similar fashion. The CreateOrder-
SagaState creates each message, which is sent by the saga to the messaging endpoint

Listing 4.3 The definition of the third step of the saga

Define the forward
transaction.

Call handleCreateTicketReply() when
a successful reply is received.

Define the compensating
transaction.

138 CHAPTER 4 Managing transactions with sagas
defined by a KitchenServiceProxy. Let’s take a look at each of those classes, starting
with CreateOrderSagaState.

THE CREATEORDERSAGASTATE CLASS

The CreateOrderSagaState class, shown in the following listing, represents the state
of a saga instance. An instance of this class is created by OrderService and is persisted
in the database by the Eventuate Tram Saga framework. Its primary responsibility is to
create the messages that are sent to saga participants.

public class CreateOrderSagaState {

private Long orderId;

private OrderDetails orderDetails;
private long ticketId;

public Long getOrderId() {
return orderId;

}

private CreateOrderSagaState() {
}

public CreateOrderSagaState(Long orderId, OrderDetails orderDetails) {
this.orderId = orderId;
this.orderDetails = orderDetails;

}

CreateTicket makeCreateTicketCommand() {
return new CreateTicket(getOrderDetails().getRestaurantId(),

getOrderId(), makeTicketDetails(getOrderDetails()));
}

void handleCreateTicketReply(CreateTicketReply reply) {
logger.debug("getTicketId {}", reply.getTicketId());
setTicketId(reply.getTicketId());

}

CancelCreateTicket makeCancelCreateTicketCommand() {
return new CancelCreateTicket(getOrderId());

}

...

The CreateOrderSaga invokes the CreateOrderSagaState to create the command
messages. It sends those command messages to the endpoints defined by the Saga-
ParticipantProxy classes. Let’s take a look at one of those classes: KitchenService-
Proxy.

Listing 4.4 CreateOrderSagaState stores the state of a saga instance

Invoked by the
OrderService to

instantiate a
CreateOrderSagaState

Creates a CreateTicket
command message

Saves the ID
of the newly
created Ticket

Creates
CancelCreateTicket
command message

139The design of the Order Service and the Create Order Saga
THE KITCHENSERVICEPROXY CLASS

The KitchenServiceProxy class, shown in listing 4.5, defines the command message
endpoints for Kitchen Service. There are three endpoints:

 create—Creates a Ticket
 confirmCreate—Confirms the creation
 cancel—Cancels a Ticket

Each CommandEndpoint specifies the command type, the command message’s destina-
tion channel, and the expected reply types.

public class KitchenServiceProxy {

public final CommandEndpoint<CreateTicket> create =
CommandEndpointBuilder
.forCommand(CreateTicket.class)
.withChannel(

KitchenServiceChannels.kitchenServiceChannel)
.withReply(CreateTicketReply.class)
.build();

public final CommandEndpoint<ConfirmCreateTicket> confirmCreate =
CommandEndpointBuilder
.forCommand(ConfirmCreateTicket.class)
.withChannel(

KitchenServiceChannels.kitchenServiceChannel)
.withReply(Success.class)
.build();

public final CommandEndpoint<CancelCreateTicket> cancel =
CommandEndpointBuilder
.forCommand(CancelCreateTicket.class)
.withChannel(

KitchenServiceChannels.kitchenServiceChannel)
.withReply(Success.class)
.build();

}

Proxy classes, such as KitchenServiceProxy, aren’t strictly necessary. A saga could sim-
ply send command messages directly to participants. But proxy classes have two import-
ant benefits. First, a proxy class defines static typed endpoints, which reduces the chance
of a saga sending the wrong message to a service. Second, a proxy class is a well-defined
API for invoking a service that makes the code easier to understand and test. For exam-
ple, chapter 10 describes how to write tests for KitchenServiceProxy that verify that
Order Service correctly invokes Kitchen Service. Without KitchenServiceProxy, it
would be impossible to write such a narrowly scoped test.

Listing 4.5 KitchenServiceProxy defines the command message endpoints for
 Kitchen Service

140 CHAPTER 4 Managing transactions with sagas
THE EVENTUATE TRAM SAGA FRAMEWORK

The Eventuate Tram Saga, shown in figure 4.12, is a framework for writing both saga
orchestrators and saga participants. It uses transactional messaging capabilities of Even-
tuate Tram, discussed in chapter 3.

The saga orchestration package is the most complex part of the framework. It pro-
vides SimpleSaga, a base interface for sagas, and a SagaManager class, which creates
and manages saga instances. The SagaManager handles persisting a saga, sending the
command messages that it generates, subscribing to reply messages, and invoking
the saga to handle replies. Figure 4.13 shows the sequence of events when OrderService
creates a saga. The sequence of events is as follows:

1 OrderService creates the CreateOrderSagaState.
2 It creates an instance of a saga by invoking the SagaManager.
3 The SagaManager executes the first step of the saga definition.
4 The CreateOrderSagaState is invoked to generate a command message.

ParticipantOrchestration

create(sagaState)
...

SagaManager

SimpleSaga

SagaDefinition

CommandEndpoint

SagaCommand
Dispatcher

SagaCommand
HandlersBuilder

SagaDefinition
getSagaDefinition()

«table»
SAGA_INSTANCE

Eventuate tram

Eventuate tram saga framework

Uses

Sends

and receives

Order database

Channels

The SagaManager handles persisting a
saga, sending the command messages
that it generates, subscribing to reply
messages, and invoking the saga to

handle replies.
Abstract superclass

for saga orchestrators

Describes a
message channel

Routes command
messages to

message handlers

Describes the
steps of a saga

Stores the state of
saga instances

Figure 4.12 Eventuate Tram Saga is a framework for writing both saga orchestrators and saga
participants.

141The design of the Order Service and the Create Order Saga
5 The SagaManager sends the command message to the saga participant (the
Consumer Service).

6 The SagaManager saves the saga instance in the database.

Figure 4.14 shows the sequence of events when SagaManager receives a reply from
Consumer Service.

The sequence of events is as follows:

1 Eventuate Tram invokes SagaManager with the reply from Consumer Service.
2 SagaManager retrieves the saga instance from the database.
3 SagaManager executes the next step of the saga definition.

OrderService CreateOrderSagaState SagaManager CreateOrderSaga SagaDefinition EventuateTram Database

new()

create(sagaState)

getSagaDefinition()

executeFirstStep(sagaState)

makeValidateOrderByConsumerCommand()

sendMessage(command)

saveSagaInstance(sagaState)

Figure 4.13 The sequence of events when OrderService creates an instance of Create Order Saga

CreateOrderSagaStateSagaManager CreateOrderSaga SagaDefinitionEventuateTram Database

handleMessage()

loadSagaInstance()

getSagaDefinition()

executeFirstStep(sagaState)

makeValidateOrderByConsumerCommand()

sendMessage
(command)

saveSagaInstance
(sageState)

Figure 4.14 The sequence of events when the SagaManager receives a reply message from a saga participant

142 CHAPTER 4 Managing transactions with sagas
4 CreateOrderSagaState is invoked to generate a command message.
5 SagaManager sends the command message to the specified saga participant

(Kitchen Service).
6 SagaManager saves the update saga instance in the database.

If a saga participant fails, SagaManager executes the compensating transactions in
reverse order.

 The other part of the Eventuate Tram Saga framework is the saga participant
package. It provides the SagaCommandHandlersBuilder and SagaCommandDispatcher
classes for writing saga participants. These classes route command messages to han-
dler methods, which invoke the saga participants’ business logic and generate reply
messages. Let’s take a look at how these classes are used by Order Service.

4.4.3 The OrderCommandHandlers class

Order Service participates in its own sagas. For example, CreateOrderSaga invokes
Order Service to either approve or reject an Order. The OrderCommandHandlers class,
shown in figure 4.15, defines the handler methods for the command messages sent by
these sagas.

 Each handler method invokes OrderService to update an Order and makes a
reply message. The SagaCommandDispatcher class routes the command messages to
the appropriate handler method and sends the reply.

approveOrder()
rejectOrder()
...

OrderCommandHandlers

Eventuate

Tram Sagas

approveOrder()
rejectOrder()
...

OrderService

Invokes

Invokes

Uses

Reads

Sends

SagaCommand
Dispatcher

Eventuate tram

OrderService

requests

CreateOrderSaga

replies

Routes command messages to
handlers and sends replies

Figure 4.15 OrderCommandHandlers implements command handlers for the commands that are
sent by the various Order Service sagas.

143The design of the Order Service and the Create Order Saga
The following listing shows the OrderCommandHandlers class. Its commandHandlers()
method maps command message types to handler methods. Each handler method
takes a command message as a parameter, invokes OrderService, and returns a reply
message.

public class OrderCommandHandlers {

@Autowired
private OrderService orderService;

public CommandHandlers commandHandlers() {
return SagaCommandHandlersBuilder

.fromChannel("orderService")

.onMessage(ApproveOrderCommand.class, this::approveOrder)

.onMessage(RejectOrderCommand.class, this::rejectOrder)

...

.build();

}

public Message approveOrder(CommandMessage<ApproveOrderCommand> cm) {
long orderId = cm.getCommand().getOrderId();
orderService.approveOrder(orderId);
return withSuccess();

}

public Message rejectOrder(CommandMessage<RejectOrderCommand> cm) {
long orderId = cm.getCommand().getOrderId();
orderService.rejectOrder(orderId);
return withSuccess();

}

The approveOrder() and rejectOrder() methods update the specified Order by
invoking OrderService. The other services that participate in sagas have similar com-
mand handler classes that update their domain objects.

4.4.4 The OrderServiceConfiguration class

The Order Service uses the Spring framework. The following listing is an excerpt of
the OrderServiceConfiguration class, which is an @Configuration class that instanti-
ates and wires together the Spring @Beans.

@Configuration
public class OrderServiceConfiguration {

@Bean
public OrderService orderService(RestaurantRepository restaurantRepository,

Listing 4.6 The command handlers for Order Service

Listing 4.7 The OrderServiceConfiguration is a Spring @Configuration
 class that defines the Spring @Beans for the Order Service.

Route each command
message to the appropriate
handler method.

Change the state
of the Order to
authorized.Return a generic

success message.

Change the state of
the Order to rejected.

144 CHAPTER 4 Managing transactions with sagas
...
SagaManager<CreateOrderSagaState>

createOrderSagaManager,
...) {

return new OrderService(restaurantRepository,
...
createOrderSagaManager
...);

}

@Bean
public SagaManager<CreateOrderSagaState> createOrderSagaManager(CreateOrderS

aga saga) {
return new SagaManagerImpl<>(saga);
}

@Bean
public CreateOrderSaga createOrderSaga(OrderServiceProxy orderService,

ConsumerServiceProxy consumerService,
...) {

return new CreateOrderSaga(orderService, consumerService, ...);
}

@Bean
public OrderCommandHandlers orderCommandHandlers() {
return new OrderCommandHandlers();
}

@Bean
public SagaCommandDispatcher orderCommandHandlersDispatcher(OrderCommandHan

dlers orderCommandHandlers) {
return new SagaCommandDispatcher("orderService", orderCommandHandlers.comma

ndHandlers());
}

@Bean
public KitchenServiceProxy kitchenServiceProxy() {
return new KitchenServiceProxy();

}

@Bean
public OrderServiceProxy orderServiceProxy() {
return new OrderServiceProxy();

}

...

}

This class defines several Spring @Beans including orderService, createOrder-
SagaManager, createOrderSaga, orderCommandHandlers, and orderCommandHandlers-
Dispatcher. It also defines Spring @Beans for the various proxy classes, including
kitchenServiceProxy and orderServiceProxy.

145Summary
 CreateOrderSaga is only one of Order Service’s many sagas. Many of its other sys-
tem operations also use sagas. For example, the cancelOrder() operation uses a Can-
cel Order Saga, and the reviseOrder() operation uses a Revise Order Saga. As a
result, even though many services have an external API that uses a synchronous proto-
col, such as REST or gRPC, a large amount of interservice communication will use
asynchronous messaging.

 As you can see, transaction management and some aspects of business logic design
are quite different in a microservice architecture. Fortunately, saga orchestrators are
usually quite simple state machines, and you can use a saga framework to simplify your
code. Nevertheless, transaction management is certainly more complicated than in a
monolithic architecture. But that’s usually a small price to pay for the tremendous
benefits of microservices.

Summary
 Some system operations need to update data scattered across multiple services.

Traditional, XA/2PC-based distributed transactions aren’t a good fit for mod-
ern applications. A better approach is to use the Saga pattern. A saga is sequence
of local transactions that are coordinated using messaging. Each local transac-
tion updates data in a single service. Because each local transaction commits its
changes, if a saga must roll back due to the violation of a business rule, it must
execute compensating transactions to explicitly undo changes.

 You can use either choreography or orchestration to coordinate the steps of a
saga. In a choreography-based saga, a local transaction publishes events that trig-
ger other participants to execute local transactions. In an orchestration-based
saga, a centralized saga orchestrator sends command messages to participants
telling them to execute local transactions. You can simplify development and test-
ing by modeling saga orchestrators as state machines. Simple sagas can use chore-
ography, but orchestration is usually a better approach for complex sagas.

 Designing saga-based business logic can be challenging because, unlike ACID
transactions, sagas aren’t isolated from one another. You must often use counter-
measures, which are design strategies that prevent concurrency anomalies
caused by the ACD transaction model. An application may even need to use
locking in order to simplify the business logic, even though that risks deadlocks.

Designing
business logic in

a microservice architecture
The heart of an enterprise application is the business logic, which implements the
business rules. Developing complex business logic is always challenging. The FTGO
application’s business logic implements some quite complex business logic, espe-
cially for order management and delivery management. Mary had encouraged her
team to apply object-oriented design principles, because in her experience this was
the best way to implement complex business logic. Some of the business logic used
the procedural Transcription script pattern. But the majority of the FTGO applica-
tion’s business logic is implemented in an object-oriented domain model that’s
mapped to the database using JPA.

 Developing complex business logic is even more challenging in a microservice
architecture where the business logic is spread over multiple services. You need to

This chapter covers
 Applying the business logic organization patterns:

Transaction script pattern and Domain model
pattern

 Designing business logic with the Domain-driven
design (DDD) aggregate pattern

 Applying the Domain event pattern in a
microservice architecture
146

147Business logic organization patterns
address two key challenges. First, a typical domain model is a tangled web of intercon-
nected classes. Although this isn’t a problem in a monolithic application, in a micro-
service architecture, where classes are scattered around different services, you need to
eliminate object references that would otherwise span service boundaries. The second
challenge is designing business logic that works within the transaction management
constraints of a microservice architecture. Your business logic can use ACID transac-
tions within services, but as described in chapter 4, it must use the Saga pattern to
maintain data consistency across services.

 Fortunately, we can address these issues by using the Aggregate pattern from
DDD. The Aggregate pattern structures a service’s business logic as a collection of
aggregates. An aggregate is a cluster of objects that can be treated as a unit. There are
two reasons why aggregates are useful when developing business logic in a micro-
service architecture:

 Aggregates avoid any possibility of object references spanning service boundar-
ies, because an inter-aggregate reference is a primary key value rather than an
object reference.

 Because a transaction can only create or update a single aggregate, aggregates
fit the constraints of the microservices transaction model.

As a result, an ACID transaction is guaranteed to be within a single service.
 I begin this chapter by describing the different ways of organizing business logic:

the Transcription script pattern and the Domain model pattern. Next I introduce the
concept of a DDD aggregate and explain why it’s a good building block for a service’s
business logic. After that, I describe the Domain event pattern events and explain why
it’s useful for a service to publish events. I end this chapter with a couple of examples
of business logic from Kitchen Service and Order Service.

 Let’s now look at business logic organization patterns.

5.1 Business logic organization patterns
Figure 5.1 shows the architecture of a typical service. As described in chapter 2, the
business logic is the core of a hexagonal architecture. Surrounding the business logic
are the inbound and outbound adapters. An inbound adapter handles requests from cli-
ents and invokes the business logic. An outbound adapter, which is invoked by the busi-
ness logic, invokes other services and applications.

 This service consists of the business logic and the following adapters:

 REST API adapter—An inbound adapter that implements a REST API which
invokes the business logic

 OrderCommandHandlers—An inbound adapter that consumes command mes-
sages from a message channel and invokes the business logic

 Database Adapter—An outbound adapter that’s invoked by the business logic
to access the database

 Domain Event Publishing Adapter—An outbound adapter that publishes events
to a message broker

148 CHAPTER 5 Designing business logic in a microservice architecture
The business logic is typically the most complex part of the service. When develop-
ing business logic, you should consciously organize your business logic in the way
that’s most appropriate for your application. After all, I’m sure you’ve experienced
the frustration of having to maintain someone else’s badly structured code. Most
enterprise applications are written in an object-oriented language such as Java, so
they consist of classes and methods. But using an object-oriented language doesn’t
guarantee that the business logic has an object-oriented design. The key decision you
must make when developing business logic is whether to use an object-oriented
approach or a procedural approach. There are two main patterns for organizing

Outbound adapters

Inbound adapters

Order

Service requests

POST/orders
GET/order/Id

REST API

Order database

Order Service

business logic

Order

command

handlers

Order events

Domain event

publisher adapter

Database

adapter

Figure 5.1 The Order Service has a hexagonal architecture. It consists of the business logic
and one or more adapters that interface with external applications and other services.

149Business logic organization patterns
business logic: the procedural Transaction script pattern, and the object-oriented
Domain model pattern.

5.1.1 Designing business logic using the Transaction script pattern

Although I’m a strong advocate of the object-oriented approach, there are some situa-
tions where it is overkill, such as when you are developing simple business logic. In such
a situation, a better approach is to write procedural code and use what the book Patterns
of Enterprise Application Architecture by Martin Fowler (Addison-Wesley Professional, 2002)
calls the Transaction script pattern. Rather than doing any object-oriented design, you
write a method called a transaction script to handle each request from the presentation
tier. As figure 5.2 shows, an important characteristic of this approach is that the classes
that implement behavior are separate from those that store state.

When using the Transaction script pattern, the scripts are usually located in service
classes, which in this example is the OrderService class. A service class has one
method for each request/system operation. The method implements the business
logic for that request. It accesses the database using data access objects (DAOs), such
as the OrderDao. The data objects, which in this example is the Order class, are pure
data with little or no behavior.

This style of design is highly procedural and relies on few of the capabilities of object-
oriented programming (OOP) languages. This what you would create if you were writ-
ing the application in C or another non-OOP language. Nevertheless, you shouldn’t be

Pattern: Transaction script
Organize the business logic as a collection of procedural transaction scripts, one for
each type of request.

createOrder()
reviseOrder()
cancelOrder()
...

OrderService
Classes with

behavior

Classes

with state

save(Order)
findOrderById()
...

OrderDao

orderId
orderLineItems
...

Order

Figure 5.2 Organizing business logic
as transaction scripts. In a typical
transaction script–based design, one
set of classes implements behavior
and another set stores state. The
transaction scripts are organized into
classes that typically have no state.
The scripts use data classes, which
typically have no behavior.

150 CHAPTER 5 Designing business logic in a microservice architecture
ashamed to use a procedural design when it’s appropriate. This approach works well
for simple business logic. The drawback is that this tends not to be a good way to
implement complex business logic.

5.1.2 Designing business logic using the Domain model pattern

The simplicity of the procedural approach can be quite seductive. You can write code with-
out having to carefully consider how to organize the classes. The problem is that if your
business logic becomes complex, you can end up with code that’s a nightmare to main-
tain. In fact, in the same way that a monolithic application has a habit of continually grow-
ing, transaction scripts have the same problem. Consequently, unless you’re writing an
extremely simple application, you should resist the temptation to write procedural code
and instead apply the Domain model pattern and develop an object-oriented design.

In an object-oriented design, the business logic consists of an object model, a network
of relatively small classes. These classes typically correspond directly to concepts from
the problem domain. In such a design some classes have only either state or behavior,
but many contain both, which is the hallmark of a well-designed class. Figure 5.3
shows an example of the Domain model pattern.

Pattern: Domain model
Organize the business logic as an object model consisting of classes that have state
and behavior.

createOrder()
reviseOrder()
cancelOrder()
...

OrderService

deliveryTime
deliveryAddress

DeliveryInformation

findOrderById()
...

OrderRepository

Some classes have only state.

Many classes have
state and behavior.

Uses

Some classes have only behavior.

«private»
orderId
orderLineItems
...

revise()
cancel()
«static»
create()

Order

Figure 5.3 Organizing business logic as a domain model. The majority of
the business logic consists of classes that have state and behavior.

151Business logic organization patterns
As with the Transaction script pattern, an OrderService class has a method for each
request/system operation. But when using the Domain model pattern, the service
methods are usually simple. That’s because a service method almost always delegates
to persistent domain objects, which contain the bulk of the business logic. A service
method might, for example, load a domain object from the database and invoke one
of its methods. In this example, the Order class has both state and behavior. Moreover,
its state is private and can only be accessed indirectly via its methods.

 Using an object-oriented design has a number of benefits. First, the design is
easy to understand and maintain. Instead of consisting of one big class that does
everything, it consists of a number of small classes that each have a small number of
responsibilities. In addition, classes such as Account, BankingTransaction, and
OverdraftPolicy closely mirror the real world, which makes their role in the design
easier to understand. Second, our object-oriented design is easier to test: each class
can and should be tested independently. Finally, an object-oriented design is easier to
extend because it can use well-known design patterns, such as the Strategy pattern and
the Template method pattern, that define ways of extending a component without
modifying the code.

 The Domain model pattern works well, but there are a number of problems with
this approach, especially in a microservice architecture. To address those problems,
you need to use a refinement of OOD known as DDD.

5.1.3 About Domain-driven design

DDD, which is described in the book Domain-Driven Design by Eric Evans (Addison-
Wesley Professional, 2003), is a refinement of OOD and is an approach for developing
complex business logic. I introduced DDD in chapter 2 when discussing the useful-
ness of DDD subdomains when decomposing an application into services. When using
DDD, each service has its own domain model, which avoids the problems of a single,
application-wide domain model. Subdomains and the associated concept of Bounded
Context are two of the strategic DDD patterns.

 DDD also has some tactical patterns that are building blocks for domain models.
Each pattern is a role that a class plays in a domain model and defines the characteris-
tics of the class. The building blocks that have been widely adopted by developers
include the following:

 Entity—An object that has a persistent identity. Two entities whose attributes
have the same values are still different objects. In a Java EE application, classes
that are persisted using JPA @Entity are usually DDD entities.

 Value object—An object that is a collection of values. Two value objects whose
attributes have the same values can be used interchangeably. An example of a
value object is a Money class, which consists of a currency and an amount.

 Factory—An object or method that implements object creation logic that’s too
complex to be done directly by a constructor. It can also hide the concrete

152 CHAPTER 5 Designing business logic in a microservice architecture
classes that are instantiated. A factory might be implemented as a static method
of a class.

 Repository—An object that provides access to persistent entities and encapsu-
lates the mechanism for accessing the database.

 Service—An object that implements business logic that doesn’t belong in an
entity or a value object.

These building blocks are used by many developers. Some are supported by frame-
works such as JPA and the Spring framework. There is one more building block that
has been generally ignored (myself included!) except by DDD purists: aggregates. As
it turns out, aggregates are an extremely useful concept when developing microser-
vices. Let’s first look at some subtle problems with classic OOD that are solved by
using aggregates.

5.2 Designing a domain model using the
DDD aggregate pattern
In traditional object-oriented design, a domain model is a collection of classes and
relationships between classes. The classes are usually organized into packages. For
example, figure 5.4 shows part of a domain model for the FTGO application. It’s a typ-
ical domain model consisting of a web of interconnected classes.

This example has several classes corresponding to business objects: Consumer, Order,
Restaurant, and Courier. But interestingly, the explicit boundaries of each business
object are missing from this kind of traditional domain model. It doesn’t specify, for

Consumer Order

state
...

creditcardId
...

deliveryTime quantity name
price

street1
street2
city
state
zip

name
...

available
...

lat
lon

Restaurant Courier Location

PaymentInfo DeliveryInfo OrderLineItem MenuItem Address

Placed by For

Assigned to

Paid usingPays using

Figure 5.4 A traditional domain model is a web of interconnected classes. It doesn’t explicitly specify the
boundaries of business objects, such as Consumer and Order.

153Designing a domain model using the DDD aggregate pattern
example, which classes are part of the Order business object. This lack of boundaries
can sometimes cause problems, especially in microservice architecture.

 I begin this section with an example problem caused by the lack of explicit bound-
aries. Next I describe the concept of an aggregate and how it has explicit boundaries.
After that, I describe the rules that aggregates must obey and how they make aggre-
gates a good fit for the microservice architecture. I then describe how to carefully
choose the boundaries of your aggregates and why it matters. Finally, I discuss how to
design business logic using aggregates. Let’s first take a look at the problems caused
by fuzzy boundaries.

5.2.1 The problem with fuzzy boundaries

Imagine, for example, that you want to perform an operation, such as a load or delete,
on an Order business object. What exactly does that mean? What is the scope an oper-
ation? You would certainly load or delete the Order object. But in reality there’s more
to an Order than simply the Order object. There are also the order line items, the pay-
ment information, and so on. Figure 5.4 leaves the boundaries of a domain object to
the developer’s intuition.

 Besides a conceptual fuzziness, the lack of explicit boundaries causes problems
when updating a business object. A typical business object has invariants, business
rules that must be enforced at all times. An Order has a minimum order amount, for
example. The FTGO application must ensure that any attempt to update an order
doesn’t violate an invariant such as the minimum order amount. The challenge is that
in order to enforce invariants, you must design your business logic carefully.

 For example, let’s look at how to ensure the order minimum is met when multiple
consumers work together to create an order. Two consumers—Sam and Mary—are
working together on an order and simultaneously decide that the order exceeds their
budget. Sam reduces the quantity of samosas, and Mary reduces the quantity of naan
bread. From the application’s perspective, both consumers retrieve the order and its
line items from the database. Both consumers then update a line item to reduce the
cost of the order. From each consumer’s perspective the order minimum is preserved.
Here’s the sequence of database transactions.

Consumer - Mary Consumer - Sam

BEGIN TXN

SELECT ORDER_TOTAL FROM ORDER
WHERE ORDER ID = X

SELECT * FROM ORDER_LINE_ITEM
WHERE ORDER_ID = X

...
END TXN

BEGIN TXN

SELECT ORDER_TOTAL FROM ORDER
WHERE ORDER ID = X

SELECT * FROM ORDER_LINE_ITEM
WHERE ORDER_ID = X

...
END TXN

Verify minimum is met

154 CHAPTER 5 Designing business logic in a microservice architecture
Each consumer changes a line item using a sequence of two transactions. The first
transaction loads the order and its line items. The UI verifies that the order minimum
is satisfied before executing the second transaction. The second transaction updates
the line item quantity using an optimistic offline locking check that verifies that the
order line is unchanged since it was loaded by the first transaction.

 In this scenario, Sam reduces the order total by $X and Mary reduces it by $Y. As a
result, the Order is no longer valid, even though the application verified that the order
still satisfied the order minimum after each consumer’s update. As you can see, directly
updating part of a business object can result in the violation of the business rules. DDD
aggregates are intended to solve this problem.

5.2.2 Aggregates have explicit boundaries

An aggregate is a cluster of domain objects within a boundary that can be treated as a
unit. It consists of a root entity and possibly one or more other entities and value
objects. Many business objects are modeled as aggregates. For example, in chapter 2
we created a rough domain model by analyzing the nouns used in the requirements
and by domain experts. Many of these nouns, such as Order, Consumer, and Restau-
rant, are aggregates.

Figure 5.5 shows the Order aggregate and its boundary. An Order aggregate consists of
an Order entity, one or more OrderLineItem value objects, and other value objects
such as a delivery Address and PaymentInformation.

BEGIN TXN

UPDATE ORDER_LINE_ITEM
SET VERSION=..., QUANTITY=...

WHERE VERSION = <loaded version>
AND ID = ...

END TXN

Verify minimum is met

BEGIN TXN

UPDATE ORDER_LINE_ITEM
SET VERSION=..., QUANTITY=...

WHERE VERSION = <loaded version>
AND ID = ...

END TXN

Pattern: Aggregate
Organize a domain model as a collection of aggregates, each of which is a graph of
objects that can be treated as a unit.

155Designing a domain model using the DDD aggregate pattern
Aggregates decompose a domain model into chunks, which are individually easier to
understand. They also clarify the scope of operations such as load, update, and delete.
These operations act on the entire aggregate rather than on parts of it. An aggregate
is often loaded in its entirety from the database, thereby avoiding any complications of
lazy loading. Deleting an aggregate removes all of its objects from a database.

AGGREGATES ARE CONSISTENCY BOUNDARIES

Updating an entire aggregate rather than its parts solves the consistency issues, such
as the example described earlier. Update operations are invoked on the aggregate
root, which enforces invariants. Also, concurrency is handled by locking the aggregate
root using, for example, a version number or a database-level lock. For example,
instead of updating line items’ quantities directly, a client must invoke a method on
the root of the Order aggregate, which enforces invariants such as the minimum order
amount. Note, though, that this approach doesn’t require the entire aggregate to be
updated in the database. An application might, for example, only update the rows cor-
responding to the Order object and the updated OrderLineItem.

IDENTIFYING AGGREGATES IS KEY

In DDD, a key part of designing a domain model is identifying aggregates, their
boundaries, and their roots. The details of the aggregates’ internal structure is sec-
ondary. The benefit of aggregates, however, goes far beyond modularizing a domain
model. That’s because aggregates must obey certain rules.

5.2.3 Aggregate rules

DDD requires aggregates to obey a set of rules. These rules ensure that an aggregate is
a self-contained unit that can enforce its invariants. Let’s look at each of the rules.

« »aggregate root

Order

quantity

« »aggregate root

Consumer

Order aggregate

Consumer aggregate

...

« »aggregate root

Restaurant
« »value object

OrderLineItem

Restaurant aggregate

« »value object

DeliveryInfo

« »value object

PaymentInfo

« »value object

DeliveryInfo

« »value object

PaymentInfo

Figure 5.5 Structuring a domain model as a set of aggregates makes the boundaries explicit.

156 CHAPTER 5 Designing business logic in a microservice architecture
RULE #1: REFERENCE ONLY THE AGGREGATE ROOT

The previous example illustrated the perils of updating OrderLineItems directly. The
goal of the first aggregate rule is to eliminate this problem. It requires that the root
entity be the only part of an aggregate that can be referenced by classes outside of the
aggregate. A client can only update an aggregate by invoking a method on the aggre-
gate root.

 A service, for example, uses a repository to load an aggregate from the database
and obtain a reference to the aggregate root. It updates an aggregate by invoking a
method on the aggregate root. This rule ensures that the aggregate can enforce its
invariant.

RULE #2: INTER-AGGREGATE REFERENCES MUST USE PRIMARY KEYS

Another rule is that aggregates reference each other by identity (for example, primary
key) instead of object references. For example, as figure 5.6 shows, an Order refer-
ences its Consumer using a consumerId rather than a reference to the Consumer object.
Similarly, an Order references a Restaurant using a restaurantId.

This approach is quite different from traditional object modeling, which considers
foreign keys in the domain model to be a design smell. It has a number of benefits.
The use of identity rather than object references means that the aggregates are loosely
coupled. It ensures that the aggregate boundaries between aggregates are well
defined and avoids accidentally updating a different aggregate. Also, if an aggregate is
part of another service, there isn’t a problem of object references that span services.

 This approach also simplifies persistence since the aggregate is the unit of storage.
It makes it easier to store aggregates in a NoSQL database such as MongoDB. It also

consumerId
restaurantId
...

« »aggregate root

Order

quantity

OrderLineItem

DeliveryInfo

...

« »aggregate root

Consumer

Order aggregate

Consumer aggregate

...

« »aggregate root

Restaurant

Restaurant aggregate

PaymentInfo

DeliveryInfo

PaymentInfo

Figure 5.6 References between aggregates are by primary key rather than by object reference. The
Order aggregate has the IDs of the Consumer and Restaurant aggregates. Within an aggregate,
objects have references to one another.

157Designing a domain model using the DDD aggregate pattern
eliminates the need for transparent lazy loading and its associated problems. Scaling
the database by sharding aggregates is relatively straightforward.

RULE #3: ONE TRANSACTION CREATES OR UPDATES ONE AGGREGATE

Another rule that aggregates must obey is that a transaction can only create or update
a single aggregate. When I first read about it many years ago, this rule made no sense! At
the time, I was developing traditional monolithic applications that used an RDBMS, so
transactions could update multiple aggregates. Today, this constraint is perfect for the
microservice architecture. It ensures that a transaction is contained within a service.
This constraint also matches the limited transaction model of most NoSQL databases.

 This rule makes it more complicated to implement operations that need to create
or update multiple aggregates. But this is exactly the problem that sagas (described in
chapter 4) are designed to solve. Each step of the saga creates or updates exactly one
aggregate. Figure 5.7 shows how this works.

In this example, the saga consists of three transactions. The first transaction updates
aggregate X in service A. The other two transactions are both in service B. One transac-
tion updates aggregate X, and the other updates aggregate Y.

 An alternative approach to maintaining consistency across multiple aggregates
within a single service is to cheat and update multiple aggregates within a transaction.
For example, service B could update aggregates Y and Z in a single transaction. This is
only possible when using a database, such as an RDBMS, that supports a rich transac-
tion model. If you’re using a NoSQL database that only has simple transactions,
there’s no other option except to use sagas.

 Or is there? It turns out that aggregate boundaries are not set in stone. When
developing a domain model, you get to choose where the boundaries lie. But like a
20th century colonial power drawing national boundaries, you need to be careful.

Service A

Saga

Local transaction 1

Create/update

Aggregate X

Service B

Local transaction 2

Aggregate Y

Local transaction 3

Aggregate Z

Create/update Create/update

Figure 5.7 A transaction can only create or update a single aggregate, so an application uses a saga
to update multiple aggregates. Each step of the saga creates or updates one aggregate.

158 CHAPTER 5 Designing business logic in a microservice architecture
5.2.4 Aggregate granularity

When developing a domain model, a key decision you must make is how large to
make each aggregate. On one hand, aggregates should ideally be small. Because
updates to each aggregate are serialized, more fine-grained aggregates will increase
the number of simultaneous requests that the application can handle, improving scal-
ability. It will also improve the user experience because it reduces the chance of two
users attempting conflicting updates of the same aggregate. On the other hand, because
an aggregate is the scope of transaction, you may need to define a larger aggregate in
order to make a particular update atomic.

 For example, earlier I mentioned how in the FTGO application’s domain model
Order and Consumer are separate aggregates. An alternative design is to make Order
part of the Consumer aggregate. Figure 5.8 shows this alternative design.

A benefit of this larger Consumer aggregate is that the application can atomically
update a Consumer and one or more of its Orders. A drawback of this approach is that
it reduces scalability. Transactions that update different orders for the same customer
would be serialized. Similarly, two users would conflict if they attempted to edit differ-
ent orders for the same customer.

 Another drawback of this approach in a microservice architecture is that it is an
obstacle to decomposition. The business logic for Orders and Consumers, for exam-
ple, must be collocated in the same service, which makes the service larger. Because of
these issues, making aggregates as fine-grained as possible is best.

restaurantId
...

Order

quantity

OrderLineItem

DeliveryInfo

...

<<aggregate root>>

Consumer

Consumer aggregate

...

<<aggregate root>>

Restaurant

Restaurant aggregate

PaymentInfo

DeliveryInfo

PaymentInfo

Figure 5.8 An alternative design defines a Customer aggregate that contains the Customer and
Order classes. This design enables an application to atomically update a Consumer and one or more
of its Orders.

159Designing a domain model using the DDD aggregate pattern
5.2.5 Designing business logic with aggregates

In a typical (micro)service, the bulk of the business logic consists of aggregates. The
rest of the business logic resides in the domain services and the sagas. The sagas orches-
trate sequences of local transactions in order to enforce data consistency. The services
are the entry points into the business logic and are invoked by inbound adapters. A
service uses a repository to retrieve aggregates from the database or save aggregates to
the database. Each repository is implemented by an outbound adapter that accesses
the database. Figure 5.9 shows the aggregate-based design of the business logic for the
Order Service.

The business logic consists of the Order aggregate, the OrderService service class, the
OrderRepository, and one or more sagas. The OrderService invokes the Order-
Repository to save and load Orders. For simple requests that are local to the service,

REST API

Domain

event

publisher

«service»

OrderService

«saga»

CreateOrder
Saga

«saga»

ReviseOrder
Saga

createOrder()
reviseOrder()
cancelOrder()

«value object»

OrderLineItem

quantity
menuItem
name

Order

command

handlers

Database

adapter

«aggregate»

Order

id
...

«repository»

OrderRepository

voidSave(Order)
Orer findOne(id)
...

Figure 5.9 An aggregate-based design for the Order Service business logic

160 CHAPTER 5 Designing business logic in a microservice architecture
the service updates an Order aggregate. If an update request spans multiple services,
the OrderService will also create a saga, as described in chapter 4.

 We’ll take a look at the code—but first, let’s examine a concept that’s closely
related to aggregates: domain events.

5.3 Publishing domain events
Merriam-Webster (https://www.merriam-webster.com/dictionary/event) lists several
definitions of the word event, including these:

1 Something that happens
2 A noteworthy happening
3 A social occasion or activity
4 An adverse or damaging medical occurrence, a heart attack or other cardiac event

In the context of DDD, a domain event is something that has happened to an aggre-
gate. It’s represented by a class in the domain model. An event usually represents a
state change. Consider, for example, an Order aggregate in the FTGO application. Its
state-changing events include Order Created, Order Cancelled, Order Shipped, and
so forth. An Order aggregate might, if there are interested consumers, publish one of
the events each time it undergoes a state transition.

5.3.1 Why publish change events?

Domain events are useful because other parties—users, other applications, or other
components within the same application—are often interested in knowing about an
aggregate’s state changes. Here are some example scenarios:

 Maintaining data consistency across services using choreography-based sagas,
described in chapter 4.

 Notifying a service that maintains a replica that the source data has changed.
This approach is known as Command Query Responsibility Segregation (CQRS),
and it’s described in chapter 7.

 Notifying a different application via a registered webhook or via a message bro-
ker in order to trigger the next step in a business process.

 Notifying a different component of the same application in order, for example,
to send a WebSocket message to a user’s browser or update a text database such
as ElasticSearch.

 Sending notifications—text messages or emails—to users informing them that
their order has shipped, their Rx prescription is ready for pick up, or their
flight is delayed.

Pattern: Domain event
An aggregate publishes a domain event when it’s created or undergoes some other
significant change.

https://www.merriam-webster.com/dictionary/event

161Publishing domain events
 Monitoring domain events to verify that the application is behaving correctly.
 Analyzing events to model user behavior.

The trigger for the notification in all these scenarios is the state change of an aggre-
gate in an application’s database.

5.3.2 What is a domain event?

A domain event is a class with a name formed using a past-participle verb. It has proper-
ties that meaningfully convey the event. Each property is either a primitive value or a
value object. For example, an OrderCreated event class has an orderId property.

 A domain event typically also has metadata, such as the event ID, and a timestamp.
It might also have the identity of the user who made the change, because that’s useful
for auditing. The metadata can be part of the event object, perhaps defined in a
superclass. Alternatively, the event metadata can be in an envelope object that wraps
the event object. The ID of the aggregate that emitted the event might also be part of
the envelope rather than an explicit event property.

 The OrderCreated event is an example of a domain event. It doesn’t have any
fields, because the Order’s ID is part of the event envelope. The following listing
shows the OrderCreated event class and the DomainEventEnvelope class.

interface DomainEvent {}

interface OrderDomainEvent extends DomainEvent {}

class OrderCreated implements OrderDomainEvent {}

class DomainEventEnvelope<T extends DomainEvent> {
private String aggregateType;
private Object aggregateId;
private T event;
...

}

The DomainEvent interface is a marker interface that identifies a class as a domain
event. OrderDomainEvent is a marker interface for events, such as OrderCreated, which
are published by the Order aggregate. The DomainEventEnvelope is a class that con-
tains event metadata and the event object. It’s a generic class that’s parameterized by
the domain event type.

5.3.3 Event enrichment

Let’s imagine, for example, that you’re writing an event consumer that processes Order
events. The OrderCreated event class shown previously captures the essence of what has
happened. But your event consumer may need the order details when processing an

Listing 5.1 The OrderCreated event and the DomainEventEnvelope class

The event’s
metadata

162 CHAPTER 5 Designing business logic in a microservice architecture
OrderCreated event. One option is for it to retrieve that information from the Order-
Service. The drawback of an event consumer querying the service for the aggregate is
that it incurs the overhead of a service request.

 An alternative approach known as event enrichment is for events to contain informa-
tion that consumers need. It simplifies event consumers because they no longer need
to request that data from the service that published the event. In the OrderCreated
event, the Order aggregate can enrich the event by including the order details. The
following listing shows the enriched event.

class OrderCreated implements OrderEvent {
private List<OrderLineItem> lineItems;
private DeliveryInformation deliveryInformation;
private PaymentInformation paymentInformation;
private long restaurantId;
private String restaurantName;
...

}

Because this version of the OrderCreated event contains the order details, an event
consumer, such as the Order History Service (discussed in chapter 7) no longer
needs to fetch that data when processing an OrderCreated event.

 Although event enrichment simplifies consumers, the drawback is that it risks mak-
ing the event classes less stable. An event class potentially needs to change whenever
the requirements of its consumers change. This can reduce maintainability because
this kind of change can impact multiple parts of the application. Satisfying every con-
sumer can also be a futile effort. Fortunately, in many situations it’s fairly obvious
which properties to include in an event.

 Now that we’ve covered the basics of domain events, let’s look at how to discover
them.

5.3.4 Identifying domain events

There are a few different strategies for identifying domain events. Often the require-
ments will describe scenarios where notifications are required. The requirements
might include language such as “When X happens do Y.” For example, one require-
ment in the FTGO application is “When an Order is placed send the consumer an
email.” A requirement for a notification suggests the existence of a domain event.

 Another approach, which is increasing in popularity, is to use event storming. Event
storming is an event-centric workshop format for understanding a complex domain. It
involves gathering domain experts in a room, lots of sticky notes, and a very large sur-
face—a whiteboard or paper roll—to stick the notes on. The result of event storming
is an event-centric domain model consisting of aggregates and events.

Listing 5.2 The enriched OrderCreated event

Data that its
consumers
typically need

163Publishing domain events
 Event storming consist of three main steps:

1 Brainstorm events—Ask the domain experts to brainstorm the domain events.
Domain events are represented by orange sticky notes that are laid out in a
rough timeline on the modeling surface.

2 Identify event triggers—Ask the domain experts to identify the trigger of each
event, which is one of the following:
– User actions, represented as a command using a blue sticky note
– External system, represented by a purple sticky note
– Another domain event
– Passing of time

3 Identify aggregates—Ask the domain experts to identify the aggregate that con-
sumes each command and emits the corresponding event. Aggregates are rep-
resented by yellow sticky notes.

Figure 5.10 shows the result of an event-storming workshop. In just a couple of hours,
the participants identified numerous domain events, commands, and aggregates. It
was a good first step in the process of creating a domain model.

Event storming is a useful technique for quickly creating a domain model.
 Now that we’ve covered the basics of domain events, let’s look at the mechanics of

generating and publishing them.

Event Command Aggregate Policy

Figure 5.10 The result of an event-storming workshop that lasted a couple of hours. The sticky notes
are events, which are laid out along a timeline; commands, which represent user actions; and
aggregates, which emit events in response to a command.

164 CHAPTER 5 Designing business logic in a microservice architecture
5.3.5 Generating and publishing domain events

Communicating using domain events is a form of asynchronous messaging, discussed
in chapter 3. But before the business logic can publish them to a message broker, it
must first create them. Let’s look at how to do that.

GENERATING DOMAIN EVENTS

Conceptually, domain events are published by aggregates. An aggregate knows when
its state changes and hence what event to publish. An aggregate could invoke a mes-
saging API directly. The drawback of this approach is that because aggregates can’t
use dependency injection, the messaging API would need to be passed around as a
method argument. That would intertwine infrastructure concerns and business logic,
which is extremely undesirable.

 A better approach is to split responsibility between the aggregate and the service
(or equivalent class) that invokes it. Services can use dependency injection to obtain a
reference to the messaging API, easily publishing events. The aggregate generates the
events whenever its state changes and returns them to the service. There are a couple
of different ways an aggregate can return events back to the service. One option is for
the return value of an aggregate method to include a list of events. For example, the
following listing shows how a Ticket aggregate’s accept() method can return a Ticket-
AcceptedEvent to its caller.

public class Ticket {

public List<DomainEvent> accept(ZonedDateTime readyBy) {
...
this.acceptTime = ZonedDateTime.now();
this.readyBy = readyBy;
return singletonList(new TicketAcceptedEvent(readyBy));
}

}

The service invokes the aggregate root’s method, and then publishes the events. For
example, the following listing shows how KitchenService invokes Ticket.accept() and
publishes the events.

public class KitchenService {

@Autowired
private TicketRepository ticketRepository;

@Autowired
private DomainEventPublisher domainEventPublisher;

Listing 5.3 The Ticket aggregate’s accept() method

Listing 5.4 KitchenService calls Ticket.accept()

Updates
the Ticket

Returns
an event

165Publishing domain events
public void accept(long ticketId, ZonedDateTime readyBy) {
Ticket ticket =

ticketRepository.findById(ticketId)
.orElseThrow(() ->

new TicketNotFoundException(ticketId));
List<DomainEvent> events = ticket.accept(readyBy);
domainEventPublisher.publish(Ticket.class, orderId, events);

}

The accept() method first invokes the TicketRepository to load the Ticket from the
database. It then updates the Ticket by calling accept(). KitchenService then pub-
lishes events returned by Ticket by calling DomainEventPublisher.publish(),
described shortly.

 This approach is quite simple. Methods that would otherwise have a void return
type now return List<Event>. The only potential drawback is that the return type of
non-void methods is now more complex. They must return an object containing the
original return value and List<Event>. You’ll see an example of such a method soon.

 Another option is for the aggregate root to accumulate events in a field. The ser-
vice then retrieves the events and publishes them. For example, the following listing
shows a variant of the Ticket class that works this way.

public class Ticket extends AbstractAggregateRoot {

public void accept(ZonedDateTime readyBy) {
...
this.acceptTime = ZonedDateTime.now();
this.readyBy = readyBy;
registerDomainEvent(new TicketAcceptedEvent(readyBy));

}

}

Ticket extends AbstractAggregateRoot, which defines a registerDomainEvent()
method that records the event. A service would call AbstractAggregateRoot.get-
DomainEvents() to retrieve those events.

 My preference is for the first option: the method returning events to the service.
But accumulating events in the aggregate root is also a viable option. In fact, the
Spring Data Ingalls release train (https://spring.io/blog/2017/01/30/what-s-new-in-
spring-data-release-ingalls) implements a mechanism that automatically publishes
events to the Spring ApplicationContext. The main drawback is that to reduce code
duplication, aggregate roots should extend a superclass such as AbstractAggregate-
Root, which might conflict with a requirement to extend some other superclass. Another
issue is that although it’s easy for the aggregate root’s methods to call register-
DomainEvent(), methods in other classes in the aggregate would find it challenging.
They would mostly likely need to somehow pass the events to the aggregate root.

Listing 5.5 The Ticket extends a superclass, which records domain events

Publishes
domain
events

https://spring.io/blog/2017/01/30/what-s-new-in-spring-data-release-ingalls
https://spring.io/blog/2017/01/30/what-s-new-in-spring-data-release-ingalls

166 CHAPTER 5 Designing business logic in a microservice architecture
HOW TO RELIABLY PUBLISH DOMAIN EVENTS?
Chapter 3 talks about how to reliably send messages as part of a local database transac-
tion. Domain events are no different. A service must use transactional messaging to
publish events to ensure that they’re published as part of the transaction that updates
the aggregate in the database. The Eventuate Tram framework, described in chapter 3,
implements such a mechanism. It insert events into an OUTBOX table as part of the
ACID transaction that updates the database. After the transaction commits, the events
that were inserted into the OUTBOX table are then published to the message broker.

 The Tram framework provides a DomainEventPublisher interface, shown in the
following listing. It defines several overloaded publish() methods that take the aggre-
gate type and ID as parameters, along with a list of domain events.

public interface DomainEventPublisher {
void publish(String aggregateType, Object aggregateId,

List<DomainEvent> domainEvents);

It uses the Eventuate Tram framework’s MessageProducer interface to publish those
events transactionally.

 A service could call the DomainEventPublisher publisher directly. But one draw-
back of doing so is that it doesn’t ensure that a service only publishes valid events.
KitchenService, for example, should only publish events that implement Ticket-
DomainEvent, which is the marker interface for the Ticket aggregate’s events. A better
option is for services to implement a subclass of AbstractAggregateDomainEvent-
Publisher, which is shown in listing 5.7. AbstractAggregateDomainEventPublisher
is an abstract class that provides a type-safe interface for publishing domain events.
It’s a generic class that has two type parameters, A, the aggregate type, and E, the
marker interface type for the domain events. A service publishes events by calling
the publish() method, which has two parameters: an aggregate of type A and a list of
events of type E.

public abstract class AbstractAggregateDomainEventPublisher<A, E extends Doma
inEvent> {

private Function<A, Object> idSupplier;
private DomainEventPublisher eventPublisher;
private Class<A> aggregateType;

protected AbstractAggregateDomainEventPublisher(
DomainEventPublisher eventPublisher,
Class<A> aggregateType,
Function<A, Object> idSupplier) {
this.eventPublisher = eventPublisher;
this.aggregateType = aggregateType;

Listing 5.6 The Eventuate Tram framework’s DomainEventPublisher interface

Listing 5.7 The abstract superclass of type-safe domain event publishers

167Publishing domain events
this.idSupplier = idSupplier;
}

public void publish(A aggregate, List<E> events) {
eventPublisher.publish(aggregateType, idSupplier.apply(aggregate),
(List<DomainEvent>) events);

}

}

The publish() method retrieves the aggregate’s ID and invokes DomainEventPublisher
.publish(). The following listing shows the TicketDomainEventPublisher, which
publishes domain events for the Ticket aggregate.

public class TicketDomainEventPublisher extends
AbstractAggregateDomainEventPublisher<Ticket, TicketDomainEvent> {

public TicketDomainEventPublisher(DomainEventPublisher eventPublisher) {
super(eventPublisher, Ticket.class, Ticket::getId);

}

}

This class only publishes events that are a subclass of TicketDomainEvent.
 Now that we’ve looked at how to publish domain events, let’s see how to con-

sume them.

5.3.6 Consuming domain events

Domain events are ultimately published as messages to a message broker, such as
Apache Kafka. A consumer could use the broker’s client API directly. But it’s more
convenient to use a higher-level API such as the Eventuate Tram framework’s Domain-
EventDispatcher, described in chapter 3. A DomainEventDispatcher dispatches
domain events to the appropriate handle method. Listing 5.9 shows an example event
handler class. KitchenServiceEventConsumer subscribes to events published by
Restaurant Service whenever a restaurant’s menu is updated. It’s responsible for
keeping Kitchen Service’s replica of the data up-to-date.

public class KitchenServiceEventConsumer {
@Autowired
private RestaurantService restaurantService;

public DomainEventHandlers domainEventHandlers() {
return DomainEventHandlersBuilder
.forAggregateType("net.chrisrichardson.ftgo.restaurantservice.Restaurant")
.onEvent(RestaurantMenuRevised.class, this::reviseMenu)

Listing 5.8 A type-safe interface for publishing Ticket aggregates' domain events

Listing 5.9 Dispatching events to event handler methods

Maps events to
event handlers

168 CHAPTER 5 Designing business logic in a microservice architecture
.build();
}

public void reviseMenu(DomainEventEnvelope<RestaurantMenuRevised> de) {
long id = Long.parseLong(de.getAggregateId());
RestaurantMenu revisedMenu = de.getEvent().getRevisedMenu();
restaurantService.reviseMenu(id, revisedMenu);

}

}

The reviseMenu() method handles RestaurantMenuRevised events. It calls restaurant-
Service.reviseMenu(), which updates the restaurant’s menu. That method returns a
list of domain events, which are published by the event handler.

 Now that we’ve looked at aggregates and domain events, it’s time to consider some
example business logic that’s implemented using aggregates.

5.4 Kitchen Service business logic
The first example is Kitchen Service, which enables a restaurant to manage their
orders. The two main aggregates in this service are the Restaurant and Ticket aggre-
gates. The Restaurant aggregate knows the restaurant’s menu and opening hours
and can validate orders. A Ticket represents an order that a restaurant must prepare
for pickup by a courier. Figure 5.11 shows these aggregates and other key parts of the
service’s business logic, as well as the service’s adapters.

 In addition to the aggregates, the other main parts of Kitchen Service’s business
logic are KitchenService, TicketRepository, and RestaurantRepository. Kitchen-
Service is the business logic’s entry. It defines methods for creating and updating
the Restaurant and Ticket aggregates. TicketRepository and RestaurantRepository
define methods for persisting Tickets and Restaurants respectively.

 The Kitchen Service service has three inbound adapters:

 REST API—The REST API invoked by the user interface used by workers at the
restaurant. It invokes KitchenService to create and update Tickets.

 KitchenServiceCommandHandler—The asynchronous request/response-based
API that’s invoked by sagas. It invokes KitchenService to create and update
Tickets.

 KitchenServiceEventConsumer—Subscribes to events published by Restaurant
Service. It invokes KitchenService to create and update Restaurants.

The service also has two outbound adapters:

 DB adapter—Implements the TicketRepository and the RestaurantRepository
interfaces and accesses the database.

 DomainEventPublishingAdapter—Implements the DomainEventPublisher inter-
face and publishes Ticket domain events.

An event handler for the
RestaurantMenuRevised

event

169Kitchen Service business logic
Let’s take a closer look at the design of KitchenService, starting with the Ticket
aggregate.

5.4.1 The Ticket aggregate

Ticket is one of the aggregates of Kitchen Service. As described in chapter 2, when
talking about the concept of a Bounded Context, this aggregate represents the restau-
rant kitchen’s view of an order. It doesn’t contain information about the consumer,
such as their identity, the delivery information, or payment details. It’s focused on
enabling a restaurant’s kitchen to prepare the Order for pickup. Moreover, Kitchen-
Service doesn’t generate a unique ID for this aggregate. Instead, it uses the ID sup-
plied by OrderService.

 Let’s first look at the structure of this class and then we’ll examine its methods.

Kitchen Service

command channel

Restaurant Events

channel

Ticket events

channel
Kitchen Service

database

Create ticket

Confirm create ticket

Restaurant created

Restaurant menu revised

accept
reject
preparing
readyForPickup
pickedUp

REST API

Restaurant

Kitchen

Service

Domain event

publisher

«aggregate»
Ticket

«aggregate»
restaurant

«repository»
Ticket

Repository

«repository»
Restaurant
Repository

KitchenService

CommandHandler
KitchenService

EventConsumer

Database

adapter

Domain event

publishing adapter

Figure 5.11 The design of Kitchen Service

170 CHAPTER 5 Designing business logic in a microservice architecture
STRUCTURE OF THE TICKET CLASS

The following listing shows an excerpt of the code for this class. The Ticket class is
similar to a traditional domain class. The main difference is that references to other
aggregates are by primary key.

@Entity(table="tickets")
public class Ticket {

@Id
private Long id;
private TicketState state;
private Long restaurantId;

@ElementCollection
@CollectionTable(name="ticket_line_items")
private List<TicketLineItem> lineItems;

private ZonedDateTime readyBy;
private ZonedDateTime acceptTime;
private ZonedDateTime preparingTime;
private ZonedDateTime pickedUpTime;
private ZonedDateTime readyForPickupTime;
...

This class is persisted with JPA and is mapped to the TICKETS table. The restaurantId
field is a Long rather than an object reference to a Restaurant. The readyBy field
stores the estimate of when the order will be ready for pickup. The Ticket class has
several fields that track the history of the order, including acceptTime, preparing-
Time, and pickupTime. Let’s look at this class’s methods.

BEHAVIOR OF THE TICKET AGGREGATE

The Ticket aggregate defines several methods. As you saw earlier, it has a static create()
method, which is a factory method that creates a Ticket. There are also some meth-
ods that are invoked when the restaurant updates the state of the order:

 accept()—The restaurant has accepted the order.
 preparing()—The restaurant has started preparing the order, which means the

order can no longer be changed or cancelled.
 readyForPickup()—The order can now be picked up.

The following listing shows some of its methods.

Listing 5.10 Part of the Ticket class, which is a JPA entity

171Kitchen Service business logic
public class Ticket {

public static ResultWithAggregateEvents<Ticket, TicketDomainEvent>
create(Long id, TicketDetails details) {

return new ResultWithAggregateEvents<>(new Ticket(id, details), new
TicketCreatedEvent(id, details));

}

public List<TicketPreparationStartedEvent> preparing() {
switch (state) {
case ACCEPTED:
this.state = TicketState.PREPARING;
this.preparingTime = ZonedDateTime.now();
return singletonList(new TicketPreparationStartedEvent());

default:
throw new UnsupportedStateTransitionException(state);

}
}

public List<TicketDomainEvent> cancel() {
switch (state) {
case CREATED:
case ACCEPTED:
this.state = TicketState.CANCELLED;
return singletonList(new TicketCancelled());

case READY_FOR_PICKUP:
throw new TicketCannotBeCancelledException();

default:
throw new UnsupportedStateTransitionException(state);

}
}

The create() method creates a Ticket. The preparing() method is called when the
restaurant starts preparing the order. It changes the state of the order to PREPARING,
records the time, and publishes an event. The cancel() method is called when a user
attempts to cancel an order. If the cancellation is allowed, this method changes the
state of the order and returns an event. Otherwise, it throws an exception. These
methods are invoked in response to REST API requests as well as events and com-
mand messages. Let’s look at the classes that invoke the aggregate’s method.

THE KITCHENSERVICE DOMAIN SERVICE

KitchenService is invoked by the service’s inbound adapters. It defines various meth-
ods for changing the state of an order, including accept(), reject(), preparing(), and
others. Each method loads the specifies aggregate, calls the corresponding method on
the aggregate root, and publishes any domain events. The following listing shows its
accept() method.

Listing 5.11 Some of the Ticket's methods

172 CHAPTER 5 Designing business logic in a microservice architecture
public class KitchenService {

@Autowired
private TicketRepository ticketRepository;

@Autowired
private TicketDomainEventPublisher domainEventPublisher;

public void accept(long ticketId, ZonedDateTime readyBy) {
Ticket ticket =

ticketRepository.findById(ticketId)
.orElseThrow(() ->

new TicketNotFoundException(ticketId));
List<TicketDomainEvent> events = ticket.accept(readyBy);
domainEventPublisher.publish(ticket, events);

}

}

The accept() method is invoked when the restaurant accepts a new order. It has two
parameters:

 orderId—ID of the order to accept
 readyBy—Estimated time when the order will be ready for pickup

This method retrieves the Ticket aggregate and calls its accept() method. It pub-
lishes any generated events.

 Now let’s look at the class that handles asynchronous commands.

THE KITCHENSERVICECOMMANDHANDLER CLASS

The KitchenServiceCommandHandler class is an adapter that’s responsible for handling
command messages sent by the various sagas implemented by Order Service. This class
defines a handler method for each command, which invokes KitchenService to create
or update a Ticket. The following listing shows an excerpt of this class.

public class KitchenServiceCommandHandler {

@Autowired
private KitchenService kitchenService;

 public CommandHandlers commandHandlers() {
return CommandHandlersBuilder

.fromChannel("orderService")

.onMessage(CreateTicket.class, this::createTicket)

.onMessage(ConfirmCreateTicket.class,
this::confirmCreateTicket)

Listing 5.12 The service’s accept() method updates Ticket

Listing 5.13 Handling command messages sent by sagas

Publish
domain
events

Maps command messages
to message handlers

173Order Service business logic
.onMessage(CancelCreateTicket.class,
this::cancelCreateTicket)

.build();
}

private Message createTicket(CommandMessage<CreateTicket>
cm) {

CreateTicket command = cm.getCommand();
long restaurantId = command.getRestaurantId();
Long ticketId = command.getOrderId();
TicketDetails ticketDetails =

command.getTicketDetails();

try {
Ticket ticket =

kitchenService.createTicket(restaurantId,
ticketId, ticketDetails);

CreateTicketReply reply =
new CreateTicketReply(ticket.getId());

return withSuccess(reply);
} catch (RestaurantDetailsVerificationException e) {
return withFailure();
}

}

private Message confirmCreateTicket
(CommandMessage<ConfirmCreateTicket> cm) {

Long ticketId = cm.getCommand().getTicketId();
kitchenService.confirmCreateTicket(ticketId);
return withSuccess();

}

...

All the command handler methods invoke KitchenService and reply with either a
success or a failure reply.

 Now that you’ve seen the business logic for a relatively simple service, we’ll look at
a more complex example: Order Service.

5.5 Order Service business logic
As mentioned in earlier chapters, Order Service provides an API for creating, updat-
ing, and canceling orders. This API is primarily invoked by the consumer. Figure 5.12
shows the high-level design of the service. The Order aggregate is the central aggre-
gate of Order Service. But there’s also a Restaurant aggregate, which is a partial
replica of data owned by Restaurant Service. It enables Order Service to validate
and price an Order’s line items.

 In addition to the Order and Restaurant aggregates, the business logic consists of
OrderService, OrderRepository, RestaurantRepository, and various sagas such as
the CreateOrderSaga described in chapter 4. OrderService is the primary entry
point into the business logic and defines methods for creating and updated Orders

Invokes KitchenService
to create the Ticket

Sends back a
successful reply

Sends back a
failure reply

Confirms
the order

174 CHAPTER 5 Designing business logic in a microservice architecture
and Restaurants. OrderRepository defines methods for persisting Orders, and
RestaurantRepository has methods for persisting Restaurants. Order Service has
several inbound adapters:

 REST API—The REST API invoked by the user interface used by consumers. It
invokes OrderService to create and update Orders.

Restaurant Events

channel

Order Service

command channel

Consumer Service

command channel

Kitchen Service

command channel

Accounting Service

command channel

Create order saga

reply channel

Cancel order saga

reply channel

Revise order saga

reply channel

Ticket events

channel

createOrder()
cancelOrder()
reviseOrder()

REST API

Consumer

OrderService

Domain event

publisher

Command

producer

«aggregate»
Restaurant

«aggregate»
Order

«repository»
OrderRepository

«repository»
Restaurant
Repository

OrderEvent

consumer

Order

command

handlers

SagaReply

message

adapter

Database

adapter

Outbound

command

message

adapter

«saga»
*OrderSaga

Order Service

database

Domain event

publishing

adapter

Figure 5.12 The design of the Order Service. It has a REST API for managing orders. It exchanges messages
and events with other services via several message channels.

175Order Service business logic
 OrderEventConsumer—Subscribes to events published by Restaurant Service. It
invokes OrderService to create and update its replica of Restaurants.

 OrderCommandHandlers—The asynchronous request/response-based API that’s
invoked by sagas. It invokes OrderService to update Orders.

 SagaReplyAdapter—Subscribes to the saga reply channels and invokes the sagas.

The service also has some outbound adapters:

 DB adapter—Implements the OrderRepository interface and accesses the Order
Service database

 DomainEventPublishingAdapter—Implements the DomainEventPublisher inter-
face and publishes Order domain events

 OutboundCommandMessageAdapter—Implements the CommandPublisher inter-
face and sends command messages to saga participants

Let’s first take a closer look at the Order aggregate and then examine OrderService.

5.5.1 The Order Aggregate

The Order aggregate represents an order placed by a consumer. We’ll first look at the
structure of the Order aggregate and then check out its methods.

THE STRUCTURE OF THE ORDER AGGREGATE

Figure 5.13 shows the structure of the Order aggregate. The Order class is the root of
the Order aggregate. The Order aggregate also consists of value objects such as Order-
LineItem, DeliveryInfo, and PaymentInfo.

«value object»
Address

street1
street2
city
state
zip

«aggregate»
Order

state
consumerId
restaurantId
...

Price

Order minimum

«value object»
OrderLineItem

quantity
menuItem
name

«value object»
DeliveryInfo

deliveryTime

«value object»
Money

amount

«value object»
PaymentInfo

paymentMethodId

Figure 5.13 The design of the Order aggregate, which consists of the Order aggregate root
and various value objects.

176 CHAPTER 5 Designing business logic in a microservice architecture
The Order class has a collection of OrderLineItems. Because the Order’s Consumer
and Restaurant are other aggregates, it references them by primary key value. The
Order class has a DeliveryInfo class, which stores the delivery address and the
desired delivery time, and a PaymentInfo, which stores the payment info. The follow-
ing listing shows the code.

@Entity
@Table(name="orders")
@Access(AccessType.FIELD)
public class Order {

@Id
@GeneratedValue
private Long id;

@Version
private Long version;

private OrderState state;
private Long consumerId;
private Long restaurantId;

@Embedded
private OrderLineItems orderLineItems;

@Embedded
private DeliveryInformation deliveryInformation;

@Embedded
private PaymentInformation paymentInformation;

@Embedded
private Money orderMinimum;

This class is persisted with JPA and is mapped to the ORDERS table. The id field is the
primary key. The version field is used for optimistic locking. The state of an Order is
represented by the OrderState enumeration. The DeliveryInformation and Payment-
Information fields are mapped using the @Embedded annotation and are stored as col-
umns of the ORDERS table. The orderLineItems field is an embedded object that
contains the order line items. The Order aggregate consists of more than just fields. It
also implements business logic, which can be described by a state machine. Let’s take
a look at the state machine.

THE ORDER AGGREGATE STATE MACHINE

In order to create or update an order, Order Service must collaborate with other ser-
vices using sagas. Either OrderService or the first step of the saga invokes an Order
method that verifies that the operation can be performed and changes the state of the
Order to a pending state. A pending state, as explained in chapter 4, is an example of

Listing 5.14 The Order class and its fields

177Order Service business logic
a semantic lock countermeasure, which helps ensure that sagas are isolated from one
another. Eventually, once the saga has invoked the participating services, it then
updates the Order to reflect the outcome. For example, as described in chapter 4, the
Create Order Saga has multiple participant services, including Consumer Service,
Accounting Service, and Kitchen Service. OrderService first creates an Order in an
APPROVAL_PENDING state, and then later changes its state to either APPROVED or
REJECTED. The behavior of an Order can be modeled as the state machine shown in
figure 5.14.

Similarly, other Order Service operations such as revise() and cancel() first change
the Order to a pending state and use a saga to verify that the operation can be per-
formed. Then, once the saga has verified that the operation can be performed, it
changes the Order transitions to some other state that reflects the successful outcome
of the operation. If the verification of the operation fails, the Order reverts to the pre-
vious state. For example, the cancel() operation first transitions the Order to the
CANCEL_PENDING state. If the order can be cancelled, the Cancel Order Saga changes
the state of the Order to the CANCELLED state. Otherwise, if a cancel() operation is
rejected because, for example, it’s too late to cancel the order, then the Order transi-
tions back to the APPROVED state.

 Let’s now look at the how the Order aggregate implements this state machine.

THE ORDER AGGREGATE’S METHODS

The Order class has several groups of methods, each of which corresponds to a saga.
In each group, one method is invoked at the start of the saga, and the other methods
are invoked at the end. I’ll first discuss the business logic that creates an Order. After
that we’ll look at how an Order is updated. The following listing shows the Order’s
methods that are invoked during the process of creating an Order.

APPROVAL_PENDING

CANCEL_PENDING

cancelRejected

cancelConfirmed

reviserejected

authorized

cancel

reviseConfirmed
reviseRejected

REVISION_PENDING

APPROVED

CANCELLED

REJECTED

...

Initial state

Figure 5.14 Part of the state machine model of the Order aggregate

178 CHAPTER 5 Designing business logic in a microservice architecture
public class Order { ...

public static ResultWithDomainEvents<Order, OrderDomainEvent>
 createOrder(long consumerId, Restaurant restaurant,

List<OrderLineItem> orderLineItems) {
Order order = new Order(consumerId, restaurant.getId(), orderLineItems);
List<OrderDomainEvent> events = singletonList(new OrderCreatedEvent(

new OrderDetails(consumerId, restaurant.getId(), orderLineItems,
order.getOrderTotal()),

restaurant.getName()));
return new ResultWithDomainEvents<>(order, events);

}

public Order(OrderDetails orderDetails) {
this.orderLineItems = new OrderLineItems(orderDetails.getLineItems());
this.orderMinimum = orderDetails.getOrderMinimum();
this.state = APPROVAL_PENDING;

}
...

public List<DomainEvent> noteApproved() {
switch (state) {
case APPROVAL_PENDING:
this.state = APPROVED;
return singletonList(new OrderAuthorized());

...
default:
throw new UnsupportedStateTransitionException(state);

}
}

public List<DomainEvent> noteRejected() {
switch (state) {
case APPROVAL_PENDING:
this.state = REJECTED;
return singletonList(new OrderRejected());
...

default:
throw new UnsupportedStateTransitionException(state);

}

}

The createOrder() method is a static factory method that creates an Order and pub-
lishes an OrderCreatedEvent. The OrderCreatedEvent is enriched with the details of
the Order, including the line items, the total amount, the restaurant ID, and the
restaurant name. Chapter 7 discusses how Order History Service uses Order events,
including OrderCreatedEvent, to maintain an easily queried replica of Orders.

Listing 5.15 The methods that are invoked during order creation

179Order Service business logic
 The initial state of the Order is APPROVAL_PENDING. When the CreateOrderSaga
completes, it will invoke either noteApproved() or noteRejected(). The note-
Approved() method is invoked when the consumer’s credit card has been successfully
authorized. The noteRejected() method is called when one of the services rejects
the order or authorization fails. As you can see, the state of the Order aggregate
determines the behavior of most of its methods. Like the Ticket aggregate, it also
emits events.

 In addition to createOrder(), the Order class defines several update methods. For
example, the Revise Order Saga revises an order by first invoking the revise() method
and then, once it’s verified that the revision can be made, it invokes the confirm-
Revised() method. The following listing shows these methods.

class Order ...

public List<OrderDomainEvent> revise(OrderRevision orderRevision) {
switch (state) {

case APPROVED:
LineItemQuantityChange change =

orderLineItems.lineItemQuantityChange(orderRevision);
if (change.newOrderTotal.isGreaterThanOrEqual(orderMinimum)) {
throw new OrderMinimumNotMetException();

}
this.state = REVISION_PENDING;
return singletonList(new OrderRevisionProposed(orderRevision,

change.currentOrderTotal, change.newOrderTotal));

default:
throw new UnsupportedStateTransitionException(state);

}
}

public List<OrderDomainEvent> confirmRevision(OrderRevision orderRevision) {
switch (state) {
case REVISION_PENDING:
LineItemQuantityChange licd =
orderLineItems.lineItemQuantityChange(orderRevision);

orderRevision
.getDeliveryInformation()
.ifPresent(newDi -> this.deliveryInformation = newDi);

if (!orderRevision.getRevisedLineItemQuantities().isEmpty()) {
orderLineItems.updateLineItems(orderRevision);

}

this.state = APPROVED;
return singletonList(new OrderRevised(orderRevision,

licd.currentOrderTotal, licd.newOrderTotal));

Listing 5.16 The Order method for revising an Order

180 CHAPTER 5 Designing business logic in a microservice architecture
default:
throw new UnsupportedStateTransitionException(state);

}
}

}

The revise() method is called to initiate the revision of an order. Among other
things, it verifies that the revised order won’t violate the order minimum and changes
the state of the order to REVISION_PENDING. Once Revise Order Saga has successfully
updated Kitchen Service and Accounting Service, it then calls confirmRevision()
to complete the revision.

 These methods are invoked by OrderService. Let’s take a look at that class.

5.5.2 The OrderService class

The OrderService class defines methods for creating and updating Orders. It’s the
main entry point into the business logic and is invoked by various inbound adapters,
such as the REST API. Most of its methods create a saga to orchestrate the creation and
updating of Order aggregates. As a result, this service is more complicated than the
KitchenService class discussed earlier. The following listing shows an excerpt of this
class. OrderService is injected with various dependencies, including OrderRepository,
OrderDomainEventPublisher, and several saga managers. It defines several methods,
including createOrder() and reviseOrder().

@Transactional
public class OrderService {

@Autowired
private OrderRepository orderRepository;

@Autowired
private SagaManager<CreateOrderSagaState, CreateOrderSagaState>
createOrderSagaManager;

@Autowired
private SagaManager<ReviseOrderSagaState, ReviseOrderSagaData>
reviseOrderSagaManagement;

@Autowired
private OrderDomainEventPublisher orderAggregateEventPublisher;

public Order createOrder(OrderDetails orderDetails) {

Restaurant restaurant = restaurantRepository.findById(restaurantId)
.orElseThrow(() -

> new RestaurantNotFoundException(restaurantId));

Listing 5.17 The OrderService class has methods for creating and managing orders

181Order Service business logic
List<OrderLineItem> orderLineItems =
makeOrderLineItems(lineItems, restaurant);

ResultWithDomainEvents<Order, OrderDomainEvent> orderAndEvents =
Order.createOrder(consumerId, restaurant, orderLineItems);

Order order = orderAndEvents.result;

orderRepository.save(order);

orderAggregateEventPublisher.publish(order, orderAndEvents.events);

OrderDetails orderDetails =
new OrderDetails(consumerId, restaurantId, orderLineItems,

order.getOrderTotal());
CreateOrderSagaState data = new CreateOrderSagaState(order.getId(),

orderDetails);

createOrderSagaManager.create(data, Order.class, order.getId());

return order;
}

public Order reviseOrder(Long orderId, Long expectedVersion,
OrderRevision orderRevision) {

public Order reviseOrder(long orderId, OrderRevision orderRevision) {
Order order = orderRepository.findById(orderId)

.orElseThrow(() -> new OrderNotFoundException(orderId));
ReviseOrderSagaData sagaData =
new ReviseOrderSagaData(order.getConsumerId(), orderId,

null, orderRevision);
reviseOrderSagaManager.create(sagaData);
return order;

}
}

The createOrder() method first creates and persists an Order aggregate. It then pub-
lishes the domain events emitted by the aggregate. Finally, it creates a CreateOrder-
Saga. The reviseOrder() retrieves the Order and then creates a ReviseOrderSaga.

 In many ways, the business logic for a microservices-based application is not that
different from that of a monolithic application. It’s comprised of classes such as ser-
vices, JPA-backed entities, and repositories. There are some differences, though. A
domain model is organized as a set of DDD aggregates that impose various design
constraints. Unlike in a traditional object model, references between classes in differ-
ent aggregates are in terms of primary key value rather than object references. Also, a
transaction can only create or update a single aggregate. It’s also useful for aggregates
to publish domain events when their state changes.

 Another major difference is that services often use sagas to maintain data consis-
tency across multiple services. For example, Kitchen Service merely participates in
sagas, it doesn’t initiate them. In contrast, Order Service relies heavily on sagas when

Creates the Order
aggregate

Persists the Order
in the database

Publishes
domain
events

Creates the Create
Order Saga

Retrieves
the Order

Creates the
Revise Order
Saga

182 CHAPTER 5 Designing business logic in a microservice architecture
creating and updating orders. That’s because Orders must be transactionally consis-
tent with data owned by other services. As a result, most OrderService methods create
a saga rather than update an Order directly.

 This chapter has covered how to implement business logic using a traditional
approach to persistence. That has involved integrating messaging and event publish-
ing with database transaction management. The event publishing code is intertwined
with the business logic. The next chapter looks at event sourcing, an event-centric
approach to writing business logic where event generation is integral to the business
logic rather than being bolted on.

Summary
 The procedural Transaction script pattern is often a good way to implement

simple business logic. But when implementing complex business logic you should
consider using the object-oriented Domain model pattern.

 A good way to organize a service’s business logic is as a collection of DDD aggre-
gates. DDD aggregates are useful because they modularize the domain model,
eliminate the possibility of object reference between services, and ensure that
each ACID transaction is within a service.

 An aggregate should publish domain events when it’s created or updated.
Domain events have a wide variety of uses. Chapter 4 discusses how they can
implement choreography-based sagas. And, in chapter 7, I talk about how to
use domain events to update replicated data. Domain event subscribers can also
notify users and other applications, and publish WebSocket messages to a user’s
browser.

Developing business
logic with event sourcing
Mary liked the idea, described in chapter 5, of structuring business logic as a collec-
tion of DDD aggregates that publish domain events. She could imagine the use of
those events being extremely useful in a microservice architecture. Mary planned
to use events to implement choreography-based sagas, which maintain data consis-
tency across services and are described in chapter 4. She also expected to use CQRS
views, replicas that support efficient querying that are described in chapter 7.

 She was, however, worried that the event publishing logic might be error prone.
On one hand, the event publishing logic is reasonably straightforward. Each of an
aggregate’s methods that initializes or changes the state of the aggregate returns a
list of events. The domain service then publishes those events. But on the other

This chapter covers
 Using the Event sourcing pattern to develop

business logic

 Implementing an event store

 Integrating sagas and event sourcing-based
business logic

 Implementing saga orchestrators using event
sourcing
183

184 CHAPTER 6 Developing business logic with event sourcing
hand, the event publishing logic is bolted on to the business logic. The business logic
continues to work even when the developer forgets to publish an event. Mary was con-
cerned that this way of publishing events might be a source of bugs.

 Many years ago, Mary had learned about event sourcing, an event-centric way of writ-
ing business logic and persisting domain objects. At the time she was intrigued by its
numerous benefits, including how it preserves the complete history of the changes to
an aggregate, but it remained a curiosity. Given the importance of domain events
in microservice architecture, she now wonders whether it would be worthwhile to
explore using event sourcing in the FTGO application. After all, event sourcing elimi-
nates a source of programming errors by guaranteeing that an event will be published
whenever an aggregate is created or updated.

 I begin this chapter by describing how event sourcing works and how you can use it
to write business logic. I describe how event sourcing persists each aggregate as a
sequence of events in what is known as an event store. I discuss the benefits and draw-
backs of event sourcing and cover how to implement an event store. I describe a sim-
ple framework for writing event sourcing-based business logic. After that, I discuss
how event sourcing is a good foundation for implementing sagas. Let’s start by look-
ing at how to develop business logic with event sourcing.

6.1 Developing business logic using event sourcing
Event sourcing is a different way of structuring the business logic and persisting aggre-
gates. It persists an aggregate as a sequence of events. Each event represents a state
change of the aggregate. An application recreates the current state of an aggregate by
replaying the events.

Event sourcing has several important benefits. For example, it preserves the history of
aggregates, which is valuable for auditing and regulatory purposes. And it reliably
publishes domain events, which is particularly useful in a microservice architecture.
Event sourcing also has drawbacks. It involves a learning curve, because it’s a different
way to write your business logic. Also, querying the event store is often difficult, which
requires you to use the CQRS pattern, described in chapter 7.

 I begin this section by describing the limitations of traditional persistence. I then
describe event sourcing in detail and talk about how it overcomes those limitations.
After that, I show how to implement the Order aggregate using event sourcing. Finally,
I describe the benefits and drawbacks of event sourcing.

 Let’s first look at the limitations of the traditional approach to persistence.

Pattern: Event sourcing
Persist an aggregate as a sequence of domain events that represent state changes.
See http://microservices.io/patterns/data/event-sourcing.html.

http://microservices.io/patterns/data/event-sourcing.html

185Developing business logic using event sourcing
6.1.1 The trouble with traditional persistence

The traditional approach to persistence maps classes to database tables, fields of those
classes to table columns, and instances of those classes to rows in those tables. For
example, figure 6.1 shows how the Order aggregate, described in chapter 5, is mapped
to the ORDER table. Its OrderLineItems are mapped to the ORDER_LINE_ITEM table.

The application persists an order instance as rows in the ORDER and ORDER_LINE_ITEM
tables. It might do that using an ORM framework such as JPA or a lower-level frame-
work such as MyBATIS.

 This approach clearly works well because most enterprise applications store data
this way. But it has several drawbacks and limitations:

 Object-Relational impedance mismatch.
 Lack of aggregate history.
 Implementing audit logging is tedious and error prone.
 Event publishing is bolted on to the business logic.

Let’s look at each of these problems, starting with the Object-Relational impedance
mismatch problem.

OBJECT-RELATIONAL IMPEDANCE MISMATCH

One age-old problem is the so-called Object-Relational impedance mismatch problem.
There’s a fundamental conceptual mismatch between the tabular relational schema
and the graph structure of a rich domain model with its complex relationships.
Some aspects of this problem are reflected in polarized debates over the suitability of
Object/Relational mapping (ORM) frameworks. For example, Ted Neward has said
that “Object-Relational mapping is the Vietnam of Computer Science” (http://blogs
.tedneward.com/post/the-vietnam-of-computer-science/). To be fair, I’ve used

«class»
Order

ID

1234

CUSTOMER_ID

customer-abc

ORDER_TOTAL

1234.56

...

...

«class»
OrderLineItem

ID

567

ORDER_ID

1234

ORDER table

ORDER_LINE_ITEM table

QUANTITY

2

...

...

Figure 6.1 The traditional approach to persistence maps classes to tables and objects to rows in
those tables.

http://blogs.tedneward.com/post/the-vietnam-of-computer-science/
http://blogs.tedneward.com/post/the-vietnam-of-computer-science/
http://blogs.tedneward.com/post/the-vietnam-of-computer-science/

186 CHAPTER 6 Developing business logic with event sourcing
Hibernate successfully to develop applications where the database schema has been
derived from the object model. But the problems are deeper than the limitations of
any particular ORM framework.

LACK OF AGGREGATE HISTORY

Another limitation of traditional persistence is that it only stores the current state of
an aggregate. Once an aggregate has been updated, its previous state is lost. If an
application must preserve the history of an aggregate, perhaps for regulatory pur-
poses, then developers must implement this mechanism themselves. It is time con-
suming to implement an aggregate history mechanism and involves duplicating code
that must be synchronized with the business logic.

IMPLEMENTING AUDIT LOGGING IS TEDIOUS AND ERROR PRONE

Another issue is audit logging. Many applications must maintain an audit log that
tracks which users have changed an aggregate. Some applications require auditing for
security or regulatory purposes. In other applications, the history of user actions is an
important feature. For example, issue trackers and task-management applications
such as Asana and JIRA display the history of changes to tasks and issues. The chal-
lenge of implementing auditing is that besides being a time-consuming chore, the
auditing logging code and the business logic can diverge, resulting in bugs.

EVENT PUBLISHING IS BOLTED ON TO THE BUSINESS LOGIC

Another limitation of traditional persistence is that it usually doesn’t support publishing
domain events. Domain events, discussed in chapter 5, are events that are published by
an aggregate when its state changes. They’re a useful mechanism for synchronizing data
and sending notifications in microservice architecture. Some ORM frameworks, such
as Hibernate, can invoke application-provided callbacks when data objects change.
But there’s no support for automatically publishing messages as part of the transac-
tion that updates the data. Consequently, as with history and auditing, developers
must bolt on event-generation logic, which risks not being synchronized with the busi-
ness logic. Fortunately, there’s a solution to these issues: event sourcing.

6.1.2 Overview of event sourcing

Event sourcing is an event-centric technique for implementing business logic and per-
sisting aggregates. An aggregate is stored in the database as a series of events. Each
event represents a state change of the aggregate. An aggregate’s business logic is struc-
tured around the requirement to produce and consume these events. Let’s see how
that works.

EVENT SOURCING PERSISTS AGGREGATES USING EVENTS

Earlier, in section 6.1.1, I discussed how traditional persistence maps aggregates to
tables, their fields to columns, and their instances to rows. Event sourcing is a very
different approach to persisting aggregates that builds on the concept of domain
events. It persists each aggregate as a sequence of events in the database, known as
an event store.

187Developing business logic using event sourcing
 Consider, for example, the Order aggregate. As figure 6.2 shows, rather than store
each Order as a row in an ORDER table, event sourcing persists each Order aggregate as
one or more rows in an EVENTS table. Each row is a domain event, such as Order
Created, Order Approved, Order Shipped, and so on.

When an application creates or updates an aggregate, it inserts the events emitted by
the aggregate into the EVENTS table. An application loads an aggregate from the event
store by retrieving its events and replaying them. Specifically, loading an aggregate
consists of the following three steps:

1 Load the events for the aggregate.
2 Create an aggregate instance by using its default constructor.
3 Iterate through the events, calling apply().

For example, the Eventuate Client framework, covered later in section 6.2.2, uses code
similar to the following to reconstruct an aggregate:

Class aggregateClass = ...;
Aggregate aggregate = aggregateClass.newInstance();
for (Event event : events) {
aggregate = aggregate.applyEvent(event);

}
// use aggregate...

It creates an instance of the class and iterates through the events, calling the aggre-
gate’s applyEvent() method. If you’re familiar with functional programming, you
may recognize this as a fold or reduce operation.

event_id

102

103

104

105

...

EVENTS table

event_type

Order
Created

Order
Approved

Order
Shipped

Order
Delivered

...

entity_type

Order

Order

Order

Order

...

entity_id

101

101

101

101

...

event_data

{...}

{...}

{...}

{...}

...

Unique event ID The type of the event Identifies the aggregate The serialized event,
such as JSON

Figure 6.2 Event sourcing persists each aggregate as a sequence of events. A RDBMS-based
application can, for example, store the events in an EVENTS table.

188 CHAPTER 6 Developing business logic with event sourcing
 It may be strange and unfamiliar to reconstruct the in-memory state of an aggre-
gate by loading the events and replaying events. But in some ways, it’s not all that dif-
ferent from how an ORM framework such as JPA or Hibernate loads an entity. An
ORM framework loads an object by executing one or more SELECT statements to
retrieve the current persisted state, instantiating objects using their default construc-
tors. It uses reflection to initialize those objects. What’s different about event sourcing
is that the reconstruction of the in-memory state is accomplished using events.

 Let’s now look at the requirements event sourcing places on domain events.

EVENTS REPRESENT STATE CHANGES

Chapter 5 defines domain events as a mechanism for notifying subscribers of changes
to aggregates. Events can either contain minimal data, such as just the aggregate ID,
or can be enriched to contain data that’s useful to a typical consumer. For example,
the Order Service can publish an OrderCreated event when an order is created. An
OrderCreated event may only contain the orderId. Alternatively, the event could con-
tain the complete order so consumers of that event don’t have to fetch the data from
the Order Service. Whether events are published and what those events contain are
driven by the needs of the consumers. With event sourcing, though, it’s primarily the
aggregate that determines the events and their structure.

 Events aren’t optional when using event sourcing. Every state change of an aggre-
gate, including its creation, is represented by a domain event. Whenever the aggregate’s
state changes, it must emit an event. For example, an Order aggregate must emit an
OrderCreated event when it’s created, and an Order* event whenever it is updated.
This is a much more stringent requirement than before, when an aggregate only emit-
ted events that were of interest to consumers.

 What’s more, an event must contain the data that the aggregate needs to perform
the state transition. The state of an aggregate consists of the values of the fields of the
objects that comprise the aggregate. A state change might be as simple as changing
the value of the field of an object, such as Order.state. Alternatively, a state change
can involve adding or removing objects, such as revising an Order’s line items.

 Suppose, as figure 6.3 shows, that the current state of the aggregate is S and the
new state is S'. An event E that represents the state change must contain the data such
that when an Order is in state S, calling order.apply(E) will update the Order to state
S'. In the next section you’ll see that apply() is a method that performs the state
change represented by an event.

 Some events, such as the Order Shipped event, contain little or no data and just
represent the state transition. The apply() method handles an Order Shipped event
by changing the Order’s status field to SHIPPED. Other events, however, contain a lot
of data. An OrderCreated event, for example, must contain all the data needed by the
apply() method to initialize an Order, including its line items, payment information,
delivery information, and so on. Because events are used to persist an aggregate, you
no longer have the option of using a minimal OrderCreated event that contains the
orderId.

189Developing business logic using event sourcing
AGGREGATE METHODS ARE ALL ABOUT EVENTS

The business logic handles a request to update an aggregate by calling a command
method on the aggregate root. In a traditional application, a command method typi-
cally validates its arguments and then updates one or more of the aggregate’s fields.
Command methods in an event sourcing-based application work because they must
generate events. As figure 6.4 shows, the outcome of invoking an aggregate’s com-
mand method is a sequence of events that represent the state changes that must be
made. These events are persisted in the database and applied to the aggregate to
update its state.

The requirement to generate events and apply them requires a restructuring—albeit
mechanical—of the business logic. Event sourcing refactors a command method into
two or more methods. The first method takes a command object parameter, which
represents the request, and determines what state changes need to be performed. It
validates its arguments, and without changing the state of the aggregate, returns a list
of events representing the state changes. This method typically throws an exception if
the command cannot be performed.

Objects and field values Updated objects
and field values

«aggregate»
Order

S

Event
apply()

«aggregate»
Order

S’
Figure 6.3 Applying event E
when the Order is in state S
must change the Order state to
S'. The event must contain the
data necessary to perform the
state change.

«aggregate»
Order

S

Event
apply()

Process(command)

«aggregate»
Order

S’

«aggregate»
Order

S

Event

Figure 6.4 Processing a command
generates events without changing
the state of the aggregate. An
aggregate is updated by applying
an event.

190 CHAPTER 6 Developing business logic with event sourcing
 The other methods each take a particular event type as a parameter and update
the aggregate. There’s one of these methods for each event. It’s important to note
that these methods can’t fail, because an event represents a state change that has hap-
pened. Each method updates the aggregate based on the event.

 The Eventuate Client framework, an event-sourcing framework described in more
detail in section 6.2.2, names these methods process() and apply(). A process()
method takes a command object, which contains the arguments of the update
request, as a parameter and returns a list of events. An apply() method takes an event
as a parameter and returns void. An aggregate will define multiple overloaded ver-
sions of these methods: one process() method for each command class and one
apply() method for each event type emitted by the aggregate. Figure 6.5 shows an
example.

Returns events without updating the Order Applies events to update the Order

public class Order {

public List<Event> process(ReviseOrder command) {
OrderRevision orderRevision = command.getOrderRevision();
switch (state) {
case AUTHORIZED:
LineItemQuantityChange change =

orderLineItems.lineItemQuantityChange(orderRevision);
if (change.newOrderTotal.isGreaterThanOrEqual(orderMinimum)) {
throw new OrderMinimumNotMetException();

}
return singletonList(

new OrderRevisionProposed(
orderRevision, change.currentOrderTotal,
change.newOrderTotal));

default:
throw new UnsupportedStateTransitionException(state);

}
}

public class Order {

public void apply(OrderRevisionProposed event) {
this.state = REVISION_PENDING;

}

public class Order {

public List<DomainEvent> revise(OrderRevision orderRevision) {
switch (state) {

case AUTHORIZED:
LineItemQuantityChange change =

orderLineItems.lineItemQuantityChange(orderRevision);
if (change.newOrderTotal.isGreaterThanOrEqual(orderMinimum)) {
throw new OrderMinimumNotMetException();

}

this.state = REVISION_PENDING;
return …;

default:
throw new UnsupportedStateTransitionException(state);

}
}

Figure 6.5 Event sourcing splits a method that updates an aggregate into a process() method, which takes
a command and returns events, and one or more apply() methods, which take an event and update the
aggregate.

191Developing business logic using event sourcing
In this example, the reviseOrder() method is replaced by a process() method and
an apply() method. The process() method takes a ReviseOrder command as a
parameter. This command class is defined by applying Introduce Parameter Object refactor-
ing (https://refactoring.com/catalog/introduceParameterObject.html) to the revise-
Order() method. The process() method either returns an OrderRevisionProposed
event, or throws an exception if it’s too late to revise the Order or if the proposed revi-
sion doesn’t meet the order minimum. The apply() method for the OrderRevision-
Proposed event changes the state of the Order to REVISION_PENDING.

 An aggregate is created using the following steps:

1 Instantiate aggregate root using its default constructor.
2 Invoke process() to generate the new events.
3 Update the aggregate by iterating through the new events, calling its apply().
4 Save the new events in the event store.

An aggregate is updated using the following steps:

1 Load aggregate’s events from the event store.
2 Instantiate the aggregate root using its default constructor.
3 Iterate through the loaded events, calling apply() on the aggregate root.
4 Invoke its process() method to generate new events.
5 Update the aggregate by iterating through the new events, calling apply().
6 Save the new events in the event store.

To see this in action, let’s now look at the event sourcing version of the Order aggregate.

EVENT SOURCING-BASED ORDER AGGREGATE

Listing 6.1 shows the Order aggregate’s fields and the methods responsible for creat-
ing it. The event sourcing version of the Order aggregate has some similarities to the
JPA-based version shown in chapter 5. Its fields are almost identical, and it emits simi-
lar events. What’s different is that its business logic is implemented in terms of pro-
cessing commands that emit events and applying those events, which updates its state.
Each method that creates or updates the JPA-based aggregate, such as createOrder()
and reviseOrder(), is replaced in the event sourcing version by process() and
apply() methods.

public class Order {

private OrderState state;
private Long consumerId;
private Long restaurantId;
private OrderLineItems orderLineItems;
private DeliveryInformation deliveryInformation;
private PaymentInformation paymentInformation;
private Money orderMinimum;

Listing 6.1 The Order aggregate’s fields and its methods that initialize an instance

https://refactoring.com/catalog/introduceParameterObject.html

192 CHAPTER 6 Developing business logic with event sourcing
public Order() {
}

public List<Event> process(CreateOrderCommand command) {
... validate command ...
return events(new OrderCreatedEvent(command.getOrderDetails()));

}

public void apply(OrderCreatedEvent event) {
OrderDetails orderDetails = event.getOrderDetails();
this.orderLineItems = new OrderLineItems(orderDetails.getLineItems());
this.orderMinimum = orderDetails.getOrderMinimum();
this.state = APPROVAL_PENDING;

}

This class’s fields are similar to those of the JPA-based Order. The only difference is
that the aggregate’s id isn’t stored in the aggregate. The Order’s methods are quite
different. The createOrder() factory method has been replaced by process() and
apply() methods. The process() method takes a CreateOrder command and emits
an OrderCreated event. The apply() method takes the OrderCreated and initializes
the fields of the Order.

 We’ll now look at the slightly more complex business logic for revising an order.
Previously this business logic consisted of three methods: reviseOrder(), confirm-
Revision(), and rejectRevision(). The event sourcing version replaces these three
methods with three process() methods and some apply() methods. The following list-
ing shows the event sourcing version of reviseOrder() and confirmRevision().

public class Order {

public List<Event> process(ReviseOrder command) {
OrderRevision orderRevision = command.getOrderRevision();
switch (state) {
case APPROVED:
LineItemQuantityChange change =

orderLineItems.lineItemQuantityChange(orderRevision);
if (change.newOrderTotal.isGreaterThanOrEqual(orderMinimum)) {
throw new OrderMinimumNotMetException();

}
return singletonList(new OrderRevisionProposed(orderRevision,

change.currentOrderTotal, change.newOrderTotal));

default:
throw new UnsupportedStateTransitionException(state);

}
}

public void apply(OrderRevisionProposed event) {
this.state = REVISION_PENDING;

}

Listing 6.2 The process() and apply() methods that revise an Order aggregate

Validates the command and
returns an OrderCreatedEvent

Apply the OrderCreatedEvent by
initializing the fields of the Order.

Verify that the Order
can be revised and
that the revised
order meets the
order minimum.

Change the state of the Order
to REVISION_PENDING.

193Developing business logic using event sourcing
public List<Event> process(ConfirmReviseOrder command) {
OrderRevision orderRevision = command.getOrderRevision();
switch (state) {
case REVISION_PENDING:
LineItemQuantityChange licd =

orderLineItems.lineItemQuantityChange(orderRevision);
return singletonList(new OrderRevised(orderRevision,

licd.currentOrderTotal, licd.newOrderTotal));
default:
throw new UnsupportedStateTransitionException(state);

}
}

public void apply(OrderRevised event) {
OrderRevision orderRevision = event.getOrderRevision();
if (!orderRevision.getRevisedLineItemQuantities().isEmpty()) {
orderLineItems.updateLineItems(orderRevision);

}
this.state = APPROVED;

}

As you can see, each method has been replaced by a process() method and one or
more apply() methods. The reviseOrder() method has been replaced by process
(ReviseOrder) and apply(OrderRevisionProposed). Similarly, confirmRevision()
has been replaced by process(ConfirmReviseOrder) and apply(OrderRevised).

6.1.3 Handling concurrent updates using optimistic locking

It’s not uncommon for two or more requests to simultaneously update the same
aggregate. An application that uses traditional persistence often uses optimistic lock-
ing to prevent one transaction from overwriting another’s changes. Optimistic locking
typically uses a version column to detect whether an aggregate has changed since it
was read. The application maps the aggregate root to a table that has a VERSION col-
umn, which is incremented whenever the aggregate is updated. The application
updates the aggregate using an UPDATE statement like this:

UPDATE AGGREGATE_ROOT_TABLE
SET VERSION = VERSION + 1 ...
WHERE VERSION = <original version>

This UPDATE statement will only succeed if the version is unchanged from when the
application read the aggregate. If two transactions read the same aggregate, the first
one that updates the aggregate will succeed. The second one will fail because the ver-
sion number has changed, so it won’t accidentally overwrite the first transaction’s
changes.

 An event store can also use optimistic locking to handle concurrent updates. Each
aggregate instance has a version that’s read along with the events. When the applica-
tion inserts events, the event store verifies that the version is unchanged. A simple

Verify that the
revision can be
confirmed and
return an Order-
Revised event.

Revise the
Order.

194 CHAPTER 6 Developing business logic with event sourcing
approach is to use the number of events as the version number. Alternatively, as you’ll
see below in section 6.2, an event store could maintain an explicit version number.

6.1.4 Event sourcing and publishing events

Strictly speaking, event sourcing persists aggregates as events and reconstructs the cur-
rent state of an aggregate from those events. You can also use event sourcing as a reli-
able event publishing mechanism. Saving an event in the event store is an inherently
atomic operation. We need to implement a mechanism to deliver all persisted events
to interested consumers.

 Chapter 3 describes a couple of different mechanisms—polling and transaction log
tailing—for publishing messages that are inserted into the database as part of a transac-
tion. An event sourcing-based application can publish events using one of these mecha-
nisms. The main difference is that it permanently stores events in an EVENTS table rather
than temporarily saving events in an OUTBOX table and then deleting them. Let’s take a
look at each approach, starting with polling.

USING POLLING TO PUBLISH EVENTS

If events are stored in the EVENTS table shown in figure 6.6, an event publisher can
poll the table for new events by executing a SELECT statement and publish the events
to a message broker. The challenge is determining which events are new. For exam-
ple, imagine that eventIds are monotonically increasing. The superficially appealing
approach is for the event publisher to record the last eventId that it has processed. It
would then retrieve new events using a query like this: SELECT * FROM EVENTS where
event_id > ? ORDER BY event_id ASC.

 The problem with this approach is that transactions can commit in an order that’s
different from the order in which they generate events. As a result, the event pub-
lisher can accidentally skip over an event. Figure 6.6 shows such as a scenario.

Transaction A Transaction B

COMMIT

BEGIN BEGIN

COMMIT

INSERT event with
EVENT_ID = 1020

SELECT * FROM EVENTS
WHERE EVENT_ID >

SELECT * FROM EVENTS
WHERE EVENT_ID > 1020...

INSERT event with
EVENT_ID = 1010

Retrieves event 1020

Commits last

Skips event 1010 because
1010 <= event 1020

Figure 6.6 A scenario where an event is skipped because its transaction A commits after
transaction B. Polling sees eventId=1020 and then later skips eventId=1010.

195Developing business logic using event sourcing
In this scenario, Transaction A inserts an event with an EVENT_ID of 1010. Next, trans-
action B inserts an event with an EVENT_ID of 1020 and then commits. If the event
publisher were now to query the EVENTS table, it would find event 1020. Later on, after
transaction A committed and event 1010 became visible, the event publisher would
ignore it.

 One solution to this problem is to add an extra column to the EVENTS table that
tracks whether an event has been published. The event publisher would then use the
following process:

1 Find unpublished events by executing this SELECT statement: SELECT * FROM
EVENTS where PUBLISHED = 0 ORDER BY event_id ASC.

2 Publish events to the message broker.
3 Mark the events as having been published: UPDATE EVENTS SET PUBLISHED = 1

WHERE EVENT_ID in.

This approach prevents the event publisher from skipping events.

USING TRANSACTION LOG TAILING TO RELIABLY PUBLISH EVENTS

More sophisticated event stores use transaction log tailing, which, as chapter 3 describes,
guarantees that events will be published and is also more performant and scalable.
For example, Eventuate Local, an open source event store, uses this approach. It reads
events inserted into an EVENTS table from the database transaction log and pub-
lishes them to the message broker. Section 6.2 discusses how Eventuate Local works
in more detail.

6.1.5 Using snapshots to improve performance

An Order aggregate has relatively few state transitions, so it only has a small number of
events. It’s efficient to query the event store for those events and reconstruct an Order
aggregate. Long-lived aggregates, though, can have a large number of events. For
example, an Account aggregate potentially has a large number of events. Over time, it
would become increasingly inefficient to load and fold those events.

 A common solution is to periodically persist a snapshot of the aggregate’s state.
Figure 6.7 shows an example of using a snapshot. The application restores the state of

The application only needs
to retrieve the snapshot and

events that occur after it.

Event 1 Event 2 Event ... Event N Event +1N

Snapshot
version N

Event +2N

Figure 6.7 Using a snapshot improves performance by eliminating the need to load all
events. An application only needs to load the snapshot and the events that occur after it.

196 CHAPTER 6 Developing business logic with event sourcing
an aggregate by loading the most recent snapshot and only those events that have
occurred since the snapshot was created.

 In this example, the snapshot version is N. The application only needs to load the
snapshot and the two events that follow it in order to restore the state of the aggre-
gate. The previous N events are not loaded from the event store.

 When restoring the state of an aggregate from a snapshot, an application first creates
an aggregate instance from the snapshot and then iterates through the events, applying
them. For example, the Eventuate Client framework, described in section 6.2.2, uses
code similar to the following to reconstruct an aggregate:

Class aggregateClass = ...;
Snapshot snapshot = ...;
Aggregate aggregate = recreateFromSnapshot(aggregateClass, snapshot);
for (Event event : events) {
aggregate = aggregate.applyEvent(event);

}
// use aggregate...

When using snapshots, the aggregate instance is recreated from the snapshot instead
of being created using its default constructor. If an aggregate has a simple, easily seri-
alizable structure, the snapshot can be, for example, its JSON serialization. More com-
plex aggregates can be snapshotted using the Memento pattern (https://en.wikipedia
.org/wiki/Memento_pattern).

 The Customer aggregate in the online store example has a very simple structure:
the customer’s information, their credit limit, and their credit reservations. A snap-
shot of a Customer is the JSON serialization of its state. Figure 6.8 shows how to recre-
ate a Customer from a snapshot corresponding to the state of a Customer as of event
#103. The Customer Service needs to load the snapshot and the events that have
occurred after event #103.

The Customer Service recreates the Customer by deserializing the snapshot’s JSON
and then loading and applying events #104 through #106.

event_id

...

103

104

105

106

EVENTS

event_type

...

...

Credit
Reserved

Address
Changed

Credit
Reserved

entity_type

...

Customer

Customer

Customer

Customer

entity_id

...

101

101

101

101

event_data

...

{...}

{...}

{...}

{...}

event_id

...

103

...

...

SNAPSHOTS

entity_type

...

Customer

...

...

snapshot_data

...

{name: “...” , ...}

...

...

event_id

...

101

...

...

Figure 6.8 The Customer Service recreates the Customer by deserializing the snapshot’s JSON and then
loading and applying events #104 through #106.

https://en.wikipedia.org/wiki/Memento_pattern
https://en.wikipedia.org/wiki/Memento_pattern
https://en.wikipedia.org/wiki/Memento_pattern

197Developing business logic using event sourcing
6.1.6 Idempotent message processing

Services often consume messages from other applications or other services. A service
might, for example, consume domain events published by aggregates or command
messages sent by a saga orchestrator. As described in chapter 3, an important issue
when developing a message consumer is ensuring that it’s idempotent, because a mes-
sage broker might deliver the same message multiple times.

 A message consumer is idempotent if it can safely be invoked with the same mes-
sage multiple times. The Eventuate Tram framework, for example, implements idem-
potent message handling by detecting and discarding duplicate messages. It records
the ids of processed messages in a PROCESSED_MESSAGES table as part of the local
ACID transaction used by the business logic to create or update aggregates. If the ID
of a message is in the PROCESSED_MESSAGES table, it’s a duplicate and can be dis-
carded. Event sourcing-based business logic must implement an equivalent mecha-
nism. How this is done depends on whether the event store uses an RDBMS or a
NoSQL database.

IDEMPOTENT MESSAGE PROCESSING WITH AN RDBMS-BASED EVENT STORE

If an application uses an RDBMS-based event store, it can use an identical approach to
detect and discard duplicates messages. It inserts the message ID into the PROCESSED
_MESSAGES table as part of the transaction that inserts events into the EVENTS table.

IDEMPOTENT MESSAGE PROCESSING WHEN USING A NOSQL-BASED EVENT STORE

A NoSQL-based event store, which has a limited transaction model, must use a different
mechanism to implement idempotent message handling. A message consumer must
somehow atomically persist events and record the message ID. Fortunately, there’s a
simple solution. A message consumer stores the message’s ID in the events that are
generated while processing it. It detects duplicates by verifying that none of an aggre-
gate’s events contains the message ID.

 One challenge with using this approach is that processing a message might not
generate any events. The lack of events means there’s no record of a message having
been processed. A subsequent redelivery and reprocessing of the same message might
result in incorrect behavior. For example, consider the following scenario:

1 Message A is processed but doesn’t update an aggregate.
2 Message B is processed, and the message consumer updates the aggregate.
3 Message A is redelivered, and because there’s no record of it having been pro-

cessed, the message consumer updates the aggregate.
4 Message B is processed again….

In this scenario, the redelivery of events results in a different and possibly erroneous
outcome.

 One way to avoid this problem is to always publish an event. If an aggregate doesn’t
emit an event, an application saves a pseudo event solely to record the message ID.
Event consumers must ignore these pseudo events.

198 CHAPTER 6 Developing business logic with event sourcing
6.1.7 Evolving domain events

Event sourcing, at least conceptually, stores events forever—which is a double-edged
sword. On one hand, it provides the application with an audit log of changes that’s
guaranteed to be accurate. It also enables an application to reconstruct the historical
state of an aggregate. On the other hand, it creates a challenge, because the structure
of events often changes over time.

 An application must potentially deal with multiple versions of events. For example,
a service that loads an Order aggregate could potentially need to fold multiple ver-
sions of events. Similarly, an event subscriber might potentially see multiple versions.

 Let’s first look at the different ways that events can change, and then I’ll describe a
commonly used approach for handling changes.

EVENT SCHEMA EVOLUTION

Conceptually, an event sourcing application has a schema that’s organized into
three levels:

 Consists of one or more aggregates
 Defines the events that each aggregate emits
 Defines the structure of the events

Table 6.1 shows the different types of changes that can occur at each level.

These changes occur naturally as a service’s domain model evolves over time—for
example, when a service’s requirements change or as its developers gain deeper insight
into a domain and improve the domain model. At the schema level, developers add,
remove, and rename aggregate classes. At the aggregate level, the types of events

Table 6.1 The different ways that an application’s events can evolve

Level Change Backward compatible

Schema Define a new aggregate type Yes

Remove aggregate Remove an existing aggregate No

Rename aggregate Change the name of an aggregate type No

Aggregate Add a new event type Yes

Remove event Remove an event type No

Rename event Change the name of an event type No

Event Add a new field Yes

Delete field Delete a field No

Rename field Rename a field No

Change type of field Change the type of a field No

199Developing business logic using event sourcing
emitted by a particular aggregate can change. Developers can change the structure of
an event type by adding, removing, and changing the name or type of a field.

 Fortunately, many of these types of changes are backward-compatible changes. For
example, adding a field to an event is unlikely to impact consumers. A consumer
ignores unknown fields. Other changes, though, aren’t backward compatible. For
example, changing the name of an event or the name of a field requires consumers of
that event type to be changed.

MANAGING SCHEMA CHANGES THROUGH UPCASTING

In the SQL database world, changes to a database schema are commonly handled
using schema migrations. Each schema change is represented by a migration, a SQL
script that changes the schema and migrates the data to a new schema. The schema
migrations are stored in a version control system and applied to a database using a
tool such as Flyway.

 An event sourcing application can use a similar approach to handle non-backward-
compatible changes. But instead of migrating events to the new schema version in
situ, event sourcing frameworks transform events when they’re loaded from the event
store. A component commonly called an upcaster updates individual events from an
old version to a newer version. As a result, the application code only ever deals with
the current event schema.

 Now that we’ve looked at how event sourcing works, let’s consider its benefits and
drawbacks.

6.1.8 Benefits of event sourcing

Event sourcing has both benefits and drawbacks. The benefits include the following:

 Reliably publishes domain events
 Preserves the history of aggregates
 Mostly avoids the O/R impedance mismatch problem
 Provides developers with a time machine

Let’s examine each benefit in more detail.

RELIABLY PUBLISHES DOMAIN EVENTS

A major benefit of event sourcing is that it reliably publishes events whenever the state
of an aggregate changes. That’s a good foundation for an event-driven microservice
architecture. Also, because each event can store the identity of the user who made the
change, event sourcing provides an audit log that’s guaranteed to be accurate. The
stream of events can be used for a variety of other purposes, including notifying users,
application integration, analytics, and monitoring.

PRESERVES THE HISTORY OF AGGREGATES

Another benefit of event sourcing is that it stores the entire history of each aggregate.
You can easily implement temporal queries that retrieve the past state of an aggregate.
To determine the state of an aggregate at a given point in time, you fold the events

200 CHAPTER 6 Developing business logic with event sourcing
that occurred up until that point. It’s straightforward, for example, to calculate the
available credit of a customer at some point in the past.

MOSTLY AVOIDS THE O/R IMPEDANCE MISMATCH PROBLEM

Event sourcing persists events rather than aggregating them. Events typically have a
simple, easily serializable structure. As mentioned earlier, a service can snapshot a
complex aggregate by serializing a memento of its state, which adds a level of indirec-
tion between an aggregate and its serialized representation.

PROVIDES DEVELOPERS WITH A TIME MACHINE

Event sourcing stores a history of everything that’s happened in the lifetime of an
application. Imagine that the FTGO developers need to implement a new require-
ment to customers who added an item to their shopping cart and then removed it. A
traditional application wouldn’t preserve this information, so could only market to
customers who add and remove items after the feature is implemented. In contrast, an
event sourcing-based application can immediately market to customers who have done
this in the past. It’s as if event sourcing provides developers with a time machine for
traveling to the past and implementing unanticipated requirements.

6.1.9 Drawbacks of event sourcing

Event sourcing isn’t a silver bullet. It has the following drawbacks:

 It has a different programming model that has a learning curve.
 It has the complexity of a messaging-based application.
 Evolving events can be tricky.
 Deleting data is tricky.
 Querying the event store is challenging.

Let’s look at each drawback.

DIFFERENT PROGRAMMING MODEL THAT HAS A LEARNING CURVE

It’s a different and unfamiliar programming model, and that means a learning curve.
In order for an existing application to use event sourcing, you must rewrite its busi-
ness logic. Fortunately, that’s a fairly mechanical transformation that you can do when
you migrate your application to microservices.

COMPLEXITY OF A MESSAGING-BASED APPLICATION

Another drawback of event sourcing is that message brokers usually guarantee at-least-
once delivery. Event handlers that aren’t idempotent must detect and discard dupli-
cate events. The event sourcing framework can help by assigning each event a mono-
tonically increasing ID. An event handler can then detect duplicate events by tracking
the highest-seen event ID. This even happens automatically when event handlers
update aggregates.

201Developing business logic using event sourcing
EVOLVING EVENTS CAN BE TRICKY

With event sourcing, the schema of events (and snapshots!) will evolve over time.
Because events are stored forever, aggregates potentially need to fold events corre-
sponding to multiple schema versions. There’s a real risk that aggregates may become
bloated with code to deal with all the different versions. As mentioned in section 6.1.7,
a good solution to this problem is to upgrade events to the latest version when they’re
loaded from the event store. This approach separates the code that upgrades events
from the aggregate, which simplifies the aggregates because they only need to apply
the latest version of the events.

DELETING DATA IS TRICKY

Because one of the goals of event sourcing is to preserve the history of aggregates, it
intentionally stores data forever. The traditional way to delete data when using event
sourcing is to do a soft delete. An application deletes an aggregate by setting a
deleted flag. The aggregate will typically emit a Deleted event, which notifies any
interested consumers. Any code that accesses that aggregate can check the flag and
act accordingly.

 Using a soft delete works well for many kinds of data. One challenge, however, is
complying with the General Data Protection Regulation (GDPR), a European data
protection and privacy regulation that grants individuals the right to erasure (https://
gdpr-info.eu/art-17-gdpr/). An application must have the ability to forget a user’s per-
sonal information, such as their email address. The issue with an event sourcing-based
application is that the email address might either be stored in an AccountCreated
event or used as the primary key of an aggregate. The application somehow must for-
get about the user without deleting the events.

 Encryption is one mechanism you can use to solve this problem. Each user has an
encryption key, which is stored in a separate database table. The application uses that
encryption key to encrypt any events containing the user’s personal information
before storing them in an event store. When a user requests to be erased, the applica-
tion deletes the encryption key record from the database table. The user’s personal
information is effectively deleted, because the events can no longer be decrypted.

 Encrypting events solves most problems with erasing a user’s personal information.
But if some aspect of a user’s personal information, such as email address, is used as
an aggregate ID, throwing away the encryption key may not be sufficient. For exam-
ple, section 6.2 describes an event store that has an entities table whose primary key
is the aggregate ID. One solution to this problem is to use the technique of pseud-
onymization, replacing the email address with a UUID token and using that as the
aggregate ID. The application stores the association between the UUID token and the
email address in a database table. When a user requests to be erased, the application
deletes the row for their email address from that table. This prevents the application
from mapping the UUID back to the email address.

https://gdpr-info.eu/art-17-gdpr/
https://gdpr-info.eu/art-17-gdpr/
https://gdpr-info.eu/art-17-gdpr/

202 CHAPTER 6 Developing business logic with event sourcing
QUERYING THE EVENT STORE IS CHALLENGING

Imagine you need to find customers who have exhausted their credit limit. Because
there isn’t a column containing the credit, you can’t write SELECT * FROM CUSTOMER
WHERE CREDIT_LIMIT = 0. Instead, you must use a more complex and potentially ineffi-
cient query that has a nested SELECT to compute the credit limit by folding events that
set the initial credit and adjusting it. To make matters worse, a NoSQL-based event
store will typically only support primary key-based lookup. Consequently, you must
implement queries using the CQRS approach described in chapter 7.

6.2 Implementing an event store
An application that uses event sourcing stores its events in an event store. An event store
is a hybrid of a database and a message broker. It behaves as a database because it has
an API for inserting and retrieving an aggregate’s events by primary key. And it
behaves as a message broker because it has an API for subscribing to events.

 There are a few different ways to implement an event store. One option is to imple-
ment your own event store and event sourcing framework. You can, for example, per-
sist events in an RDBMS. A simple, albeit low-performance, way to publish events is for
subscribers to poll the EVENTS table for events. But, as noted in section 6.1.4, one chal-
lenge is ensuring that a subscriber processes all events in order.

 Another option is to use a special-purpose event store, which typically provides a
rich set of features and better performance and scalability. There are several of these
to chose from:

 Event Store—A .NET-based open source event store developed by Greg Young,
an event sourcing pioneer (https://eventstore.org).

 Lagom—A microservices framework developed by Lightbend, the company for-
merly known as Typesafe (www.lightbend.com/lagom-framework).

 Axon—An open source Java framework for developing event-driven applications
that use event sourcing and CQRS (www.axonframework.org).

 Eventuate—Developed by my startup, Eventuate (http://eventuate.io). There are
two versions of Eventuate: Eventuate SaaS, a cloud service, and Eventuate Local,
an Apache Kafka/RDBMS-based open source project.

Although these frameworks differ in the details, the core concepts remain the same.
Because Eventuate is the framework I’m most familiar with, that’s the one I cover
here. It has a straightforward, easy-to-understand architecture that illustrates event
sourcing concepts. You can use it in your applications, reimplement the concepts
yourself, or apply what you learn here to build applications with one of the other
event sourcing frameworks.

 I begin the following sections by describing how the Eventuate Local event store
works. Then I describe the Eventuate Client framework for Java, an easy-to-use frame-
work for writing event sourcing-based business logic that uses the Eventuate Local
event store.

https://eventstore.org
http://eventuate.io
http://www.lightbend.com/lagom-framework
http://www.axonframework.org

203Implementing an event store
6.2.1 How the Eventuate Local event store works

Eventuate Local is an open source event store. Figure 6.9 shows the architecture.
Events are stored in a database, such as MySQL. Applications insert and retrieve
aggregate events by primary key. Applications consume events from a message broker,
such as Apache Kafka. A transaction log tailing mechanism propagates events from
the database to the message broker.

Let’s look at the different Eventuate Local components, starting with the database
schema.

THE SCHEMA OF EVENTUATE LOCAL’S EVENT DATABASE

The event database consists of three tables:

 events—Stores the events
 entities—One row per entity
 snapshots—Stores snapshots

The central table is the events table. The structure of this table is very similar to the
table shown in figure 6.2. Here’s its definition:

event_id

102

103

...

EVENTS

Event database

Event broker

Order topic

Event relay

Event relay
Application

Customer topic

event_type

Order
Created

Order
Approved

...

entity_type

Order

Order

...

entity_id

101

101

...

event_data

{...}

{...}

...

ENTITIES

entity_type

...

entity_version

...

entity_id

...

...

...

SNAPSHOTS

entity_type

...

entity_version

...

entity_id

...

...

...

Stores the events

Publishes events stored
in the database to

the message broker

Figure 6.9 The architecture of Eventuate Local. It consists of an event database (such as MySQL)
that stores the events, an event broker (like Apache Kafka) that delivers events to subscribers, and an
event relay that publishes events stored in the event database to the event broker.

204 CHAPTER 6 Developing business logic with event sourcing
create table events (
event_id varchar(1000) PRIMARY KEY,
event_type varchar(1000),
event_data varchar(1000) NOT NULL,
entity_type VARCHAR(1000) NOT NULL,
entity_id VARCHAR(1000) NOT NULL,
triggering_event VARCHAR(1000)

);

The triggering_event column is used to detect duplicate events/messages. It stores
the ID of the message/event whose processing generated this event.

 The entities table stores the current version of each entity. It’s used to imple-
ment optimistic locking. Here’s the definition of this table:

create table entities (
entity_type VARCHAR(1000),
entity_id VARCHAR(1000),
entity_version VARCHAR(1000) NOT NULL,
PRIMARY KEY(entity_type, entity_id)

);

When an entity is created, a row is inserted into this table. Each time an entity is
updated, the entity_version column is updated.

 The snapshots table stores the snapshots of each entity. Here’s the definition of
this table:

create table snapshots (
entity_type VARCHAR(1000),
entity_id VARCHAR(1000),
entity_version VARCHAR(1000),
snapshot_type VARCHAR(1000) NOT NULL,
snapshot_json VARCHAR(1000) NOT NULL,
triggering_events VARCHAR(1000),
PRIMARY KEY(entity_type, entity_id, entity_version)

)

The entity_type and entity_id columns specify the snapshot’s entity. The snapshot
_json column is the serialized representation of the snapshot, and the snapshot_type
is its type. The entity_version specifies the version of the entity that this is a snap-
shot of.

 The three operations supported by this schema are find(), create(), and
update(). The find() operation queries the snapshots table to retrieve the latest
snapshot, if any. If a snapshot exists, the find() operation queries the events table to
find all events whose event_id is greater than the snapshot’s entity_version. Other-
wise, find() retrieves all events for the specified entity. The find() operation also
queries the entity table to retrieve the entity’s current version.

 The create() operation inserts a row into the entity table and inserts the events
into the events table. The update() operation inserts events into the events table. It

205Implementing an event store
also performs an optimistic locking check by updating the entity version in the
entities table using this UPDATE statement:

UPDATE entities SET entity_version = ?
WHERE entity_type = ? and entity_id = ? and entity_version = ?

This statement verifies that the version is unchanged since it was retrieved by the find()
operation. It also updates the entity_version to the new version. The update() opera-
tion performs these updates within a transaction in order to ensure atomicity.

 Now that we’ve looked at how Eventuate Local stores an aggregate’s events and snap-
shots, let’s see how a client subscribes to events using Eventuate Local’s event broker.

CONSUMING EVENTS BY SUBSCRIBING TO EVENTUATE LOCAL’S EVENT BROKER

Services consume events by subscribing to the event broker, which is implemented
using Apache Kafka. The event broker has a topic for each aggregate type. As described
in chapter 3, a topic is a partitioned message channel. This enables consumers to scale
horizontally while preserving message ordering. The aggregate ID is used as the parti-
tion key, which preserves the ordering of events published by a given aggregate. To
consume an aggregate’s events, a service subscribes to the aggregate’s topic.

 Let’s now look at the event relay—the glue between the event database and the
event broker.

THE EVENTUATE LOCAL EVENT RELAY PROPAGATES EVENTS FROM THE DATABASE TO
THE MESSAGE BROKER

The event relay propagates events inserted into the event database to the event bro-
ker. It uses transaction log tailing whenever possible and polling for other databases.
For example, the MySQL version of the event relay uses the MySQL master/slave rep-
lication protocol. The event relay connects to the MySQL server as if it were a slave
and reads the MySQL binlog, a record of updates made to the database. Inserts into
the EVENTS table, which correspond to events, are published to the appropriate
Apache Kafka topic. The event relay ignores any other kinds of changes.

 The event relay is deployed as a standalone process. In order to restart correctly,
it periodically saves the current position in the binlog—filename and offset—in a
special Apache Kafka topic. On startup, it first retrieves the last recorded position
from the topic. The event relay then starts reading the MySQL binlog from that
position.

 The event database, message broker, and event relay comprise the event store.
Let’s now look at the framework a Java application uses to access the event store.

6.2.2 The Eventuate client framework for Java

The Eventuate client framework enables developers to write event sourcing-based
applications that use the Eventuate Local event store. The framework, shown in fig-
ure 6.10, provides the foundation for developing event sourcing-based aggregates, ser-
vices, and event handlers.

206 CHAPTER 6 Developing business logic with event sourcing
The framework provides base classes for aggregates, commands, and events. There’s
also an AggregateRepository class that provides CRUD functionality. And the frame-
work has an API for subscribing to events.

 Let’s briefly look at each of the types shown in figure 6.10.

DEFINING AGGREGATES WITH THE REFLECTIVEMUTABLECOMMANDPROCESSINGAGGREGATE CLASS

ReflectiveMutableCommandProcessingAggregate is the base class for aggregates. It’s
a generic class that has two type parameters: the first is the concrete aggregate class,
and the second is the superclass of the aggregate’s command classes. As its rather
long name suggests, it uses reflection to dispatch command and events to the appro-
priate method. Commands are dispatched to a process() method, and events to an
apply() method.

 The Order class you saw earlier extends ReflectiveMutableCommandProcessing-
Aggregate. The following listing shows the Order class.

public class Order extends ReflectiveMutableCommandProcessingAggregate<Order,
OrderCommand> {

public List<Event> process(CreateOrderCommand command) { ... }

public void apply(OrderCreatedEvent event) { ... }

Listing 6.3 The Eventuate version of the Order class

OrderService
EventHandlers

creditReserved()

«interface»
OrderEvent

«interface»
OrderCommand

«event»
OrderCreated

«command»
CreateOrder

Order

process()
apply()

Order
Service

createOrder()

«annotation»
Event

Subscriber

«interface»
Event

«interface»
Command

«abstract»
ReflectiveMutableCommand

ProcessingAggregate

Aggregate
Repository

Eventuate client framework

Order Service

save()
find()
update()

Abstract classes and interfaces that
application classes extend or implement

Figure 6.10 The main classes and interfaces provided by the Eventuate client framework for Java

207Implementing an event store
...
}

The two type parameters passed to ReflectiveMutableCommandProcessingAggregate
are Order and OrderCommand, which is the base interface for Order’s commands.

DEFINING AGGREGATE COMMANDS

An aggregate’s command classes must extend an aggregate-specific base interface,
which itself must extend the Command interface. For example, the Order aggregate’s
commands extend OrderCommand:

public interface OrderCommand extends Command {
}

public class CreateOrderCommand implements OrderCommand { ... }

The OrderCommand interface extends Command, and the CreateOrderCommand com-
mand class extends OrderCommand.

DEFINING DOMAIN EVENTS

An aggregate’s event classes must extend the Event interface, which is a marker inter-
face with no methods. It’s also useful to define a common base interface, which
extends Event for all of an aggregate’s event classes. For example, here’s the defini-
tion of the OrderCreated event:

interface OrderEvent extends Event {

}

public class OrderCreated extends OrderEvent { ... }

The OrderCreated event class extends OrderEvent, which is the base interface for the
Order aggregate’s event classes. The OrderEvent interface extends Event.

CREATING, FINDING, AND UPDATING AGGREGATES WITH THE AGGREGATEREPOSITORY CLASS

The framework provides several ways to create, find, and update aggregates. The sim-
plest approach, which I describe here, is to use an AggregateRepository. Aggregate-
Repository is a generic class that’s parameterized by the aggregate class and the
aggregate’s base command class. It provides three overloaded methods:

 save()—Creates an aggregate
 find()—Finds an aggregate
 update()—Updates an aggregate

The save () and update() methods are particularly convenient because they encapsu-
late the boilerplate code required for creating and updating aggregates. For instance,
save() takes a command object as a parameter and performs the following steps:

1 Instantiates the aggregate using its default constructor
2 Invokes process() to process the command

208 CHAPTER 6 Developing business logic with event sourcing
3 Applies the generated events by calling apply()
4 Saves the generated events in the event store

The update() method is similar. It has two parameters, an aggregate ID and a com-
mand, and performs the following steps:

1 Retrieves the aggregate from the event store
2 Invokes process() to process the command
3 Applies the generated events by calling apply()
4 Saves the generated events in the event store

The AggregateRepository class is primarily used by services, which create and update
aggregates in response to external requests. For example, the following listing shows
how OrderService uses an AggregateRepository to create an Order.

public class OrderService {
private AggregateRepository<Order, OrderCommand> orderRepository;

public OrderService(AggregateRepository<Order, OrderCommand> orderRepository)
{
this.orderRepository = orderRepository;

}

public EntityWithIdAndVersion<Order> createOrder(OrderDetails orderDetails) {
return orderRepository.save(new CreateOrder(orderDetails));

}
}

OrderService is injected with an AggregateRepository for Orders. Its create()
method invokes AggregateRepository.save() with a CreateOrder command.

SUBSCRIBING TO DOMAIN EVENTS

The Eventuate Client framework also provides an API for writing event handlers. List-
ing 6.5 shows an event handler for CreditReserved events. The @EventSubscriber
annotation specifies the ID of the durable subscription. Events that are published when
the subscriber isn’t running will be delivered when it starts up. The @EventHandler-
Method annotation identifies the creditReserved() method as an event handler.

@EventSubscriber(id="orderServiceEventHandlers")
public class OrderServiceEventHandlers {

@EventHandlerMethod
public void creditReserved(EventHandlerContext<CreditReserved> ctx) {
CreditReserved event = ctx.getEvent();
...

}

Listing 6.4 OrderService uses an AggregateRepository

Listing 6.5 An event handler for OrderCreatedEvent

209Using sagas and event sourcing together
An event handler has a parameter of type EventHandlerContext, which contains the
event and its metadata.

 Now that we’ve looked at how to write event sourcing-based business logic using
the Eventuate client framework, let’s look at how to use event sourcing-based business
logic with sagas.

6.3 Using sagas and event sourcing together
Imagine you’ve implemented one or more services using event sourcing. You’ve prob-
ably written services similar to the one shown in listing 6.4. But if you’ve read chapter 4,
you know that services often need to initiate and participate in sagas, sequences of
local transactions used to maintain data consistency across services. For example,
Order Service uses a saga to validate an Order. Kitchen Service, Consumer Service,
and Accounting Service participate in that saga. Consequently, you must integrate
sagas and event sourcing-based business logic.

 Event sourcing makes it easy to use choreography-based sagas. The participants
exchange the domain events emitted by their aggregates. Each participant’s aggre-
gates handle events by processing commands and emitting new events. You need to
write the aggregates and the event handler classes, which update the aggregates.

 But integrating event sourcing-based business logic with orchestration-based sagas
can be more challenging. That’s because the event store’s concept of a transaction
might be quite limited. When using some event stores, an application can only create
or update a single aggregate and publish the resulting event(s). But each step of a
saga consists of several actions that must be performed atomically:

 Saga creation—A service that initiates a saga must atomically create or update an
aggregate and create the saga orchestrator. For example, Order Service’s
createOrder() method must create an Order aggregate and a CreateOrderSaga.

 Saga orchestration—A saga orchestrator must atomically consume replies, update
its state, and send command messages.

 Saga participants—Saga participants, such as Kitchen Service and Order Service,
must atomically consume messages, detect and discard duplicates, create or
update aggregates, and send reply messages.

Because of this mismatch between these requirements and the transactional capabili-
ties of an event store, integrating orchestration-based sagas and event sourcing poten-
tially creates some interesting challenges.

 A key factor in determining the ease of integrating event sourcing and orchestration-
based sagas is whether the event store uses an RDBMS or a NoSQL database. The
Eventuate Tram saga framework described in chapter 4 and the underlying Tram mes-
saging framework described in chapter 3 rely on flexible ACID transactions provided
by the RDBMS. The saga orchestrator and the saga participants use ACID transactions
to atomically update their databases and exchange messages. If the application uses
an RDBMS-based event store, such as Eventuate Local, then it can cheat and invoke the

210 CHAPTER 6 Developing business logic with event sourcing
Eventuate Tram saga framework and update the event store within an ACID transac-
tion. But if the event store uses a NoSQL database, which can’t participate in the same
transaction as the Eventuate Tram saga framework, it will have to take a different
approach.

 Let’s take a closer look at some of the different scenarios and issues you’ll need to
address:

 Implementing choreography-based sagas
 Creating an orchestration-based saga
 Implementing an event sourcing-based saga participant
 Implementing saga orchestrators using event sourcing

We’ll begin by looking at how to implement choreography-based sagas using event
sourcing.

6.3.1 Implementing choreography-based sagas using event sourcing

The event-driven nature of event sourcing makes it quite straightforward to imple-
ment choreography-based sagas. When an aggregate is updated, it emits an event.
An event handler for a different aggregate can consume that event and update its
aggregate. The event sourcing framework automatically makes each event handler
idempotent.

 For example, chapter 4 discusses how to implement Create Order Saga using cho-
reography. ConsumerService, KitchenService, and AccountingService subscribe to
the OrderService’s events and vice versa. Each service has an event handler similar
to the one shown in listing 6.5. The event handler updates the corresponding aggre-
gate, which emits another event.

 Event sourcing and choreography-based sagas work very well together. Event sourc-
ing provides the mechanisms that sagas need, including messaging-based IPC, mes-
sage de-duplication, and atomic updating of state and message sending. Despite its
simplicity, choreography-based sagas have several drawbacks. I talk about some draw-
backs in chapter 4, but there’s a drawback that’s specific to event sourcing.

 The problem with using events for saga choreography is that events now have a
dual purpose. Event sourcing uses events to represent state changes, but using events
for saga choreography requires an aggregate to emit an event even if there is no state
change. For example, if updating an aggregate would violate a business rule, then the
aggregate must emit an event to report the error. An even worse problem is when a
saga participant can’t create an aggregate. There’s no aggregate that can emit an
error event.

 Because of these kinds of issues, it’s best to implement more complex sagas using
orchestration. The following sections explain how to integrate orchestration-based
sagas and event sourcing. As you’ll see, it involves solving some interesting problems.

 Let’s first look at how a service method such as OrderService.createOrder() cre-
ates a saga orchestrator.

211Using sagas and event sourcing together

a.
6.3.2 Creating an orchestration-based saga

Saga orchestrators are created by some service methods. Other service methods, such
as OrderService.createOrder(), do two things: create or update an aggregate and
create a saga orchestrator. The service must perform both actions in a way that guar-
antees that if it does the first action, then the second action will be done eventually.
How the service ensures that both of these actions are performed depends on the
kind of event store it uses.

CREATING A SAGA ORCHESTRATOR WHEN USING AN RDBMS-BASED EVENT STORE

If a service uses an RDBMS-based event store, it can update the event store and create
a saga orchestrator within the same ACID transaction. For example, imagine that the
OrderService uses Eventuate Local and the Eventuate Tram saga framework. Its
createOrder() method would look like this:

class OrderService

@Autowired
private SagaManager<CreateOrderSagaState> createOrderSagaManager;

@Transactional
public EntityWithIdAndVersion<Order> createOrder(OrderDetails orderDetails) {
EntityWithIdAndVersion<Order> order =

orderRepository.save(new CreateOrder(orderDetails));

CreateOrderSagaState data =
new CreateOrderSagaState(order.getId(), orderDetails);

createOrderSagaManager.create(data, Order.class, order.getId());

return order;
}

...

It’s a combination of the OrderService in listing 6.4 and the OrderService described
in chapter 4. Because Eventuate Local uses an RDBMS, it can participate in the same
ACID transaction as the Eventuate Tram saga framework. But if a service uses a
NoSQL-based event store, creating a saga orchestrator isn’t as straightforward.

CREATING A SAGA ORCHESTRATOR WHEN USING A NOSQL-BASED EVENT STORE

A service that uses a NoSQL-based event store will most likely be unable to atomically
update the event store and create a saga orchestrator. The saga orchestration frame-
work might use an entirely different database. Even if it uses the same NoSQL data-
base, the application won’t be able to create or update two different objects atomically
because of the NoSQL database’s limited transaction model. Instead, a service must
have an event handler that creates the saga orchestrator in response to a domain
event emitted by the aggregate.

 For example, figure 6.11 shows how Order Service creates a CreateOrderSaga
using an event handler for the OrderCreated event. Order Service first creates an

Ensure the createOrder() executes
within a database transaction.

Create the Order
aggregate.

Create the
CreateOrderSag

212 CHAPTER 6 Developing business logic with event sourcing
Order aggregate and persists it in the event store. The event store publishes the Order-
Created event, which is consumed by the event handler. The event handler invokes
the Eventuate Tram saga framework to create a CreateOrderSaga.

One issue to keep in mind when writing an event handler that creates a saga orches-
trator is that it must handle duplicate events. At-least-once message delivery means
that the event handler that creates the saga might be invoked multiple times. It’s
important to ensure that only one saga instance is created.

 A straightforward approach is to derive the ID of the saga from a unique attribute
of the event. There are a couple of different options. One is to use the ID of the aggre-
gate that emits the event as the ID of the saga. This works well for sagas that are cre-
ated in response to aggregate creation events.

 Another option is to use the event ID as the saga ID. Because event IDs are unique,
this will guarantee that the saga ID is unique. If an event is a duplicate, the event han-
dler’s attempt to create the saga will fail because the ID already exists. This option is
useful when multiple instances of the same saga can exist for a given aggregate
instance.

 A service that uses an RDBMS-based event store can also use the same event-driven
approach to create sagas. A benefit of this approach is that it promotes loose coupling
because services such as OrderService no longer explicitly instantiate sagas.

 Now that we’ve looked at how to reliably create a saga orchestrator, let’s see how
event sourcing-based services can participate in orchestration-based sagas.

Create a CreateOrderSaga
in response to an
OrderCreated event.

Persist an
OrderCreated
event.

OrderCreated

OrderCreated

Order
OrderCreated
EventHandler

CreateOrderSaga

Event store

Persisted as

Order Service

Figure 6.11 Using an event handler to reliably create a saga after a service creates an event
sourcing-based aggregate

213Using sagas and event sourcing together
6.3.3 Implementing an event sourcing-based saga participant

Imagine that you used event sourcing to implement a service that needs to participate
in an orchestration-based saga. Not surprisingly, if your service uses an RDBMS-based
event store such as Eventuate Local, you can easily ensure that it atomically processes
saga command messages and sends replies. It can update the event store as part of the
ACID transaction initiated by the Eventuate Tram framework. But you must use an
entirely different approach if your service uses an event store that can’t participate in
the same transaction as the Eventuate Tram framework.

 You must address a couple of different issues:

 Idempotent command message handling
 Atomically sending a reply message

Let’s first look at how to implement idempotent command message handlers.

IDEMPOTENT COMMAND MESSAGE HANDLING

The first problem to solve is how an event sourcing-based saga participant can detect
and discard duplicate messages in order to implement idempotent command message
handling. Fortunately, this is an easy problem to address using the idempotent mes-
sage handling mechanism described earlier. A saga participant records the message
ID in the events that are generated when processing the message. Before updating an
aggregate, the saga participant verifies that it hasn’t processed the message before by
looking for the message ID in the events.

ATOMICALLY SENDING REPLY MESSAGES

The second problem to solve is how an event sourcing-based saga participant can
atomically send replies. In principle, a saga orchestrator could subscribe to the events
emitted by an aggregate, but there are two problems with this approach. The first is
that a saga command might not actually change the state of an aggregate. In this sce-
nario, the aggregate won’t emit an event, so no reply will be sent to the saga orchestra-
tor. The second problem is that this approach requires the saga orchestrator to treat
saga participants that use event sourcing differently from those that don’t. That’s
because in order to receive domain events, the saga orchestrator must subscribe to the
aggregate’s event channel in addition to its own reply channel.

 A better approach is for the saga participant to continue to send a reply message to
the saga orchestrator’s reply channel. But rather than send the reply message directly,
a saga participant uses a two-step process:

1 When a saga command handler creates or updates an aggregate, it arranges for
a SagaReplyRequested pseudo event to be saved in the event store along with
the real events emitted by the aggregate.

2 An event handler for the SagaReplyRequested pseudo event uses the data con-
tained in the event to construct the reply message, which it then writes to the
saga orchestrator’s reply channel.

Let’s look at an example to see how this works.

214 CHAPTER 6 Developing business logic with event sourcing
EXAMPLE EVENT SOURCING-BASED SAGA PARTICIPANT

This example looks at Accounting Service, one of the participants of Create Order
Saga. Figure 6.12 shows how Accounting Service handles the Authorize Command
sent by the saga. Accounting Service is implemented using the Eventuate Saga frame-
work. The Eventuate Saga framework is an open source framework for writing sagas
that use event sourcing. It’s built on the Eventuate Client framework.

This figure shows how Create Order Saga and AccountingService interact. The
sequence of events is as follows:

AccountCreated

....

AccountAuthorized

AccountAuthorized

SagaReplyRequested

Event store

Event dispatcher

Eventuate API

Accounting Service

SagaReplyRequested

Order Service

Aggregate
repository

SagaReply
requested

EventHandler

Eventuate saga framework

Saga command
dispatcher

Authorize

command

Authorize

reply

Account

command channel

Create order saga

reply channel

Create

order

saga

Account

authorize()

Authorize account

command handler

Authorize
the account.

Send command to
accounting service.

Handle SagaReply
requested event
and send reply.

Emit
SagaReply
requested
event.

Figure 6.12 How the event sourcing-based Accounting Service participates in Create
Order Saga

215Using sagas and event sourcing together
1 Create Order Saga sends an AuthorizeAccount command to Accounting-
Service via a messaging channel. The Eventuate Saga framework’s SagaCommand-
Dispatcher invokes AccountingServiceCommandHandler to handle the command
message.

2 AccountingServiceCommandHandler sends the command to the specified
Account aggregate.

3 The aggregate emits two events, AccountAuthorized and SagaReplyRequested-
Event.

4 SagaReplyRequestedEventHandler handles SagaReplyRequestedEvent by send-
ing a reply message to CreateOrderSaga.

The AccountingServiceCommandHandler shown in the following listing handles the
AuthorizeAccount command message by calling AggregateRepository.update() to
update the Account aggregate.

public class AccountingServiceCommandHandler {

@Autowired
private AggregateRepository<Account, AccountCommand> accountRepository;

public void authorize(CommandMessage<AuthorizeCommand> cm) {
AuthorizeCommand command = cm.getCommand();
accountRepository.update(command.getOrderId(),

command,
replyingTo(cm)

.catching(AccountDisabledException.class,
() -> withFailure(new AccountDisabledReply()))

.build());
}

...

The authorize() method invokes an AggregateRepository to update the Account
aggregate. The third argument to update(), which is the UpdateOptions, is computed
by this expression:

replyingTo(cm)
.catching(AccountDisabledException.class,

() -> withFailure(new AccountDisabledReply()))
.build()

These UpdateOptions configure the update() method to do the following:

1 Use the message id as an idempotency key to ensure that the message is pro-
cessed exactly once. As mentioned earlier, the Eventuate framework stores the
idempotency key in all generated events, enabling it to detect and ignore dupli-
cate attempts to update an aggregate.

Listing 6.6 Handles command messages sent by sagas

216 CHAPTER 6 Developing business logic with event sourcing
2 Add a SagaReplyRequestedEvent pseudo event to the list of events saved in the
event store. When SagaReplyRequestedEventHandler receives the SagaReply-
RequestedEvent pseudo event, it sends a reply to the CreateOrderSaga’s reply
channel.

3 Send an AccountDisabledReply instead of the default error reply when the
aggregate throws an AccountDisabledException.

Now that we’ve looked at how to implement saga participants using event sourcing,
let’s find out how to implement saga orchestrators.

6.3.4 Implementing saga orchestrators using event sourcing

So far in this section, I’ve described how event sourcing-based services can initiate
and participate in sagas. You can also use event sourcing to implement saga orches-
trators. This will enable you to develop applications that are entirely based on an
event store.

 There are three key design problems you must solve when implementing a saga
orchestrator:

1 How can you persist a saga orchestrator?
2 How can you atomically change the state of the orchestrator and send com-

mand messages?
3 How can you ensure that a saga orchestrator processes reply messages exactly

once?

Chapter 4 discusses how to implement an RDBMS-based saga orchestrator. Let’s look
at how to solve these problems when using event sourcing.

PERSISTING A SAGA ORCHESTRATOR USING EVENT SOURCING

A saga orchestrator has a very simple lifecycle. First, it’s created. Then it’s updated in
response to replies from saga participants. We can, therefore, persist a saga using the
following events:

 SagaOrchestratorCreated—The saga orchestrator has been created.
 SagaOrchestratorUpdated—The saga orchestrator has been updated.

A saga orchestrator emits a SagaOrchestratorCreated event when it’s created and a
SagaOrchestratorUpdated event when it has been updated. These events contain the
data necessary to re-create the state of the saga orchestrator. For example, the events
for CreateOrderSaga, described in chapter 4, would contain a serialized (for example,
JSON) CreateOrderSagaState.

SENDING COMMAND MESSAGES RELIABLY

Another key design issue is how to atomically update the state of the saga and send a
command. As described in chapter 4, the Eventuate Tram-based saga implementa-
tion does this by updating the orchestrator and inserting the command message
into a message table as part of the same transaction. An application that uses an

217Using sagas and event sourcing together
RDBMS-based event store, such as Eventuate Local, can use the same approach. An
application that uses a NoSQL-based event store, such as Eventuate SaaS, can use an
analogous approach, despite having a very limited transaction model.

 The trick is to persist a SagaCommandEvent, which represents a command to send.
An event handler then subscribes to SagaCommandEvents and sends each command
message to the appropriate channel. Figure 6.13 shows how this works.

The saga orchestrator uses a two-step process to send commands:

1 A saga orchestrator emits a SagaCommandEvent for each command that it wants
to send. SagaCommandEvent contains all the data needed to send the command,
such as the destination channel and the command object. These events are per-
sisted in the event store.

2 An event handler processes these SagaCommandEvents and sends command
messages to the destination message channel.

This two-step approach guarantees that the command will be sent at least once.
 Because the event store provides at-least-once delivery, an event handler might be

invoked multiple times with the same event. That will cause the event handler for
SagaCommandEvents to send duplicate command messages. Fortunately, though, a
saga participant can easily detect and discard duplicate commands using the following

2. Handle SagaCommandEvent
by sending a command.

1. Emit a SagaCommandEvent
for each command to send.

SagaCommandEvent

SagaCreatedEvent

SagaCommandEvent

SagaUpdatedEvent

SagaCommandEvent

«saga»
CreateOrderSaga

SagaCommand
EventHandler

Event store

Persisted as

Service

Service Command
Channel

Sends
command

Message broker

Figure 6.13 How an event sourcing-based saga orchestrator sends commands to saga participants

218 CHAPTER 6 Developing business logic with event sourcing
mechanism. The ID of SagaCommandEvent, which is guaranteed to be unique, is used
as the ID of the command message. As a result, the duplicate messages will have the
same ID. A saga participant that receives a duplicate command message will discard it
using the mechanism described earlier.

PROCESSING REPLIES EXACTLY ONCE

A saga orchestrator also needs to detect and discard duplicate reply messages, which it
can do using the mechanism described earlier. The orchestrator stores the reply mes-
sage’s ID in the events that it emits when processing the reply. It can then easily deter-
mine whether a message is a duplicate.

 As you can see, event sourcing is a good foundation for implementing sagas. This
is in addition to the other benefits of event sourcing, including the inherently reli-
able generation of events whenever data changes, reliable audit logging, and the
ability to do temporal queries. Event sourcing isn’t a silver bullet, though. It involves
a significant learning curve. Evolving the event schema isn’t always straightforward.
But despite these drawbacks, event sourcing has a major role to play in a micro-
service architecture. In the next chapter, we’ll switch gears and look at how to tackle
a different distributed data management challenge in a microservice architecture:
queries. I’ll describe how to implement queries that retrieve data scattered across
multiple services.

Summary
 Event sourcing persists an aggregate as a sequence of events. Each event rep-

resents either the creation of the aggregate or a state change. An application
recreates the state of an aggregate by replaying events. Event sourcing preserves
the history of a domain object, provides an accurate audit log, and reliably pub-
lishes domain events.

 Snapshots improve performance by reducing the number of events that must
be replayed.

 Events are stored in an event store, a hybrid of a database and a message broker.
When a service saves an event in an event store, it delivers the event to subscribers.

 Eventuate Local is an open source event store based on MySQL and Apache
Kafka. Developers use the Eventuate client framework to write aggregates and
event handlers.

 One challenge with using event sourcing is handling the evolution of events. An
application potentially must handle multiple event versions when replaying
events. A good solution is to use upcasting, which upgrades events to the latest
version when they’re loaded from the event store.

 Deleting data in an event sourcing application is tricky. An application must use
techniques such as encryption and pseudonymization in order to comply with
regulations like the European Union’s GDPR that requires an application to
erase an individual’s data.

219Summary
 Event sourcing is a simple way to implement choreography-based sagas. Ser-
vices have event handlers that listen to the events published by event sourcing-
based aggregates.

 Event sourcing is a good way to implement saga orchestrators. As a result, you
can write applications that exclusively use an event store.

Implementing queries in a
microservice architecture
Mary and her team were just starting to get comfortable with the idea of using sagas
to maintain data consistency. Then they discovered that transaction management
wasn’t the only distributed data-related challenge they had to worry about when
migrating the FTGO application to microservices. They also had to figure out how
to implement queries.

 In order to support the UI, the FTGO application implements a variety of
query operations. Implementing these queries in the existing monolithic applica-
tion is relatively straightforward, because it has a single database. For the most
part, all the FTGO developers needed to do was write SQL SELECT statements
and define the necessary indexes. As Mary discovered, writing queries in a micro-
service architecture is challenging. Queries often need to retrieve data that’s scattered

This chapter covers
 The challenges of querying data in a microservice

architecture

 When and how to implement queries using the
API composition pattern

 When and how to implement queries using the
Command query responsibility segregation
(CQRS) pattern
220

221Querying using the API composition pattern
among the databases owned by multiple services. You can’t, however, use a traditional
distributed query mechanism, because even if it were technically possible, it violates
encapsulation.

 Consider, for example, the query operations for the FTGO application described
in chapter 2. Some queries retrieve data that’s owned by just one service. The find-
ConsumerProfile() query, for example, returns data from Consumer Service. But
other FTGO query operations, such as findOrder() and findOrderHistory(), return
data owned by multiple services. Implementing these query operations is not as
straightforward.

 There are two different patterns for implementing query operations in a microser-
vice architecture:

 The API composition pattern—This is the simplest approach and should be used
whenever possible. It works by making clients of the services that own the data
responsible for invoking the services and combining the results.

 The Command query responsibility segregation (CQRS) pattern—This is more power-
ful than the API composition pattern, but it’s also more complex. It maintains
one or more view databases whose sole purpose is to support queries.

After discussing these two patterns, I will talk about how to design CQRS views, fol-
lowed by the implementation of an example view. Let’s start by taking a look at the
API composition pattern.

7.1 Querying using the API composition pattern
The FTGO application implements numerous query operations. Some queries, as
mentioned earlier, retrieve data from a single service. Implementing these queries is
usually straightforward—although later in this chapter, when I cover the CQRS pat-
tern, you’ll see examples of single service queries that are challenging to implement.

 There are also queries that retrieve data from multiple services. In this section, I
describe the findOrder() query operation, which is an example of a query that
retrieves data from multiple services. I explain the challenges that often crop up when
implementing this type of query in a microservice architecture. I then describe the
API composition pattern and show how you can use it to implement queries such as
findOrder().

7.1.1 The findOrder() query operation

The findOrder() operation retrieves an order by its primary key. It takes an orderId
as a parameter and returns an OrderDetails object, which contains information
about the order. As shown in figure 7.1, this operation is called by a frontend module,
such as a mobile device or a web application, that implements the Order Status view.

 The information displayed by the Order Status view includes basic information
about the order, including its status, payment status, status of the order from the

222 CHAPTER 7 Implementing queries in a microservice architecture
restaurant’s perspective, and delivery status, including its location and estimated deliv-
ery time if in transit.

 Because its data resides in a single database, the monolithic FTGO application can
easily retrieve the order details by executing a single SELECT statement that joins the
various tables. In contrast, in the microservices-based version of the FTGO applica-
tion, the data is scattered around the following services:

 Order Service—Basic order information, including the details and status
 Kitchen Service—Status of the order from the restaurant’s perspective and the

estimated time it will be ready for pickup
 Delivery Service—The order’s delivery status, estimated delivery information,

and its current location
 Accounting Service—The order’s payment status

Any client that needs the order details must ask all of these services.

7.1.2 Overview of the API composition pattern

One way to implement query operations, such as findOrder(), that retrieve data owned
by multiple services is to use the API composition pattern. This pattern implements a

Order

Order Service

id:3492-2323
restaurant:Ajanta

Ticket

Kitchen Service

FTGO application

OrderDetails findOrder(orderId)

FTGO frontendOrder status view

Order id:

Restaurant:

Status:

ETA:

Payment:

3492-2323

Ajanta

En route

6:25 pm

Paid

id:3492-2323
status:PREPARED

Delivery

Delivery Service

id:45-4545
orderId:3492-2323
status:ENROUTE
eta:6:25 pm

Bill

Accounting Service

id:343-45611
orderId:3492-2323
status:PAID

Order status

Data from multiple services Mobile device or web application

Figure 7.1 The findOrder() operation is invoked by a FTGO frontend module and returns the
details of an Order.

223Querying using the API composition pattern
query operation by invoking the services that own the data and combining the results.
Figure 7.2 shows the structure of this pattern. It has two types of participants:

 An API composer—This implements the query operation by querying the pro-
vider services.

 A provider service—This is a service that owns some of the data that the query
returns.

Figure 7.2 shows three provider services. The API composer implements the query by
retrieving data from the provider services and combining the results. An API com-
poser might be a client, such as a web application, that needs the data to render a web
page. Alternatively, it might be a service, such as an API gateway and its Backends for
frontends variant described in chapter 8, which exposes the query operation as an API
endpoint.

Whether you can use this pattern to implement a particular query operation depends
on several factors, including how the data is partitioned, the capabilities of the APIs
exposed by the services that own the data, and the capabilities of the databases used
by the services. For instance, even if the Provider services have APIs for retrieving the

Pattern: API composition
Implement a query that retrieves data from several services by querying each service
via its API and combining the results. See http://microservices.io/patterns/data/api-
composition.html.

query()

API composer

Provider Service A

Database A

queryA()

Provider Service B

Database B

queryB()

Provider Service C

Database C

queryC()

Implements the query operation
by invoking the providers and
combining the results.

Services that own data

Figure 7.2 The API composition pattern consists of an API composer and two or more provider
services. The API composer implements a query by querying the providers and combining the results.

http://microservices.io/patterns/data/api-composition.html
http://microservices.io/patterns/data/api-composition.html

224 CHAPTER 7 Implementing queries in a microservice architecture
required data, the aggregator might need to perform an inefficient, in-memory join
of large datasets. Later on, you’ll see examples of query operations that can’t be
implemented using this pattern. Fortunately, though, there are many scenarios where
this pattern is applicable. To see it in action, we’ll look at an example.

7.1.3 Implementing the findOrder() query operation using the API
composition pattern

The findOrder() query operation corresponds to a simple primary key-based equi-
join query. It’s reasonable to expect that each of the Provider services has an API end-
point for retrieving the required data by orderId. Consequently, the findOrder()
query operation is an excellent candidate to be implemented by the API composition
pattern. The API composer invokes the four services and combines the results together.
Figure 7.3 shows the design of the Find Order Composer.

In this example, the API composer is a service that exposes the query as a REST endpoint.
The Provider services also implement REST APIs. But the concept is the same if the ser-
vices used some other interprocess communication protocol, such as gRPC, instead of
HTTP. The Find Order Composer implements a REST endpoint GET /order/{orderId}.
It invokes the four services and joins the responses using the orderId. Each Provider ser-
vice implements a REST endpoint that returns a response corresponding to a single
aggregate. The OrderService retrieves its version of an Order by primary key and the
other services use the orderId as a foreign key to retrieve their aggregates.

 As you can see, the API composition pattern is quite simple. Let’s look at a couple
of design issues you must address when applying this pattern.

Find Order

Composer

Order Service

«aggregate»
Order

GET/orders/
{orderId}

GET/charges?
orderId=
{orderId}

GET/tickets?
orderId=
{orderId}

GET/deliveries?
orderId=
{orderId}

Kitchen Service

«aggregate»
RestaurantOrder

Delivery Service

«aggregate»
Delivery

Accounting Service

«aggregate»
Charge

GET/order/{orderId}

Figure 7.3 Implementing findOrder() using the API composition pattern

225Querying using the API composition pattern
7.1.4 API composition design issues

When using this pattern, you have to address a couple of design issues:

 Deciding which component in your architecture is the query operation’s API
composer

 How to write efficient aggregation logic

Let’s look at each issue.

WHO PLAYS THE ROLE OF THE API COMPOSER?
One decision that you must make is who plays the role of the query operation’s API
composer. You have three options. The first option, shown in figure 7.4, is for a client of
the services to be the API composer.

A frontend client such as a web application, that implements the Order Status view
and is running on the same LAN, could efficiently retrieve the order details using this
pattern. But as you’ll learn in chapter 8, this option is probably not practical for cli-
ents that are outside of the firewall and access services via a slower network.

 The second option, shown in figure 7.5, is for an API gateway, which implements the
application’s external API, to play the role of an API composer for a query operation.

 This option makes sense if the query operation is part of the application’s external
API. Instead of routing a request to another service, the API gateway implements the
API composition logic. This approach enables a client, such as a mobile device, that’s
running outside of the firewall to efficiently retrieve data from numerous services with
a single API call. I discuss the API gateway in chapter 8.

 The third option, shown in figure 7.6, is to implement an API composer as a stand-
alone service.

Client, such as web application

Order

Service

Delivery

Service

Kitchen

Service

Accounting

Service

API composer

Figure 7.4 Implementing API
composition in a client. The
client queries the provider
services to retrieve the data.

226 CHAPTER 7 Implementing queries in a microservice architecture
API gateway

External client, such as

mobile application

Order

Service

Delivery

Service

Kitchen

Service

Accounting

Service

findOrder()

API composer

Figure 7.5 Implementing
API composition in the API
gateway. The API queries the
provider services to retrieve
the data, combines the
results, and returns a
response to the client.

Order

Service

Delivery

Service

Kitchen

Service

Accounting

Service

Find Order Service

Clients

findOrder()

API composer

Figure 7.6 Implement a query
operation used by multiple
clients and services as a
standalone service.

227Querying using the API composition pattern
You should use this option for a query operation that’s used internally by multiple ser-
vices. This operation can also be used for externally accessible query operations whose
aggregation logic is too complex to be part of an API gateway.

API COMPOSERS SHOULD USE A REACTIVE PROGRAMMING MODEL

When developing a distributed system, minimizing latency is an ever-present concern.
Whenever possible, an API composer should call provider services in parallel in order to
minimize the response time for a query operation. The Find Order Aggregator
should, for example, invoke the four services concurrently because there are no
dependencies between the calls. Sometimes, though, an API composer needs the result
of one Provider service in order to invoke another service. In this case, it will need to
invoke some—but hopefully not all—of the provider services sequentially.

 The logic to efficiently execute a mixture of sequential and parallel service invo-
cations can be complex. In order for an API composer to be maintainable as well as
performant and scalable, it should use a reactive design based on Java Completable-
Future’s, RxJava observables, or some other equivalent abstraction. I discuss this topic
further in chapter 8 when I cover the API gateway pattern.

7.1.5 The benefits and drawbacks of the API composition pattern

This pattern is a simple and intuitive way to implement query operations in a micro-
service architecture. But it has some drawbacks:

 Increased overhead
 Risk of reduced availability
 Lack of transactional data consistency

Let’s take a look at them.

INCREASED OVERHEAD

One drawback of this pattern is the overhead of invoking multiple services and query-
ing multiple databases. In a monolithic application, a client can retrieve data with a
single request, which will often execute a single database query. In comparison, using
the API composition pattern involves multiple requests and database queries. As a
result, more computing and network resources are required, increasing the cost of
running the application.

RISK OF REDUCED AVAILABILITY

Another drawback of this pattern is reduced availability. As described in chapter 3, the
availability of an operation declines with the number of services that are involved.
Because the implementation of a query operation involves at least three services—the
API composer and at least two provider services—its availability will be significantly less
than that of a single service. For example, if the availability of an individual service is
99.5%, then the availability of the findOrder() endpoint, which invokes four provider
services, is 99.5%(4+1) = 97.5%!

 There are couple of strategies you can use to improve availability. The first strat-
egy is for the API composer to return previously cached data when a Provider service is

228 CHAPTER 7 Implementing queries in a microservice architecture
unavailable. An API composer sometimes caches the data returned by a Provider service in
order to improve performance. It can also use this cache to improve availability. If a
provider is unavailable, the API composer can return data from the cache, though it
may be potentially stale.

 Another strategy for improving availability is for the API composer to return incom-
plete data. For example, imagine that Kitchen Service is temporarily unavailable.
The API Composer for the findOrder() query operation could omit that service’s data
from the response, because the UI can still display useful information. You’ll see more
details on API design, caching, and reliability in chapter 8.

LACK OF TRANSACTIONAL DATA CONSISTENCY

Another drawback of the API composition pattern is the lack of data consistency. A
monolithic application typically executes a query operation using a single database
transaction. ACID transactions—subject to the fine print about isolation levels—ensure
that an application has a consistent view of the data, even if it executes multiple data-
base queries. In contrast, the API composition pattern executes multiple database que-
ries against multiple databases. There’s a risk, therefore, that a query operation will
return inconsistent data.

 For example, an Order retrieved from Order Service might be in the CANCELLED
state, whereas the corresponding Ticket retrieved from Kitchen Service might not
yet have been cancelled. The API composer must resolve this discrepancy, which increases
the code complexity. To make matters worse, an API composer might not always be able
to detect inconsistent data, and will return it to the client.

 Despite these drawbacks, the API composition pattern is extremely useful. You can
use it to implement many query operations. But there are some query operations that
can’t be efficiently implemented using this pattern. A query operation might, for
example, require the API composer to perform an in-memory join of large datasets.

 It’s usually better to implement these types of query operations using the CQRS
pattern. Let’s take a look at how this pattern works.

7.2 Using the CQRS pattern
Many enterprise applications use an RDBMS as the transactional system of record and
a text search database, such as Elasticsearch or Solr, for text search queries. Some
applications keep the databases synchronized by writing to both simultaneously. Oth-
ers periodically copy data from the RDBMS to the text search engine. Applications
with this architecture leverage the strengths of multiple databases: the transactional
properties of the RDBMS and the querying capabilities of the text database.

Pattern: Command query responsibility segregation
Implement a query that needs data from several services by using events to maintain
a read-only view that replicates data from the services. See http://microservices
.io/patterns/data/cqrs.html.

http://microservices.io/patterns/data/cqrs.html
http://microservices.io/patterns/data/cqrs.html
http://microservices.io/patterns/data/cqrs.html

229Using the CQRS pattern
CQRS is a generalization of this kind of architecture. It maintains one or more view
databases—not just text search databases—that implement one or more of the appli-
cation’s queries. To understand why this is useful, we’ll look at some queries that can’t
be efficiently implemented using the API composition pattern. I’ll explain how CQRS
works and then talk about the benefits and drawbacks of CQRS. Let’s take a look at
when you need to use CQRS.

7.2.1 Motivations for using CQRS

The API composition pattern is a good way to implement many queries that must
retrieve data from multiple services. Unfortunately, it’s only a partial solution to the
problem of querying in a microservice architecture. That’s because there are multiple
service queries the API composition pattern can’t implement efficiently.

 What’s more, there are also single service queries that are challenging to imple-
ment. Perhaps the service’s database doesn’t efficiently support the query. Alterna-
tively, it sometimes makes sense for a service to implement a query that retrieves data
owned by a different service. Let’s take a look at these problems, starting with a multi-
service query that can’t be efficiently implemented using API composition.

IMPLEMENTING THE FINDORDERHISTORY() QUERY OPERATION

The findOrderHistory() operation retrieves a consumer’s order history. It has sev-
eral parameters:

 consumerId—Identifies the consumer
 pagination—Page of results to return
 filter—Filter criteria, including the max age of the orders to return, an

optional order status, and optional keywords that match the restaurant name and
menu items

This query operation returns an OrderHistory object that contains a summary of the
matching orders sorted by increasing age. It’s called by the module that implements
the Order History view. This view displays a summary of each order, which includes
the order number, order status, order total, and estimated delivery time.

 On the surface, this operation is similar to the findOrder() query operation. The
only difference is that it returns multiple orders instead of just one. It may appear that
the API composer only has to execute the same query against each Provider service and
combine the results. Unfortunately, it’s not that simple.

 That’s because not all services store the attributes that are used for filtering or
sorting. For example, one of the findOrderHistory() operation’s filter criteria is a
keyword that matches against a menu item. Only two of the services, Order Service
and Kitchen Service, store an Order’s menu items. Neither Delivery Service nor
Accounting Service stores the menu items, so can’t filter their data using this key-
word. Similarly, neither Kitchen Service nor Delivery Service can sort by the
orderCreationDate attribute.

230 CHAPTER 7 Implementing queries in a microservice architecture
 There are two ways an API composer could solve this problem. One solution is for the
API composer to do an in-memory join, as shown in figure 7.7. It retrieves all orders for
the consumer from Delivery Service and Accounting Service and performs a join
with the orders retrieved from Order Service and Kitchen Service.

The drawback of this approach is that it potentially requires the API composer to retrieve
and join large datasets, which is inefficient.

 The other solution is for the API composer to retrieve matching orders from Order
Service and Kitchen Service and then request orders from the other services by ID.
But this is only practical if those services have a bulk fetch API. Requesting orders
individually will likely be inefficient because of excessive network traffic.

 Queries such as findOrderHistory() require the API composer to duplicate the
functionality of an RDBMS’s query execution engine. On one hand, this potentially
moves work from the less scalable database to the more scalable application. On the
other hand, it’s less efficient. Also, developers should be writing business functionality,
not a query execution engine.

 Next I show you how to apply the CQRS pattern and use a separate datastore,
which is designed to efficiently implement the findOrderHistory() query operation.

Figure 7.7 API composition can’t efficiently retrieve a consumer’s orders, because some providers,
such as Delivery Service, don’t store the attributes used for filtering.

Find orders

composer

Order Service

«aggregate»
Order

GET/orders?
consumerId=
&keyword=

GET/charges?
consumerId=

GET/tickets?
consumerId=
&keyword=

GET/deliveries?
consumerId=

Kitchen Service

«aggregate»
RestaurantOrder

Delivery Service

«aggregate»
Delivery

Accounting Service

«aggregate»
Charge

GET/order?consumerId=&keyword=

These services don’t store the data needed for a keyword
search, so will return all of a consumer’s orders.

231Using the CQRS pattern
But first, let’s look at an example of a query operation that’s challenging to imple-
ment, despite being local to a single service.

A CHALLENGING SINGLE SERVICE QUERY: FINDAVAILABLERESTAURANTS()
As you’ve just seen, implementing queries that retrieve data from multiple services
can be challenging. But even queries that are local to a single service can be difficult
to implement. There are a couple of reasons why this might be the case. One is
because, as discussed shortly, sometimes it’s not appropriate for the service that owns
the data to implement the query. The other reason is that sometimes a service’s data-
base (or data model) doesn’t efficiently support the query.

 Consider, for example, the findAvailableRestaurants() query operation. This
query finds the restaurants that are available to deliver to a given address at a given
time. The heart of this query is a geospatial (location-based) search for restaurants
that are within a certain distance of the delivery address. It’s a critical part of the order
process and is invoked by the UI module that displays the available restaurants.

 The key challenge when implementing this query operation is performing an effi-
cient geospatial query. How you implement the findAvailableRestaurants() query
depends on the capabilities of the database that stores the restaurants. For example,
it’s straightforward to implement the findAvailableRestaurants() query using
either MongoDB or the Postgres and MySQL geospatial extensions. These databases
support geospatial datatypes, indexes, and queries. When using one of these databases,
Restaurant Service persists a Restaurant as a database record that has a location
attribute. It finds the available restaurants using a geospatial query that’s optimized by
a geospatial index on the location attribute.

 If the FTGO application stores restaurants in some other kind of database, imple-
menting the findAvailableRestaurant() query is more challenging. It must main-
tain a replica of the restaurant data in a form that’s designed to support the geospatial
query. The application could, for example, use the Geospatial Indexing Library for
DynamoDB (https://github.com/awslabs/dynamodb-geo) that uses a table as a geo-
spatial index. Alternatively, the application could store a replica of the restaurant data
in an entirely different type of database, a situation very similar to using a text search
database for text queries.

 The challenge with using replicas is keeping them up-to-date whenever the origi-
nal data changes. As you’ll learn below, CQRS solves the problem of synchronizing
replicas.

THE NEED TO SEPARATE CONCERNS

Another reason why single service queries are challenging to implement is that some-
times the service that owns the data shouldn’t be the one that implements the query.
The findAvailableRestaurants() query operation retrieves data that is owned by
Restaurant Service. This service enables restaurant owners to manage their restau-
rant’s profile and menu items. It stores various attributes of a restaurant, including its
name, address, cuisines, menu, and opening hours. Given that this service owns the

https://github.com/awslabs/dynamodb-geo

232 CHAPTER 7 Implementing queries in a microservice architecture
data, it makes sense, at least on the surface, for it to implement this query operation.
But data ownership isn’t the only factor to consider.

 You must also take into account the need to separate concerns and avoid overload-
ing services with too many responsibilities. For example, the primary responsibility
of the team that develops Restaurant Service is enabling restaurant managers to
maintain their restaurants. That’s quite different from implementing a high-
volume, critical query. What’s more, if they were responsible for the findAvailable-
Restaurants() query operation, the team would constantly live in fear of deploying a
change that prevented consumers from placing orders.

 It makes sense for Restaurant Service to merely provide the restaurant data to
another service that implements the findAvailableRestaurants() query operation
and is most likely owned by the Order Service team. As with the findOrderHistory()
query operation, and when needing to maintain geospatial index, there’s a require-
ment to maintain an eventually consistent replica of some data in order to implement
a query. Let’s look at how to accomplish that using CQRS.

7.2.2 Overview of CQRS

The examples described in section 7.2.1 highlighted three problems that are commonly
encountered when implementing queries in a microservice architecture:

 Using the API composition pattern to retrieve data scattered across multiple
services results in expensive, inefficient in-memory joins.

 The service that owns the data stores the data in a form or in a database that
doesn’t efficiently support the required query.

 The need to separate concerns means that the service that owns the data isn’t
the service that should implement the query operation.

The solution to all three of these problems is to use the CQRS pattern.

CQRS SEPARATES COMMANDS FROM QUERIES

Command Query Responsibility Segregation, as the name suggests, is all about segrega-
tion, or the separation of concerns. As figure 7.8 shows, it splits a persistent data model
and the modules that use it into two parts: the command side and the query side. The
command side modules and data model implement create, update, and delete opera-
tions (abbreviated CUD—for example, HTTP POSTs, PUTs, and DELETEs). The
query-side modules and data model implement queries (such as HTTP GETs). The
query side keeps its data model synchronized with the command-side data model by
subscribing to the events published by the command side.

 Both the non-CQRS and CQRS versions of the service have an API consisting of
various CRUD operations. In a non-CQRS-based service, those operations are typically
implemented by a domain model that’s mapped to a database. For performance, a few
queries might bypass the domain model and access the database directly. A single per-
sistent data model supports both commands and queries.

233Using the CQRS pattern
In a CQRS-based service, the command-side domain model handles CRUD operations
and is mapped to its own database. It may also handle simple queries, such as non-
join, primary key-based queries. The command side publishes domain events when-
ever its data changes. These events might be published using a framework such as
Eventuate Tram or using event sourcing.

 A separate query model handles the nontrivial queries. It’s much simpler than the
command side because it’s not responsible for implementing the business rules. The
query side uses whatever kind of database makes sense for the queries that it must sup-
port. The query side has event handlers that subscribe to domain events and update
the database or databases. There may even be multiple query models, one for each
type of query.

CQRS AND QUERY-ONLY SERVICES

Not only can CQRS be applied within a service, but you can also use this pattern to
define query services. A query service has an API consisting of only query opera-
tions—no command operations. It implements the query operations by querying a
database that it keeps up-to-date by subscribing to events published by one or more
other services. A query-side service is a good way to implement a view that’s built by

Service

CRUD

CRUD operations

R

Domain model

Aggregate Query

bypass

Aggregate

Database

One database for creates, updates, and deletes. A
separate database for queries. It is kept up-to-date
by using events that are published whenever the
command-side database changes.

Single database for all CRUD

Service

CUD

CRUD operations

R

Command/domain model Events

CQRSNon-CQRS

Aggregate Event

handler
Aggregate

Command-side

database
Query database

Query model

Figure 7.8 On the left is the non-CQRS version of the service, and on the right is the CQRS version.
CQRS restructures a service into command-side and query-side modules, which have separate
databases.

234 CHAPTER 7 Implementing queries in a microservice architecture
subscribing to events published by multiple services. This kind of view doesn’t belong
to any particular service, so it makes sense to implement it as a standalone service. A
good example of such a service is Order History Service, which is a query service
that implements the findOrderHistory() query operation. As figure 7.9 shows, this
service subscribes to events published by several services, including Order Service,
Delivery Service, and so on.

Order History Service has event handlers that subscribe to events published by sev-
eral services and update the Order History View Database. I describe the implemen-
tation of this service in more detail in section 7.4.

 A query service is also a good way to implement a view that replicates data owned
by a single service yet because of the need to separate concerns isn’t part of that service.
For example, the FTGO developers can define an Available Restaurants Service,
which implements the findAvailableRestaurants() query operation described ear-
lier. It subscribes to events published by Restaurant Service and updates a database
designed for efficient geospatial queries.

 In many ways, CQRS is an event-based generalization of the popular approach of
using RDBMS as the system of record and a text search engine, such as Elasticsearch,
to handle text queries. What’s different is that CQRS uses a broader range of database

Order Service

Kitchen Service Order History

Service

findOrderHistory()
findOrder()

Delivery Service

Accounting Service

Order history

view database

Event

handlers

Order

events

Ticket

events

Delivery

events

Accounting

events

Figure 7.9 The design of Order History Service, which is a query-side service. It
implements the findOrderHistory() query operation by querying a database, which
it maintains by subscribing to events published by multiple other services.

235Using the CQRS pattern
types—not just a text search engine. Also, CQRS query-side views are updated in near
real time by subscribing to events.

 Let’s now look at the benefits and drawbacks of CQRS.

7.2.3 The benefits of CQRS

CQRS has both benefits and drawbacks. The benefits are as follows:

 Enables the efficient implementation of queries in a microservice architecture
 Enables the efficient implementation of diverse queries
 Makes querying possible in an event sourcing-based application
 Improves separation of concerns

ENABLES THE EFFICIENT IMPLEMENTATION OF QUERIES IN A MICROSERVICE ARCHITECTURE

One benefit of the CQRS pattern is that it efficiently implements queries that retrieve
data owned by multiple services. As described earlier, using the API composition pat-
tern to implement queries sometimes results in expensive, inefficient in-memory joins
of large datasets. For those queries, it’s more efficient to use an easily queried CQRS
view that pre-joins the data from two or more services.

ENABLES THE EFFICIENT IMPLEMENTATION OF DIVERSE QUERIES

Another benefit of CQRS is that it enables an application or service to efficiently
implement a diverse set of queries. Attempting to support all queries using a single
persistent data model is often challenging and in some cases impossible. Some
NoSQL databases have very limited querying capabilities. Even when a database has
extensions to support a particular kind of query, using a specialized database is often
more efficient. The CQRS pattern avoids the limitations of a single datastore by defin-
ing one or more views, each of which efficiently implements specific queries.

ENABLES QUERYING IN AN EVENT SOURCING-BASED APPLICATION

CQRS also overcomes a major limitation of event sourcing. An event store only sup-
ports primary key-based queries. The CQRS pattern addresses this limitation by defin-
ing one or more views of the aggregates, which are kept up-to-date, by subscribing to
the streams of events that are published by the event sourcing-based aggregates. As a
result, an event sourcing-based application invariably uses CQRS.

IMPROVES SEPARATION OF CONCERNS

Another benefit of CQRS is that it separates concerns. A domain model and its corre-
sponding persistent data model don’t handle both commands and queries. The CQRS
pattern defines separate code modules and database schemas for the command and
query sides of a service. By separating concerns, the command side and query side are
likely to be simpler and easier to maintain.

 Moreover, CQRS enables the service that implements a query to be different than
the service that owns the data. For example, earlier I described how even though
Restaurant Service owns the data that’s queried by the findAvailableRestaurants
query operation, it makes sense for another service to implement such a critical,

236 CHAPTER 7 Implementing queries in a microservice architecture
high-volume query. A CQRS query service maintains a view by subscribing to the events
published by the service or services that own the data.

7.2.4 The drawbacks of CQRS

Even though CQRS has several benefits, it also has significant drawbacks:

 More complex architecture
 Dealing with the replication lag

Let’s look at these drawbacks, starting with the increased complexity.

MORE COMPLEX ARCHITECTURE

One drawback of CQRS is that it adds complexity. Developers must write the query-
side services that update and query the views. There is also the extra operational com-
plexity of managing and operating the extra datastores. What’s more, an application
might use different types of databases, which adds further complexity for both devel-
opers and operations.

DEALING WITH THE REPLICATION LAG

Another drawback of CQRS is dealing with the “lag” between the command-side and
the query-side views. As you might expect, there’s delay between when the command
side publishes an event and when that event is processed by the query side and the
view updated. A client application that updates an aggregate and then immediately
queries a view may see the previous version of the aggregate. It must often be written
in a way that avoids exposing these potential inconsistencies to the user.

 One solution is for the command-side and query-side APIs to supply the client with
version information that enables it to tell that the query side is out-of-date. A client
can poll the query-side view until it’s up-to-date. Shortly I’ll discuss how the service
APIs can enable a client to do this.

 A UI application such as a native mobile application or single page JavaScript
application can handle replication lag by updating its local model once the command
is successful without issuing a query. It can, for example, update its model using data
returned by the command. Hopefully, when a user action triggers a query, the view
will be up-to-date. One drawback of this approach is that the UI code may need to
duplicate server-side code in order to update its model.

 As you can see, CQRS has both benefits and drawbacks. As mentioned earlier, you
should use the API composition whenever possible and use CQRS only when you must.

 Now that you’ve seen the benefits and drawbacks of CQRS, let’s now look at how to
design CQRS views.

7.3 Designing CQRS views
A CQRS view module has an API consisting of one more query operations. It imple-
ments these query operations by querying a database that it maintains by subscribing
to events published by one or more services. As figure 7.10 shows, a view module con-
sists of a view database and three submodules.

237Designing CQRS views
The data access module implements the database access logic. The event handlers
and query API modules use the data access module to update and query the database.
The event handlers module subscribes to events and updates the database. The query
API module implements the query API.

 You must make some important design decisions when developing a view module:

 You must choose a database and design the schema.
 When designing the data access module, you must address various issues, includ-

ing ensuring that updates are idempotent and handling concurrent updates.
 When implementing a new view in an existing application or changing the

schema of an existing application, you must implement a mechanism to effi-
ciently build or rebuild the view.

 You must decide how to enable a client of the view to cope with the replication
lag, described earlier.

Let’s look at each of these issues.

7.3.1 Choosing a view datastore

A key design decision is the choice of database and the design of the schema. The pri-
mary purpose of the database and the data model is to efficiently implement the view
module’s query operations. It’s the characteristics of those queries that are the pri-
mary consideration when selecting a database. But the database must also efficiently
implement the update operations performed by the event handlers.

SQL VS. NOSQL DATABASES

Not that long ago, there was one type of database to rule them all: the SQL-based
RDBMS. As the Web grew in popularity, though, various companies discovered that
an RDBMS couldn’t satisfy their web scale requirements. That led to the creation of

CQRS view module

Event

handlers

query()update()

Query API

Data access

View database

Events

find...()
...

Implements data
access logic

Figure 7.10 The design of a CQRS
view module. Event handlers update
the view database, which is queried
by the Query API module.

238 CHAPTER 7 Implementing queries in a microservice architecture
the so-called NoSQL databases. A NoSQL database typically has a limited form of trans-
actions and less general querying capabilities. For certain use cases, these databases
have certain advantages over SQL databases, including a more flexible data model
and better performance and scalability.

 A NoSQL database is often a good choice for a CQRS view, which can leverage its
strengths and ignore its weaknesses. A CQRS view benefits from the richer data model,
and performance of a NoSQL database. It’s unaffected by the limitations of a NoSQL
database, because it only uses simple transactions and executes a fixed set of queries.

 Having said that, sometimes it makes sense to implement a CQRS view using a SQL
database. A modern RDBMS running on modern hardware has excellent perfor-
mance. Developers, database administrators, and IT operations are, in general, much
more familiar with SQL databases than they are with NoSQL databases. As mentioned
earlier, SQL databases often have extensions for non-relational features, such as geo-
spatial datatypes and queries. Also, a CQRS view might need to use a SQL database in
order to support a reporting engine.

 As you can see in table 7.1, there are lots of different options to choose from. And
to make the choice even more complicated, the differences between the different
types of database are starting to blur. For example, MySQL, which is an RDBMS, has
excellent support for JSON, which is one of the strengths of MongoDB, a JSON-style
document-oriented database.

Now that I’ve discussed the different kinds of databases you can use to implement a
CQRS view, let’s look at the problem of how to efficiently update a view.

SUPPORTING UPDATE OPERATIONS

Besides efficiently implementing queries, the view data model must also efficiently
implement the update operations executed by the event handlers. Usually, an event

Table 7.1 Query-side view stores

If you need Use Example

PK-based lookup of JSON
objects

A document store such as MongoDB
or DynamoDB, or a key value store
such as Redis

Implement order history by main-
taining a MongoDB document
containing the per-customer.

Query-based lookup of JSON
objects

A document store such as MongoDB
or DynamoDB

Implement customer view using
MongoDB or DynamoDB.

Text queries A text search engine such as Elastic-
search

Implement text search for orders
by maintaining a per-order Elas-
ticsearch document.

Graph queries A graph database such as Neo4j Implement fraud detection by
maintaining a graph of custom-
ers, orders, and other data.

Traditional SQL reporting/BI An RDBMS Standard business reports and
analytics.

239Designing CQRS views
handler will update or delete a record in the view database using its primary key. For
example, soon I’ll describe the design of a CQRS view for the findOrderHistory()
query. It stores each Order as a database record using the orderId as the primary key.
When this view receives an event from Order Service, it can straightforwardly update
the corresponding record.

 Sometimes, though, it will need to update or delete a record using the equiva-
lent of a foreign key. Consider, for instance, the event handlers for Delivery*
events. If there is a one-to-one correspondence between a Delivery and an Order,
then Delivery.id might be the same as Order.id. If it is, then Delivery* event han-
dlers can easily update the order’s database record.

 But suppose a Delivery has its own primary key or there is a one-to-many relation-
ship between an Order and a Delivery. Some Delivery* events, such as the Delivery-
Created event, will contain the orderId. But other events, such as a DeliveryPickedUp
event, might not. In this scenario, an event handler for DeliveryPickedUp will need
to update the order’s record using the deliveryId as the equivalent of a foreign key.

 Some types of database efficiently support foreign-key-based update operations.
For example, if you’re using an RDBMS or MongoDB, you create an index on the nec-
essary columns. However, non-primary key-based updates are not straightforward
when using other NOSQL databases. The application will need to maintain some kind
of database-specific mapping from a foreign key to a primary key in order to deter-
mine which record to update. For example, an application that uses DynamoDB,
which only supports primary key-based updates and deletes, must first query a Dyna-
moDB secondary index (discussed shortly) to determine the primary keys of the items
to update or delete.

7.3.2 Data access module design

The event handlers and the query API module don’t access the datastore directly.
Instead they use the data access module, which consists of a data access object (DAO)
and its helper classes. The DAO has several responsibilities. It implements the update
operations invoked by the event handlers and the query operations invoked by the
query module. The DAO maps between the data types used by the higher-level code
and the database API. It also must handle concurrent updates and ensure that updates
are idempotent.

 Let’s look at these issues, starting with how to handle concurrent updates.

HANDLING CONCURRENCY

Sometimes a DAO must handle the possibility of multiple concurrent updates to the
same database record. If a view subscribes to events published by a single aggregate
type, there won’t be any concurrency issues. That’s because events published by a par-
ticular aggregate instance are processed sequentially. As a result, a record correspond-
ing to an aggregate instance won’t be updated concurrently. But if a view subscribes to
events published by multiple aggregate types, then it’s possible that multiple events
handlers update the same record simultaneously.

240 CHAPTER 7 Implementing queries in a microservice architecture
 For example, an event handler for an Order* event might be invoked at the same
time as an event handler for a Delivery* event for the same order. Both event han-
dlers then simultaneously invoke the DAO to update the database record for that
Order. A DAO must be written in a way that ensures that this situation is handled cor-
rectly. It must not allow one update to overwrite another. If a DAO implements updates
by reading a record and then writing the updated record, it must use either pessimistic
or optimistic locking. In the next section you’ll see an example of a DAO that handles
concurrent updates by updating database records without reading them first.

IDEMPOTENT EVENT HANDLERS

As mentioned in chapter 3, an event handler may be invoked with the same event
more than once. This is generally not a problem if a query-side event handler is idem-
potent. An event handler is idempotent if handling duplicate events results in the cor-
rect outcome. In the worst case, the view datastore will temporarily be out-of-date. For
example, an event handler that maintains the Order History view might be invoked
with the (admittedly improbable) sequence of events shown in figure 7.11: Delivery-
PickedUp, DeliveryDelivered, DeliveryPickedUp, and DeliveryDelivered. After
delivering the DeliveryPickedUp and DeliveryDelivered events the first time, the
message broker, perhaps because of a network error, starts delivering the events from
an earlier point in time, and so redelivers DeliveryPickedUp and DeliveryDelivered.

After the event handler processes the second DeliveryPickedUp event, the Order
History view temporarily contains the out-of-date state of the Order until the Delivery-
Delivered is processed. If this behavior is undesirable, then the event handler should
detect and discard duplicate events, like a non-idempotent event handler.

 An event handler isn’t idempotent if duplicate events result in an incorrect out-
come. For example, an event handler that increments the balance of a bank account
isn’t idempotent. A non-idempotent event handler must, as explained in chapter 3,
detect and discard duplicate events by recording the IDs of events that it has pro-
cessed in the view datastore.

Delivery picked up

Order History View

OrderId: 123
State: PICKED_UP

Temporarily out of date

Delivery delivered

OrderId: 123
State: DELIVERED

Delivery picked up

OrderId: 123
State: PICKED_UP

Delivery delivered

OrderId: 123
State: DELIVERED

Time

Figure 7.11 The DeliveryPickedUp and DeliveryDelivered events are delivered
twice, which causes the order state in view to be temporarily out-of-date.

241Designing CQRS views
 In order to be reliable, the event handler must record the event ID and update the
datastore atomically. How to do this depends on the type of database. If the view data-
base store is a SQL database, the event handler could insert processed events into a
PROCESSED_EVENTS table as part of the transaction that updates the view. But if the
view datastore is a NoSQL database that has a limited transaction model, the event
handler must save the event in the datastore “record” (for example, a MongoDB doc-
ument or DynamoDB table item) that it updates.

 It’s important to note that the event handler doesn’t need to record the ID of
every event. If, as is the case with Eventuate, events have a monotonically increasing
ID, then each record only needs to store the max(eventId) that’s received from a
given aggregate instance. Furthermore, if the record corresponds to a single aggre-
gate instance, then the event handler only needs to record max(eventId). Only
records that represent joins of events from multiple aggregates must contain a map
from [aggregate type, aggregate id] to max(eventId).

 For example, you’ll soon see that the DynamoDB implementation of the Order
History view contains items that have attributes for tracking events that look like this:

{...
"Order3949384394-039434903" : "0000015e0c6fc18f-0242ac1100e50002",
"Delivery3949384394-039434903" : "0000015e0c6fc264-0242ac1100e50002",

}

This view is a join of events published by various services. The name of each of these
event-tracking attributes is «aggregateType»«aggregateId», and the value is the
eventId. Later on, I describe how this works in more detail.

ENABLING A CLIENT APPLICATION TO USE AN EVENTUALLY CONSISTENT VIEW

As I said earlier, one issue with using CQRS is that a client that updates the command
side and then immediately executes a query might not see its own update. The view is
eventually consistent because of the unavoidable latency of the messaging infrastructure.

 The command and query module APIs can enable the client to detect an inconsis-
tency using the following approach. A command-side operation returns a token con-
taining the ID of the published event to the client. The client then passes the token to
a query operation, which returns an error if the view hasn’t been updated by that
event. A view module can implement this mechanism using the duplicate event-
detection mechanism.

7.3.3 Adding and updating CQRS views

CQRS views will be added and updated throughout the lifetime of an application.
Sometimes you need to add a new view to support a new query. At other times you
might need to re-create a view because the schema has changed or you need to fix a
bug in code that updates the view.

 Adding and updating views is conceptually quite simple. To create a new view, you
develop the query-side module, set up the datastore, and deploy the service. The query

242 CHAPTER 7 Implementing queries in a microservice architecture
side module’s event handlers process all the events, and eventually the view will be
up-to-date. Similarly, updating an existing view is also conceptually simple: you change
the event handlers and rebuild the view from scratch. The problem, however, is that
this approach is unlikely to work in practice. Let’s look at the issues.

BUILD CQRS VIEWS USING ARCHIVED EVENTS

One problem is that message brokers can’t store messages indefinitely. Traditional
message brokers such as RabbitMQ delete a message once it’s been processed by a
consumer. Even more modern brokers such as Apache Kafka, that retain messages for
a configurable retention period, aren’t intended to store events indefinitely. As a
result, a view can’t be built by only reading all the needed events from the message
broker. Instead, an application must also read older events that have been archived in,
for example, AWS S3. You can do this by using a scalable big data technology such as
Apache Spark.

BUILD CQRS VIEWS INCREMENTALLY

Another problem with view creation is that the time and resources required to process
all events keep growing over time. Eventually, view creation will become too slow and
expensive. The solution is to use a two-step incremental algorithm. The first step peri-
odically computes a snapshot of each aggregate instance based on its previous snap-
shot and events that have occurred since that snapshot was created. The second step
creates a view using the snapshots and any subsequent events.

7.4 Implementing a CQRS view with AWS DynamoDB
Now that we’ve looked at the various design issues you must address when using
CQRS, let’s consider an example. This section describes how to implement a CQRS
view for the findOrderHistory() operation using DynamoDB. AWS DynamoDB is
a scalable, NoSQL database that’s available as a service on the Amazon cloud. The
DynamoDB data model consists of tables that contain items that, like JSON objects,
are collections of hierarchical name-value pairs. AWS DynamoDB is a fully man-
aged database, and you can scale the throughput capacity of a table up and down
dynamically.

 The CQRS view for the findOrderHistory() consumes events from multiple ser-
vices, so it’s implemented as a standalone Order View Service. The service has an API
that implements two operations: findOrderHistory() and findOrder(). Even though
findOrder() can be implemented using API composition, this view provides this oper-
ation for free. Figure 7.12 shows the design of the service. Order History Service is
structured as a set of modules, each of which implements a particular responsibility
in order to simplify development and testing. The responsibility of each module is
as follows:

 OrderHistoryEventHandlers—Subscribes to events published by the various
services and invokes the OrderHistoryDAO

 OrderHistoryQuery APImodule—Implements the REST endpoints described earlier

243Implementing a CQRS view with AWS DynamoDB
 OrderHistoryDataAccess—Contains the OrderHistoryDAO, which defines the
methods that update and query the ftgo-order-history DynamoDB table and
its helper classes

 ftgo-order-history DynamoDB table—The table that stores the orders

Let’s look at the design of the event handlers, the DAO, and the DynamoDB table in
more detail.

7.4.1 The OrderHistoryEventHandlers module

This module consists of the event handlers that consume events and update the
DynamoDB table. As the following listing shows, the event handlers are simple meth-
ods. Each method is a one-liner that invokes an OrderHistoryDao method with argu-
ments that are derived from the event.

Order History Service

OrderHistory
Event

Handlers

QueryUpdate

OrderHistory
Query

OrderHistoryDataAccess

<DynamoDB table>
ftgo-order-history

Order

delivery

...

events

findOrderHistory()
findOrder

OrderHistoryDAO

Figure 7.12 The design of OrderHistoryService. OrderHistory-
EventHandlers updates the database in response to events. The
OrderHistoryQuery module implements the query operations by query-
ing the database. These two modules use the OrderHistory-
DataAccess module to access the database.

244 CHAPTER 7 Implementing queries in a microservice architecture
public class OrderHistoryEventHandlers {

private OrderHistoryDao orderHistoryDao;

public OrderHistoryEventHandlers(OrderHistoryDao orderHistoryDao) {
this.orderHistoryDao = orderHistoryDao;

}

public void handleOrderCreated(DomainEventEnvelope<OrderCreated> dee) {
orderHistoryDao.addOrder(makeOrder(dee.getAggregateId(), dee.getEvent()),

makeSourceEvent(dee));
}

private Order makeOrder(String orderId, OrderCreatedEvent event) {
...

}

public void handleDeliveryPickedUp(DomainEventEnvelope<DeliveryPickedUp>
dee) {

orderHistoryDao.notePickedUp(dee.getEvent().getOrderId(),
makeSourceEvent(dee));

}

...

Each event handler has a single parameter of type DomainEventEnvelope, which
contains the event and some metadata describing the event. For example, the
handleOrderCreated() method is invoked to handle an OrderCreated event. It calls
orderHistoryDao.addOrder() to create an Order in the database. Similarly, the
handleDeliveryPickedUp() method is invoked to handle a DeliveryPickedUp event.
It calls orderHistoryDao.notePickedUp() to update the status of the Order in the
database.

 Both methods call the helper method makeSourceEvent(), which constructs a
SourceEvent containing the type and ID of the aggregate that emitted the event and
the event ID. In the next section you’ll see that OrderHistoryDao uses SourceEvent to
ensure that update operations are idempotent.

 Let’s now look at the design of the DynamoDB table and after that examine
OrderHistoryDao.

7.4.2 Data modeling and query design with DynamoDB

Like many NoSQL databases, DynamoDB has data access operations that are much
less powerful than those that are provided by an RDBMS. Consequently, you must
carefully design how the data is stored. In particular, the queries often dictate the
design of the schema. We need to address several design issues:

 Designing the ftgo-order-history table
 Defining an index for the findOrderHistory query

Listing 7.1 Event handlers that call the OrderHistoryDao

245Implementing a CQRS view with AWS DynamoDB
 Implementing the findOrderHistory query
 Paginating the query results
 Updating orders
 Detecting duplicate events

We’ll look at each one in turn.

DESIGNING THE FTGO-ORDER-HISTORY TABLE

The DynamoDB storage model consists of tables, which contain items, and indexes,
which provide alternative ways to access a table’s items (discussed shortly). An item is a
collection of named attributes. An attribute value is either a scalar value such as a string,
a multivalued collection of strings, or a collection of named attributes. Although an item
is the equivalent to a row in an RDBMS, it’s a lot more flexible and can store an entire
aggregate.

 This flexibility enables the OrderHistoryDataAccess module to store each Order
as a single item in a DynamoDB table called ftgo-order-history. Each field of the
Order class is mapped to an item attribute, as shown in figure 7.13. Simple fields such
as orderCreationTime and status are mapped to single-value item attributes. The
lineItems field is mapped to an attribute that is a list of maps, one map per time line.
It can be considered to be a JSON array of objects.

An important part of the definition of a table is its primary key. A DynamoDB applica-
tion inserts, updates, and retrieves a table’s items by primary key. It would seem to
make sense for the primary key to be orderId. This enables Order History Service
to insert, update, and retrieve an order by orderId. But before finalizing this decision,
let’s first explore how a table’s primary key impacts the kinds of data access operations
it supports.

DEFINING AN INDEX FOR THE FINDORDERHISTORY QUERY

This table definition supports primary key-based reads and writes of Orders. But it
doesn’t support a query such as findOrderHistory() that returns multiple matching
orders sorted by increasing age. That’s because, as you will see later in this section,
this query uses the DynamoDB query() operation, which requires a table to have a

orderId

...

...

Primary key

ftgo-order-history table

consumerId

xyz-abc

...

orderCreationTime

22939283232

...

status

CREATED

...

lineItems

[{...}.
{...},
....]

....

...

...

...

Figure 7.13 Preliminary structure of the DynamoDB OrderHistory table

246 CHAPTER 7 Implementing queries in a microservice architecture
composite primary key consisting of two scalar attributes. The first attribute is a parti-
tion key. The partition key is so called because DynamoDB’s Z-axis scaling (described in
chapter 1) uses it to select an item’s storage partition. The second attribute is the sort
key. A query() operation returns those items that have the specified partition key,
have a sort key in the specified range, and match the optional filter expression. It
returns items in the order specified by the sort key.

 The findOrderHistory() query operation returns a consumer’s orders sorted by
increasing age. It therefore requires a primary key that has the consumerId as the par-
tition key and the orderCreationDate as the sort key. But it doesn’t make sense for
(consumerId, orderCreationDate) to be the primary key of the ftgo-order-history
table, because it’s not unique.

 The solution is for findOrderHistory() to query what DynamoDB calls a secondary
index on the ftgo-order-history table. This index has (consumerId, orderCreation-
Date) as its non-unique key. Like an RDBMS index, a DynamoDB index is automati-
cally updated whenever its table is updated. But unlike a typical RDBMS index, a
DynamoDB index can have non-key attributes. Non-key attributes improve performance
because they’re returned by the query, so the application doesn’t have to fetch them
from the table. Also, as you’ll soon see, they can be used for filtering. Figure 7.14
shows the structure of the table and this index.

 The index is part of the definition of the ftgo-order-history table and is called
ftgo-order-history-by-consumer-id-and-creation-time. The index’s attributes

orderId

cde-fgh

...

Primary key

ftgo-order-history table

consumerId

xyz-abc

...

orderCreationTime

22939283232

...

status

CREATED

...

lineItems

[{...}.
{...},
....]

....

...

...

...

Primary key

ftgo-order-history-by-consumer-id-and-creation-time global secondary index

consumerId

xyz-abc

...

orderCreationTime

22939283232

...

orderId

cde-fgh

...

...

...

...

status

CREATED

...

Figure 7.14 The design of the OrderHistory table and index

247Implementing a CQRS view with AWS DynamoDB
include the primary key attributes, consumerId and orderCreationTime, and non-key
attributes, including orderId and status.

 The ftgo-order-history-by-consumer-id-and-creation-time index enables
the OrderHistoryDaoDynamoDb to efficiently retrieve a consumer’s orders sorted by
increasing age.

 Let’s now look at how to retrieve only those orders that match the filter criteria.

IMPLEMENTING THE FINDORDERHISTORY QUERY

The findOrderHistory() query operation has a filter parameter that specifies the
search criteria. One filter criterion is the maximum age of the orders to return. This is
easy to implement because the DynamoDB Query operation’s key condition expression
supports a range restriction on the sort key. The other filter criteria correspond to
non-key attributes and can be implemented using a filter expression , which is a Boolean
expression. A DynamoDB Query operation returns only those items that satisfy the filter
expression. For example, to find Orders that are CANCELLED, the OrderHistoryDao-
DynamoDb uses a query expression orderStatus = :orderStatus, where :orderStatus
is a placeholder parameter.

 The keyword filter criteria is more challenging to implement. It selects orders
whose restaurant name or menu items match one of the specified keywords. The
OrderHistoryDaoDynamoDb enables the keyword search by tokenizing the restaurant
name and menu items and storing the set of keywords in a set-valued attribute called
keywords. It finds the orders that match the keywords by using a filter expression
that uses the contains() function, for example contains(keywords, :keyword1)
OR contains(keywords, :keyword2), where :keyword1 and :keyword2 are placehold-
ers for the specified keywords.

PAGINATING THE QUERY RESULTS

Some consumers will have a large number of orders. It makes sense, therefore, for the
findOrderHistory() query operation to use pagination. The DynamoDB Query oper-
ation has an operation pageSize parameter, which specifies the maximum number of
items to return. If there are more items, the result of the query has a non-null Last-
EvaluatedKey attribute. A DAO can retrieve the next page of items by invoking the
query with the exclusiveStartKey parameter set to LastEvaluatedKey.

 As you can see, DynamoDB doesn’t support position-based pagination. Conse-
quently, Order History Service returns an opaque pagination token to its client. The
client uses this pagination token to request the next page of results.

 Now that I’ve described how to query DynamoDB for orders, let’s look at how to
insert and update them.

UPDATING ORDERS

DynamoDB supports two operations for adding and updating items: PutItem() and
UpdateItem(). The PutItem() operation creates or replaces an entire item by its
primary key. In theory, OrderHistoryDaoDynamoDb could use this operation to insert

248 CHAPTER 7 Implementing queries in a microservice architecture
and update orders. One challenge, however, with using PutItem() is ensuring that
simultaneous updates to the same item are handled correctly.

 Consider, for example, the scenario where two event handlers simultaneously
attempt to update the same item. Each event handler calls OrderHistoryDaoDynamoDb
to load the item from DynamoDB, change it in memory, and update it in DynamoDB
using PutItem(). One event handler could potentially overwrite the change made by
the other event handler. OrderHistoryDaoDynamoDb can prevent lost updates by using
DynamoDB’s optimistic locking mechanism. But an even simpler and more efficient
approach is to use the UpdateItem() operation.

 The UpdateItem() operation updates individual attributes of the item, creating
the item if necessary. Since different event handlers update different attributes of the
Order item, using UpdateItem makes sense. This operation is also more efficient
because there’s no need to first retrieve the order from the table.

 One challenge with updating the database in response to events is, as mentioned
earlier, detecting and discarding duplicate events. Let’s look at how to do that when
using DynamoDB.

DETECTING DUPLICATE EVENTS

All of Order History Service’s event handlers are idempotent. Each one sets one
or more attributes of the Order item. Order History Service could, therefore, sim-
ply ignore the issue of duplicate events. The downside of ignoring the issue, though,
is that Order item will sometimes be temporarily out-of-date. That’s because an
event handler that receives a duplicate event will set an Order item’s attributes to
previous values. The Order item won’t have the correct values until later events are
redelivered.

 As described earlier, one way to prevent data from becoming out-of-date is to
detect and discard duplicate events. OrderHistoryDaoDynamoDb can detect duplicate
events by recording in each item the events that have caused it to be updated. It can
then use the UpdateItem() operation’s conditional update mechanism to only update
an item if an event isn’t a duplicate.

 A conditional update is only performed if a condition expression is true. A condition
expression tests whether an attribute exists or has a particular value. The Order-
HistoryDaoDynamoDb DAO can track events received from each aggregate instance
using an attribute called «aggregateType»«aggregateId» whose value is the highest
received event ID. An event is a duplicate if the attribute exists and its value is less
than or equal to the event ID. The OrderHistoryDaoDynamoDb DAO uses this condi-
tion expression:

attribute_not_exists(«aggregateType»«aggregateId»)
OR «aggregateType»«aggregateId» < :eventId

The condition expression only allows the update if the attribute doesn’t exist or the
eventId is greater than the last processed event ID.

249Implementing a CQRS view with AWS DynamoDB

e

 For example, suppose an event handler receives a DeliveryPickup event whose ID
is 123323-343434 from a Delivery aggregate whose ID is 3949384394-039434903.
The name of the tracking attribute is Delivery3949384394-039434903. The event
handler should consider the event to be a duplicate if the value of this attribute is
greater than or equal to 123323-343434. The query() operation invoked by the event
handler updates the Order item using this condition expression:

attribute_not_exists(Delivery3949384394-039434903)
OR Delivery3949384394-039434903 < :eventId

Now that I’ve described the DynamoDB data model and query design, let’s take a look
at OrderHistoryDaoDynamoDb, which defines the methods that update and query the
ftgo-order-history table.

7.4.3 The OrderHistoryDaoDynamoDb class

The OrderHistoryDaoDynamoDb class implements methods that read and write items
in the ftgo-order-history table. Its update methods are invoked by OrderHistory-
EventHandlers, and its query methods are invoked by OrderHistoryQuery API. Let’s
take a look at some example methods, starting with the addOrder() method.

THE ADDORDER() METHOD

The addOrder() method, which is shown in listing 7.2, adds an order to the ftgo-
order-history table. It has two parameters: order and sourceEvent. The order
parameter is the Order to add, which is obtained from the OrderCreated event. The
sourceEvent parameter contains the eventId and the type and ID of the aggregate
that emitted the event. It’s used to implement the conditional update.

public class OrderHistoryDaoDynamoDb ...

@Override
public boolean addOrder(Order order, Optional<SourceEvent> eventSource) {
UpdateItemSpec spec = new UpdateItemSpec()

.withPrimaryKey("orderId", order.getOrderId())

.withUpdateExpression("SET orderStatus = :orderStatus, " +
"creationDate = :cd, consumerId = :consumerId, lineItems =" +
" :lineItems, keywords = :keywords, restaurantName = " +
":restaurantName")

.withValueMap(new Maps()
.add(":orderStatus", order.getStatus().toString())
.add(":cd", order.getCreationDate().getMillis())
.add(":consumerId", order.getConsumerId())
.add(":lineItems", mapLineItems(order.getLineItems()))
.add(":keywords", mapKeywords(order))
.add(":restaurantName", order.getRestaurantName())
.map())

.withReturnValues(ReturnValue.NONE);
return idempotentUpdate(spec, eventSource);
}

Listing 7.2 The addOrder() method adds or updates an Order

The primary key of the
Order item to update

The update
xpression that

updates the
attributes

The values of the
placeholders in

the update
expression

250 CHAPTER 7 Implementing queries in a microservice architecture
The addOrder() method creates an UpdateSpec, which is part of the AWS SDK and
describes the update operation. After creating the UpdateSpec, it calls idempotent-
Update(), a helper method that performs the update after adding a condition expres-
sion that guards against duplicate updates.

THE NOTEPICKEDUP() METHOD

The notePickedUp() method, shown in listing 7.3, is called by the event handler for
the DeliveryPickedUp event. It changes the deliveryStatus of the Order item to
PICKED_UP.

public class OrderHistoryDaoDynamoDb ...

@Override
public void notePickedUp(String orderId, Optional<SourceEvent> eventSource) {
UpdateItemSpec spec = new UpdateItemSpec()

.withPrimaryKey("orderId", orderId)

.withUpdateExpression("SET #deliveryStatus = :deliveryStatus")

.withNameMap(Collections.singletonMap("#deliveryStatus",
DELIVERY_STATUS_FIELD))

.withValueMap(Collections.singletonMap(":deliveryStatus",
DeliveryStatus.PICKED_UP.toString()))

.withReturnValues(ReturnValue.NONE);
idempotentUpdate(spec, eventSource);
}

This method is similar to addOrder(). It creates an UpdateItemSpec and invokes
idempotentUpdate(). Let’s look at the idempotentUpdate() method.

THE IDEMPOTENTUPDATE() METHOD

The following listing shows the idempotentUpdate() method, which updates the item
after possibly adding a condition expression to the UpdateItemSpec that guards against
duplicate updates.

public class OrderHistoryDaoDynamoDb ...

private boolean idempotentUpdate(UpdateItemSpec spec, Optional<SourceEvent>
eventSource) {

try {
table.updateItem(eventSource.map(es -> es.addDuplicateDetection(spec))

.orElse(spec));
return true;
} catch (ConditionalCheckFailedException e) {
// Do nothing
return false;
}
}

Listing 7.3 The notePickedUp() method changes the order status to PICKED_UP

Listing 7.4 The idempotentUpdate() method ignores duplicate events

251Implementing a CQRS view with AWS DynamoDB
If the sourceEvent is supplied, idempotentUpdate() invokes SourceEvent.add-
DuplicateDetection() to add to UpdateItemSpec the condition expression that was
described earlier. The idempotentUpdate() method catches and ignores the
ConditionalCheckFailedException, which is thrown by updateItem() if the event
was a duplicate.

 Now that we’ve seen the code that updates the table, let’s look at the query method.

THE FINDORDERHISTORY() METHOD

The findOrderHistory() method, shown in listing 7.5, retrieves the consumer’s orders by
querying the ftgo-order-history table using the ftgo-order-history-by-consumer-
id-and-creation-time secondary index. It has two parameters: consumerId specifies
the consumer, and filter specifies the search criteria. This method creates Query-
Spec—which, like UpdateSpec, is part of the AWS SDK—from its parameters, queries
the index, and transforms the returned items into an OrderHistory object.

public class OrderHistoryDaoDynamoDb ...

@Override
public OrderHistory findOrderHistory(String consumerId, OrderHistoryFilter

filter) {

QuerySpec spec = new QuerySpec()
.withScanIndexForward(false)
.withHashKey("consumerId", consumerId)
.withRangeKeyCondition(new RangeKeyCondition("creationDate")

.gt(filter.getSince().getMillis()));

filter.getStartKeyToken().ifPresent(token ->
spec.withExclusiveStartKey(toStartingPrimaryKey(token)));

Map<String, Object> valuesMap = new HashMap<>();

String filterExpression = Expressions.and(
keywordFilterExpression(valuesMap, filter.getKeywords()),
statusFilterExpression(valuesMap, filter.getStatus()));

if (!valuesMap.isEmpty())
spec.withValueMap(valuesMap);

if (StringUtils.isNotBlank(filterExpression)) {
spec.withFilterExpression(filterExpression);
}

filter.getPageSize().ifPresent(spec::withMaxResultSize);

ItemCollection<QueryOutcome> result = index.query(spec);

return new OrderHistory(
StreamSupport.stream(result.spliterator(), false)

Listing 7.5 The findOrderHistory() method retrieves a consumer’s matching orders

Specifies that query must
return the orders in order
of increasing age

The maximum
age of the
orders to

return

Construct a filter expression
and placeholder value map

from the OrderHistoryFilter.

Limit the number
of results if the
caller has specified
a page size.

252 CHAPTER 7 Implementing queries in a microservice architecture
.map(this::toOrder)
.collect(toList()),

Optional.ofNullable(result
.getLastLowLevelResult()
.getQueryResult().getLastEvaluatedKey())

.map(this::toStartKeyToken));
}

After building a QuerySpec, this method then executes a query and builds an Order-
History, which contains the list of Orders, from the returned items.

 The findOrderHistory() method implements pagination by serializing the value
returned by getLastEvaluatedKey() into a JSON token. If a client specifies a start
token in OrderHistoryFilter, then findOrderHistory() serializes it and invokes
withExclusiveStartKey() to set the start key.

 As you can see, you must address numerous issues when implementing a CQRS
view, including picking a database, designing the data model that efficiently imple-
ments updates and queries, handling concurrent updates, and dealing with duplicate
events. The only complex part of the code is the DAO, because it must properly han-
dle concurrency and ensure that updates are idempotent.

Summary
 Implementing queries that retrieve data from multiple services is challenging

because each service’s data is private.
 There are two ways to implement these kinds of query: the API composition

pattern and the Command query responsibility segregation (CQRS) pattern.
 The API composition pattern, which gathers data from multiple services, is the

simplest way to implement queries and should be used whenever possible.
 A limitation of the API composition pattern is that some complex queries require

inefficient in-memory joins of large datasets.
 The CQRS pattern, which implements queries using view databases, is more

powerful but more complex to implement.
 A CQRS view module must handle concurrent updates as well as detect and dis-

card duplicate events.
 CQRS improves separation of concerns by enabling a service to implement a

query that returns data owned by a different service.
 Clients must handle the eventual consistency of CQRS views.

Create an Order from
an item returned by
the query.

External API patterns
The FTGO application, like many other applications, has a REST API. Its clients
include the FTGO mobile applications, JavaScript running in the browser, and
applications developed by partners. In such a monolithic architecture, the API
that’s exposed to clients is the monolith’s API. But when once the FTGO team
starts deploying microservices, there’s no longer one API, because each service has
its own API. Mary and her team must decide what kind of API the FTGO applica-
tion should now expose to its clients. For example, should clients be aware of the
existence of services and make requests to them directly?

This chapter covers
 The challenge of designing APIs that support a

diverse set of clients

 Applying API gateway and Backends for frontends
patterns

 Designing and implementing an API gateway

 Using reactive programming to simplify API
composition

 Implementing an API gateway using GraphQL
253

254 CHAPTER 8 External API patterns
 The task of designing an application’s external API is made even more challenging
by the diversity of its clients. Different clients typically require different data. A desktop
browser-based UI usually displays far more information than a mobile application. Also,
different clients access the services over different kinds of networks. The clients within
the firewall use a high-performance LAN, and the clients outside of the firewall use the
internet or mobile network, which will have lower performance. Consequently, as you’ll
learn, it often doesn’t make sense to have a single, one-size-fits-all API.

 This chapter begins by describing various external API design issues. I then
describe the external API patterns. I cover the API gateway pattern and then the Back-
ends for frontends pattern. After that, I discuss how to design and implement an API
gateway. I review the various options that are available, which include off-the-shelf API
gateway products and frameworks for developing your own. I describe the design and
implementation of an API gateway that’s built using the Spring Cloud Gateway frame-
work. I also describe how to build an API gateway using GraphQL, a framework that
provides graph-based query language.

8.1 External API design issues
In order to explore the various API-related issues, let’s consider the FTGO application.
As figure 8.1 shows, this application’s services are consumed by a variety of clients. Four
kinds of clients consume the services’ APIs:

 Web applications, such as Consumer web application, which implements the
browser-based UI for consumers, Restaurant web application, which imple-
ments the browser-based UI for restaurants, and Admin web application, which
implements the internal administrator UI

 JavaScript applications running in the browser
 Mobile applications, one for consumers and the other for couriers
 Applications written by third-party developers

The web applications run inside the firewall, so they access the services over a high-
bandwidth, low-latency LAN. The other clients run outside the firewall, so they access
the services over the lower-bandwidth, higher-latency internet or mobile network.

 One approach to API design is for clients to invoke the services directly. On the
surface, this sounds quite straightforward—after all, that’s how clients invoke the API
of a monolithic application. But this approach is rarely used in a microservice archi-
tecture because of the following drawbacks:

 The fine-grained service APIs require clients to make multiple requests to
retrieve the data they need, which is inefficient and can result in a poor user
experience.

 The lack of encapsulation caused by clients knowing about each service and its
API makes it difficult to change the architecture and the APIs.

 Services might use IPC mechanisms that aren’t convenient or practical for cli-
ents to use, especially those clients outside the firewall.

255External API design issues
To learn more about these drawbacks, let’s take a look at how the FTGO mobile appli-
cation for consumers retrieves data from the services.

8.1.1 API design issues for the FTGO mobile client

Consumers use the FTGO mobile client to place and manage their orders. Imagine
you’re developing the mobile client’s View Order view, which displays an order. As
described in chapter 7, the information displayed by this view includes basic order
information, including its status, payment status, status of the order from the restau-
rant’s perspective, and delivery status, including its location and estimated delivery
time if in transit.

 The monolithic version of the FTGO application has an API endpoint that returns
the order details. The mobile client retrieves the information it needs by making a sin-
gle request. In contrast, in the microservices version of the FTGO application, the
order details are, as described previously, scattered across several services, including
the following:

Lower-performance

internet

Higher-performance

LAN

Backend services

Order Service

Firewall

API

requests

API

requests

API

requests

Web page

requests

Web

application

Consumer

Service

Delivery

Service

Kitchen

Service

Browser

iPhone/

Android

application

3rd-party

application

HTML

JavaScript

application

Figure 8.1 The FTGO application’s services and their clients. There are several
different types of clients. Some are inside the firewall, and others are outside.
Those outside the firewall access the services over the lower-performance
internet/mobile network. Those clients inside the firewall use a higher-
performance LAN.

256 CHAPTER 8 External API patterns
 Order Service—Basic order information, including the details and status
 Kitchen Service—The status of the order from the restaurant’s perspective

and the estimated time it will be ready for pickup
 Delivery Service—The order’s delivery status, its estimated delivery time, and

its current location
 Accounting Service—The order’s payment status

If the mobile client invokes the services directly, then it must, as figure 8.2 shows, make
multiple calls to retrieve this data.

FTGO backend services

Order Service

Firewall

Monolithic FTGO

application

Firewall

Internet

Internet

getOrder()

getDelivery()

getOrderDetails()

getBill()

getTicket()

Delivery

Service

Accounting

Service

Kitchen

Service

iPhone/

Android

consumer

application

iPhone/

Android

consumer

application

One API required

Many API calls required

Figure 8.2 A client can retrieve the order details from the monolithic FTGO application with a
single request. But the client must make multiple requests to retrieve the same information in a
microservice architecture.

257External API design issues
In this design, the mobile application is playing the role of API composer. It invokes
multiple services and combines the results. Although this approach seems reasonable,
it has several serious problems.

POOR USER EXPERIENCE DUE TO THE CLIENT MAKING MULTIPLE REQUESTS

The first problem is that the mobile application must sometimes make multiple
requests to retrieve the data it wants to display to the user. The chatty interaction
between the application and the services can make the application seem unrespon-
sive, especially when it uses the internet or a mobile network. The internet has much
lower bandwidth and higher latency than a LAN, and mobile networks are even worse.
The latency of a mobile network (and internet) is typically 100x greater than a LAN.

 The higher latency might not be a problem when retrieving the order details,
because the mobile application minimizes the delay by executing the requests concur-
rently. The overall response time is no greater than that of a single request. But in
other scenarios, a client may need to execute requests sequentially, which will result in
a poor user experience.

 What’s more, poor user experience due to network latency is not the only issue
with a chatty API. It requires the mobile developer to write potentially complex API
composition code. This work is a distraction from their primary task of creating a
great user experience. Also, because each network request consumes power, a chatty
API drains the mobile device’s battery faster.

LACK OF ENCAPSULATION REQUIRES FRONTEND DEVELOPERS TO CHANGE THEIR CODE IN LOCKSTEP
WITH THE BACKEND

Another drawback of a mobile application directly accessing the services is the lack of
encapsulation. As an application evolves, the developers of a service sometimes
change an API in a way that breaks existing clients. They might even change how the
system is decomposed into services. Developers may add new services and split or
merge existing services. But if knowledge about the services is baked into a mobile
application, it can be difficult to change the services’ APIs.

 Unlike when updating a server-side application, it takes hours or perhaps even
days to roll out a new version of a mobile application. Apple or Google must approve
the upgrade and make it available for download. Users might not download the
upgrade immediately—if ever. And you may not want to force reluctant users to
upgrade. The strategy of exposing service APIs to mobile creates a significant obstacle
to evolving those APIs.

SERVICES MIGHT USE CLIENT-UNFRIENDLY IPC MECHANISMS

Another challenge with a mobile application directly calling services is that some ser-
vices could use protocols that aren’t easily consumed by a client. Client applications
that run outside the firewall typically use protocols such as HTTP and WebSockets.
But as described in chapter 3, service developers have many protocols to choose
from—not just HTTP. Some of an application’s services might use gRPC, whereas
others could use the AMQP messaging protocol. These kinds of protocols work well

258 CHAPTER 8 External API patterns
internally, but might not be easily consumed by a mobile client. Some aren’t even fire-
wall friendly.

8.1.2 API design issues for other kinds of clients

I picked the mobile client because it’s a great way to demonstrate the drawbacks of cli-
ents accessing services directly. But the problems created by exposing services to cli-
ents aren’t specific to just mobile clients. Other kinds of clients, especially those
outside the firewall, also encounter these problems. As described earlier, the FTGO
application’s services are consumed by web applications, browser-based JavaScript
applications, and third-party applications. Let’s take a look at the API design issues
with these clients.

API DESIGN ISSUES FOR WEB APPLICATIONS

Traditional server-side web applications, which handle HTTP requests from browsers
and return HTML pages, run within the firewall and access the services over a LAN.
Network bandwidth and latency aren’t obstacles to implementing API composition in
a web application. Also, web applications can use non-web-friendly protocols to access
the services. The teams that develop web applications are part of the same organiza-
tion and often work in close collaboration with the teams writing the backend ser-
vices, so a web application can easily be updated whenever the backend services are
changed. Consequently, it’s feasible for a web application to access the backend ser-
vices directly.

API DESIGN ISSUES FOR BROWSER-BASED JAVASCRIPT APPLICATIONS

Modern browser applications use some amount of JavaScript. Even if the HTML is pri-
marily generated by a server-side web application, it’s common for JavaScript running
in the browser to invoke services. For example, all of the FTGO application web appli-
cations—Consumer, Restaurant, and Admin—contain JavaScript that invokes the back-
end services. The Consumer web application, for instance, dynamically refreshes the
Order Details page using JavaScript that invokes the service APIs.

 On one hand, browser-based JavaScript applications are easy to update when ser-
vice APIs change. On the other hand, JavaScript applications that access the services
over the internet have the same problems with network latency as mobile applications.
To make matters worse, browser-based UIs, especially those for the desktop, are usu-
ally more sophisticated and need to compose more services than mobile applications.
It’s likely that the Consumer and Restaurant applications, which access services over
the internet, won’t be able to compose service APIs efficiently.

DESIGNING APIS FOR THIRD-PARTY APPLICATIONS

FTGO, like many other organizations, exposes an API to third-party developers. The
developers can use the FTGO API to write applications that place and manage
orders. These third-party applications access the APIs over the internet, so API com-
position is likely to be inefficient. But the inefficiency of API composition is a rela-
tively minor problem compared to the much larger challenge of designing an API

259The API gateway pattern
that’s used by third-party applications. That’s because third-party developers need
an API that’s stable.

 Very few organizations can force third-party developers to upgrade to a new API.
Organizations that have an unstable API risk losing developers to a competitor.
Consequently, you must carefully manage the evolution of an API that’s used by third-
party developers. You typically have to maintain older versions for a long time—pos-
sibly forever.

 This requirement is a huge burden for an organization. It’s impractical to make
the developers of the backend services responsible for maintaining long-term back-
ward compatibility. Rather than expose services directly to third-party developers,
organizations should have a separate public API that’s developed by a separate team.
As you’ll learn later, the public API is implemented by an architectural component
known as an API gateway. Let’s look at how an API gateway works.

8.2 The API gateway pattern
As you’ve just seen, there are numerous drawbacks with services accessing services
directly. It’s often not practical for a client to perform API composition over the inter-
net. The lack of encapsulation makes it difficult for developers to change service
decomposition and APIs. Services sometimes use communication protocols that
aren’t suitable outside the firewall. Consequently, a much better approach is to use an
API gateway.

An API gateway is a service that’s the entry point into the application from the outside
world. It’s responsible for request routing, API composition, and other functions,
such as authentication. This section covers the API gateway pattern. I discuss its bene-
fits and drawbacks and describe various design issues you must address when develop-
ing an API gateway.

8.2.1 Overview of the API gateway pattern

Section 8.1.1 described the drawbacks of clients, such as the FTGO mobile applica-
tion, making multiple requests in order to display information to the user. A much
better approach is for a client to make a single request to an API gateway, a service
that serves as the single entry point for API requests into an application from outside
the firewall. It’s similar to the Facade pattern from object-oriented design. Like a facade,
an API gateway encapsulates the application’s internal architecture and provides an API
to its clients. It may also have other responsibilities, such as authentication, monitoring,

Pattern: API gateway
Implement a service that’s the entry point into the microservices-based application
from external API clients. See http://microservices.io/patterns/apigateway.html.

http://microservices.io/patterns/apigateway.html

260 CHAPTER 8 External API patterns
and rate limiting. Figure 8.3 shows the relationship between the clients, the API gate-
way, and the services.

The API gateway is responsible for request routing, API composition, and protocol
translation. All API requests from external clients first go to the API gateway, which
routes some requests to the appropriate service. The API gateway handles other
requests using the API composition pattern and by invoking multiple services and
aggregating the results. It may also translate between client-friendly protocols such as
HTTP and WebSockets and client-unfriendly protocols used by the services.

REQUEST ROUTING

One of the key functions of an API gateway is request routing. An API gateway imple-
ments some API operations by routing requests to the corresponding service. When it
receives a request, the API gateway consults a routing map that specifies which service
to route the request to. A routing map might, for example, map an HTTP method
and path to the HTTP URL of a service. This function is identical to the reverse proxy-
ing features provided by web servers such as NGINX.

Lower-performance

internet

Higher-performance

LAN

Backend services

Order Service

Firewall

API

requests

API

requests

API

requests

Web page

requests

Web

application

Consumer

Service

Delivery

Service

Browser

iPhone/

Android

application

3rd-party

application

HTML

JavaScript

application

API

gateway

Figure 8.3 The API gateway is the single entry point into the application for API calls from outside
the firewall.

261The API gateway pattern
API COMPOSITION

An API gateway typically does more than simply reverse proxying. It might also imple-
ment some API operations using API composition. The FTGO API gateway, for exam-
ple, implements the Get Order Details API operation using API composition. As
figure 8.4 shows, the mobile application makes one request to the API gateway, which
fetches the order details from multiple services.

 The FTGO API gateway provides a coarse-grained API that enables mobile clients
to retrieve the data they need with a single request. For example, the mobile client
makes a single getOrderDetails() request to the API gateway.

FTGO backend services

Order Service

Firewall

Internet
getOrder()

LAN

getDelivery()
getOrderDetails()

getBill()

getTicket()

Delivery

Service

Accounting

Service

Kitchen

Service

iPhone/

Android

consumer

application

API

gateway

FTGO backend services

Order Service

Firewall

Internet

getOrder()

getDelivery()

getBill()

getTicket()

Delivery

Service

Accounting

Service

Kitchen

Service

iPhone/

Android

consumer

application

Many API calls required

One API call requiredLower-performance
network

Higher-performance
network

Figure 8.4 An API gateway often does API composition, which enables a client such as a mobile
device to efficiently retrieve data using a single API request.

262 CHAPTER 8 External API patterns
PROTOCOL TRANSLATION

An API gateway might also perform protocol translation. It might provide a RESTful
API to external clients, even though the application services use a mixture of protocols
internally, including REST and gRPC. When needed, the implementation of some
API operations translates between the RESTful external API and the internal gRPC-
based APIs.

THE API GATEWAY PROVIDES EACH CLIENT WITH CLIENT-SPECIFIC API
An API gateway could provide a single one-size-fits-all (OSFA) API. The problem with
a single API is that different clients often have different requirements. For instance, a
third-party application might require the Get Order Details API operation to return
the complete Order details, whereas a mobile client only needs a subset of the data.
One way to solve this problem is to give clients the option of specifying in a request
which fields and related objects the server should return. This approach is adequate
for a public API that must serve a broad range of third-party applications, but it often
doesn’t give clients the control they need.

 A better approach is for the API gateway to provide each client with its own API.
For example, the FTGO API gateway can provide the FTGO mobile client with an API
that’s specifically designed to meet its requirements. It may even have different APIs
for the Android and iPhone mobile applications. The API gateway will also implement
a public API for third-party developers to use. Later on, I’ll describe the Backends for
frontends pattern that takes this concept of an API-per-client even further by defining
a separate API gateway for each client.

IMPLEMENTING EDGE FUNCTIONS

Although an API gateway’s primary responsibilities are API routing and composition,
it may also implement what are known as edge functions. An edge function is, as the
name suggests, a request-processing function implemented at the edge of an applica-
tion. Examples of edge functions that an application might implement include the
following:

 Authentication—Verifying the identity of the client making the request.
 Authorization—Verifying that the client is authorized to perform that particular

operation.
 Rate limiting —Limiting how many requests per second from either a specific cli-

ent and/or from all clients.
 Caching—Cache responses to reduce the number of requests made to the services.
 Metrics collection—Collect metrics on API usage for billing analytics purposes.
 Request logging—Log requests.

There are three different places in your application where you could implement these
edge functions. First, you can implement them in the backend services. This might
make sense for some functions, such as caching, metrics collection, and possibly autho-
rization. But it’s generally more secure if the application authenticates requests on the
edge before they reach the services.

263The API gateway pattern
 The second option is to implement these edge functions in an edge service that’s
upstream from the API gateway. The edge service is the first point of contact for an
external client. It authenticates the request and performs other edge processing
before passing it to the API gateway.

 An important benefit of using a dedicated edge service is that it separates con-
cerns. The API gateway focuses on API routing and composition. Another benefit is
that it centralizes responsibility for critical edge functions such as authentication.
That’s particularly valuable when an application has multiple API gateways that are
possibly written using a variety of languages and frameworks. I’ll talk more about that
later. The drawback of this approach is that it increases network latency because of the
extra hop. It also adds to the complexity of the application.

 As a result, it’s often convenient to use the third option and implement these edge
functions, especially authorization, in the API gateway itself. There’s one less network
hop, which improves latency. There are also fewer moving parts, which reduces com-
plexity. Chapter 11 describes how the API gateway and the services collaborate to
implement security.

API GATEWAY ARCHITECTURE

An API gateway has a layered, modular architecture. Its architecture, shown in figure 8.5,
consists of two layers: the API layer and a common layer. The API layer consists of
one or more independent API modules. Each API module implements an API for a

API gateway

Mobile client

Mobile API

API layer

Browser JavaScript

application

Browser API

Common layer

3rd-party application

Public API

Figure 8.5 An API gateway has a layered modular architecture. The API for each client is
implemented by a separate module. The common layer implements functionality common to all
APIs, such as authentication.

264 CHAPTER 8 External API patterns
particular client. The common layer implements shared functionality, including edge
functions such as authentication.

 In this example, the API gateway has three API modules:

 Mobile API—Implements the API for the FTGO mobile client
 Browser API—Implements the API for the JavaScript application running in the

browser
 Public API—Implements the API for third-party developers

An API module implements each API operation in one of two ways. Some API opera-
tions map directly to single service API operation. An API module implements these
operations by routing requests to the corresponding service API operation. It might
route requests using a generic routing module that reads a configuration file describ-
ing the routing rules.

 An API module implements other, more complex API operations using API com-
position. The implementation of this API operation consists of custom code. Each API
operation implementation handles requests by invoking multiple services and com-
bining the results.

API GATEWAY OWNERSHIP MODEL

An important question that you must answer is who is responsible for the develop-
ment of the API gateway and its operation? There are a few different options. One is
for a separate team to be responsible for the API gateway. The drawback to that is that
it’s similar to SOA, where an Enterprise Service Bus (ESB) team was responsible for all
ESB development. If a developer working on the mobile application needs access to a
particular service, they must submit a request to the API gateway team and wait for
them to expose the API. This kind of centralized bottleneck in the organization is very
much counter to the philosophy of the microservice architecture, which promotes
loosely coupled autonomous teams.

 A better approach, which has been promoted by Netflix, is for the client teams—
the mobile, web, and public API teams—to own the API module that exposes their
API. An API gateway team is responsible for developing the Common module and for
the operational aspects of the gateway. This ownership model, shown in figure 8.6,
gives the teams control over their APIs.

 When a team needs to change their API, they check in the changes to the source
repository for the API gateway. To work well, the API gateway’s deployment pipeline
must be fully automated. Otherwise, the client teams will often be blocked waiting for
the API gateway team to deploy the new version.

USING THE BACKENDS FOR FRONTENDS PATTERN

One concern with an API gateway is that responsibility for it is blurred. Multiple teams
contribute to the same code base. An API gateway team is responsible for its opera-
tion. Though not as bad as a SOA ESB, this blurring of responsibilities is counter to
the microservice architecture philosophy of “if you build it, you own it.”

265The API gateway pattern
The solution is to have an API gateway for each client, the so-called Backends for front-
ends (BFF) pattern, which was pioneered by Phil Calçado (http://philcalcado.com/)
and his colleagues at SoundCloud. As figure 8.7 shows, each API module becomes its
own standalone API gateway that’s developed and operated by a single client team.

Pattern: Backends for frontends
Implement a separate API gateway for each type of client. See http://microservices
.io/patterns/apigateway.html.

API gateway

Mobile client

Mobile API

API layer

Browser JavaScript

application

Browser API

Common layer

3rd-party application

Public API

Mobile client team

API gateway team

Browser client team

Owns

Owns

OwnsOwns

Public API team

Figure 8.6 A client team owns their API module. As they change the client, they can change the API
module and not ask the API gateway team to make the changes.

http://philcalcado.com/
http://microservices.io/patterns/apigateway.html
http://microservices.io/patterns/apigateway.html
http://microservices.io/patterns/apigateway.html

266 CHAPTER 8 External API patterns
The public API team owns and operates their API gateway, the mobile team owns and
operates theirs, and so on. In theory, different API gateways could be developed using
different technology stacks. But that risks duplicating code for common functionality,
such as the code that implements edge functions. Ideally, all API gateways use the
same technology stack. The common functionality is a shared library implemented by
the API gateway team.

 Besides clearly defining responsibilities, the BFF pattern has other benefits. The
API modules are isolated from one another, which improves reliability. One misbehav-
ing API can’t easily impact other APIs. It also improves observability, because different
API modules are different processes. Another benefit of the BFF pattern is that each
API is independently scalable. The BFF pattern also reduces startup time because
each API gateway is a smaller, simpler application.

Mobile API

gateway

Mobile client

Mobile API

API layer

Common layer

Browser API

gateway

Browser API

API layer

Common layer

Public API

gateway

Public API

API layer

Common layer

Mobile client team Browser client team

Owns Owns Owns

Public API team

Browser JavaScript

application
3rd-party application

Figure 8.7 The Backends for frontends pattern defines a separate API gateway for each client. Each
client team owns their API gateway. An API gateway team owns the common layer.

267The API gateway pattern
8.2.2 Benefits and drawbacks of an API gateway

As you might expect, the API gateway pattern has both benefits and drawbacks.

BENEFITS OF AN API GATEWAY

A major benefit of using an API gateway is that it encapsulates internal structure of the
application. Rather than having to invoke specific services, clients talk to the gateway.
The API gateway provides each client with a client-specific API, which reduces the
number of round-trips between the client and application. It also simplifies the client
code.

DRAWBACKS OF AN API GATEWAY

The API gateway pattern also has some drawbacks. It is yet another highly available
component that must be developed, deployed, and managed. There’s also a risk that
the API gateway becomes a development bottleneck. Developers must update the API
gateway in order to expose their services’s API. It’s important that the process for
updating the API gateway be as lightweight as possible. Otherwise, developers will be
forced to wait in line in order to update the gateway. Despite these drawbacks, though,
for most real-world applications, it makes sense to use an API gateway. If necessary,
you can use the Backends for frontends pattern to enable the teams to develop and
deploy their APIs independently.

8.2.3 Netflix as an example of an API gateway

A great example of an API gateway is the Netflix API. The Netflix streaming service is
available on hundreds of different kinds of devices including televisions, Blu-ray
players, smartphones, and many more gadgets. Initially, Netflix attempted to have a
one-size-fits-all style API for its streaming service (www.programmableweb.com/news/
why-rest-keeps-me-night/2012/05/15). But the company soon discovered that didn’t
work well because of the diverse range of devices and their different needs. Today,
Netflix uses an API gateway that implements a separate API for each device. The client
device team develops and owns the API implementation.

 In the first version of the API gateway, each client team implemented their API
using Groovy scripts that perform routing and API composition. Each script invoked
one or more service APIs using Java client libraries provided by the service teams. On
one hand, this works well, and client developers have written thousands of scripts. The
Netflix API gateway handles billions of requests per day, and on average each API call
fans out to six or seven backend services. On the other hand, Netflix has found this
monolithic architecture to be somewhat cumbersome.

 As a result, Netflix is now moving to an API gateway architecture similar to the
Backends for frontends pattern. In this new architecture, client teams write API mod-
ules using NodeJS. Each API module runs its own Docker container, but the scripts
don’t invoke the services directly. Rather, they invoke a second “API gateway,” which
exposes the service APIs using Netflix Falcor. Netflix Falcor is an API technology that
does declarative, dynamic API composition and enables a client to invoke multiple

http://www.programmableweb.com/news/why-rest-keeps-me-night/2012/05/15
http://www.programmableweb.com/news/why-rest-keeps-me-night/2012/05/15
http://www.programmableweb.com/news/why-rest-keeps-me-night/2012/05/15

268 CHAPTER 8 External API patterns
services using a single request. This new architecture has a number of benefits. The
API modules are isolated from one another, which improves reliability and observabil-
ity, and the client API module is independently scalable.

8.2.4 API gateway design issues

Now that we’ve looked at the API gateway pattern and its benefits and drawbacks, let’s
examine various API gateway design issues. There are several issues to consider when
designing an API gateway:

 Performance and scalability
 Writing maintainable code by using reactive programming abstractions
 Handling partial failure
 Being a good citizen in the application’s architecture

We’ll look at each one.

PERFORMANCE AND SCALABILITY

An API gateway is the application’s front door. All external requests must first pass
through the gateway. Although most companies don’t operate at the scale of Netflix,
which handles billions of requests per day, the performance and scalability of the API
gateway is usually very important. A key design decision that affects performance and
scalability is whether the API gateway should use synchronous or asynchronous I/O.

 In the synchronous I/O model , each network connection is handled by a dedicated
thread. This is a simple programming model and works reasonably well. For example,
it’s the basis of the widely used Java EE servlet framework, although this framework
provides the option of completing a request asynchronously. One limitation of syn-
chronous I/O, however, is that operating system threads are heavyweight, so there is a
limit on the number of threads, and hence concurrent connections, that an API gate-
way can have.

 The other approach is to use the asynchronous (nonblocking) I/O model . In this
model, a single event loop thread dispatches I/O requests to event handlers. You have
a variety of asynchronous I/O technologies to choose from. On the JVM you can use
one of the NIO-based frameworks such as Netty, Vertx, Spring Reactor, or JBoss
Undertow. One popular non-JVM option is NodeJS, a platform built on Chrome’s
JavaScript engine.

 Nonblocking I/O is much more scalable because it doesn’t have the overhead of
using multiple threads. The drawback, though, is that the asynchronous, callback-
based programming model is much more complex. The code is more difficult to
write, understand, and debug. Event handlers must return quickly to avoid blocking
the event loop thread.

 Also, whether using nonblocking I/O has a meaningful overall benefit depends on
the characteristics of the API gateway’s request-processing logic. Netflix had mixed results
when it rewrote Zuul, its edge server, to use NIO (see https://medium.com/netflix-
techblog/zuul-2-the-netflix-journey-to-asynchronous-non-blocking-systems-45947377fb5c).

https://medium.com/netflix-techblog/zuul-2-the-netflix-journey-to-asynchronous-non-blocking-systems-45947377fb5c
https://medium.com/netflix-techblog/zuul-2-the-netflix-journey-to-asynchronous-non-blocking-systems-45947377fb5c

269The API gateway pattern
On one hand, as you would expect, using NIO reduced the cost of each network con-
nection, due to the fact that there’s no longer a dedicated thread for each one. Also, a
Zuul cluster that ran I/O-intensive logic—such as request routing—had a 25% increase
in throughput and a 25% reduction in CPU utilization. On the other hand, a Zuul clus-
ter that ran CPU-intensive logic—such as decryption and compression—showed no
improvement.

USE REACTIVE PROGRAMMING ABSTRACTIONS

As mentioned earlier, API composition consists of invoking multiple backend services.
Some backend service requests depend entirely on the client request’s parameters.
Others might depend on the results of other service requests. One approach is for an
API endpoint handler method to call the services in the order determined by the depen-
dencies. For example, the following listing shows the handler for the findOrder()
request that’s written this way. It calls each of the four services, one after the other.

@RestController
public class OrderDetailsController {
@RequestMapping("/order/{orderId}")
public OrderDetails getOrderDetails(@PathVariable String orderId) {

OrderInfo orderInfo = orderService.findOrderById(orderId);

TicketInfo ticketInfo = kitchenService
.findTicketByOrderId(orderId);

DeliveryInfo deliveryInfo = deliveryService
.findDeliveryByOrderId(orderId);

BillInfo billInfo = accountingService
.findBillByOrderId(orderId);

OrderDetails orderDetails =
OrderDetails.makeOrderDetails(orderInfo, ticketInfo,

deliveryInfo, billInfo);

return orderDetails;
}
...

The drawback of calling the services sequentially is that the response time is the sum
of the service response times. In order to minimize response time, the composition
logic should, whenever possible, invoke services concurrently. In this example, there
are no dependencies between the service calls. All services should be invoked concur-
rently, which significantly reduces response time. The challenge is to write concurrent
code that’s maintainable.

 This is because the traditional way to write scalable, concurrent code is to use
callbacks. Asynchronous, event-driven I/O is inherently callback-based. Even a Servlet

Listing 8.1 Fetching the order details by calling the backend services sequentially

270 CHAPTER 8 External API patterns
API-based API composer that invokes services concurrently typically uses callbacks. It
could execute requests concurrently by calling ExecutorService.submitCallable().
The problem there is that this method returns a Future, which has a blocking API. A
more scalable approach is for an API composer to call ExecutorService.submit
(Runnable) and for each Runnable to invoke a callback with the outcome of the
request. The callback accumulates results, and once all of them have been received it
sends back the response to the client.

 Writing API composition code using the traditional asynchronous callback approach
quickly leads you to callback hell. The code will be tangled, difficult to understand,
and error prone, especially when composition requires a mixture of parallel and
sequential requests. A much better approach is to write API composition code in a
declarative style using a reactive approach. Examples of reactive abstractions for the
JVM include the following:

 Java 8 CompletableFutures
 Project Reactor Monos
 RxJava (Reactive Extensions for Java) Observables, created by Netflix specifi-

cally to solve this problem in its API gateway
 Scala Futures

A NodeJS-based API gateway would use JavaScript promises or RxJS, which is reactive
extensions for JavaScript. Using one of these reactive abstractions will enable you to
write concurrent code that’s simple and easy to understand. Later in this chapter, I
show an example of this style of coding using Project Reactor Monos and version 5 of
the Spring Framework.

HANDLING PARTIAL FAILURES

As well as being scalable, an API gateway must also be reliable. One way to achieve reli-
ability is to run multiple instances of the gateway behind a load balancer. If one
instance fails, the load balancer will route requests to the other instances.

 Another way to ensure that an API gateway is reliable is to properly handle failed
requests and requests that have unacceptably high latency. When an API gateway
invokes a service, there’s always a chance that the service is slow or unavailable. An API
gateway may wait a very long time, perhaps indefinitely, for a response, which con-
sumes resources and prevents it from sending a response to its client. An outstanding
request to a failed service might even consume a limited, precious resource such as a
thread and ultimately result in the API gateway being unable to handle any other
requests. The solution, as described in chapter 3, is for an API gateway to use the Cir-
cuit breaker pattern when invoking services.

BEING A GOOD CITIZEN IN THE ARCHITECTURE

In chapter 3 I described patterns for service discovery, and in chapter 11, I cover
patterns for observability. The service discovery patterns enable a service client,
such as an API gateway, to determine the network location of a service instance so
that it can invoke it. The observability patterns enable developers to monitor the

271Implementing an API gateway
behavior of an application and troubleshoot problems. An API gateway, like other ser-
vices in the architecture, must implement the patterns that have been selected for the
architecture.

8.3 Implementing an API gateway
Let’s now look at how to implement an API gateway. As mentioned earlier, the respon-
sibilities of an API gateway are as follows:

 Request routing—Routes requests to services using criteria such as HTTP request
method and path. The API gateway must route using the HTTP request method
when the application has one or more CQRS query services. As discussed in
chapter 7, in such an architecture commands and queries are handled by sepa-
rate services.

 API composition—Implements a GET REST endpoint using the API composition
pattern, described in chapter 7. The request handler combines the results of
invoking multiple services.

 Edge functions—Most notable among these is authentication.
 Protocol translation—Translates between client-friendly protocols and the client-

unfriendly protocols used by services.
 Being a good citizen in the application’s architecture.

There are a couple of different ways to implement an API gateway:

 Using an off-the-shelf API gateway product/service—This option requires little or no
development but is the least flexible. For example, an off-the-shelf API gateway
typically does not support API composition

 Developing your own API gateway using either an API gateway framework or a web frame-
work as the starting point—This is the most flexible approach, though it requires
some development effort.

Let’s look at these options, starting with using an off-the-shelf API gateway product or
service.

8.3.1 Using an off-the-shelf API gateway product/service

Several off-the-self services and products implement API gateway features. Let’s first
look at a couple of services that are provided by AWS. After that, I’ll discuss some
products that you can download, configure, and run yourself.

AWS API GATEWAY

The AWS API gateway, one of the many services provided by Amazon Web Services, is
a service for deploying and managing APIs. An AWS API gateway API is a set of REST
resources, each of which supports one or more HTTP methods. You configure the API
gateway to route each (Method, Resource) to a backend service. A backend service is
either an AWS Lambda Function, described later in chapter 12, an application-
defined HTTP service, or an AWS service. If necessary, you can configure the API

272 CHAPTER 8 External API patterns
gateway to transform request and response using a template-based mechanism. The
AWS API gateway can also authenticate requests.

 The AWS API gateway fulfills some of the requirements for an API gateway that I
listed earlier. The API gateway is provided by AWS, so you’re not responsible for instal-
lation and operations. You configure the API gateway, and AWS handles everything
else, including scaling.

 Unfortunately, the AWS API gateway has several drawbacks and limitations that
cause it to not fulfill other requirements. It doesn’t support API composition, so you’d
need to implement API composition in the backend services. The AWS API gateway
only supports HTTP(S) with a heavy emphasis on JSON. It only supports the Server-
side discovery pattern, described in chapter 3. An application will typically use an AWS
Elastic Load Balancer to load balance requests across a set of EC2 instances or ECS
containers. Despite these limitations, unless you need API composition, the AWS API
gateway is a good implementation of the API gateway pattern.

AWS APPLICATION LOAD BALANCER

Another AWS service that provides API gateway-like functionality is the AWS Applica-
tion Load Balancer, which is a load balancer for HTTP, HTTPS, WebSocket, and
HTTP/2 (https://aws.amazon.com/blogs/aws/new-aws-application-load-balancer/).
When configuring an Application Load Balancer, you define routing rules that route
requests to backend services, which must be running on AWS EC2 instances.

 Like the AWS API gateway, the AWS Application Load Balancer meets some of the
requirements for an API gateway. It implements basic routing functionality. It’s hosted,
so you’re not responsible for installation or operations. Unfortunately, it’s quite lim-
ited. It doesn’t implement HTTP method-based routing. Nor does it implement API
composition or authentication. As a result, the AWS Application Load Balancer
doesn’t meet the requirements for an API gateway.

USING AN API GATEWAY PRODUCT

Another option is to use an API gateway product such as Kong or Traefik . These are
open source packages that you install and operate yourself. Kong is based on the
NGINX HTTP server, and Traefik is written in GoLang. Both products let you config-
ure flexible routing rules that use the HTTP method, headers, and path to select the
backend service. Kong lets you configure plugins that implement edge functions such
as authentication. Traefik can even integrate with some service registries, described in
chapter 3.

 Although these products implement edge functions and powerful routing capabil-
ities, they have some drawbacks. You must install, configure, and operate them your-
self. They don’t support API composition. And if you want the API gateway to perform
API composition, you must develop your own API gateway.

https://aws.amazon.com/blogs/aws/new-aws-application-load-balancer/

273Implementing an API gateway
8.3.2 Developing your own API gateway

Developing an API gateway isn’t particularly difficult. It’s basically a web application
that proxies requests to other services. You can build one using your favorite web
framework. There are, however, two key design problems that you’ll need to solve:

 Implementing a mechanism for defining routing rules in order to minimize the
complex coding

 Correctly implementing the HTTP proxying behavior, including how HTTP
headers are handled

Consequently, a better starting point for developing an API gateway is to use a frame-
work designed for that purpose. Its built-in functionality significantly reduces the
amount of code you need to write.

 We’ll take a look at Netflix Zuul, an open source project by Netflix, and then con-
sider the Spring Cloud Gateway, an open source project from Pivotal.

USING NETFLIX ZUUL

Netflix developed the Zuul framework to implement edge functions such as routing,
rate limiting, and authentication (https://github.com/Netflix/zuul). The Zuul frame-
work uses the concept of filters, reusable request interceptors that are similar to servlet
filters or NodeJS Express middleware. Zuul handles an HTTP request by assembling a
chain of applicable filters that then transform the request, invoke backend services,
and transform the response before it’s sent back to the client. Although you can use
Zuul directly, using Spring Cloud Zuul, an open source project from Pivotal, is far eas-
ier. Spring Cloud Zuul builds on Zuul and through convention-over-configuration
makes developing a Zuul-based server remarkably easy.

 Zuul handles the routing and edge functionality. You can extend Zuul by defining
Spring MVC controllers that implement API composition. But a major limitation of
Zuul is that it can only implement path-based routing. For example, it’s incapable of
routing GET /orders to one service and POST /orders to a different service. Conse-
quently, Zuul doesn’t support the query architecture described in chapter 7.

ABOUT SPRING CLOUD GATEWAY

None of the options I’ve described so far meet all the requirements. In fact, I had
given up in my search for an API gateway framework and had started developing an
API gateway based on Spring MVC. But then I discovered the Spring Cloud Gate-
way project (https://cloud.spring.io/spring-cloud-gateway/). It’s an API gateway
framework built on top of several frameworks, including Spring Framework 5,
Spring Boot 2, and Spring Webflux, which is a reactive web framework that's part of
Spring Framework 5 and built on Project Reactor. Project Reactor is an NIO-based
reactive framework for the JVM that provides the Mono abstraction used a little
later in this chapter.

https://github.com/Netflix/zuul
https://cloud.spring.io/spring-cloud-gateway/

274 CHAPTER 8 External API patterns
 Spring Cloud Gateway provides a simple yet comprehensive way to do the following:

 Route requests to backend services.
 Implement request handlers that perform API composition.
 Handle edge functions such as authentication.

Figure 8.8 shows the key parts of an API gateway built using this framework.

The API gateway consists of the following packages:

 ApiGatewayMain package—Defines the Main program for the API gateway.
 One or more API packages—An API package implements a set of API endpoints.

For example, the Orders package implements the Order-related API endpoints.
 Proxy package—Consists of proxy classes that are used by the API packages to

invoke the services.

«@SpringBootApplication»
ApiGatewayApplication

«@Bean»
orderProxyRouting

«@Bean»
orderHandlerRouting

GET/orders/{orderId}

=>

OrderHandlers::getOrderDetails

orders*

=>

http://orderservice

mono<ServerResponse>

getOrderDetails(ServerRequest){

...

}

mono<OrderInfo>

findOrderById()(orderId){

...WebClient

.get()

.url("http://order-service/..."}

}

static void main(String[]args){

...

}

Remote proxies«package»

Orders«API package»

«proxy»
....

«proxy»
DeliveryService

findDeliveryByOrder()

«proxy»
OrderService

findOrderById()

Order handlers

Spring Cloud Gateway

Spring 5

getOrderDetails()

Spring webFlux

Project reactor

«Spring Configuration»OrderConfiguration

Figure 8.8 The architecture of an API gateway built using Spring Cloud Gateway

275Implementing an API gateway

}
::
The OrderConfiguration class defines the Spring beans responsible for routing
Order-related requests. A routing rule can match against some combination of the
HTTP method, the headers, and the path. The orderProxyRoutes @Bean defines rules
that map API operations to backend service URLs. For example, it routes paths begin-
ning with /orders to the Order Service.

 The orderHandlers @Bean defines rules that override those defined by order-
ProxyRoutes. These rules map API operations to handler methods, which are the
Spring WebFlux equivalent of Spring MVC controller methods. For example, order-
Handlers maps the operation GET /orders/{orderId} to the OrderHandlers::get-
OrderDetails() method.

 The OrderHandlers class implements various request handler methods, such as
OrderHandlers::getOrderDetails(). This method uses API composition to fetch the
order details (described earlier). The handle methods invoke backend services using
remote proxy classes, such as OrderService. This class defines methods for invoking
the OrderService.

 Let’s take a look at the code, starting with the OrderConfiguration class.

THE ORDERCONFIGURATION CLASS

The OrderConfiguration class, shown in listing 8.2, is a Spring @Configuration class.
It defines the Spring @Beans that implement the /orders endpoints. The order-
ProxyRouting and orderHandlerRouting @Beans use the Spring WebFlux routing
DSL to define the request routing. The orderHandlers @Bean implements the request
handlers that perform API composition.

@Configuration
@EnableConfigurationProperties(OrderDestinations.class)
public class OrderConfiguration {

@Bean
public RouteLocator orderProxyRouting(OrderDestinations orderDestinations) {
return Routes.locator()

.route("orders")

.uri(orderDestinations.orderServiceUrl)

.predicate(path("/orders").or(path("/orders/*")))
.and()
...
.build();

}

@Bean
public RouterFunction<ServerResponse>

orderHandlerRouting(OrderHandlers orderHandlers) {
return RouterFunctions.route(GET("/orders/{orderId}"),

orderHandlers::getOrderDetails);
}

Listing 8.2 The Spring @Beans that implement the /orders endpoints

By default, route all requests whose
path begins with /orders to the URL
orderDestinations.orderServiceUrl.

Route a GET
/orders/{orderId
to orderHandlers
getOrderDetails.

276 CHAPTER 8 External API patterns
@Bean
public OrderHandlers orderHandlers(OrderService orderService,

KitchenService kitchenService,
DeliveryService deliveryService,
AccountingService accountingService) {

return new OrderHandlers(orderService, kitchenService,
deliveryService, accountingService);

}

}

OrderDestinations, shown in the following listing, is a Spring @Configuration-
Properties class that enables the externalized configuration of backend service URLs.

@ConfigurationProperties(prefix = "order.destinations")
public class OrderDestinations {

@NotNull
public String orderServiceUrl;

public String getOrderServiceUrl() {
return orderServiceUrl;

}

public void setOrderServiceUrl(String orderServiceUrl) {
this.orderServiceUrl = orderServiceUrl;

}
...

}

You can, for example, specify the URL of the Order Service either as the order
.destinations.orderServiceUrl property in a properties file or as an operating sys-
tem environment variable, ORDER_DESTINATIONS_ORDER_SERVICE_URL.

THE ORDERHANDLERS CLASS

The OrderHandlers class, shown in the following listing, defines the request handler
methods that implement custom behavior, including API composition. The getOrder-
Details() method, for example, performs API composition to retrieve information
about an order. This class is injected with several proxy classes that make requests to
backend services.

public class OrderHandlers {

private OrderService orderService;
private KitchenService kitchenService;
private DeliveryService deliveryService;
private AccountingService accountingService;

Listing 8.3 The externalized configuration of backend service URLs

Listing 8.4 The OrderHandlers class implements custom request-handling logic.

The @Bean, which implements the
custom request-handling logic

277Implementing an API gateway
public OrderHandlers(OrderService orderService,
KitchenService kitchenService,
DeliveryService deliveryService,
AccountingService accountingService) {

this.orderService = orderService;
this.kitchenService = kitchenService;
this.deliveryService = deliveryService;
this.accountingService = accountingService;

}

public Mono<ServerResponse> getOrderDetails(ServerRequest serverRequest) {
String orderId = serverRequest.pathVariable("orderId");

Mono<OrderInfo> orderInfo = orderService.findOrderById(orderId);

Mono<Optional<TicketInfo>> ticketInfo =
kitchenService

.findTicketByOrderId(orderId)

.map(Optional::of)
.onErrorReturn(Optional.empty());

Mono<Optional<DeliveryInfo>> deliveryInfo =
deliveryService

.findDeliveryByOrderId(orderId)

.map(Optional::of)

.onErrorReturn(Optional.empty());

Mono<Optional<BillInfo>> billInfo = accountingService
.findBillByOrderId(orderId)
.map(Optional::of)
.onErrorReturn(Optional.empty());

Mono<Tuple4<OrderInfo, Optional<TicketInfo>,
Optional<DeliveryInfo>, Optional<BillInfo>>> combined =

Mono.when(orderInfo, ticketInfo, deliveryInfo, billInfo);

Mono<OrderDetails> orderDetails =
combined.map(OrderDetails::makeOrderDetails);

return orderDetails.flatMap(person -> ServerResponse.ok()
.contentType(MediaType.APPLICATION_JSON)
.body(fromObject(person)));

}

}

The getOrderDetails() method implements API composition to fetch the order
details. It’s written in a scalable, reactive style using the Mono abstraction , which is pro-
vided by Project Reactor. A Mono, which is a richer kind of Java 8 CompletableFuture,
contains the outcome of an asynchronous operation that’s either a value or an
exception. It has a rich API for transforming and combining the values returned by
asynchronous operations. You can use Monos to write concurrent code in a style that’s

Transform a TicketInfo into
an Optional<TicketInfo>.

If the service invocation failed,
return Optional.empty().

Combine the four
values into a single
value, a Tuple4.

Transform the Tuple4
into an OrderDetails.

Transform the
OrderDetails into

a ServerResponse.

278 CHAPTER 8 External API patterns
simple and easy to understand. In this example, the getOrderDetails() method
invokes the four services in parallel and combines the results to create an Order-
Details object.

 The getOrderDetails() method takes a ServerRequest, which is the Spring Web-
Flux representation of an HTTP request, as a parameter and does the following:

1 It extracts the orderId from the path.
2 It invokes the four services asynchronously via their proxies, which return Monos.

In order to improve availability, getOrderDetails() treats the results of all ser-
vices except the OrderService as optional. If a Mono returned by an optional
service contains an exception, the call to onErrorReturn() transforms it into a
Mono containing an empty Optional.

3 It combines the results asynchronously using Mono.when(), which returns a
Mono<Tuple4> containing the four values.

4 It transforms the Mono<Tuple4> into a Mono<OrderDetails> by calling Order-
Details::makeOrderDetails.

5 It transforms the OrderDetails into a ServerResponse, which is the Spring
WebFlux representation of the JSON/HTTP response.

As you can see, because getOrderDetails() uses Monos, it concurrently invokes the
services and combines the results without using messy, difficult-to-read callbacks. Let’s
take a look at one of the service proxies that return the results of a service API call
wrapped in a Mono.

THE ORDERSERVICE CLASS

The OrderService class, shown in the following listing, is a remote proxy for the Order
Service. It invokes the Order Service using a WebClient, which is the Spring Web-
Flux reactive HTTP client.

@Service
public class OrderService {

private OrderDestinations orderDestinations;

private WebClient client;

public OrderService(OrderDestinations orderDestinations, WebClient client)
{

this.orderDestinations = orderDestinations;
this.client = client;

}

public Mono<OrderInfo> findOrderById(String orderId) {
Mono<ClientResponse> response = client

.get()

Listing 8.5 OrderService class—a remote proxy for Order Service

279Implementing an API gateway
.uri(orderDestinations.orderServiceUrl + "/orders/{orderId}",
orderId)

.exchange();
return response.flatMap(resp -> resp.bodyToMono(OrderInfo.class));

}

}

The findOrder() method retrieves the OrderInfo for an order. It uses the WebClient
to make the HTTP request to the Order Service and deserializes the JSON response
to an OrderInfo. WebClient has a reactive API, and the response is wrapped in a Mono.
The findOrder() method uses flatMap() to transform the Mono<ClientResponse>
into a Mono<OrderInfo>. As the name suggests, the bodyToMono() method returns the
response body as a Mono.

THE APIGATEWAYAPPLICATION CLASS

The ApiGatewayApplication class, shown in the following listing, implements the API
gateway’s main() method. It’s a standard Spring Boot main class.

@SpringBootConfiguration
@EnableAutoConfiguration
@EnableGateway
@Import(OrdersConfiguration.class)
public class ApiGatewayApplication {

public static void main(String[] args) {
SpringApplication.run(ApiGatewayApplication.class, args);

}
}

The @EnableGateway annotation imports the Spring configuration for the Spring
Cloud Gateway framework.

 Spring Cloud Gateway is an excellent framework for implementing an API gateway.
It enables you to configure basic proxying using a simple, concise routing rules DSL.
It’s also straightforward to route requests to handler methods that perform API com-
position and protocol translation. Spring Cloud Gateway is built using the scalable,
reactive Spring Framework 5 and Project Reactor frameworks. But there’s another
appealing option for developing your own API gateway: GraphQL, a framework that
provides graph-based query language. Let’s look at how that works.

8.3.3 Implementing an API gateway using GraphQL

Imagine that you’re responsible for implementing the FTGO’s API Gateway’s GET
/orders/{orderId} endpoint, which returns the order details. On the surface, imple-
menting this endpoint might appear to be simple. But as described in section 8.1, this
endpoint retrieves data from multiple services. Consequently, you need to use the

Listing 8.6 The main() method for the API gateway

Invoke the
service.

Convert the response
body to an OrderInfo.

280 CHAPTER 8 External API patterns
API composition pattern and write code that invokes the services and combines
the results.

 Another challenge, mentioned earlier, is that different clients need slightly differ-
ent data. For example, unlike the mobile application, the desktop SPA application dis-
plays your rating for the order. One way to tailor the data returned by the endpoint, as
described in chapter 3, is to give the client the ability to specify the data they need. An
endpoint can, for example, support query parameters such as the expand parameter,
which specifies the related resources to return, and the field parameter, which speci-
fies the fields of each resource to return. The other option is to define multiple ver-
sions of this endpoint as part of applying the Backends for frontends pattern. This is a
lot of work for just one of the many API endpoints that the FTGO’s API Gateway
needs to implement.

 Implementing an API gateway with a REST API that supports a diverse set of cli-
ents well is time consuming. Consequently, you may want to consider using a graph-
based API framework, such as GraphQL, that’s designed to support efficient data
fetching. The key idea with graph-based API frameworks is that, as figure 8.9 shows,
the server’s API consists of a graph-based schema. The graph-based schema defines a
set of nodes (types), which have properties (fields) and relationships with other nodes.
The client retrieves data by executing a query that specifies the required data in terms
of the graph’s nodes and their properties and relationships. As a result, a client can
retrieve the data it needs in a single round-trip to the API gateway.

Graph-based API technology has a couple of important benefits. It gives clients con-
trol over what data is returned. Consequently, developing a single API that’s flexible

Consumer

Consumer

Restaurant Delivery

Consumer Service

API gateway

Graph-based API framework

Graph schema

Order

Order Service

Restaurant

Restaurant Service

Delivery

Delivery Service

Order

Schema

=>

Service

mapping

Client
Query

Query

Query

Query

Query

Figure 8.9 The API gateway’s API consists of a graph-based schema that’s mapped to the services. A client
issues a query that retrieves multiple graph nodes. The graph-based API framework executes the query by
retrieving data from one or more services.

281Implementing an API gateway
enough to support diverse clients becomes feasible. Another benefit is that even though
the API is much more flexible, this approach significantly reduces the development
effort. That’s because you write the server-side code using a query execution frame-
work that’s designed to support API composition and projections. It’s as if, rather than
force clients to retrieve data via stored procedures that you need to write and main-
tain, you let them execute queries against the underlying database.

This section talks about how to develop an API gateway using Apollo GraphQL. I’m
only going to cover a few of the key features of GraphQL and Apollo GraphQL. For
more information, you should consult the GraphQL and Apollo GraphQL docu-
mentation.

 The GraphQL-based API gateway, shown in figure 8.10, is written in JavaScript
using the NodeJS Express web framework and the Apollo GraphQL server. The key
parts of the design are as follows:

 GraphQL schema—The GraphQL schema defines the server-side data model and
the queries it supports.

 Resolver functions—The resolve functions map elements of the schema to the
various backend services.

 Proxy classes—The proxy classes invoke the FTGO application’s services.

There’s also a small amount of glue code that integrates the GraphQL server with the
Express web framework. Let’s look at each part, starting with the GraphQL schema.

Schema-driven API technologies
The two most popular graph-based API technologies are GraphQL (http://graphql.org)
and Netflix Falcor (http://netflix.github.io/falcor/). Netflix Falcor models server-side
data as a virtual JSON object graph. The Falcor client retrieves data from a Falcor
server by executing a query that retrieves properties of that JSON object. The client
can also update properties. In the Falcor server, the properties of the object graph
are mapped to backend data sources, such as services with REST APIs. The server
handles a request to set or get properties by invoking one or more backend data
sources.

GraphQL, developed by Facebook and released in 2015, is another popular graph-
based API technology. It models the server-side data as a graph of objects that have
fields and references to other objects. The object graph is mapped to backend data
sources. GraphQL clients can execute queries that retrieve data and mutations that
create and update data. Unlike Netflix Falcor, which is an implementation, GraphQL
is a standard, with clients and servers available for a variety of languages, including
NodeJS, Java, and Scala.

Apollo GraphQL is a popular JavaScript/NodeJS implementation (www.apollographql
.com). It’s a platform that includes a GraphQL server and client. Apollo GraphQL
implements some powerful extensions to the GraphQL specification, such as sub-
scriptions that push changed data to the client.

http://graphql.org
http://netflix.github.io/falcor/
http://www.apollographql.com
http://www.apollographql.com
http://www.apollographql.com

282 CHAPTER 8 External API patterns
DEFINING A GRAPHQL SCHEMA

A GraphQL API is centered around a schema, which consists of a collection of types
that define the structure of the server-side data model and the operations, such as
queries, that a client can perform. GraphQL has several different kinds of types. The
example code in this section uses just two kinds of types: object types, which are the

type Query{
orders(consumerId:Int!): [Order]
order(orderId : int!): Order
consumer(consumerId : int!): Consumer

}

type Order {
orderId: ID,
consumerId: Int,
consumer: Consumer
restaurant: Restaurant
deliveryInfo : DeliveryInfo

...

const resolvers = {
Query:{
orders: resolveOrders,
order: resolveOrder,
...

},
Order:{
consumer: resolveOrderConsumer,
restaurant: resolveOrderRestaurant,
deliveryInfo: resolveOrderDeliveryInfo

},
...

function resolveOrder(_. {orderId}, context){
return context.orderServiceProxy.findOrder(orderI d);

}

function resolveOrderDeliveryInfo({orderId}, args, context) {
return context.deliveryServiceProxy.findDeliveryF orOrder(orderId);

}

Apollo graphQL engine

ConsumerServiceProxy OrderServiceProxy RestaurantServiceProxy DeliveryServiceProxy

Consumer Service

invokes invokes invokes invokes

Order Service Restaurant Service Delivery Service

Express web framework

Apollo

graphQL

client

FTGO API gateway

http://.../graphql?query={orders(consumerId:1){orde rId,restaurant{id}}}

Figure 8.10 The design of the GraphQL-based FTGO API Gateway

283Implementing an API gateway
primary way of defining the data model, and enums, which are similar to Java enums.
An object type has a name and a collection of typed, named fields. A field can be a sca-
lar type, such as a number, string, or enum; a list of scalar types; a reference to another
object type; or a collection of references to another object type. Despite resembling a
field of a traditional object-oriented class, a GraphQL field is conceptually a function
that returns a value. It can have arguments, which enable a GraphQL client to tailor
the data the function returns.

 GraphQL also uses fields to define the queries supported by the schema. You
define the schema’s queries by declaring an object type, which by convention is called
Query. Each field of the Query object is a named query, which has an optional set of
parameters, and a return type. I found this way of defining queries a little confusing
when I first encountered it, but it helps to keep in mind that a GraphQL field is a
function. It will become even clearer when we look at how fields are connected to the
backend data sources.

 The following listing shows part of the schema for the GraphQL-based FTGO API
gateway. It defines several object types. Most of the object types correspond to the
FTGO application’s Consumer, Order, and Restaurant entities. It also has a Query object
type that defines the schema’s queries.

type Query {
orders(consumerId : Int!): [Order]
order(orderId : Int!): Order
consumer(consumerId : Int!): Consumer

}

type Consumer {
id: ID
firstName: String
lastName: String
orders: [Order]
}

type Order {
orderId: ID,
consumerId : Int,
consumer: Consumer
restaurant: Restaurant

deliveryInfo : DeliveryInfo

...
}

type Restaurant {
id: ID
name: String
...

}

Listing 8.7 The GraphQL schema for the FTGO API gateway

Defines the queries
that a client can
execute

The unique ID
for a Consumer

A consumer has
a list of orders.

284 CHAPTER 8 External API patterns
type DeliveryInfo {
status : DeliveryStatus
estimatedDeliveryTime : Int
assignedCourier :String

}

enum DeliveryStatus {
PREPARING
READY_FOR_PICKUP
PICKED_UP
DELIVERED

}

Despite having a different syntax, the Consumer, Order, Restaurant, and Delivery-
Info object types are structurally similar to the corresponding Java classes. One differ-
ence is the ID type, which represents a unique identifier.

 This schema defines three queries:

 orders()—Returns the Orders for the specified Consumer
 order()—Returns the specified Order
 consumer()—Returns the specified Consumer

These queries may seem not different from the equivalent REST endpoints, but
GraphQL gives the client tremendous control over the data that’s returned. To under-
stand why, let’s look at how a client executes GraphQL queries.

EXECUTING GRAPHQL QUERIES

The principal benefit of using GraphQL is that its query language gives the client
incredible control over the returned data. A client executes a query by making a
request containing a query document to the server. In the simple case, a query docu-
ment specifies the name of the query, the argument values, and the fields of the result
object to return. Here’s a simple query that retrieves firstName and lastName of the
consumer with a particular ID:

query {
consumer(consumerId:1)
{
firstName
lastName

}
}

This query returns those fields of the specified Consumer.
 Here’s a more elaborate query that returns a consumer, their orders, and the ID

and name of each order’s restaurant:

query {
consumer(consumerId:1) {
id
firstName
lastName

Specifies the query called consumer,
which fetches a consumer

The fields of the
Consumer to return

285Implementing an API gateway
orders {
orderId
restaurant {
id
name

}
deliveryInfo {
estimatedDeliveryTime
name

}
}

}
}

This query tells the server to return more than just the fields of the Consumer. It
retrieves the consumer’s Orders and each Order’s restaurant. As you can see, a
GraphQL client can specify exactly the data to return, including the fields of transi-
tively related objects.

 The query language is more flexible than it might first appear. That’s because a
query is a field of the Query object, and a query document specifies which of those fields
the server should return. These simple examples retrieve a single field, but a query doc-
ument can execute multiple queries by specifying multiple fields. For each field, the
query document supplies the field’s arguments and specifies what fields of the result
object it’s interested in. Here’s a query that retrieves two different consumers:

query {
c1: consumer (consumerId:1) { id, firstName, lastName}
c2: consumer (consumerId:2) { id, firstName, lastName}

}

In this query document, c1 and c2 are what GraphQL calls aliases. They’re used to dis-
tinguish between the two Consumers in the result, which would otherwise both be
called consumer. This example retrieves two objects of the same type, but a client
could retrieve several objects of different types.

 A GraphQL schema defines the shape of the data and the supported queries. To
be useful, it has to be connected to the source of the data. Let’s look at how to do that.

CONNECTING THE SCHEMA TO THE DATA

When the GraphQL server executes a query, it must retrieve the requested data from
one or more data stores. In the case of the FTGO application, the GraphQL server
must invoke the APIs of the services that own the data. You associate a GraphQL
schema with the data sources by attaching resolver functions to the fields of the object
types defined by the schema. The GraphQL server implements the API composition
pattern by invoking resolver functions to retrieve the data, first for the top-level query,
and then recursively for the fields of the result object or objects.

 The details of how resolver functions are associated with the schema depend on
which GraphQL server you are using. Listing 8.8 shows how to define the resolvers

286 CHAPTER 8 External API patterns
when using the Apollo GraphQL server. You create a doubly nested JavaScript object.
Each top-level property corresponds to an object type, such as Query and Order. Each
second-level property, such as Order.consumer, defines a field’s resolver function.

const resolvers = {
Query: {
orders: resolveOrders,
consumer: resolveConsumer,
order: resolveOrder

},
Order: {
consumer: resolveOrderConsumer,
restaurant: resolveOrderRestaurant,
deliveryInfo: resolveOrderDeliveryInfo

...
};

A resolver function has three parameters:

 Object—For a top-level query field, such as resolveOrders, object is a root
object that’s usually ignored by the resolver function. Otherwise, object is the
value returned by the resolver for the parent object. For example, the resolver
function for the Order.consumer field is passed the value returned by the Order’s
resolver function.

 Query arguments—These are supplied by the query document.
 Context—Global state of the query execution that’s accessible by all resolvers. It’s

used, for example, to pass user information and dependencies to the resolvers.

A resolver function might invoke a single service or it might implement the API com-
position pattern and retrieve data from multiple services. An Apollo GraphQL server
resolver function returns a Promise, which is JavaScript’s version of Java’s Completable-
Future. The promise contains the object (or a list of objects) that the resolver func-
tion retrieved from the data store. GraphQL engine includes the return value in the
result object.

 Let’s look at a couple of examples. Here’s the resolveOrders() function, which is
the resolver for the orders query:

function resolveOrders(_, { consumerId }, context) {
return context.orderServiceProxy.findOrders(consumerId);

}

This function obtains the OrderServiceProxy from the context and invokes it to
fetch a consumer’s orders. It ignores its first parameter. It passes the consumerId argu-
ment, provided by the query document, to OrderServiceProxy.findOrders(). The
findOrders() method retrieves the consumer’s orders from OrderHistoryService.

Listing 8.8 Attaching the resolver functions to fields of the GraphQL schema

The resolver for
the orders query

The resolver for
the consumer field
of an Order

287Implementing an API gateway
 Here’s the resolveOrderRestaurant() function, which is the resolver for the
Order.restaurant field that retrieves an order’s restaurant:

function resolveOrderRestaurant({restaurantId}, args, context) {
return context.restaurantServiceProxy.findRestaurant(restaurantId);

}

Its first parameter is Order. It invokes RestaurantServiceProxy.findRestaurant()
with the Order’s restaurantId, which was provided by resolveOrders().

 GraphQL uses a recursive algorithm to execute the resolver functions. First, it exe-
cutes the resolver function for the top-level query specified by the Query document.
Next, for each object returned by the query, it iterates through the fields specified in
the Query document. If a field has a resolver, it invokes the resolver with the object
and the arguments from the Query document. It then recurses on the object or
objects returned by that resolver.

 Figure 8.11 shows how this algorithm executes the query that retrieves a consumer’s
orders and each order’s delivery information and restaurant. First, the GraphQL engine
invokes resolveConsumer(), which retrieves Consumer. Next, it invokes resolve-
ConsumerOrders(), which is the resolver for the Consumer.orders field that returns
the consumer’s orders. The GraphQL engine then iterates through Orders, invok-
ing the resolvers for the Order.restaurant and Order.deliveryInfo fields.

The result of executing the resolvers is a Consumer object populated with data retrieved
from multiple services.

 Let’s now look at how to optimize the executing of resolvers by using batching and
caching.

Resolver functions

Schema Query document

type Query{
consumer(consumerId:int!): Consumer

}

type Order {
...
restaurant: Restaurant
deliveryInfo : DeliveryInfo

...

query{
consumer(consumerId:1){
id
firstName
lastName
orders{
orderId
restaurant{
id
name
}
deliveryInfo{
estimatedDeliveryTime
name
}
}

}
}

consumer = resolveConsumer(..., 1)

orders = resolveConsumerOrders(consumer)

resolveOrderRestaurant(order, ...)

resolveOrderDeliveryInfo(order)

Query arguments passed to resolver

Figure 8.11 GraphQL executes a query by recursively invoking the resolver functions for the fields specified in
the Query document. First, it executes the resolver for the query, and then it recursively invokes the resolvers for
the fields in the result object hierarchy.

288 CHAPTER 8 External API patterns
OPTIMIZING LOADING USING BATCHING AND CACHING

GraphQL can potentially execute a large number of resolvers when executing a query.
Because the GraphQL server executes each resolver independently, there’s a risk of
poor performance due to excessive round-trips to the services. Consider, for example,
a query that retrieves a consumer, their orders, and the orders’ restaurants. If there
are N orders, then a simplistic implementation would make one call to Consumer
Service, one call to Order History Service, and then N calls to Restaurant Service.
Even though the GraphQL engine will typically make the calls to Restaurant Service
in parallel, there’s a risk of poor performance. Fortunately, you can use a few tech-
niques to improve performance.

 One important optimization is to use a combination of server-side batching and
caching. Batching turns N calls to a service, such as Restaurant Service, into a sin-
gle call that retrieves a batch of N objects. Caching reuses the result of a previous
fetch of the same object to avoid making an unnecessary duplicate call. The combi-
nation of batching and caching significantly reduces the number of round-trips to
backend services.

 A NodeJS-based GraphQL server can use the DataLoader module to implement
batching and caching (https://github.com/facebook/dataloader). It coalesces loads
that occur within a single execution of the event loop and calls a batch loading func-
tion that you provide. It also caches calls to eliminate duplicate loads. The following list-
ing shows how RestaurantServiceProxy can use DataLoader. The findRestaurant()
method loads a Restaurant via DataLoader.

const DataLoader = require('dataloader');

class RestaurantServiceProxy {
constructor() {

this.dataLoader =
new DataLoader(restaurantIds =>
this.batchFindRestaurants(restaurantIds));

}

findRestaurant(restaurantId) {
return this.dataLoader.load(restaurantId);

}

batchFindRestaurants(restaurantIds) {
...

}
}

RestaurantServiceProxy and, hence, DataLoader are created for each request, so
there’s no possibility of DataLoader mixing together different users’ data.

 Let’s now look at how to integrate the GraphQL engine with a web framework so
that it can be invoked by clients.

Listing 8.9 Using a DataLoader to optimize calls to Restaurant Service

Create a DataLoader, which uses
batchFindRestaurants() as the
batch loading functions.

Load the specified Restaurant
via the DataLoader.

Load a batch of
Restaurants.

https://github.com/facebook/dataloader

289Implementing an API gateway

te
INTEGRATING THE APOLLO GRAPHQL SERVER WITH EXPRESS

The Apollo GraphQL server executes GraphQL queries. In order for clients to invoke
it, you need to integrate it with a web framework. Apollo GraphQL server supports
several web frameworks, including Express, a popular NodeJS web framework.

 Listing 8.10 shows how to use the Apollo GraphQL server in an Express applica-
tion. The key function is graphqlExpress, which is provided by the apollo-server-
express module. It builds an Express request handler that executes GraphQL queries
against a schema. This example configures Express to route requests to the GET
/graphql and POST /graphql endpoints of this GraphQL request handler. It also creates
a GraphQL context containing the proxies, which makes them available to the resolvers.

const {graphqlExpress} = require("apollo-server-express");

const typeDefs = gql`
type Query {
orders: resolveOrders,
...
}

type Consumer {
...

const resolvers = {
Query: {
...
}

}

const schema = makeExecutableSchema({ typeDefs, resolvers });

const app = express();

function makeContextWithDependencies(req) {
const orderServiceProxy = new OrderServiceProxy();
const consumerServiceProxy = new ConsumerServiceProxy();
const restaurantServiceProxy = new RestaurantServiceProxy();
...
return {orderServiceProxy, consumerServiceProxy,

restaurantServiceProxy, ...};
}

function makeGraphQLHandler() {
return graphqlExpress(req => {

return {schema: schema, context: makeContextWithDependencies(req)}
});

}

app.post('/graphql', bodyParser.json(), makeGraphQLHandler());

app.get('/graphql', makeGraphQLHandler());

app.listen(PORT);

Listing 8.10 Integrating the GraphQL server with the Express web framework

Define the GraphQL
schema.

Define the
resolvers.

Combine the
schema with the
resolvers to crea
an executable
schema.

Inject repositories into
the context so they’re
available to resolvers.

Make an express request handler
that executes GraphQL queries
against the executable schema.

Route POST /graphql and GET
/graphql endpoints to the

GraphQL server.

290 CHAPTER 8 External API patterns
This example doesn’t handle concerns such as security, but those would be straight-
forward to implement. The API gateway could, for example, authenticate users using
Passport, a NodeJS security framework described in chapter 11. The makeContext-
WithDependencies() function would pass the user information to each repository’s
constructor so that they can propagate the user information to the services.

 Let’s now look at how a client can invoke this server to execute GraphQL queries.

WRITING A GRAPHQL CLIENT

There are a couple of different ways a client application can invoke the GraphQL
server. Because the GraphQL server has an HTTP-based API, a client application
could use an HTTP library to make requests, such as GET http://localhost:3000/
graphql?query={orders(consumerId:1){orderId,restaurant{id}}}'. It’s easier,
though, to use a GraphQL client library, which takes care of properly formatting
requests and typically provides features such as client-side caching.

 The following listing shows the FtgoGraphQLClient class, which is a simple
GraphQL-based client for the FTGO application. Its constructor instantiates Apollo-
Client, which is provided by the Apollo GraphQL client library. The FtgoGraphQL-
Client class defines a findConsumer() method that uses the client to retrieve the
name of a consumer.

class FtgoGraphQLClient {

constructor(...) {
this.client = new ApolloClient({ ... });

}

findConsumer(consumerId) {
return this.client.query({

variables: { cid: consumerId},
query: gql`
query foo($cid : Int!) {

consumer(consumerId: $cid) {
id
firstName
lastName

}
} `,

})
}

}

The FtgoGraphQLClient class can define a variety of query methods, such as find-
Consumer(). Each one executes a query that retrieves exactly the data needed by the
client.

Listing 8.11 Using the Apollo GraphQL client to execute queries

Supply the value
of the $cid.

Define $cid as a
variable of type Int.

Set the value of
query parameter
consumerid to $cid.

291Summary
 This section has barely scratched the surface of GraphQL’s capabilities. I hope I’ve
demonstrated that GraphQL is a very appealing alternative to a more traditional,
REST-based API gateway. It lets you implement an API that’s flexible enough to sup-
port a diverse set of clients. Consequently, you should consider using GraphQL to
implement your API gateway.

Summary
 Your application’s external clients usually access the application’s services via an

API gateway. An API gateway provides each client with a custom API. It’s respon-
sible for request routing, API composition, protocol translation, and implemen-
tation of edge functions such as authentication.

 Your application can have a single API gateway or it can use the Backends for
frontends pattern, which defines an API gateway for each type of client. The
main advantage of the Backends for frontends pattern is that it gives the client
teams greater autonomy, because they develop, deploy, and operate their own
API gateway.

 There are numerous technologies you can use to implement an API gateway,
including off-the-shelf API gateway products. Alternatively, you can develop
your own API gateway using a framework.

 Spring Cloud Gateway is a good, easy-to-use framework for developing an API
gateway. It routes requests using any request attribute, including the method
and the path. Spring Cloud Gateway can route a request either directly to a
backend service or to a custom handler method. It’s built using the scalable,
reactive Spring Framework 5 and Project Reactor frameworks. You can write
your custom request handlers in a reactive style using, for example, Project
Reactor’s Mono abstraction.

 GraphQL, a framework that provides graph-based query language, is another
excellent foundation for developing an API Gateway. You write a graph-oriented
schema to describe the server-side data model and its supported queries. You
then map that schema to your services by writing resolvers, which retrieve data.
GraphQL-based clients execute queries against the schema that specify exactly
the data that the server should return. As a result, a GraphQL-based API gate-
way can support diverse clients.

Testing microservices:
Part 1
FTGO, like many organizations, had adopted a traditional approach to testing. Test-
ing is primarily an activity that happens after development. The FTGO developers
throw their code over a wall to the QA team, who verify that the software works as
expected. What’s more, most of their testing is done manually. Sadly, this approach
to testing is broken—for two reasons:

 Manual testing is extremely inefficient—You should never ask a human to do
what a machine can do better. Compared to machines, humans are slow and
can’t work 24/7. You won’t be able to deliver software rapidly and safely if
you rely on manual testing. It’s essential that you write automated tests.

 Testing is done far too late in the delivery process—There certainly is a role for tests
that critique an application after it’s been written, but experience has shown
that those tests are insufficient. A much better approach is for developers to

This chapter covers
 Effective testing strategies for microservices

 Using mocks and stubs to test a software
element in isolation

 Using the test pyramid to determine where to
focus testing efforts

 Unit testing the classes inside a service
292

293
write automated tests as part of development. It improves their productivity
because, for example, they’ll have tests that provide immediate feedback while
editing code.

In this regard, FTGO is a fairly typical organization. The Sauce Labs Testing Trends in
2018 report paints a fairly gloomy picture of the state of test automation (https://
saucelabs.com/resources/white-papers/testing-trends-for-2018). It describes how only
26% of organizations are mostly automated, and a minuscule 3% are fully automated!

 The reliance on manual testing isn’t because of a lack of tooling and frameworks.
For example, JUnit, a popular Java testing framework, was first released in 1998. The
reason for the lack of automated tests is mostly cultural: “Testing is QA’s job,” “It’s not
the best use of a developers’s time,” and so on. It also doesn’t help that developing a
fast-running, yet effective, maintainable test suite is challenging. And, a typical large,
monolithic application is extremely difficult to test.

 One key motivation for using the microservice architecture is, as described in
chapter 2, improving testability. Yet at the same time, the complexity of the microser-
vice architecture demands that you write automated tests. Furthermore, some aspects
of testing microservices are challenging. That’s because we need to verify that services
can interact correctly while minimizing the number of slow, complex, and unreliable
end-to-end-tests that launch many services.

 This chapter is the first of two chapters on testing. It’s an introduction to testing.
Chapter 10 covers more advanced testing concepts. The two chapters are long, but
together they cover testing ideas and techniques that are essential to modern software
development in general, and to the microservice architecture in particular.

 I begin this chapter by describing effective testing strategies for a microservices-
based application. These strategies enable you to be confident that your software
works, while minimizing test complexity and execution time. After that, I describe
how to write one particular kind of test for your services: unit tests. Chapter 10 covers
the other kinds of tests: integration, component, and end-to-end.

 Let’s start by taking a look at testing strategies for microservices.

Why an introduction to testing?
You may be wondering why this chapter includes an introduction to basic testing con-
cepts. If you’re already familiar with concepts such as the test pyramid and the different
types of tests, feel free to speed-read this chapter and move onto the next one, which
focuses on microservices-specific testing topics. But based on my experiences consult-
ing for and training clients all over the world, a fundamental weakness of many software
development organizations is the lack of automated testing. That’s because if you want
to deliver software quickly and reliably, it’s absolutely essential to do automated testing.
It’s the only way to have a short lead time, which is the time it takes to get committed
code into production. Perhaps even more importantly, automated testing is essential
because it forces you to develop a testable application. It’s typically very difficult to
introduce automating testing into an already large, complex application. In other words,
the fast track to monolithic hell is to not write automated tests.

https://saucelabs.com/resources/white-papers/testing-trends-for-2018
https://saucelabs.com/resources/white-papers/testing-trends-for-2018
https://saucelabs.com/resources/white-papers/testing-trends-for-2018

294 CHAPTER 9 Testing microservices: Part 1
9.1 Testing strategies for microservice architectures
Let’s say you’ve made a change to FTGO application’s Order Service. Naturally, the
next step is for you to run your code and verify that the change works correctly. One
option is to test the change manually. First, you run Order Service and all its depen-
dencies, which include infrastructure services such as a database and other applica-
tion services. Then you “test” the service by either invoking its API or using the FTGO
application’s UI. The downside of this approach is that it’s a slow, manual way to test
your code.

 A much better option is to have automated tests that you can run during develop-
ment. Your development workflow should be: edit code, run tests (ideally with a single
keystroke), repeat. The fast-running tests quickly tell you whether your changes work
within a few seconds. But how do you write fast-running tests? And are they sufficient
or do you need more comprehensive tests? These are the kind of questions I answer in
this and other sections in this chapter.

 I start this section with an overview of important automated testing concepts. We’ll
look at the purpose of testing and the structure of a typical test. I cover the different
types of tests that you’ll need to write. I also describe the test pyramid, which provides
valuable guidance about where you should focus your testing efforts. After covering
testing concepts, I discuss strategies for testing microservices. We’ll look at the distinct
challenges of testing applications that have a microservice architecture. I describe
techniques you can use to write simpler and faster, yet still-effective, tests for your
microservices.

 Let’s take a look at testing concepts.

9.1.1 Overview of testing

In this chapter, my focus is on automated testing, and I use the term test as shorthand
for automated test. Wikipedia defines a test case, or test, as follows:

A test case is a set of test inputs, execution conditions, and expected results developed for
a particular objective, such as to exercise a particular program path or to verify compliance
with a specific requirement.

https://en.wikipedia.org/wiki/Test_case

In other words, the purpose of a test is, as figure 9.1 shows, to verify the behavior of
the System Under Test (SUT). In this definition, system is a fancy term that means the
software element being tested. It might be something as small as a class, as large as the
entire application, or something in between, such as a cluster of classes or an individ-
ual service. A collection of related tests form a test suite.

 Let’s first look at the concept of an automated test. Then I discuss the different
kinds of tests that you’ll need to write. After that, I discuss the test pyramid, which
describes the relative proportions of the different types of tests that you should write.

https://en.wikipedia.org/wiki/Test_case

295Testing strategies for microservice architectures
WRITING AUTOMATED TESTS

Automated tests are usually written using a testing framework. JUnit, for example, is a
popular Java testing framework. Figure 9.2 shows the structure of an automated test.
Each test is implemented by a test method, which belongs to a test class.

An automated test typically consists of four phases (http://xunitpatterns.com/
Four%20Phase%20Test.html):

1 Setup—Initialize the test fixture, which consists of the SUT and its dependen-
cies, to the desired initial state. For example, create the class under test and ini-
tialize it to the state required for it to exhibit the desired behavior.

2 Exercise—Invoke the SUT—for example, invoke a method on the class under test.
3 Verify—Make assertions about the invocation’s outcome and the state of the

SUT. For example, verify the method’s return value and the new state of the class
under test.

System Under

Test (SUT)
Test

Test suite

Verifies behavior of

Figure 9.1 The goal of a test is to
verify the behavior of the system
under test. An SUT might be as
small as a class or as large as an
entire application.

Test class

Setup

Execute

Verify

Teardown

Test method

Test methodTest runner SUT

Fixture

Executes

Test method

Figure 9.2 Each automated test is implemented by a test method, which belongs to a test class. A
test consists of four phases: setup, which initializes the test fixture, which is everything required to
run the test; execute, which invokes the SUT; verify, which verifies the outcome of the test; and
teardown, which cleans up the test fixture.

http://xunitpatterns.com/Four%20Phase%20Test.html
http://xunitpatterns.com/Four%20Phase%20Test.html
http://xunitpatterns.com/Four%20Phase%20Test.html

296 CHAPTER 9 Testing microservices: Part 1
4 Teardown—Clean up the test fixture, if necessary. Many tests omit this phase,
but some types of database test will, for example, roll back a transaction initi-
ated by the setup phase.

In order to reduce code duplication and simplify tests, a test class might have setup
methods that are run before a test method, and teardown methods that are run after-
wards. A test suite is a set of test classes. The tests are executed by a test runner.

TESTING USING MOCKS AND STUBS

An SUT often has dependencies. The trouble with dependencies is that they can com-
plicate and slow down tests. For example, the OrderController class invokes Order-
Service, which ultimately depends on numerous other application services and
infrastructure services. It wouldn’t be practical to test the OrderController class by
running a large portion of the system. We need a way to test an SUT in isolation.

 The solution, as figure 9.3 shows, is to replace the SUT’s dependencies with test
doubles. A test double is an object that simulates the behavior of the dependency.

There are two types of test doubles: stubs and mocks. The terms stubs and mocks are
often used interchangeably, although they have slightly different behavior. A stub is a
test double that returns values to the SUT. A mock is a test double that a test uses to ver-
ify that the SUT correctly invokes a dependency. Also, a mock is often a stub.

 Later on in this chapter, you’ll see examples of test doubles in action. For example,
section 9.2.5 shows how to test the OrderController class in isolation by using a test
double for the OrderService class. In that example, the OrderService test double is
implemented using Mockito, a popular mock object framework for Java. Chapter 10
shows how to test Order Service using test doubles for the other services that it invokes.
Those test doubles respond to command messages sent by Order Service.

 Let’s now look at the different types of tests.

Slow, complex

test

Tests

Replaced with

Tests

System Under

Test (SUT)
Dependency

Faster, simpler

test

System Under

Test (SUT)
Test double

Figure 9.3 Replacing a dependency with a test double enables the SUT to
be tested in isolation. The test is simpler and faster.

297Testing strategies for microservice architectures
THE DIFFERENT TYPES OF TESTS

There are many different types of tests. Some tests, such as performance tests and
usability tests, verify that the application satisfies its quality of service requirements. In
this chapter, I focus on automated tests that verify the functional aspects of the appli-
cation or service. I describe how to write four different types of tests:

 Unit tests—Test a small part of a service, such as a class.
 Integration tests—Verify that a service can interact with infrastructure services

such as databases and other application services.
 Component tests—Acceptance tests for an individual service.
 End-to-end tests—Acceptance tests for the entire application.

They differ primarily in scope. At one end of the spectrum are unit tests, which verify
behavior of the smallest meaningful program element. For an object-oriented lan-
guage such as Java, that’s a class. At the other end of the spectrum are end-to-end
tests, which verify the behavior of an entire application. In the middle are component
tests, which test individual services. Integration tests, as you’ll see in the next chapter,
have a relatively small scope, but they’re more complex than pure unit tests. Scope is
only one way of characterizing tests. Another way is to use the test quadrant.

USING THE TEST QUADRANT TO CATEGORIZE TESTS

A good way to categorize tests is Brian Marick’s test quadrant (www.exampler.com/old-
blog/2003/08/21/#agile-testing-project-1). The test quadrant, shown in figure 9.4,
categorizes tests along two dimensions:

 Whether the test is business facing or technology facing—A business-facing test is
described using the terminology of a domain expert, whereas a technology-facing
test is described using the terminology of developers and the implementation.

 Whether the goal of the test is to support programming or critique the application—Devel-
opers use tests that support programming as part of their daily work. Tests that
critique the application aim to identify areas that need improvement.

Compile-time unit tests
Testing is an integral part of development. The modern development workflow is to
edit code, then run tests. Moreover, if you’re a Test-Driven Development (TDD) prac-
titioner, you develop a new feature or fix a bug by first writing a failing test and then
writing the code to make it pass. Even if you’re not a TDD adherent, an excellent way
to fix a bug is to write a test that reproduces the bug and then write the code that
fixes it.

The tests that you run as part of this workflow are known as compile-time tests. In a
modern IDE, such as IntelliJ IDEA or Eclipse, you typically don’t compile your code as
a separate step. Rather, you use a single keystroke to compile the code and run the
tests. In order to stay in the flow, these tests need to execute quickly—ideally, no
more than a few seconds.

http://www.exampler.com/old-blog/2003/08/21/#agile-testing-project-1
http://www.exampler.com/old-blog/2003/08/21/#agile-testing-project-1

298 CHAPTER 9 Testing microservices: Part 1
The test quadrant defines four different categories of tests:

 Q1—Support programming/technology facing: unit and integration tests
 Q2—Support programming/business facing: component and end-to-end test
 Q3—Critique application/business facing: usability and exploratory testing
 Q4—Critique application/technology facing: nonfunctional acceptance tests such

as performance tests

The test quadrant isn’t the only way of organizing tests. There’s also the test pyramid,
which provides guidance on how many tests of each type to write.

USING THE TEST PYRAMID AS A GUIDE TO FOCUSING YOUR TESTING EFFORTS

We must write different kinds of tests in order to be confident that our application
works. The challenge, though, is that the execution time and complexity of a test
increase with its scope. Also, the larger the scope of a test and the more moving parts
it has, the less reliable it becomes. Unreliable tests are almost as bad as no tests,
because if you can’t trust a test, you’re likely to ignore failures.

 On one end of the spectrum are unit tests for individual classes. They’re fast to
execute, easy to write, and reliable. At the other end of the spectrum are end-to-end
tests for the entire application. These tend to be slow, difficult to write, and often
unreliable because of their complexity. Because we don’t have unlimited budget for
development and testing, we want to focus on writing tests that have small scope with-
out compromising the effectiveness of the test suite.

 The test pyramid, shown in figure 9.5, is a good guide (https://martinfowler.com/
bliki/TestPyramid.html). At the base of the pyramid are the fast, simple, and reliable
unit tests. At the top of the pyramid are the slow, complex, and brittle end-to-end tests.
Like the USDA food pyramid, although more useful and less controversial (https://en
.wikipedia.org/wiki/History_of_USDA_nutrition_guides), the test pyramid describes
the relative proportions of each type of test.

 The key idea of the test pyramid is that as we move up the pyramid we should write
fewer and fewer tests. We should write lots of unit tests and very few end-to-end tests.

Q2 AUTOMATED Q3 MANUAL

Business facing

Technology facing

S
u
p

p
o

rt
 p

ro
g

ra
m

m
in

g

C
ri
ti
q

u
e

 p
ro

je
c
t

Q1 AUTOMATED Q4 MANUAL/

AUTOMATED

Functional/

acceptance tests

Exploratory

testing, usability

testing

Unit,

integration,

component

Non-functional

acceptance tests:

performance
and more

Figure 9.4 The test quadrant categorizes tests along
two dimensions. The first dimension is whether a test
is business facing or technology facing. The second is
whether the purpose of the test is to support
programming or critique the application.

https://martinfowler.com/bliki/TestPyramid.html
https://martinfowler.com/bliki/TestPyramid.html
https://martinfowler.com/bliki/TestPyramid.html
https://en.wikipedia.org/wiki/History_of_USDA_nutrition_guides
https://en.wikipedia.org/wiki/History_of_USDA_nutrition_guides
https://en.wikipedia.org/wiki/History_of_USDA_nutrition_guides

299Testing strategies for microservice architectures
As you’ll see in this chapter, I describe a strategy that emphasizes testing the pieces of
a service. It even minimizes the number of component tests, which test an entire service.

 It’s clear how to test individual microservices such as Consumer Service, which
don’t depend on any other services. But what about services such as Order Service,
that do depend on numerous other services? And how can we be confident that the
application as a whole works? This is the key challenge of testing applications that
have a microservice architecture. The complexity of testing has moved from the
individual services to the interactions between them. Let’s look at how to tackle this
problem.

9.1.2 The challenge of testing microservices

Interprocess communication plays a much more important role in a microservices-
based application than in a monolithic application. A monolithic application might
communicate with a few external clients and services. For example, the monolithic
version of the FTGO application uses a few third-party web services, such as Stripe
for payments, Twilio for messaging, and Amazon SES for email, which have stable
APIs. Any interaction between the modules of the application is through program-
ming language-based APIs. Interprocess communication is very much on the edge
of the application.

 In contrast, interprocess communication is central to microservice architecture. A
microservices-based application is a distributed system. Teams are constantly develop-
ing their services and evolving their APIs. It’s essential that developers of a service
write tests that verify that their service interacts with its dependencies and clients.

 As described in chapter 3, services communicate with each other using a variety
of interaction styles and IPC mechanisms. Some services use request/response-style
interaction that’s implemented using a synchronous protocol, such as REST or gRPC.

End-to-end

Slow, brittle, costly

Fast, reliable, cheap

Component

Integration

Unit

Acceptance tests for

an application

Acceptance tests

for a service

Verify that a service

communicates with

its dependencies

Test the business logic

Figure 9.5 The test pyramid describes the relative proportions of each type of test that
you need to write. As you move up the pyramid, you should write fewer and fewer tests.

300 CHAPTER 9 Testing microservices: Part 1
Other services interact through request/asynchronous reply or publish/subscribe
using asynchronous messaging. For instance, figure 9.6 shows how some of the ser-
vices in the FTGO application communicate. Each arrow points from a consumer ser-
vice to a producer service.

The arrow points in the direction of the dependency, from the consumer of the API
to the provider of the API. The assumptions that a consumer makes about an API
depend on the nature of the interaction:

 REST client service—The API gateway routes requests to services and imple-
ments API composition.

 Domain event consumer publisher—Order History Service consumes events pub-
lished by Order Service.

 Command message requestor replier—Order Service sends command messages
to various services and consumes the replies.

REST client REST service

Key

Subscriber
Domain event

publisher

(Command message)

requestor
Replier

E

E

E

E

E

C

C

C

C

Restaurant

Service

Consumer

Service

Order History

Service

Delivery

Service

API

gateway

Invokes services

using HTTP

Subscribes to

order* events

Order Service saga

sends commands

to various services.

Accounting

Service

Order

Service

Kitchen

Service

Figure 9.6 Some of the interservice communication in the FTGO application. Each arrow points
from a consumer service to a producer service.

301Testing strategies for microservice architectures
Each interaction between a pair of services represents an agreement or contract
between the two services. Order History Service and Order Service must, for exam-
ple, agree on the event message structure and the channel that they’re published to.
Similarly, the API gateway and the services must agree on the REST API endpoints.
And Order Service and each service that it invokes using asynchronous request/
response must agree on the command channel and the format of the command and
reply messages.

 As a developer of a service, you need to be confident that the services you consume
have stable APIs. Similarly, you don’t want to unintentionally make breaking changes
to your service’s API. For example, if you’re working on Order Service, you want to be
sure that the developers of your service’s dependencies, such as Consumer Service and
Kitchen Service, don’t change their APIs in ways that are incompatible with your ser-
vice. Similarly, you must ensure that you don’t change the Order Services’s API in a
way that breaks the API Gateway or Order History Service.

 One way to verify that two services can interact is to run both services, invoke an API
that triggers the communication, and verify that it has the expected outcome. This will
certainly catch integration problems, but it’s basically an end-to-end. The test likely
would need to run numerous other transitive dependencies of those services. A test
might also need to invoke complex, high-level functionality such as business logic, even
if its goal is to test relatively low-level IPC. It’s best to avoid writing end-to-end tests like
these. Somehow, we need to write faster, simpler, and more reliable tests that ideally test
services in isolation. The solution is to use what’s known as consumer-driven contract testing.

CONSUMER-DRIVEN CONTRACT TESTING

Imagine that you’re a member of the team developing API Gateway, described in chap-
ter 8. The API Gateway’s OrderServiceProxy invokes various REST endpoints, includ-
ing the GET /orders/{orderId} endpoint. It’s essential that we write tests that verify that
API Gateway and Order Service agree on an API. In the terminology of consumer con-
tract testing, the two services participate in a consumer-provider relationship. API Gateway is
a consumer, and Order Service is a provider. A consumer contract test is an integration
test for a provider, such as Order Service, that verifies that its API matches the expecta-
tions of a consumer, such as API Gateway.

 A consumer contract test focuses on verifying that the “shape” of a provider’s API
meets the consumer’s expectations. For a REST endpoint, a contract test verifies that
the provider implements an endpoint that

 Has the expected HTTP method and path
 Accepts the expected headers, if any
 Accepts a request body, if any
 Returns a response with the expected status code, headers, and body

It’s important to remember that contract tests don’t thoroughly test the provider’s
business logic. That’s the job of unit tests. Later on, you’ll see that consumer contract
tests for a REST API are in fact mock controller tests.

302 CHAPTER 9 Testing microservices: Part 1
 The team that develops the consumer writes a contract test suite and adds it (for
example, via a pull request) to the provider’s test suite. The developers of other ser-
vices that invoke Order Service also contribute a test suite, as shown in figure 9.7.
Each test suite will test those aspects of Order Service’s API that are relevant to each
consumer. The test suite for Order History Service, for example, verifies that Order
Service publishes the expected events.

These test suites are executed by the deployment pipeline for Order Service. If a con-
sumer contract test fails, that failure tells the producer team that they’ve made a break-
ing change to the API. They must either fix the API or talk to the consumer team.

Consumer-driven contract tests typically use testing by example. The interaction
between a consumer and provider is defined by a set of examples, known as contracts.
Each contract consists of example messages that are exchanged during one interaction.

Pattern: Consumer-driven contract test
Verify that a service meets the expectations of its clients See http://microser-
vices.io/patterns/testing/service-integration-contract-test.html.

API gateway team

Writes

Order Service deployment pipeline

Order

Service

API gateway -

Order Service

contract test

suite

Order History Service team

Writes

TestsTests Tests

Order History

Service - Order

Service contract

test suite

... Service team

Writes

... Service -

Order Service

contract test

suite

Figure 9.7 Each team that develops a service that consumes Order Service’s API contributes
a contract test suite. The test suite verifies that the API matches the consumer’s expectations.
This test suite, along with those contributed by other teams, is run by Order Service’s
deployment pipeline.

http://microservices.io/patterns/testing/service-integration-contract-test.html
http://microservices.io/patterns/testing/service-integration-contract-test.html

303Testing strategies for microservice architectures
For instance, a contract for a REST API consists of an example HTTP request and
response. On the surface, it may seem better to define the interaction using schemas
written using, for example, OpenAPI or JSON schema. But it turns out schemas aren’t
that useful when writing tests. A test can validate the response using the schema but it
still needs to invoke the provider with an example request.

 What’s more, consumer tests also need example responses. That’s because even
though the focus of consumer-driven contract testing is to test a provider, contracts
are also used to verify that the consumer conforms to the contract. For instance, a
consumer-side contract test for a REST client uses the contract to configure an HTTP
stub service that verifies that the HTTP request matches the contract’s request and
sends back the contract’s HTTP response. Testing both sides of interaction ensures
that the consumer and provider agree on the API. Later on we’ll look at examples of
how to write this kind of testing, but first let’s see how to write consumer contract tests
using Spring Cloud Contract.

TESTING SERVICES USING SPRING CLOUD CONTRACT

Two popular contract testing frameworks are Spring Cloud Contract (https://cloud
.spring.io/spring-cloud-contract/), which is a consumer contract testing framework
for Spring applications, and the Pact family of frameworks (https://github.com/pact-
foundation), which support a variety of languages. The FTGO application is a Spring
framework-based application, so in this chapter I’m going to describe how to use
Spring Cloud Contract. It provides a Groovy domain-specific language (DSL) for writ-
ing contracts. Each contract is a concrete example of an interaction between a con-
sumer and a provider, such as an HTTP request and response. Spring Cloud Contract
code generates contract tests for the provider. It also configures mocks, such as a
mock HTTP server, for consumer integration tests.

 Say, for example, you’re working on API Gateway and want to write a consumer
contract test for Order Service. Figure 9.8 shows the process, which requires you to col-
laborate with Order Service teams. You write contracts that define how API Gateway
interacts with Order Service. The Order Service team uses these contracts to test Order
Service, and you use them to test API Gateway. The sequence of steps is as follows:

1 You write one or more contracts, such as the one shown in listing 9.1. Each con-
tract consists of an HTTP request that API Gateway might send to Order Service
and an expected HTTP response. You give the contracts, perhaps via a Git pull
request, to the Order Service team.

2 The Order Service team tests Order Service using consumer contract tests,
which Spring Cloud Contract code generates from contracts.

Pattern: Consumer-side contract test
Verify that the client of a service can communicate with the service. See https://
microservices.io/patterns/testing/consumer-side-contract-test.html.

https://microservices.io/patterns/testing/consumer-side-contract-test.html
https://microservices.io/patterns/testing/consumer-side-contract-test.html
https://microservices.io/patterns/testing/consumer-side-contract-test.html
https://cloud.spring.io/spring-cloud-contract/
https://cloud.spring.io/spring-cloud-contract/
https://cloud.spring.io/spring-cloud-contract/
https://github.com/pact-foundation
https://github.com/pact-foundation

304 CHAPTER 9 Testing microservices: Part 1
3 The Order Service team publishes the contracts that tested Order Service to a
Maven repository.

4 You use the published contracts to write tests for API Gateway.

Because you test API Gateway using the published contracts, you can be confident that
it works with the deployed Order Service.

 The contracts are the key part of this testing strategy. The following listing shows an
example Spring Cloud Contract. It consists of an HTTP request and an HTTP response.

org.springframework.cloud.contract.spec.Contract.make {
request {

method 'GET'
url '/orders/1223232'

}
response {

status 200
headers {

header('Content-Type': 'application/json;charset=UTF-8')
}
body("{ ... }")

}
}

Listing 9.1 A contract that describes how API Gateway invokes Order Service

Writes Code generated

from

Contract.make {
request {..}
response {...}
}

}

Order Service

consumer

contract tests

API gateway

API gateway team

Reads

Tests

Develops Tests

Develops

Publishes

Published

contract

Maven repository

Order

Service

Order Service team

API gateway

integration test

Figure 9.8 The API Gateway team writes the contracts. The Order Service team
uses those contracts to test Order Service and publishes them to a repository. The
API Gateway team uses the published contracts to test API Gateway.

The HTTP request’s
method and path

The HTTP response’s status
code, headers, and body

305Testing strategies for microservice architectures
The request element is an HTTP request for the REST endpoint GET /orders/
{orderId}. The response element is an HTTP response that describes an Order
expected by API Gateway. The Groovy contracts are part of the provider’s code base.
Each consumer team writes contracts that describe how their service interacts with
the provider and gives them, perhaps via a Git pull request, to the provider team.
The provider team is responsible for packaging the contracts as a JAR and publish-
ing them to a Maven repository. The consumer-side tests download the JAR from the
repository.

 Each contract’s request and response play dual roles of test data and the specifi-
cation of expected behavior. In a consumer-side test, the contract is used to config-
ure a stub, which is similar to a Mockito mock object and simulates the behavior of
Order Service. It enables API Gateway to be tested without running Order Service.
In the provider-side test, the generated test class invokes the provider with the con-
tract’s request and verifies that it returns a response that matches the contract’s
response. The next chapter discusses the details of how to use Spring Cloud Con-
tract, but now we’re going to look at how to use consumer contract testing for mes-
saging APIs.

CONSUMER CONTRACT TESTS FOR MESSAGING APIS
A REST client isn’t the only kind of consumer that has expectations of a provider’s API.
Services that subscribe to domain events and use asynchronous request/response-based
communication are also consumers. They consume some other service’s messaging
API, and make assumptions about the nature of that API. We must also write con-
sumer contract tests for these services.

 Spring Cloud Contract also provides support for testing messaging-based interac-
tions. The structure of a contract and how it’s used by the tests depend on the type of
interaction. A contract for domain event publishing consists of an example domain
event. A provider test causes the provider to emit an event and verifies that it matches
the contract’s event. A consumer test verifies that the consumer can handle that event.
In the next chapter, I describe an example test.

 A contract for an asynchronous request/response interaction is similar to an
HTTP contract. It consists of a request message and a response message. A provider
test invokes the API with the contract’s request message and verifies that the response
matches the contract’s response. A consumer test uses the contract to configure a stub
subscriber, which listens for the contract’s request message and replies with the speci-
fied response. The next chapter discusses an example test. But first we’ll take a look at
the deployment pipeline, which runs these and other tests.

9.1.3 The deployment pipeline

Every service has a deployment pipeline. Jez Humble’s book, Continuous Delivery
(Addison-Wesley, 2010) describes a deployment pipeline as the automated process of get-
ting code from the developer’s desktop into production. As figure 9.9 shows, it consists

306 CHAPTER 9 Testing microservices: Part 1
of a series of stages that execute test suites, followed by a stage that releases or deploys
the service. Ideally, it’s fully automated, but it might contain manual steps. A deploy-
ment pipeline is often implemented using a Continuous Integration (CI) server, such
as Jenkins.

As code flows through the pipeline, the test suites subject it to increasingly more thor-
ough testing in environments that are more production like. At the same time, the
execution time of each test suite typically grows. The idea is to provide feedback about
test failures as rapidly as possible.

 The example deployment pipeline shown in figure 9.9 consists of the following
stages:

 Pre-commit tests stage—Runs the unit tests. This is executed by the developer
before committing their changes.

 Commit tests stage—Compiles the service, runs the unit tests, and performs static
code analysis.

 Integration tests stage—Runs the integration tests.
 Component tests stage—Runs the component tests for the service.
 Deploy stage—Deploys the service into production.

The CI server runs the commit stage when a developer commits a change. It executes
extremely quickly, so it provides rapid feedback about the commit. The later stages
take longer to run, providing less immediate feedback. If all the tests pass, the final
stage is when this pipeline deploys it into production.

 In this example, the deployment pipeline is fully automated all the way from com-
mit to deployment. There are, however, situations that require manual steps. For
example, you might need a manual testing stage, such as a staging environment. In
such a scenario, the code progresses to the next stage when a tester clicks a button to
indicate that it was successful. Alternatively, a deployment pipeline for an on-premise

Pre-commit

tests

Slow feedbackFast feedback

Production

ready

Not production

ready

Commit

tests

stage

Deployment pipeline

Integration

tests

stage

Component

tests

stage

Production

environment

Deploy

stage

Figure 9.9 An example deployment pipeline for Order Service. It consists of a series of stages.
The pre-commit tests are run by the developer prior to committing their code. The remaining stages
are executed by an automated tool, such as the Jenkins CI server.

307Writing unit tests for a service
product would release the new version of the service. Later on, the released services
would be packaged into a product release and shipped to customers.

 Now that we’ve looked at the organization of the deployment pipeline and when it
executes the different types of tests, let’s head to the bottom of the test pyramid and
look at how to write unit tests for a service.

9.2 Writing unit tests for a service
Imagine that you want to write a test that verifies that the FTGO application’s Order
Service correctly calculates the subtotal of an Order. You could write tests that run
Order Service, invoke its REST API to create an Order, and check that the HTTP
response contains the expected values. The drawback of this approach is that not only
is the test complex, it’s also slow. If these tests were the compile-time tests for the
Order class, you’d waste a lot of time waiting for it to finish. A much more productive
approach is to write unit tests for the Order class.

 As figure 9.10 shows, unit tests are the lowest level of the test pyramid. They’re
technology-facing tests that support development. A unit test verifies that a unit, which
is a very small part of a service, works correctly. A unit is typically a class, so the goal of
unit testing is to verify that it behaves as expected.

End-to-end

Component

Integration

Unit

Stub/mock

dependency 1

Stub/mock

dependency 2

Stub/mock

dependency

...

Dependency 1

Dependency 2

Dependency

...

Solitary

unit test

Tests
Class

Social

unit test

Tests
Class

Figure 9.10 Unit tests are the base of the pyramid. They’re fast running, easy to write, and reliable.
A solitary unit test tests a class in isolation, using mocks or stubs for its dependencies. A sociable
unit test tests a class and its dependencies.

308 CHAPTER 9 Testing microservices: Part 1
There are two types of unit tests (https://martinfowler.com/bliki/UnitTest.html):

 Solitary unit test—Tests a class in isolation using mock objects for the class’s
dependencies

 Sociable unit test—Tests a class and its dependencies

The responsibilities of the class and its role in the architecture determine which type
of test to use. Figure 9.11 shows the hexagonal architecture of a typical service and the
type of unit test that you’ll typically use for each kind of class. Controller and service
classes are often tested using solitary unit tests. Domain objects, such as entities and
value objects, are typically tested using sociable unit tests.

«Message Channel»

«Message Channel»

POST/something
GET/something/id

Domain logic

Service

Entity

Solitary

unit test

Sociable

unit test

Value

object

Saga

Inbound

message

adapter

Outbound

message

adapter

Database

adapter

Database

Repository

Controller

Solitary

unit test

Figure 9.11 The responsibilities of a class determine whether to use a solitary or sociable unit test.

https://martinfowler.com/bliki/UnitTest.html

309Writing unit tests for a service
The typical testing strategy for each class is as follows:

 Entities, such as Order, which as described in chapter 5 are objects with per-
sistent identity, are tested using sociable unit tests.

 Value objects, such as Money, which as described in chapter 5 are objects that are
collections of values, are tested using sociable unit tests.

 Sagas, such as CreateOrderSaga, which as described in chapter 4 maintain data
consistency across services, are tested using sociable unit tests.

 Domain services, such as OrderService, which as described in chapter 5 are
classes that implement business logic that doesn’t belong in entities or value
objects, are tested using solitary unit tests.

 Controllers, such as OrderController, which handle HTTP requests, are tested
using solitary unit tests.

 Inbound and outbound messaging gateways are tested using solitary unit tests.

Let’s begin by looking at how to test entities.

9.2.1 Developing unit tests for entities

The following listing shows an excerpt of OrderTest class, which implements the unit
tests for the Order entity. The class has an @Before setUp() method that creates an Order
before running each test. Its @Test methods might further initialize Order, invoke one of
its methods, and then make assertions about the return value and the state of Order.

public class OrderTest {

private ResultWithEvents<Order> createResult;
private Order order;

@Before
public void setUp() throws Exception {
createResult = Order.createOrder(CONSUMER_ID, AJANTA_ID, CHICKEN_VINDALOO
_LINE_ITEMS);

order = createResult.result;
}

@Test
public void shouldCalculateTotal() {
assertEquals(CHICKEN_VINDALOO_PRICE.multiply(CHICKEN_VINDALOO_QUANTITY),
order.getOrderTotal());

}

...

}

The @Test shouldCalculateTotal() method verifies that Order.getOrderTotal()
returns the expected value. Unit tests thoroughly test the business logic. They are

Listing 9.2 A simple, fast-running unit test for the Order entity

310 CHAPTER 9 Testing microservices: Part 1
sociable unit tests for the Order class and its dependencies. You can use them as
compile-time tests because they execute extremely quickly. The Order class relies on
the Money value object, so it’s important to test that class as well. Let’s see how to do that.

9.2.2 Writing unit tests for value objects

Value objects are immutable, so they tend to be easy to test. You don’t have to worry
about side effects. A test for a value object typically creates a value object in a particu-
lar state, invokes one of its methods, and makes assertions about the return value. List-
ing 9.3 shows the tests for the Money value object, which is a simple class that
represents a money value. These tests verify the behavior of the Money class’s methods,
including add(), which adds two Money objects, and multiply(), which multiplies a
Money object by an integer. They are solitary tests because the Money class doesn’t
depend on any other application classes.

public class MoneyTest {

private final int M1_AMOUNT = 10;
private final int M2_AMOUNT = 15;

private Money m1 = new Money(M1_AMOUNT);
private Money m2 = new Money(M2_AMOUNT);

@Test
public void shouldAdd() {

assertEquals(new Money(M1_AMOUNT + M2_AMOUNT), m1.add(m2));
}

@Test
public void shouldMultiply() {
int multiplier = 12;
assertEquals(new Money(M2_AMOUNT * multiplier), m2.multiply(multiplier));

}

...
}

Entities and value objects are the building blocks of a service’s business logic. But
some business logic also resides in the service’s sagas and services. Let’s look at how to
test those.

9.2.3 Developing unit tests for sagas

A saga, such as the CreateOrderSaga class, implements important business logic, so
needs to be tested. It’s a persistent object that sends command messages to saga partic-
ipants and processes their replies. As described in chapter 4, CreateOrderSaga
exchanges command/reply messages with several services, such as Consumer Service
and Kitchen Service. A test for this class creates a saga and verifies that it sends the

Listing 9.3 A simple, fast-running test for the Money value object

Verify that two
Money objects can
be added together.

Verify that a Money
object can be multiplied
by an integer.

311Writing unit tests for a service

e.

nds

.

expected sequence of messages to the saga participants. One test you need to write is
for the happy path. You must also write tests for the various scenarios where the saga
rolls back because a saga participant sent back a failure message.

 One approach would be to write tests that use a real database and message broker
along with stubs to simulate the various saga participants. For example, a stub for
Consumer Service would subscribe to the consumerService command channel and
send back the desired reply message. But tests written using this approach would be
quite slow. A much more effective approach is to write tests that mock those classes
that interact with the database and message broker. That way, we can focus on testing
the saga’s core responsibility.

 Listing 9.4 shows a test for CreateOrderSaga. It’s a sociable unit test that tests the
saga class and its dependencies. It’s written using the Eventuate Tram Saga testing
framework (https://github.com/eventuate-tram/eventuate-tram-sagas). This frame-
work provides an easy-to-use DSL that abstracts away the details of interacting with
sagas. With this DSL, you can create a saga and verify that it sends the correct com-
mand messages. Under the covers, the Saga testing framework configures the Saga
framework with mocks for the database and messaging infrastructure.

public class CreateOrderSagaTest {

@Test
public void shouldCreateOrder() {
given()

.saga(new CreateOrderSaga(kitchenServiceProxy),
new CreateOrderSagaState(ORDER_ID,

CHICKEN_VINDALOO_ORDER_DETAILS)).
expect().

command(new ValidateOrderByConsumer(CONSUMER_ID, ORDER_ID,
CHICKEN_VINDALOO_ORDER_TOTAL)).

to(ConsumerServiceChannels.consumerServiceChannel).
andGiven().

successReply().
expect().

command(new CreateTicket(AJANTA_ID, ORDER_ID, null)).
to(KitchenServiceChannels.kitchenServiceChannel);

}

@Test
public void shouldRejectOrderDueToConsumerVerificationFailed() {
given()

.saga(new CreateOrderSaga(kitchenServiceProxy),
new CreateOrderSagaState(ORDER_ID,

CHICKEN_VINDALOO_ORDER_DETAILS)).
expect().

command(new ValidateOrderByConsumer(CONSUMER_ID, ORDER_ID,
CHICKEN_VINDALOO_ORDER_TOTAL)).

to(ConsumerServiceChannels.consumerServiceChannel).
andGiven().

Listing 9.4 A simple, fast-running unit test for CreateOrderSaga

Create
the saga.

Verify that it sends
a ValidateOrderBy-
Consumer message
to Consumer Servic

Send a Success reply
to that message.

Verify that it se
a CreateTicket
message to
Kitchen Service

https://github.com/eventuate-tram/eventuate-tram-sagas

312 CHAPTER 9 Testing microservices: Part 1
failureReply().
expect().

command(new RejectOrderCommand(ORDER_ID)).
to(OrderServiceChannels.orderServiceChannel);

}

}

The @Test shouldCreateOrder() method tests the happy path. The @Test should-
RejectOrderDueToConsumerVerificationFailed() method tests the scenario where
Consumer Service rejects the order. It verifies that CreateOrderSaga sends a Reject-
OrderCommand to compensate for the consumer being rejected. The CreateOrder-
SagaTest class has methods that test other failure scenarios.

 Let’s now look at how to test domain services.

9.2.4 Writing unit tests for domain services

The majority of a service’s business logic is implemented by the entities, value objects,
and sagas. Domain service classes, such as the OrderService class, implement the
remainder. This class is a typical domain service class. Its methods invoke entities and
repositories and publish domain events. An effective way to test this kind of class is to
use a mostly solitary unit test, which mocks dependencies such as repositories and
messaging classes.

 Listing 9.5 shows the OrderServiceTest class, which tests OrderService. It defines
solitary unit tests, which use Mockito mocks for the service’s dependencies. Each test
implements the test phases as follows:

1 Setup—Configures the mock objects for the service’s dependencies
2 Execute—Invokes a service method
3 Verify—Verifies that the value returned by the service method is correct and that

the dependencies have been invoked correctly

public class OrderServiceTest {

private OrderService orderService;
private OrderRepository orderRepository;
private DomainEventPublisher eventPublisher;
private RestaurantRepository restaurantRepository;
private SagaManager<CreateOrderSagaState> createOrderSagaManager;
private SagaManager<CancelOrderSagaData> cancelOrderSagaManager;
private SagaManager<ReviseOrderSagaData> reviseOrderSagaManager;

@Before
public void setup() {
orderRepository = mock(OrderRepository.class);
eventPublisher = mock(DomainEventPublisher.class);
restaurantRepository = mock(RestaurantRepository.class);

Listing 9.5 A simple, fast-running unit test for the OrderService class

Send a failure
reply indicating
that Consumer
Service rejected
Order.Verify that the saga sends

a RejectOrderCommand
message to Order Service.

Create Mockito
mocks for
OrderService’s
dependencies.

313Writing unit tests for a service

Ord

V
Ord

Crea
createOrderSagaManager = mock(SagaManager.class);
cancelOrderSagaManager = mock(SagaManager.class);
reviseOrderSagaManager = mock(SagaManager.class);
orderService = new OrderService(orderRepository, eventPublisher,

restaurantRepository, createOrderSagaManager,
cancelOrderSagaManager, reviseOrderSagaManager);

}

@Test
public void shouldCreateOrder() {
when(restaurantRepository

.findById(AJANTA_ID)).thenReturn(Optional.of(AJANTA_RESTAURANT_);
when(orderRepository.save(any(Order.class))).then(invocation -> {

Order order = (Order) invocation.getArguments()[0];
order.setId(ORDER_ID);
return order;

});

Order order = orderService.createOrder(CONSUMER_ID,
AJANTA_ID, CHICKEN_VINDALOO_MENU_ITEMS_AND_QUANTITIES);

verify(orderRepository).save(same(order));

verify(eventPublisher).publish(Order.class, ORDER_ID,
singletonList(

new OrderCreatedEvent(CHICKEN_VINDALOO_ORDER_DETAILS)));

verify(createOrderSagaManager)
.create(new CreateOrderSagaState(ORDER_ID,

CHICKEN_VINDALOO_ORDER_DETAILS),
Order.class, ORDER_ID);

}

}

The setUp() method creates an OrderService injected with mock dependencies.
The @Test shouldCreateOrder() method verifies that OrderService.createOrder()
invokes OrderRepository to save the newly created Order, publishes an OrderCreated-
Event, and creates a CreateOrderSaga.

 Now that we’ve seen how to unit test the domain logic classes, let’s look at how to
unit test the adapters that interact with external systems.

9.2.5 Developing unit tests for controllers

Services, such as Order Service, typically have one or more controllers that handle
HTTP requests from other services and the API gateway. A controller class consists of
a set of request handler methods. Each method implements a REST API endpoint. A
method’s parameters represent values from the HTTP request, such as path variables.
It typically invokes a domain service or a repository and returns a response object.

Create an OrderService injected
with mock dependencies.

Configure RestaurantRepository.findById()
to return the Ajanta restaurant.

Configure OrderRepository.save()
to set Order’s ID.

 Invoke
erService
.create().

Verify that
OrderService saved
the newly created
Order in the database.erify that

erService
published
an Order-
tedEvent. Verify that Order-

Service created a
CreateOrderSaga.

314 CHAPTER 9 Testing microservices: Part 1
OrderController, for instance, invokes OrderService and OrderRepository. An
effective testing strategy for controllers is solitary unit tests that mock the services
and repositories.

 You could write a test class similar to the OrderServiceTest class to instantiate a
controller class and invoke its methods. But this approach doesn’t test some import-
ant functionality, such as request routing. It’s much more effective to use a mock MVC
testing framework, such as Spring Mock Mvc, which is part of the Spring Framework,
or Rest Assured Mock MVC, which builds on Spring Mock Mvc. Tests written using
one of these frameworks make what appear to be HTTP requests and make assertions
about HTTP responses. These frameworks enable you to test HTTP request routing
and conversion of Java objects to and from JSON without having to make real network
calls. Under the covers, Spring Mock Mvc instantiates just enough of the Spring MVC
classes to make this possible.

Listing 9.6 shows the OrderControllerTest class, which tests Order Service’s Order-
Controller. It defines solitary unit tests that use mocks for OrderController’s depen-
dencies. It’s written using Rest Assured Mock MVC , which provides a simple DSL that
abstracts away the details of interacting with controllers. Rest Assured makes it easy to
send a mock HTTP request to a controller and verify the response. OrderController-
Test creates a controller that’s injected with Mockito mocks for OrderService and
OrderRepository. Each test configures the mocks, makes an HTTP request, verifies that
the response is correct, and possibly verifies that the controller invoked the mocks.

public class OrderControllerTest {

private OrderService orderService;
private OrderRepository orderRepository;

@Before
public void setUp() throws Exception {
orderService = mock(OrderService.class);
orderRepository = mock(OrderRepository.class);

Are these really unit tests?
Because these tests use the Spring Framework, you might argue that they’re not unit
tests. They’re certainly more heavyweight than the unit tests I’ve described so far.
The Spring Mock Mvc documentation refers to these as out-of-servlet-container inte-
gration tests (https://docs.spring.io/spring/docs/current/spring-framework-reference/
testing.html#spring-mvc-test-vs-end-to-end-integration-tests). Yet Rest Assured Mock
MVC describes these tests as unit tests (https://github.com/rest-assured/rest-
assured/wiki/Usage#spring-mock-mvc-module). Regardless of the debate over termi-
nology, these are important tests to write.

Listing 9.6 A simple, fast-running unit test for the OrderController class

Create mocks for
OrderController’s
dependencies.

https://docs.spring.io/spring/docs/current/spring-framework-reference/testing.html#spring-mvc-test-vs-end-to-end-integration-tests
https://docs.spring.io/spring/docs/current/spring-framework-reference/testing.html#spring-mvc-test-vs-end-to-end-integration-tests
https://docs.spring.io/spring/docs/current/spring-framework-reference/testing.html#spring-mvc-test-vs-end-to-end-integration-tests
https://github.com/rest-assured/rest-assured/wiki/Usage#spring-mock-mvc-module
https://github.com/rest-assured/rest-assured/wiki/Usage#spring-mock-mvc-module

315Writing unit tests for a service

orderController = new OrderController(orderService, orderRepository);
}

@Test
public void shouldFindOrder() {

when(orderRepository.findById(1L))
.thenReturn(Optional.of(CHICKEN_VINDALOO_ORDER_);

given().
standaloneSetup(configureControllers(

new OrderController(orderService, orderRepository))).
when().

get("/orders/1").
then().
statusCode(200).
body("orderId",

equalTo(new Long(OrderDetailsMother.ORDER_ID).intValue())).
body("state",

equalTo(OrderDetailsMother.CHICKEN_VINDALOO_ORDER_STATE.name())).
body("orderTotal",

equalTo(CHICKEN_VINDALOO_ORDER_TOTAL.asString()))
;

}

@Test
public void shouldFindNotOrder() { ... }

private StandaloneMockMvcBuilder controllers(Object... controllers) { ... }

}

The shouldFindOrder() test method first configures the OrderRepository mock to
return an Order. It then makes an HTTP request to retrieve the order. Finally, it
checks that the request was successful and that the response body contains the
expected data.

 Controllers aren’t the only adapters that handle requests from external systems.
There are also event/message handlers, so let’s talk about how to unit test those.

9.2.6 Writing unit tests for event and message handlers

Services often process messages sent by external systems. Order Service, for example,
has OrderEventConsumer, which is a message adapter that handles domain events pub-
lished by other services. Like controllers, message adapters tend to be simple classes
that invoke domain services. Each of a message adapter’s methods typically invokes a
service method with data from the message or event.

 We can unit test message adapters using an approach similar to the one we used
for unit testing controllers. Each test instances the message adapter, sends a message
to a channel, and verifies that the service mock was invoked correctly. Behind the

Configure the mock
OrderRepository to
return an Order.

Configure
OrderController.

Make an
HTTP

request.
Verify the response
status code.

Verify
elements

of the JSON
response

body.

316 CHAPTER 9 Testing microservices: Part 1
scenes, though, the messaging infrastructure is stubbed, so no message broker is
involved. Let’s look at how to test the OrderEventConsumer class.

 Listing 9.7 shows part of the OrderEventConsumerTest class, which tests Order-
EventConsumer. It verifies that OrderEventConsumer routes each event to the appro-
priate handler method and correctly invokes OrderService. The test uses the
Eventuate Tram Mock Messaging framework, which provides an easy-to-use DSL for
writing mock messaging tests that uses the same given-when-then format as Rest
Assured. Each test instantiates OrderEventConsumer injected with a mock Order-
Service, publishes a domain event, and verifies that OrderEventConsumer correctly
invokes the service mock.

public class OrderEventConsumerTest {

private OrderService orderService;
private OrderEventConsumer orderEventConsumer;

@Before
public void setUp() throws Exception {
orderService = mock(OrderService.class);
orderEventConsumer = new OrderEventConsumer(orderService);

}

@Test
public void shouldCreateMenu() {

given().
eventHandlers(orderEventConsumer.domainEventHandlers()).

when().
aggregate("net.chrisrichardson.ftgo.restaurantservice.domain.Restaurant",

AJANTA_ID).
publishes(new RestaurantCreated(AJANTA_RESTAURANT_NAME,

RestaurantMother.AJANTA_RESTAURANT_MENU))
then().

verify(() -> {
verify(orderService)

.createMenu(AJANTA_ID,
new RestaurantMenu(RestaurantMother.AJANTA_RESTAURANT_MENU_ITEMS));

})
;

}

}

The setUp() method creates an OrderEventConsumer injected with a mock Order-
Service. The shouldCreateMenu() method publishes a RestaurantCreated event
and verifies that OrderEventConsumer invoked OrderService.createMenu(). The
OrderEventConsumerTest class and the other unit test classes execute extremely quickly.
The unit tests run in just a few seconds.

Listing 9.7 A fast-running unit test for the OrderEventConsumer class

Instantiate
OrderEventConsumer with

mocked dependencies.

Configure
OrderEventConsumer

domain handlers.

Publish a
Restaurant-

Created
event. Verify that OrderEventConsumer

invoked OrderService.createMenu().

317Summary
 But the unit tests don’t verify that a service, such as Order Service, properly inter-
acts with other services. For example, the unit tests don’t verify that an Order can be
persisted in MySQL. Nor do they verify that CreateOrderSaga sends command mes-
sages in the right format to the right message channel. And they don’t verify that the
RestaurantCreated event processed by OrderEventConsumer has the same structure
as the event published by Restaurant Service. In order to verify that a service prop-
erly interacts with other services, we must write integration tests. We also need to write
component tests that test an entire service in isolation. The next chapter discusses
how to conduct those types of tests, as well as end-to-end tests.

Summary
 Automated testing is the key foundation of rapid, safe delivery of software.

What’s more, because of its inherent complexity, to fully benefit from the
microservice architecture you must automate your tests.

 The purpose of a test is to verify the behavior of the system under test (SUT). In
this definition, system is a fancy term that means the software element being
tested. It might be something as small as a class, as large as the entire applica-
tion, or something in between, such as a cluster of classes or an individual ser-
vice. A collection of related tests form a test suite.

 A good way to simplify and speed up a test is to use test doubles. A test double is
an object that simulates the behavior of a SUT’s dependency. There are two
types of test doubles: stubs and mocks. A stub is a test double that returns values
to the SUT. A mock is a test double that a test uses to verify that the SUT cor-
rectly invokes a dependency.

 Use the test pyramid to determine where to focus your testing efforts for your
services. The majority of your tests should be fast, reliable, and easy-to-write unit
tests. You must minimize the number of end-to-end tests, because they’re slow,
brittle, and time consuming to write.

Testing microservices:
Part 2
This chapter builds on the previous chapter, which introduced testing concepts,
including the test pyramid. The test pyramid describes the relative proportions of
the different types of tests that you should write. The previous chapter described
how to write unit tests, which are at the base of the testing pyramid. In this chapter,
we continue our ascent of the testing pyramid.

 This chapter begins with how to write integration tests, which are the level
above unit tests in the testing pyramid. Integration tests verify that a service can prop-
erly interact with infrastructure services, such as databases, and other application
services. Next, I cover component tests, which are acceptance tests for services. A com-
ponent test tests a service in isolation by using stubs for its dependencies. After
that, I describe how to write end-to-end tests, which test a group of services or the

This chapter covers
 Techniques for testing services in isolation

 Using consumer-driven contract testing to write
tests that quickly yet reliably verify interservice
communication

 When and how to do end-to-end testing of
applications
318

319Writing integration tests
entire application. End-to-end tests are at the top of the test pyramid and should,
therefore, be used sparingly.

 Let’s start by taking a look at how to write integration tests.

10.1 Writing integration tests
Services typically interact with other services. For example, Order Service, as fig-
ure 10.1 shows, interacts with several services. Its REST API is consumed by API Gateway,
and its domain events are consumed by services, including Order History Service.
Order Service uses several other services. It persists Orders in MySQL. It also sends
commands to and consumes replies from several other services, such as Kitchen
Service.

In order to be confident that a service such as Order Service works as expected, we
must write tests that verify that the service can properly interact with infrastructure
services and other application services. One approach is to launch all the services and
test them through their APIs. This, however, is what’s known as end-to-end testing,
which is slow, brittle, and costly. As explained in section 10.3, there’s a role for end-to-end

Order History

Service

API

gateway

Order

history

event

handlers

Kitchen

Service

Order

Service

Kitchen

Service

command

handler
Class under test

Legend

Test

Test

Test

Test

Database

Order

aggregate

event

publisher

Event

channel

Command

channel

Reply

channel

Provider

Provider

Consumer

Consumer

Provider

Provider

Order

controller

Order

Repository

Kitchen

Service

proxy

Order

Service

proxy

Figure 10.1 Integration tests must verify that a service can communicate with its clients and
dependencies. But rather than testing whole services, the strategy is to test the individual adapter
classes that implement the communication.

320 CHAPTER 10 Testing microservices: Part 2
testing sometimes, but it’s at the top of the test pyramid, so you want to minimize the
number of end-to-end tests.

 A much more effective strategy is to write what are known as integration tests. As fig-
ure 10.2 shows, integration tests are the layer above unit tests in the testing pyramid.
They verify that a service can properly interact with infrastructure services and other ser-
vices. But unlike end-to-end tests, they don’t launch services. Instead, we use a couple of
strategies that significantly simplify the tests without impacting their effectiveness.

The first strategy is to test each of the service’s adapters, along with, perhaps, the
adapter’s supporting classes. For example, in section 10.1.1 you’ll see a JPA per-
sistence test that verifies that Orders are persisted correctly. Rather than test persistence
through Order Service’s API, it directly tests the OrderRepository class. Similarly, in
section 10.1.3 you’ll see a test that verifies that Order Service publishes correctly
structured domain events by testing the OrderDomainEventPublisher class. The bene-
fit of testing only a small number of classes rather than the entire service is that the
tests are significantly simpler and faster.

 The second strategy for simplifying integration tests that verify interactions
between application services is to use contracts, discussed in chapter 9. A contract is a
concrete example of an interaction between a pair of services. As table 10.1 shows, the
structure of a contract depends on the type of interaction between the services.

Table 10.1 The structure of a contract depends on the type of interaction between the services.

Interaction style Consumer Provider Contract

REST-based,
request/response

API Gateway Order Service HTTP request and
response

Publish/subscribe Order History Service Order Service Domain event

Asynchronous
request/response

Order Service Kitchen Service Command message
and reply message

End-to-end

Component

Integration

Unit

Figure 10.2 Integration tests are the layer
above unit tests. They verify that a service
can communicate with its dependencies,
which includes infrastructure services, such
as the database, and application services.

321Writing integration tests
A contract consists of either one message, in the case of publish/subscribe style inter-
actions, or two messages, in the case of request/response and asynchronous request/
response style interactions.

 The contracts are used to test both the consumer and the provider, which ensures
that they agree on the API. They’re used in slightly different ways depending on
whether you’re testing the consumer or the provider:

 Consumer-side tests—These are tests for the consumer’s adapter. They use the
contracts to configure stubs that simulate the provider, enabling you to write
integration tests for a consumer that don’t require a running provider.

 Provider-side tests—These are tests for the provider’s adapter. They use the con-
tracts to test the adapters using mocks for the adapters’s dependencies.

Later in this section, I describe examples of these types of tests—but first let’s look at
how to write persistence tests.

10.1.1 Persistence integration tests

Services typically store data in a database. For instance, Order Service persists aggre-
gates, such as Order, in MySQL using JPA. Similarly, Order History Service maintains
a CQRS view in AWS DynamoDB. The unit tests we wrote earlier only test in-memory
objects. In order to be confident that a service works correctly, we must write per-
sistence integration tests, which verify that a service’s database access logic works as
expected. In the case of Order Service, this means testing the JPA repositories, such
as OrderRepository.

 Each phase of a persistence integration test behaves as follows:

 Setup—Set up the database by creating the database schema and initializing it to
a known state. It might also begin a database transaction.

 Execute—Perform a database operation.
 Verify—Make assertions about the state of the database and objects retrieved

from the database.
 Teardown—An optional phase that might undo the changes made to the database

by, for example, rolling back the transaction that was started by the setup phase.

Listing 10.1 shows a persistent integration test for the Order aggregate and Order-
Repository. Apart from relying on JPA to create the database schema, the persistence
integration tests don’t make any assumption about the state of the database. Conse-
quently, tests don’t need to roll back the changes they make to the database, which
avoids problems with the ORM caching data changes in memory.

@RunWith(SpringRunner.class)
@SpringBootTest(classes = OrderJpaTestConfiguration.class)
public class OrderJpaTest {

Listing 10.1 An integration test that verifies that an Order can be persisted

322 CHAPTER 10 Testing microservices: Part 2
@Autowired
private OrderRepository orderRepository;

@Autowired
private TransactionTemplate transactionTemplate;

@Test
public void shouldSaveAndLoadOrder() {

Long orderId = transactionTemplate.execute((ts) -> {
Order order =

new Order(CONSUMER_ID, AJANTA_ID, CHICKEN_VINDALOO_LINE_ITEMS);
orderRepository.save(order);
return order.getId();

});

transactionTemplate.execute((ts) -> {
Order order = orderRepository.findById(orderId).get();

assertEquals(OrderState.APPROVAL_PENDING, order.getState());
assertEquals(AJANTA_ID, order.getRestaurantId());
assertEquals(CONSUMER_ID, order.getConsumerId().longValue());
assertEquals(CHICKEN_VINDALOO_LINE_ITEMS, order.getLineItems());
return null;

});

}

}

The shouldSaveAndLoadOrder() test method executes two transactions. The first
saves a newly created Order in the database. The second transaction loads the Order
and verifies that its fields are properly initialized.

 One problem you need to solve is how to provision the database that’s used in per-
sistence integration tests. An effective solution to run an instance of the database during
testing is to use Docker. Section 10.2 describes how to use the Docker Compose Gradle
plugin to automatically run services during component testing. You can use a similar
approach to run MySQL, for example, during persistence integration testing.

 The database is only one of the external services a service interacts with. Let’s now
look at how to write integration tests for interservice communication between applica-
tion services, starting with REST.

10.1.2 Integration testing REST-based request/response style
interactions

REST is a widely used interservice communication mechanism. The REST client and
REST service must agree on the REST API, which includes the REST endpoints and
the structure of the request and response bodies. The client must send an HTTP
request to the correct endpoint, and the service must send back the response that the
client expects.

323Writing integration tests
 For example, chapter 8 describes how the FTGO application’s API Gateway makes
REST API calls to numerous services, including ConsumerService, Order Service,
and Delivery Service. The OrderService’s GET /orders/{orderId} endpoint is one
of the endpoints invoked by the API Gateway. In order to be confident that API Gateway
and Order Service can communicate without using an end-to-end test, we need to
write integration tests.

 As stated in the preceding chapter, a good integration testing strategy is to use
consumer-driven contract tests. The interaction between API Gateway and GET
/orders/{orderId} can be described using a set of HTTP-based contracts. Each con-
tract consists of an HTTP request and an HTTP reply. The contracts are used to test
API Gateway and Order Service.

 Figure 10.3 shows how to use Spring Cloud Contract to test REST-based interac-
tions. The consumer-side API Gateway integration tests use the contracts to configure
an HTTP stub server that simulates the behavior of Order Service. A contract’s
request specifies an HTTP request from the API gateway, and the contract’s response
specifies the response that the stub sends back to the API gateway. Spring Cloud Con-
tract uses the contracts to code-generate the provider-side Order Service integration
tests, which test the controllers using Spring Mock MVC or Rest Assured Mock MVC.
The contract’s request specifies the HTTP request to make to the controller, and the
contract’s response specifies the controller’s expected response.

 The consumer-side OrderServiceProxyTest invokes OrderServiceProxy, which
has been configured to make HTTP requests to WireMock. WireMock is a tool for effi-
ciently mocking HTTP servers—in this test it simulates Order Service. Spring Cloud

Wiremock-

based HTTP

stub server

Order

controller

Provider-side integration

test for Order Service

Consumer-side integration

test forAPI gateway

Spring Cloud

Contract

Tests

Tests

Uses

Configures ConfiguresGenerates

Reads

HTTP

OrderService
ProxyTest

class HttpTest
extends BaseHttp {

}

abstract class BaseHttp {

@Before
public void setup() {
RestAssuredMockMvc
.standaloneSetup(...);

}
}

Contract.make {
request {..}
response {...}
}

}

OrderService
Proxy

Figure 10.3 The contracts are used to verify that the adapter classes on both sides of the
REST-based communication between API Gateway and Order Service conform to the contract.
The consumer-side tests verify that OrderServiceProxy invokes Order Service correctly. The
provider-side tests verify that OrderController implements the REST API endpoints correctly.

324 CHAPTER 10 Testing microservices: Part 2
Contract manages WireMock and configures it to respond to the HTTP requests
defined by the contracts.

 On the provider side, Spring Cloud Contract generates a test class called HttpTest,
which uses Rest Assured Mock MVC to test Order Service’s controllers. Test classes
such as HttpTest must extend a handwritten base class. In this example, the base class
BaseHttp instantiates OrderController injected with mock dependencies and calls
RestAssuredMockMvc.standaloneSetup() to configure Spring MVC.

 Let’s take a closer look at how this works, starting with an example contract.

AN EXAMPLE CONTRACT FOR A REST API
A REST contract, such as the one shown in listing 10.2, specifies an HTTP request,
which is sent by the REST client, and the HTTP response, which the client expects to
get back from the REST server. A contract’s request specifies the HTTP method, the
path, and optional headers. A contract’s response specifies the HTTP status code,
optional headers, and, when appropriate, the expected body.

org.springframework.cloud.contract.spec.Contract.make {
request {

method 'GET'
url '/orders/1223232'

}
response {

status 200
headers {

header('Content-Type': 'application/json;charset=UTF-8')
}
body('''{"orderId" : "1223232", "state" : "APPROVAL_PENDING"}''')

}
}

This particular contract describes a successful attempt by API Gateway to retrieve an
Order from Order Service. Let’s now look at how to use this contract to write integra-
tion tests, starting with the tests for Order Service.

CONSUMER-DRIVEN CONTRACT INTEGRATION TESTS FOR ORDER SERVICE

The consumer-driven contract integration tests for Order Service verify that its API
meets its clients’ expectations. Listing 10.3 shows HttpBase, which is the base class
for the test class code-generated by Spring Cloud Contract. It’s responsible for the
setup phase of the test. It creates the controllers injected with mock dependencies
and configures those mocks to return values that cause the controller to generate the
expected response.

public abstract class HttpBase {

private StandaloneMockMvcBuilder controllers(Object... controllers) {
...

Listing 10.2 A contract that describes an HTTP-based request/response style interaction

Listing 10.3 The abstract base class for the tests code-generated by Spring Cloud Contract

325Writing integration tests
return MockMvcBuilders.standaloneSetup(controllers)
.setMessageConverters(...);

}

@Before
public void setup() {
OrderService orderService = mock(OrderService.class);
OrderRepository orderRepository = mock(OrderRepository.class);
OrderController orderController =

new OrderController(orderService, orderRepository);

when(orderRepository.findById(1223232L))
.thenReturn(Optional.of(OrderDetailsMother.CHICKEN_VINDALOO_ORDER));

...
RestAssuredMockMvc.standaloneSetup(controllers(orderController));

}
}

The argument 1223232L that’s passed to the mock OrderRepository’s findById()
method matches the orderId specified in the contract shown in listing 10.3. This test
verifies that Order Service has a GET /orders/{orderId} endpoint that matches its
client’s expectations.

 Let’s take a look at the corresponding client test.

CONSUMER-SIDE INTEGRATION TEST FOR API GATEWAY’S ORDERSERVICEPROXY

API Gateway’s OrderServiceProxy invokes the GET /orders/{orderId} endpoint. List-
ing 10.4 shows the OrderServiceProxyIntegrationTest test class, which verifies that
it conforms to the contracts. This class is annotated with @AutoConfigureStubRunner,
provided by Spring Cloud Contract. It tells Spring Cloud Contract to run the Wire-
Mock server on a random port and configure it using the specified contracts. Order-
ServiceProxyIntegrationTest configures OrderServiceProxy to make requests to
the WireMock port.

@RunWith(SpringRunner.class)
@SpringBootTest(classes=TestConfiguration.class,

webEnvironment= SpringBootTest.WebEnvironment.NONE)
@AutoConfigureStubRunner(ids =

{"net.chrisrichardson.ftgo.contracts:ftgo-order-service-contracts"},
workOffline = false)

@DirtiesContext
public class OrderServiceProxyIntegrationTest {

@Value("${stubrunner.runningstubs.ftgo-order-service-contracts.port}")

Listing 10.4 A consumer-side integration test for API Gateway's
OrderServiceProxy

Create
OrderRepository

injected with mocks.

Configure OrderResponse to return an Order when findById()
is invoked with the orderId specified in the contract.

Configure Spring MVC with
OrderController.

Tell Spring Cloud Contract
to configure WireMock with

Order Service’s contracts.

Obtain the randomly assigned port
that WireMock is running on.

326 CHAPTER 10 Testing microservices: Part 2
private int port;
private OrderDestinations orderDestinations;
private OrderServiceProxy orderService;

@Before
public void setUp() throws Exception {
orderDestinations = new OrderDestinations();
String orderServiceUrl = "http://localhost:" + port;
orderDestinations.setOrderServiceUrl(orderServiceUrl);
orderService = new OrderServiceProxy(orderDestinations,

WebClient.create());
}

@Test
public void shouldVerifyExistingCustomer() {
OrderInfo result = orderService.findOrderById("1223232").block();
assertEquals("1223232", result.getOrderId());
assertEquals("APPROVAL_PENDING", result.getState());

}

@Test(expected = OrderNotFoundException.class)
public void shouldFailToFindMissingOrder() {
orderService.findOrderById("555").block();

}

}

Each test method invokes OrderServiceProxy and verifies that either it returns the
correct values or throws the expected exception. The shouldVerifyExisting-
Customer() test method verifies that findOrderById() returns values equal to those
specified in the contract’s response. The shouldFailToFindMissingOrder() attempts
to retrieve a nonexistent Order and verifies that OrderServiceProxy throws an Order-
NotFoundException. Testing both the REST client and the REST service using the
same contracts ensures that they agree on the API.

 Let’s now look at how to do the same kind of testing for services that interact using
messaging.

10.1.3 Integration testing publish/subscribe-style interactions

Services often publish domain events that are consumed by one or more other ser-
vices. Integration testing must verify that the publisher and its consumers agree on the
message channel and the structure of the domain events. Order Service, for example,
publishes Order* events whenever it creates or updates an Order aggregate. Order
History Service is one of the consumers of those events. We must, therefore, write
tests that verify that these services can interact.

 Figure 10.4 shows the approach to integration testing publish/subscribe interac-
tions. Its quite similar to the approach used for testing REST interactions. As before,
the interactions are defined by a set of contracts. What’s different is that each contract
specifies a domain event.

Create an OrderServiceProxy
configured to make requests

to WireMock.

327Writing integration tests
Each consumer-side test publishes the event specified by the contract and verifies that
OrderHistoryEventHandlers invokes its mocked dependencies correctly.

 On the provider side, Spring Cloud Contract code-generates test classes that
extend MessagingBase, which is a hand-written abstract superclass. Each test method
invokes a hook method defined by MessagingBase, which is expected to trigger the
publication of an event by the service. In this example, each hook method invokes
OrderDomainEventPublisher, which is responsible for publishing Order aggregate
events. The test method then verifies that OrderDomainEventPublisher published
the expected event. Let’s look at the details of how these tests work, starting with the
contract.

THE CONTRACT FOR PUBLISHING AN ORDERCREATED EVENT

Listing 10.5 shows the contract for an OrderCreated event. It specifies the event’s
channel, along with the expected body and message headers.

Provider-side integration

test for Order Service

Consumer-side

integration test for

Order History Service

Spring cloud

contract

Tests

Tests

Reads from

Publishes to

Configures

Code

generates

Publishes to

Reads from

Invokes
Uses

contract.make{
label 'orderCreatedEvent'
input{
triggeredBy('orderCreated()')
}

outputMessage{...}
}

class MessageTest extends MessagingBase{

@Test
public void validate_orderCreatedEvent(){

orderCreated();
...

}
}

class MessagingBase{

void orderCreated(){

}

OrderHistory
EventHandlers

Test

OrderHistory
EventHandlers

Channel

Order domain
EventPublisher

Channel

Messaging stub

Class under testClass under test

Triggers
'orderCreatedEvent'

Invokes trigger function

that verifies that the output

message is published to the

expected channel

Figure 10.4 The contracts are used to test both sides of the publish/subscribe interaction. The provider-side
tests verify that OrderDomainEventPublisher publishes events that confirm to the contract. The
consumer-side tests verify that OrderHistoryEventHandlers consume the example events from
the contract.

328 CHAPTER 10 Testing microservices: Part 2
package contracts;

org.springframework.cloud.contract.spec.Contract.make {
label 'orderCreatedEvent'
input {

triggeredBy('orderCreated()')
}

outputMessage {
sentTo('net.chrisrichardson.ftgo.orderservice.domain.Order')
body('''{"orderDetails":{"lineItems":[{"quantity":5,"menuItemId":"1",

 "name":"Chicken Vindaloo","price":"12.34","total":"61.70"}],
 "orderTotal":"61.70","restaurantId":1,
 "consumerId":1511300065921},"orderState":"APPROVAL_PENDING"}''')
 headers {
 header('event-aggregate-type',
 'net.chrisrichardson.ftgo.orderservice.domain.Order')
 header('event-aggregate-id', '1')
 }

}
}

The contract also has two other important elements:

 label—is used by a consumer test to trigger publication of the event by Spring
Contact

 triggeredBy—the name of the superclass method invoked by the generated
test method to trigger the publishing of the event

Let’s look at how the contract is used, starting with the provider-side test for Order-
Service.

CONSUMER-DRIVEN CONTRACT TESTS FOR ORDER SERVICE

The provider-side test for Order Service is another consumer-driven contract inte-
gration test. It verifies that OrderDomainEventPublisher, which is responsible for
publishing Order aggregate domain events, publishes events that match its clients’
expectations. Listing 10.6 shows MessagingBase, which is the base class for the test
classes code-generated by Spring Cloud Contract. It’s responsible for configuring the
OrderDomainEventPublisher class to use in-memory messaging stubs. It also defines
the methods, such as orderCreated(), which are invoked by the generated tests to
trigger the publishing of the event.

@RunWith(SpringRunner.class)
@SpringBootTest(classes = MessagingBase.TestConfiguration.class,

webEnvironment = SpringBootTest.WebEnvironment.NONE)
@AutoConfigureMessageVerifier
public abstract class MessagingBase {

Listing 10.5 A contract for a publish/subscribe interaction style

Listing 10.6 The abstract base class for the Spring Cloud Contract provider-side tests

Used by the
consumer test to
trigger the event
to be published

Invoked by the code-
generated provider test

An Order-
Created
domain

event

329Writing integration tests
@Configuration
@EnableAutoConfiguration
@Import({EventuateContractVerifierConfiguration.class,

TramEventsPublisherConfiguration.class,
TramInMemoryConfiguration.class})

public static class TestConfiguration {

@Bean
public OrderDomainEventPublisher

OrderDomainEventPublisher(DomainEventPublisher eventPublisher) {
return new OrderDomainEventPublisher(eventPublisher);

}
}

@Autowired
private OrderDomainEventPublisher OrderDomainEventPublisher;

protected void orderCreated() {
OrderDomainEventPublisher.publish(CHICKEN_VINDALOO_ORDER,

singletonList(new OrderCreatedEvent(CHICKEN_VINDALOO_ORDER_DETAILS)
));

}

}

This test class configures OrderDomainEventPublisher with in-memory messaging
stubs. orderCreated() is invoked by the test method generated from the contract
shown earlier in listing 10.5. It invokes OrderDomainEventPublisher to publish an
OrderCreated event. The test method attempts to receive this event and then verifies
that it matches the event specified in the contract. Let’s now look at the correspond-
ing consumer-side tests.

CONSUMER-SIDE CONTRACT TEST FOR THE ORDER HISTORY SERVICE

Order History Service consumes events published by Order Service. As I described
in chapter 7, the adapter class that handles these events is the OrderHistoryEvent-
Handlers class. Its event handlers invoke OrderHistoryDao to update the CQRS view.
Listing 10.7 shows the consumer-side integration test. It creates an OrderHistoryEvent-
Handlers injected with a mock OrderHistoryDao. Each test method first invokes Spring
Cloud to publish the event defined in the contract and then verifies that OrderHistory-
EventHandlers invokes OrderHistoryDao correctly.

@RunWith(SpringRunner.class)
@SpringBootTest(classes= OrderHistoryEventHandlersTest.TestConfiguration.class,

webEnvironment= SpringBootTest.WebEnvironment.NONE)
@AutoConfigureStubRunner(ids =

{"net.chrisrichardson.ftgo.contracts:ftgo-order-service-contracts"},
workOffline = false)

Listing 10.7 The consumer-side integration test for the OrderHistoryEventHandlers
class

orderCreated() is invoked by a
code-generated test subclass

to publish the event.

330 CHAPTER 10 Testing microservices: Part 2
@DirtiesContext
public class OrderHistoryEventHandlersTest {

@Configuration
@EnableAutoConfiguration
@Import({OrderHistoryServiceMessagingConfiguration.class,

TramCommandProducerConfiguration.class,
TramInMemoryConfiguration.class,
EventuateContractVerifierConfiguration.class})

public static class TestConfiguration {

@Bean
public OrderHistoryDao orderHistoryDao() {
return mock(OrderHistoryDao.class);
}

}

@Test
public void shouldHandleOrderCreatedEvent() throws ... {
stubFinder.trigger("orderCreatedEvent");
eventually(() -> {
verify(orderHistoryDao).addOrder(any(Order.class), any(Optional.class));

});
}

The shouldHandleOrderCreatedEvent() test method tells Spring Cloud Contract to
publish the OrderCreated event. It then verifies that OrderHistoryEventHandlers
invoked orderHistoryDao.addOrder(). Testing both the domain event’s publisher and
consumer using the same contracts ensures that they agree on the API. Let’s now look at
how to do integration test services that interact using asynchronous request/response.

10.1.4 Integration contract tests for asynchronous request/response
interactions

Publish/subscribe isn’t the only kind of messaging-based interaction style. Services
also interact using asynchronous request/response. For example, in chapter 4 we saw
that Order Service implements sagas that send command messages to various ser-
vices, such as Kitchen Service, and processes the reply messages.

 The two parties in an asynchronous request/response interaction are the requestor,
which is the service that sends the command, and the replier, which is the service that
processes the command and sends back a reply. They must agree on the name of com-
mand message channel and the structure of the command and reply messages. Let’s
look at how to write integration tests for asynchronous request/response interactions.

 Figure 10.5 shows how to test the interaction between Order Service and Kitchen
Service. The approach to integration testing asynchronous request/response interac-
tions is quite similar to the approach used for testing REST interactions. The interac-
tions between the services are defined by a set of contracts. What’s different is that a
contract specifies an input message and an output message instead of an HTTP request
and reply.

Create a mock OrderHistoryDao
to inject into OrderHistory-
EventHandlers.

Trigger the
orderCreatedEvent
stub, which emits an
OrderCreated event.

Verify that OrderHistoryEventHandlers
invoked orderHistoryDao.addOrder().

331Writing integration tests
The consumer-side test verifies that the command message proxy class sends correctly
structured command messages and correctly processes reply messages. In this exam-
ple, KitchenServiceProxyTest tests KitchenServiceProxy. It uses Spring Cloud Con-
tract to configure messaging stubs that verify that the command message matches a
contract’s input message and replies with the corresponding output message.

 The provider-side tests are code-generated by Spring Cloud Contract. Each test
method corresponds to a contract. It sends the contract’s input message as a com-
mand message and verifies that the reply message matches the contract’s output mes-
sage. Let’s look at the details, starting with the contract.

EXAMPLE ASYNCHRONOUS REQUEST/RESPONSE CONTRACT

Listing 10.8 shows the contract for one interaction. It consists of an input message and
an output message. Both messages specify a message channel, message body, and mes-
sage headers. The naming convention is from the provider’s perspective. The input
message’s messageFrom element specifies the channel that the message is read from.

Provider-side

integration test for

Kitchen Service

Consumer-side

integration test for

Kitchen Service

Spring cloud

contract

Reads

Tests

Sends to

Sends to

Receives from

Configures

Code

generates

Receives

from

Extends

Configures

Invokes

Reads

command

Reads reply

Sends

reply

command

Sends

command

Message

Contract.make {
inputMessage{...}

OutputMessage{...}
} abstract class BaseMessaging{

void setUp(){...}

class MessageTest extends BaseMessaging{

}

KitchenService
Proxy

IntegrationTest

KitchenService
Proxy

KitchenService
CommandHandler

Reply

channel

Command

channel

Command

channel

Reply

channel

«mock»
KitchenService

Messaging stub

Sends input message and

verifies that reply matches

contract’s output message

Figure 10.5 The contracts are used to test the adapter classes that implement each side of the asynchronous
request/response interaction. The provider-side tests verify that KitchenServiceCommandHandler handles
commands and sends back replies. The consumer-side tests verify KitchenServiceProxy sends commands
that conform to the contract, and that it handles the example replies from the contract.

332 CHAPTER 10 Testing microservices: Part 2
Similarly, the output message’s sentTo element specifies the channel that the reply
should be sent to.

package contracts;

org.springframework.cloud.contract.spec.Contract.make {
label 'createTicket'
input {

messageFrom('kitchenService')
messageBody('''{"orderId":1,"restaurantId":1,"ticketDetails":{...}}''')
messageHeaders {

header('command_type','net.chrisrichardson...CreateTicket')
header('command_saga_type','net.chrisrichardson...CreateOrderSaga')
header('command_saga_id',$(consumer(regex('[0-9a-f]{16}-[0-9a-f]

{16}'))))
header('command_reply_to','net.chrisrichardson...CreateOrderSaga-Reply')

}
}
outputMessage {

sentTo('net.chrisrichardson...CreateOrderSaga-reply')
body([

ticketId: 1
])
headers {

header('reply_type', 'net.chrisrichardson...CreateTicketReply')
header('reply_outcome-type', 'SUCCESS')

}
}

}

In this example contract, the input message is a CreateTicket command that’s sent to
the kitchenService channel. The output message is a successful reply that’s sent to the
CreateOrderSaga’s reply channel. Let’s look at how to use this contract in tests, start-
ing with the consumer-side tests for Order Service.

CONSUMER-SIDE CONTRACT INTEGRATION TEST FOR AN ASYNCHRONOUS REQUEST/RESPONSE
INTERACTION

The strategy for writing a consumer-side integration test for an asynchronous request/
response interaction is similar to testing a REST client. The test invokes the service’s
messaging proxy and verifies two aspects of its behavior. First, it verifies that the mes-
saging proxy sends a command message that conforms to the contract. Second, it ver-
ifies that the proxy properly handles the reply message.

 Listing 10.9 shows the consumer-side integration test for KitchenServiceProxy,
which is the messaging proxy used by Order Service to invoke Kitchen Service. Each
test sends a command message using KitchenServiceProxy and verifies that it returns
the expected result. It uses Spring Cloud Contract to configure messaging stubs for

Listing 10.8 Contract describing how Order Service asynchronously invokes
Kitchen Service

The command message
sent by Order Service
to the kitchenService
channel

The reply message sent
by Kitchen Service

333Writing integration tests
Kitchen Service that find the contract whose input message matches the command
message and sends its output message as the reply. The tests use in-memory messaging
for simplicity and speed.

@RunWith(SpringRunner.class)
@SpringBootTest(classes=

KitchenServiceProxyIntegrationTest.TestConfiguration.class,
webEnvironment= SpringBootTest.WebEnvironment.NONE)

@AutoConfigureStubRunner(ids =
{"net.chrisrichardson.ftgo.contracts:ftgo-kitchen-service-contracts"},
workOffline = false)

@DirtiesContext
public class KitchenServiceProxyIntegrationTest {

@Configuration
@EnableAutoConfiguration
@Import({TramCommandProducerConfiguration.class,

TramInMemoryConfiguration.class,
EventuateContractVerifierConfiguration.class})

public static class TestConfiguration { ... }

@Autowired
private SagaMessagingTestHelper sagaMessagingTestHelper;

@Autowired
private KitchenServiceProxy kitchenServiceProxy;

@Test
public void shouldSuccessfullyCreateTicket() {
CreateTicket command = new CreateTicket(AJANTA_ID,

OrderDetailsMother.ORDER_ID,
new TicketDetails(Collections.singletonList(
new TicketLineItem(CHICKEN_VINDALOO_MENU_ITEM_ID,

CHICKEN_VINDALOO,
CHICKEN_VINDALOO_QUANTITY))));

String sagaType = CreateOrderSaga.class.getName();

CreateTicketReply reply =
sagaMessagingTestHelper

.sendAndReceiveCommand(kitchenServiceProxy.create,
command,
CreateTicketReply.class, sagaType);

assertEquals(new CreateTicketReply(OrderDetailsMother.ORDER_ID), reply);

}

}

Listing 10.9 The consumer-side contract integration test for Order Service

Configure the stub
Kitchen Service to

respond to messages.

Send the
command and
wait for a reply.

Verify the
reply.

334 CHAPTER 10 Testing microservices: Part 2
The shouldSuccessfullyCreateTicket() test method sends a CreateTicket com-
mand message and verifies that the reply contains the expected data. It uses Saga-
MessagingTestHelper, which is a test helper class that synchronously sends and receives
messages.

 Let’s now look at how to write provider-side integration tests.

WRITING PROVIDER-SIDE, CONSUMER-DRIVEN CONTRACT TESTS FOR ASYNCHRONOUS
REQUEST/RESPONSE INTERACTIONS

A provider-side integration test must verify that the provider handles a command mes-
sage by sending the correct reply. Spring Cloud Contract generates test classes that
have a test method for each contract. Each test method sends the contract’s input
message and verifies that the reply matches the contract’s output message.

 The provider-side integration tests for Kitchen Service test KitchenService-
CommandHandler. The KitchenServiceCommandHandler class handles a message by
invoking KitchenService. The following listing shows the AbstractKitchenService-
ConsumerContractTest class, which is the base class for the Spring Cloud Contract-
generated tests. It creates a KitchenServiceCommandHandler injected with a mock
KitchenService.

@RunWith(SpringRunner.class)
@SpringBootTest(classes =

AbstractKitchenServiceConsumerContractTest.TestConfiguration.class,
webEnvironment = SpringBootTest.WebEnvironment.NONE)

@AutoConfigureMessageVerifier
public abstract class AbstractKitchenServiceConsumerContractTest {

@Configuration
@Import(RestaurantMessageHandlersConfiguration.class)
public static class TestConfiguration {
...
@Bean
public KitchenService kitchenService() {

return mock(KitchenService.class);
}

}

@Autowired
private KitchenService kitchenService;

@Before
public void setup() {

reset(kitchenService);
when(kitchenService

.createTicket(eq(1L), eq(1L),
any(TicketDetails.class)))

.thenReturn(new Ticket(1L, 1L,

Listing 10.10 Superclass of provider-side, consumer-driven contract tests for Kitchen
Service

Overrides the definition
of the kitchenService
@Bean with a mock

Configures the mock to
return the values that match
a contract’s output message

335Developing component tests
new TicketDetails(Collections.emptyList())));
}

}

KitchenServiceCommandHandler invokes KitchenService with arguments that are
derived from a contract’s input message and creates a reply message that’s derived
from the return value. The test class’s setup() method configures the mock Kitchen-
Service to return the values that match the contract’s output message

 Integration tests and unit tests verify the behavior of individual parts of a service.
The integration tests verify that services can communicate with their clients and
dependencies. The unit tests verify that a service’s logic is correct. Neither type of test
runs the entire service. In order to verify that a service as a whole works, we’ll move up
the pyramid and look at how to write component tests.

10.2 Developing component tests
So far, we’ve looked at how to test individual classes and clusters of classes. But imag-
ine that we now want to verify that Order Service works as expected. In other words,
we want to write the service’s acceptance tests, which treat it as a black box and verify
its behavior through its API. One approach is to write what are essentially end-to-end
tests and deploy Order Service and all of its transitive dependencies. As you should
know by now, that’s a slow, brittle, and expensive way to test a service.

A much better way to write acceptance tests for a service is to use component testing.
As figure 10.6 shows, component tests are sandwiched between integration tests and
end-to-end tests. Component testing verifies the behavior of a service in isolation. It
replaces a service’s dependencies with stubs that simulate their behavior. It might even
use in-memory versions of infrastructure services such as databases. As a result, com-
ponent tests are much easier to write and faster to run.

 I begin by briefly describing how to use a testing DSL called Gherkin to write
acceptance tests for services, such as Order Service. After that I discuss various com-
ponent testing design issues. I then show how to write acceptance tests for Order
Service.

 Let’s look at writing acceptance tests using Gherkin.

Pattern: Service component test
Test a service in isolation. See http://microservices.io/patterns/testing/service-
component-test.html.

http://microservices.io/patterns/testing/service-component-test.html
http://microservices.io/patterns/testing/service-component-test.html

336 CHAPTER 10 Testing microservices: Part 2
10.2.1 Defining acceptance tests

Acceptance tests are business-facing tests for a software component. They describe the
desired externally visible behavior from the perspective of the component’s clients
rather than in terms of the internal implementation. These tests are derived from user
stories or use cases. For example, one of the key stories for Order Service is the Place
Order story:

As a consumer of the Order Service
I should be able to place an order

We can expand this story into scenarios such as the following:

Given a valid consumer
Given using a valid credit card
Given the restaurant is accepting orders
When I place an order for Chicken Vindaloo at Ajanta
Then the order should be APPROVED
And an OrderAuthorized event should be published

This scenario describes the desired behavior of Order Service in terms of its API.
 Each scenario defines an acceptance test. The givens correspond to the test’s setup

phase, the when maps to the execute phase, and the then and the and to the verifica-
tion phase. Later, you see a test for this scenario that does the following:

1 Creates an Order by invoking the POST /orders endpoint
2 Verifies the state of the Order by invoking the GET /orders/{orderId} endpoint
3 Verifies that the Order Service published an OrderAuthorized event by sub-

scribing to the appropriate message channel

We could translate each scenario into Java code. An easier option, though, is to write
the acceptance tests using a DSL such as Gherkin.

End-to-end

Component

Integration

Unit

Component

test

Tests
Service

Stub

dependency 1

Stub

dependency 2

Stub

dependency

...

Figure 10.6 A component test tests a service in isolation. It typically uses stubs for the service’s
dependencies.

337Developing component tests
10.2.2 Writing acceptance tests using Gherkin

Writing acceptance tests in Java is challenging. There’s a risk that the scenarios and
the Java tests diverge. There’s also a disconnect between the high-level scenarios and
the Java tests, which consist of low-level implementation details. Also, there’s a risk
that a scenario lacks precision or is ambiguous and can’t be translated into Java code.
A much better approach is to eliminate the manual translation step and write execut-
able scenarios.

 Gherkin is a DSL for writing executable specifications. When using Gherkin, you
define your acceptance tests using English-like scenarios, such as the one shown ear-
lier. You then execute the specifications using Cucumber, a test automation frame-
work for Gherkin. Gherkin and Cucumber eliminate the need to manually translate
scenarios into runnable code.

 The Gherkin specification for a service such as Order Service consists of a set of fea-
tures. Each feature is described by a set of scenarios such as the one you saw earlier. A sce-
nario has the given-when-then structure. The givens are the preconditions, the when is
the action or event that occurs, and the then/and are the expected outcome.

 For example, the desired behavior of Order Service is defined by several features,
including Place Order, Cancel Order, and Revise Order. Listing 10.11 is an excerpt of
the Place Order feature. This feature consists of several elements:

 Name—For this feature, the name is Place Order.
 Specification brief—This describes why the feature exists. For this feature, the

specification brief is the user story.
 Scenarios—Order authorized and Order rejected due to expired credit card.

Feature: Place Order

As a consumer of the Order Service
I should be able to place an order

Scenario: Order authorized
Given a valid consumer
Given using a valid credit card
Given the restaurant is accepting orders
When I place an order for Chicken Vindaloo at Ajanta
Then the order should be APPROVED
And an OrderAuthorized event should be published

Scenario: Order rejected due to expired credit card
Given a valid consumer
Given using an expired credit card
Given the restaurant is accepting orders
When I place an order for Chicken Vindaloo at Ajanta
Then the order should be REJECTED
And an OrderRejected event should be published

...

Listing 10.11 The Gherkin definition of the Place Order feature and some of its scenarios

338 CHAPTER 10 Testing microservices: Part 2
In both scenarios, a consumer attempts to place an order. In the first scenario, they
succeed. In the second scenario, the order is rejected because the consumer’s credit
card has expired. For more information on Gherkin, see the book Writing Great Specifi-
cations: Using Specification by Example and Gherkin by Kamil Nicieja (Manning, 2017).

EXECUTING GHERKIN SPECIFICATIONS USING CUCUMBER

Cucumber is an automated testing framework that executes tests written in Gherkin.
It’s available in a variety of languages, including Java. When using Cucumber for Java,
you write a step definition class, such as the one shown in listing 10.12. A step definition
class consists of methods that define the meaning of each given-then-when step. Each
step definition method is annotated with either @Given, @When, @Then, or @And. Each
of these annotations has a value element that’s a regular expression, which Cucum-
ber matches against the steps.

public class StepDefinitions ... {

...

@Given("A valid consumer")
public void useConsumer() { ... }

@Given("using a(.?) (.*) credit card")
public void useCreditCard(String ignore, String creditCard) { ... }

@When("I place an order for Chicken Vindaloo at Ajanta")
public void placeOrder() { ... }

@Then("the order should be (.*)")
public void theOrderShouldBe(String desiredOrderState) { ... }

@And("an (.*) event should be published")
public void verifyEventPublished(String expectedEventClass) { ... }

}

Each type of method is part of a particular phase of the test:

 @Given—The setup phase
 @When—The execute phase
 @Then and @And—The verification phase

Later in section 10.2.4, when I describe this class in more detail, you’ll see that many
of these methods make REST calls to Order Service. For example, the placeOrder()
method creates Order by invoking the POST /orders REST endpoint. The the-
OrderShouldBe() method verifies the status of the order by invoking GET /orders/
{orderId}.

 But before getting into the details of how to write step classes, let’s explore some
design issues with component tests.

Listing 10.12 The Java step definitions class makes the Gherkin scenarios executable.

339Developing component tests
10.2.3 Designing component tests

Imagine you’re implementing the component tests for Order Service. Section 10.2.2
shows how to specify the desired behavior using Gherkin and execute it using Cucum-
ber. But before a component test can execute the Gherkin scenarios, it must first run
Order Service and set up the service’s dependencies. You need to test Order Service
in isolation, so the component test must configure stubs for several services, including
Kitchen Service. It also needs to set up a database and the messaging infrastructure.
There are a few different options that trade off realism with speed and simplicity.

IN-PROCESS COMPONENT TESTS

One option is to write in-process component tests. An in-process component test runs the
service with in-memory stubs and mocks for its dependencies. For example, you can
write a component test for a Spring Boot-based service using the Spring Boot testing
framework. A test class, which is annotated with @SpringBootTest, runs the service in
the same JVM as the test. It uses dependency injection to configure the service to use
mocks and stubs. For instance, a test for Order Service would configure it to use an
in-memory JDBC database, such as H2, HSQLDB, or Derby, and in-memory stubs for
Eventuate Tram. In-process tests are simpler to write and faster, but have the downside
of not testing the deployable service.

OUT-OF-PROCESS COMPONENT TESTING

A more realistic approach is to package the service in a production-ready format and
run it as a separate process. For example, chapter 12 explains that it’s increasingly
common to package services as Docker container images. An out-of-process component
test uses real infrastructure services, such as databases and message brokers, but uses
stubs for any dependencies that are application services. For example, an out-of-process
component test for FTGO Order Service would use MySQL and Apache Kafka, and
stubs for services including Consumer Service and Accounting Service. Because Order
Service interacts with those services using messaging, these stubs would consume
messages from Apache Kafka and send back reply messages.

 A key benefit of out-of-process component testing is that it improves test coverage,
because what’s being tested is much closer to what’s being deployed. The drawback is
that this type of test is more complex to write, slower to execute, and potentially more
brittle than an in-process component test. You also have to figure out how to stub the
application services. Let’s look at how to do that.

HOW TO STUB SERVICES IN OUT-OF-PROCESS COMPONENT TESTS

The service under test often invokes dependencies using interaction styles that involve
sending back a response. Order Service, for example, uses asynchronous request/
response and sends command messages to various services. API Gateway uses HTTP,
which is a request/response interaction style. An out-of-process test must configure
stubs for these kinds of dependencies, which handle requests and send back replies.

 One option is to use Spring Cloud Contract, which we looked at earlier in sec-
tion 10.1 when discussing integration tests. We could write contracts that configure

340 CHAPTER 10 Testing microservices: Part 2
stubs for component tests. One thing to consider, though, is that it’s likely that these
contracts, unlike those used for integration, would only be used by the component tests.

 Another drawback of using Spring Cloud Contract for component testing is that
because its focus is consumer contract testing, it takes a somewhat heavyweight
approach. The JAR files containing the contracts must be deployed in a Maven
repository rather than merely being on the classpath. Handling interactions involving
dynamically generated values is also challenging. Consequently, a simpler option is to
configure stubs from within the test itself.

 A test can, for example, configure an HTTP stub using the WireMock stubbing
DSL. Similarly, a test for a service that uses Eventuate Tram messaging can configure
messaging stubs. Later in this section I show an easy-to-use Java library that does this.

 Now that we’ve looked at how to design component tests, let’s consider how to
write component tests for the FTGO Order Service.

10.2.4 Writing component tests for the FTGO Order Service

As you saw earlier in this section, there are a few different ways to implement compo-
nent tests. This section describes the component tests for Order Service that use the
out-of-process strategy to test the service running as a Docker container. You’ll see
how the tests use a Gradle plugin to start and stop the Docker container. I discuss how
to use Cucumber to execute the Gherkin-based scenarios that define the desired
behavior for Order Service.

 Figure 10.7 shows the design of the component tests for Order Service. Order-
ServiceComponentTest is the test class that runs Cucumber:

@RunWith(Cucumber.class)
@CucumberOptions(features = "src/component-test/resources/features")
public class OrderServiceComponentTest {
}

It has an @CucumberOptions annotation that specifies where to find the Gherkin
feature files. It’s also annotated with @RunWith(Cucumber.class), which tells JUNIT
to use the Cucumber test runner. But unlike a typical JUNIT-based test class, it
doesn’t have any test methods. Instead, it defines the tests by reading the Gherkin
features and uses the OrderServiceComponentTestStepDefinitions class to make
them executable.

 Using Cucumber with the Spring Boot testing framework requires a slightly unusual
structure. Despite not being a test class, OrderServiceComponentTestStepDefinitions
is still annotated with @ContextConfiguration, which is part of the Spring Testing
framework. It creates Spring ApplicationContext, which defines the various Spring
components, including messaging stubs. Let’s look at the details of the step definitions.

341Developing component tests
THE ORDERSERVICECOMPONENTTESTSTEPDEFINITIONS CLASS

The OrderServiceComponentTestStepDefinitions class is the heart of the tests. This
class defines the meaning of each step in Order Service’s component tests. The fol-
lowing listing shows the usingCreditCard() method, which defines the meaning of
the Given using … credit card step.

@ContextConfiguration(classes =
OrderServiceComponentTestStepDefinitions.TestConfiguration.class)

public class OrderServiceComponentTestStepDefinitions {

...

@Autowired
protected SagaParticipantStubManager sagaParticipantStubManager;

@Given("using a(.?) (.*) credit card")
public void useCreditCard(String ignore, String creditCard) {
if (creditCard.equals("valid"))
 sagaParticipantStubManager

.forChannel("accountingService")

.when(AuthorizeCommand.class).replyWithSuccess();
else if (creditCard.equals("invalid"))
sagaParticipantStubManager

Listing 10.13 The @GivenuseCreditCard() method defines the meaning of the
Given using … credit card step.

As a consumer of the Order Service

I should be able to create an order

Scenario: Order authorized

Given a valid consumer

Given using a valid credit card

dockerCompose {

...

}

ftgo-order-service:

build: .

ports:

- "8082:8080"

OrderService
Component

Test

Order Service

docker

container

src/component-test/resources/
createorder.feature

Docker-compose.yml

build.gradle

Written using the

Cucumber testing framework

Kafka

MySQL

Invokes

REST API
Runs

Runs

RunsReads command

and sends

replies

Reads events

Reads

Uses

Uses
OrderService
Component

Step
Definitions

Figure 10.7 The component tests for Order Service use the Cucumber testing framework to
execute tests scenarios written using Gherkin acceptance testing DSL. The tests use Docker to run
Order Service along with its infrastructure services, such as Apache Kafka and MySQL.

Send a
success reply.

Send a failure
reply.

342 CHAPTER 10 Testing microservices: Part 2
.forChannel("accountingService")
.when(AuthorizeCommand.class).replyWithFailure();

else
fail("Don't know what to do with this credit card");

}

This method uses the SagaParticipantStubManager class, a test helper class that con-
figures stubs for saga participants. The useCreditCard() method uses it to configure
the Accounting Service stub to reply with either a success or a failure message,
depending on the specified credit card.

 The following listing shows the placeOrder() method, which defines the When I
place an order for Chicken Vindaloo at Ajanta step. It invokes the Order Service
REST API to create Order and saves the response for validation in a later step.

@ContextConfiguration(classes =
OrderServiceComponentTestStepDefinitions.TestConfiguration.class)

public class OrderServiceComponentTestStepDefinitions {

private int port = 8082;
private String host = System.getenv("DOCKER_HOST_IP");

protected String baseUrl(String path) {
return String.format("http://%s:%s%s", host, port, path);

}

private Response response;

@When("I place an order for Chicken Vindaloo at Ajanta")
public void placeOrder() {

 response = given().
 body(new CreateOrderRequest(consumerId,
 RestaurantMother.AJANTA_ID, Collections.singletonList(
 new CreateOrderRequest.LineItem(
 RestaurantMother.CHICKEN_VINDALOO_MENU_ITEM_ID,
 OrderDetailsMother.CHICKEN_VINDALOO_QUANTITY)))).
 contentType("application/json").
 when().
 post(baseUrl("/orders"));
}

The baseUrl() help method returns the URL of the order service.
 Listing 10.15 shows the theOrderShouldBe() method, which defines the meaning

of the Then the order should be … step. It verifies that Order was successfully created
and that it’s in the expected state.

Listing 10.14 The placeOrder() method defines the When I place an order for
Chicken Vindaloo at Ajanta step.

Invokes the Order
Service REST API
to create Order

343Developing component tests
@ContextConfiguration(classes =
OrderServiceComponentTestStepDefinitions.TestConfiguration.class)

public class OrderServiceComponentTestStepDefinitions {

@Then("the order should be (.*)")
public void theOrderShouldBe(String desiredOrderState) {

Integer orderId =
this.response. then(). statusCode(200).

extract(). path("orderId");

assertNotNull(orderId);

eventually(() -> {
String state = given().

when().
get(baseUrl("/orders/" + orderId)).
then().
statusCode(200)
.extract().

path("state");
assertEquals(desiredOrderState, state);
});

}
]

The assertion of the expected state is wrapped in a call to eventually(), which
repeatedly executes the assertion.

 The following listing shows the verifyEventPublished() method, which defines
the And an … event should be published step. It verifies that the expected domain
event was published.

@ContextConfiguration(classes =
OrderServiceComponentTestStepDefinitions.TestConfiguration.class)

public class OrderServiceComponentTestStepDefinitions {

@Autowired
protected MessageTracker messageTracker;

@And("an (.*) event should be published")
public void verifyEventPublished(String expectedEventClass) throws ClassNot

FoundException {
messageTracker.assertDomainEventPublished("net.chrisrichardson.ftgo.order
service.domain.Order",

Listing 10.15 The @ThentheOrderShouldBe() method verifies HTTP request was
successful.

Listing 10.16 The Cucumber step definitions class for the Order Service component
tests

Verify that Order
was created
successfully.

Verify the
state of
Order.

344 CHAPTER 10 Testing microservices: Part 2
(Class<DomainEvent>)Class.forName("net.chrisrichardson.ftgo.order
service.domain." + expectedEventClass));

}
....

}

The verifyEventPublished() method uses the MessageTracker class, a test helper
class that records the events that have been published during the test. This class
and SagaParticipantStubManager are instantiated by the TestConfiguration
@Configuration class.

 Now that we’ve looked at the step definitions, let’s look at how to run the compo-
nent tests.

RUNNING THE COMPONENT TESTS

Because these tests are relatively slow, we don’t want to run them as part of ./gradlew
test. Instead, we’ll put the test code in a separate src/component-test/java directory
and run them using ./gradlew componentTest. Take a look at the ftgo-order-service/
build.gradle file to see the Gradle configuration.

 The tests use Docker to run Order Service and its dependencies. As described in
chapter 12, a Docker container is a lightweight operating system virtualization
mechanism that lets you deploy a service instance in an isolated sandbox. Docker
Compose is an extremely useful tool with which you can define a set of containers
and start and stop them as a unit. The FTGO application has a docker-compose file
in the root directory that defines containers for all the services, and the infrastruc-
ture service.

 We can use the Gradle Docker Compose plugin to run the containers before exe-
cuting the tests and stop the containers once the tests complete:

apply plugin: 'docker-compose'

dockerCompose.isRequiredBy(componentTest)
componentTest.dependsOn(assemble)

dockerCompose {
startedServices = ['ftgo-order-service']

}

The preceding snippet of Gradle configuration does two things. First, it configures
the Gradle Docker Compose plugin to run before the component tests and start
Order Service along with the infrastructure services that it’s configured to depend
on. Second, it configures componentTest to depend on assemble so that the JAR file
required by the Docker image is built first. With that in place, we can run these com-
ponent tests with the following commands:

./gradlew :ftgo-order-service:componentTest

345Writing end-to-end tests
Those commands, which take a couple of minutes, perform the following actions:

1 Build Order Service.
2 Run the service and its infrastructure services.
3 Run the tests.
4 Stop the running services.

Now that we’ve looked at how to test a service in isolation, we’ll see how to test the
entire application.

10.3 Writing end-to-end tests
Component testing tests each service separately. End-to-end testing, though, tests the
entire application. As figure 10.8 shows, end-to-end testing is the top of the test pyra-
mid. That’s because these kinds of tests are—say it with me now—slow, brittle, and
time consuming to develop.

End-to-end tests have a large number of moving parts. You must deploy multiple ser-
vices and their supporting infrastructure services. As a result, end-to-end tests are slow.
Also, if your test needs to deploy a large number of services, there’s a good chance
one of them will fail to deploy, making the tests unreliable. Consequently, you should
minimize the number of end-to-end tests.

10.3.1 Designing end-to-end tests

As I’ve explained, it’s best to write as few of these as possible. A good strategy is to
write user journey tests. A user journey test corresponds to a user’s journey through the
system. For example, rather than test create order, revise order, and cancel order sep-
arately, you can write a single test that does all three. This approach significantly
reduces the number of tests you must write and shortens the test execution time.

End-to-end

Component

Integration

Unit

End-to-end

test

Tests
Service

Service 1

Service 2

Service ...

Figure 10.8 End-to-end tests are at the top of the test pyramid. They are slow, brittle, and time
consuming to develop. You should minimize the number of end-to-end tests.

346 CHAPTER 10 Testing microservices: Part 2
10.3.2 Writing end-to-end tests

End-to-end tests are, like the acceptance tests covered in section 10.2, business-facing
tests. It makes sense to write them in a high-level DSL that’s understood by the busi-
ness people. You can, for example, write the end-to-end tests using Gherkin and exe-
cute them using Cucumber. The following listing shows an example of such a test. It’s
similar to the acceptance tests we looked at earlier. The main difference is that rather
than a single Then, this test has multiple actions.

Feature: Place Revise and Cancel

As a consumer of the Order Service
I should be able to place, revise, and cancel an order

Scenario: Order created, revised, and cancelled
Given a valid consumer
Given using a valid credit card
Given the restaurant is accepting orders
When I place an order for Chicken Vindaloo at Ajanta
Then the order should be APPROVED
Then the order total should be 16.33
And when I revise the order by adding 2 vegetable samosas
Then the order total should be 20.97
And when I cancel the order
Then the order should be CANCELLED

This scenario places an order, revises it, and then cancels it. Let’s look at how to run it.

10.3.3 Running end-to-end tests

End-to-end tests must run the entire application, including any required infrastruc-
ture services. As you saw in earlier in section 10.2, the Gradle Docker Compose plugin
provides a convenient way to do this. Instead of running a single application service,
though, the Docker Compose file runs all the application’s services.

 Now that we’ve looked at different aspects of designing and writing end-to-end
tests, let’s see an example end-to-end test.

 The ftgo-end-to-end-test module implements the end-to-end tests for the FTGO
application. The implementation of the end-to-end test is quite similar to the imple-
mentation of the component tests discussed earlier in section 10.2. These tests are
written using Gherkin and executed using Cucumber. The Gradle Docker Compose
plugin runs the containers before the tests run. It takes around four to five minutes to
start the containers and run the tests.

 That may not seem like a long time, but this is a relatively simple application with
just a handful of containers and tests. Imagine if there were hundreds of containers
and many more tests. The tests could take quite a long time. Consequently, it’s best to
focus on writing tests that are lower down the pyramid.

Listing 10.17 A Gherkin-based specification of a user journey

Create
Order.

Revise
Order.

Cancel
Order.

347Summary
Summary
 Use contracts, which are example messages, to drive the testing of interactions

between services. Rather than write slow-running tests that run both services
and their transitive dependencies, write tests that verify that the adapters of
both services conform to the contracts.

 Write component tests to verify the behavior of a service via its API. You should
simplify and speed up component tests by testing a service in isolation, using
stubs for its dependencies.

 Write user journey tests to minimize the number of end-to-end tests, which are
slow, brittle, and time consuming. A user journey test simulates a user’s journey
through the application and verifies high-level behavior of a relatively large
slice of the application’s functionality. Because there are few tests, the amount
of per-test overhead, such as test setup, is minimized, which speeds up the tests.

Developing
production-ready services
Mary and her team felt that they had mastered service decomposition, interservice
communication, transaction management, querying and business logic design, and
testing. They were confident that they could develop services that met their func-
tional requirements. But in order for a service to be ready to be deployed into
production, they needed to ensure that it would also satisfy three critically import-
ant quality attributes: security, configurability, and observability.

This chapter covers:
 Developing secure services

 Applying the Externalized configuration pattern

 Applying the observability patterns:
– Health check API
– Log aggregation
– Distributed tracing
– Exception tracking
– Application metrics
– Audit logging

 Simplifying the development of services by
applying the Microservice chassis pattern
348

349Developing secure services
 The first quality attribute is application security. It’s essential to develop secure appli-
cations, unless you want your company to be in the headlines for a data breach. Fortu-
nately, most aspects of security in a microservice architecture are not any different
than in a monolithic application. The FTGO team knew that much of what they had
learned over the years developing the monolith also applied to microservices. But the
microservice architecture forces you to implement some aspects of application-level
security differently. For example, you need to implement a mechanism to pass the
identity of the user from one service to another.

 The second quality attribute you must address is service configurability. A service typ-
ically uses one or more external services, such as message brokers and databases. The
network location and credentials of each external service often depend on the envi-
ronment that the service is running in. You can’t hard-wire the configuration proper-
ties into the service. Instead, you must use an externalized configuration mechanism
that provides a service with configuration properties at runtime.

 The third quality attribute is observability. The FTGO team had implemented
monitoring and logging for the existing application. But a microservice architecture
is a distributed system, and that presents some additional challenges. Every request
is handled by the API gateway and at least one service. Imagine, for example, that
you’re trying to determine which of six services is causing a latency issue. Or imag-
ine trying to understand how a request is handled when the log entries are scattered
across five different services. In order to make it easier to understand the behavior
of your application and troubleshoot problems, you must implement several observ-
ability patterns.

 I begin this chapter by describing how to implement security in a microservice
architecture. Next, I discuss how to design services that are configurable. I cover a
couple of different service configuration mechanisms. After that I talk about how to
make your services easier to understand and troubleshoot by using the observability
patterns. I end the chapter by showing how to simplify the implementation of these
and other concerns by developing your services on top of a microservice chassis
framework.

 Let’s first look at security.

11.1 Developing secure services
Cybersecurity has become a critical issue for every organization. Almost every day
there are headlines about how hackers have stolen a company’s data. In order to
develop secure software and stay out of the headlines, an organization needs to
tackle a diverse range of security issues, including physical security of the hardware,
encryption of data in transit and at rest, authentication and authorization, and pol-
icies for patching software vulnerabilities. Most of these issues are the same regard-
less of whether you’re using a monolithic or microservice architecture. This section
focuses on how the microservice architecture impacts security at the application
level.

350 CHAPTER 11 Developing production-ready services
 An application developer is primarily responsible for implementing four different
aspects of security:

 Authentication—Verifying the identity of the application or human (a.k.a. the
principal) that’s attempting to access the application. For example, an applica-
tion typically verifies a principal’s credentials, such as a user ID and password or
an application’s API key and secret.

 Authorization—Verifying that the principal is allowed to perform the requested
operation on the specified data. Applications often use a combination of role-
based security and access control lists (ACLs). Role-based security assigns each
user one or more roles that grant them permission to invoke particular opera-
tions. ACLs grant users or roles permission to perform an operation on a partic-
ular business object, or aggregate.

 Auditing—Tracking the operations that a principal performs in order to detect
security issues, help customer support, and enforce compliance.

 Secure interprocess communication—Ideally, all communication in and out of ser-
vices should be over Transport Layer Security (TLS). Interservice communica-
tion may even need to use authentication.

I describe auditing in detail in section 11.3 and touch on securing interservice com-
munication when discussing service meshes in section 11.4.1. This section focuses on
implementing authentication and authorization.

 I begin by first describing how security is implemented in the FTGO monolith
application. I then describe the challenges with implementing security in a microser-
vice architecture and how techniques that work well in a monolithic architecture can’t
be used in a microservice architecture. After that I cover how to implement security in
a microservice architecture.

 Let’s start by reviewing how the monolithic FTGO application handles security.

11.1.1 Overview of security in a traditional monolithic application

The FTGO application has several kinds of human users, including consumers, cou-
riers, and restaurant staff. They access the application using browser-based web
applications and mobile applications. All FTGO users must log in to access the appli-
cation. Figure 11.1 shows how the clients of the monolithic FTGO application authen-
ticate and make requests.

 When a user logs in with their user ID and password, the client makes a POST
request containing the user’s credentials to the FTGO application. The FTGO appli-
cation verifies the credentials and returns a session token to the client. The client
includes the session token in each subsequent request to the FTGO application.

 Figure 11.2 shows a high-level view of how the FTGO application implements secu-
rity. The FTGO application is written in Java and uses the Spring Security framework,
but I’ll describe the design using generic terms that are applicable to other frame-
works, such as Passport for NodeJS.

351Developing secure services
One key part of the security architecture is the session, which stores the principal’s ID
and roles. The FTGO application is a traditional Java EE application, so the session is
an HttpSession in-memory session. A session is identified by a session token, which the
client includes in each request. It’s usually an opaque token such as a cryptographi-
cally strong random number. The FTGO application’s session token is an HTTP
cookie called JSESSIONID.

 The other key part of the security implementation is the security context, which
stores information about the user making the current request. The Spring Security

Using a security framework
Implementing authentication and authorization correctly is challenging. It’s best to
use a proven security framework. Which framework to use depends on your applica-
tion’s technology stack. Some popular frameworks include the following:

 Spring Security (https://projects.spring.io/spring-security/)—A popular frame-
work for Java applications. It’s a sophisticated framework that handles authen-
tication and authorization.

 Apache Shiro (https://shiro.apache.org)—Another Java framework.
 Passport (http://www.passportjs.org)—A popular security framework for NodeJS

applications that’s focused on authentication.

Log in to obtain session
token, which is a cookie.

Include session token cookie,
which identifies the user, in
subsequent requests.

Consumer

restaurant

courier

Browser

or mobile

application

POST /login

id=...
password=...

HTTP/1.1 200 OK
Set-cookie: JSESSIONID=...
...

GET /orders/order-xyz
Cookie: JSESSIONID=...

FTGO

application

Figure 11.1 A client of the FTGO application first logs in to obtain a session token, which is often a
cookie. The client includes the session token in each subsequent request it makes to the application.

https://projects.spring.io/spring-security/
https://shiro.apache.org
http://www.passportjs.org

352 CHAPTER 11 Developing production-ready services
framework uses the standard Java EE approach of storing the security context in a
static, thread-local variable, which is readily accessible to any code that’s invoked to han-
dle the request. A request handler can call SecurityContextHolder.getContext()
.getAuthentication() to obtain information about the current user, such as their
identity and roles. In contrast, the Passport framework stores the security context as
the user attribute of the request.

The sequence of events shown in Figure 11.2 is as follows:

1 The client makes a login request to the FTGO application.
2 The login request is handled by LoginHandler, which verifies the credentials, cre-

ates the session, and stores information about the principal in the session.
3 Login Handler returns a session token to the client.
4 The client includes the session token in requests that invoke operations.
5 These requests are first processed by SessionBasedSecurityInterceptor. The

interceptor authenticates each request by verifying the session token and estab-
lishes a security context. The security context describes the principal and its roles.

User

database

Log in with user ID
and password.

Initializes

Provides session cookie

Establishes Reads

Return session cookie.

Jane

Login-based

client

SessionBased
Security

Interceptor

OrderDetails
RequestHandler

UserId: jane
rules: [CONSUMER]
...

UserId: jane
rules: [CONSUMER]

...

Login

handler

POST /login

userId-Jane&password=..

HTTP/1.1 200 OK
Set-cookie: JSESSIONID=...
...

GET /orders/order-xyz
Cookie: JSESSIONID=...

FTGO application

Retrieves user information

from database

Reads

Establishes

Security context
Session

Figure 11.2 When a client of the FTGO application makes a login request, Login Handler authenticates the
user, initializes the session user information, and returns a session token cookie, which securely identifies the
session. Next, when the client makes a request containing the session token, SessionBasedSecurity-
Interceptor retrieves the user information from the specified session and establishes the security context.
Request handlers, such as OrderDetailsRequestHandler, retrieve the user information from the security
context.

353Developing secure services
6 A request handler uses the security context to determine whether to allow a
user to perform the requested operation and obtain their identity.

The FTGO application uses role-based authorization. It defines several roles corre-
sponding to the different kinds of users, including CONSUMER, RESTAURANT, COURIER,
and ADMIN. It uses Spring Security’s declarative security mechanism to restrict access to
URLs and service methods to specific roles. Roles are also interwoven into the busi-
ness logic. For example, a consumer can only access their orders, whereas an adminis-
trator can access all orders.

 The security design used by the monolithic FTGO application is only one possible
way to implement security. For example, one drawback of using an in-memory session
is that it requires all requests for a particular session to be routed to the same applica-
tion instance. This requirement complicates load balancing and operations. You must,
for example, implement a session draining mechanism that waits for all sessions to
expire before shutting down an application instance. An alternative approach, which
avoids these problems, is to store the session in a database.

 You can sometimes eliminate the server-side session entirely. For example, many
applications have API clients that provide their credentials, such as an API key and
secret, in every request. As a result, there’s no need to maintain a server-side session.
Alternatively, the application can store session state in the session token. Later in
this section, I describe one way to use a session token to store the session state. But
let’s begin by looking at the challenges of implementing security in a microservice
architecture.

11.1.2 Implementing security in a microservice architecture

A microservice architecture is a distributed architecture. Each external request is han-
dled by the API gateway and at least one service. Consider, for example, the get-
OrderDetails() query, discussed in chapter 8. The API gateway handles this query by
invoking several services, including Order Service, Kitchen Service, and Accounting
Service. Each service must implement some aspects of security. For instance, Order
Service must only allow a consumer to see their orders, which requires a combina-
tion of authentication and authorization. In order to implement security in a micros-
ervice architecture we need to determine who is responsible for authenticating the
user and who is responsible for authorization.

 One challenge with implementing security in a microservices application is that we
can’t just copy the design from a monolithic application. That’s because two aspects of
the monolithic application’s security architecture are nonstarters for a microservice
architecture:

 In-memory security context—Using an in-memory security context, such as a thread-
local, to pass around user identity. Services can’t share memory, so they can’t
use an in-memory security context, such as a thread-local, to pass around the

354 CHAPTER 11 Developing production-ready services
user identity. In a microservice architecture, we need a different mechanism for
passing user identity from one service to another.

 Centralized session —Because an in-memory security context doesn’t make sense,
neither does an in-memory session. In theory, multiple services could access a
database-based session, except that it would violate the principle of loose cou-
pling. We need a different session mechanism in a microservice architecture.

Let’s begin our exploration of security in a microservice architecture by looking at
how to handle authentication.

HANDLING AUTHENTICATION IN THE API GATEWAY

There are a couple of different ways to handle authentication. One option is for the
individual services to authenticate the user. The problem with this approach is that it
permits unauthenticated requests to enter the internal network. It relies on every
development team correctly implementing security in all of their services. As a result,
there’s a significant risk of an application containing security vulnerabilities.

 Another problem with implementing authentication in the services is that differ-
ent clients authenticate in different ways. Pure API clients supply credentials with
each request using, for example, basic authentication. Other clients might first log in
and then supply a session token with each request. We want to avoid requiring services
to handle a diverse set of authentication mechanisms.

 A better approach is for the API gateway to authenticate a request before forward-
ing it to the services. Centralizing API authentication in the API gateway has the
advantage that there’s only one place to get right. As a result, there’s a much smaller
chance of a security vulnerability. Another benefit is that only the API gateway has to
deal with the various different authentication mechanisms. It hides this complexity
from the services.

 Figure 11.3 shows how this approach works. Clients authenticate with the API gate-
way. API clients include credentials in each request. Login-based clients POST the
user’s credentials to the API gateway’s authentication and receive a session token.
Once the API gateway has authenticated a request, it invokes one or more services.

A service invoked by the API gateway needs to know the principal making the request.
It must also verify that the request has been authenticated. The solution is for the API
gateway to include a token in each service request. The service uses the token to vali-
date the request and obtain information about the principal. The API gateway might
also give the same token to session-oriented clients to use as the session token.

Pattern: Access token
The API gateway passes a token containing information about the user, such as their
identity and their roles, to the services that it invokes. See http://microservices.io/
patterns/security/access-token.html.

http://microservices.io/patterns/security/access-token.html
http://microservices.io/patterns/security/access-token.html
http://microservices.io/patterns/security/access-token.html

355Developing secure services
The sequence of events for API clients is as follows:

1 A client makes a request containing credentials.
2 The API gateway authenticates the credentials, creates a security token, and

passes that to the service or services.

The sequence of events for login-based clients is as follows:

1 A client makes a login request containing credentials.
2 The API gateway returns a security token.
3 The client includes the security token in requests that invoke operations.
4 The API gateway validates the security token and forwards it to the service or

services.

A little later in this chapter, I describe how to implement tokens, but let’s first look at
the other main aspect of security: authorization.

Order

Service

API clients supply credentials
in the Authorization header.

Pass token to services so
that they can identify and
authorize the user.

Include the security token
in each request.

Login clients first obtain
a security token.

Authentication

Interceptor

API gateway

Login-based

client

GET /orders/1
Authorization: ...CREDENTIALS...
...

GET /orders/1
...SECURITY_TOKEN...

HTTP/1.1 200 OK

...SECURITY_TOKEN...

GET /orders/1
...SECURITY_TOKEN...

POST /login

id=...
password=...

API client

Figure 11.3 The API gateway authenticates requests from clients and includes a security token in the requests
it makes to services. The services use the token to obtain information about the principal. The API gateway can
also use the security token as a session token.

356 CHAPTER 11 Developing production-ready services
HANDLING AUTHORIZATION

Authenticating a client’s credentials is important but insufficient. An application
must also implement an authorization mechanism that verifies that the client is
allowed to perform the requested operation. For example, in the FTGO application
the getOrderDetails() query can only be invoked by the consumer who placed the
Order (an example of instance-based security) and a customer service agent who is
helping the consumer.

 One place to implement authorization is the API gateway. It can, for example,
restrict access to GET /orders/{orderId} to only users who are consumers and cus-
tomer service agents. If a user isn’t allowed to access a particular path, the API gateway
can reject the request before forwarding it on to the service. As with authentication,
centralizing authorization within the API gateway reduces the risk of security vulnera-
bilities. You can implement authorization in the API gateway using a security frame-
work, such as Spring Security.

 One drawback of implementing authorization in the API gateway is that it risks
coupling the API gateway to the services, requiring them to be updated in lockstep.
What’s more, the API gateway can typically only implement role-based access to URL
paths. It’s generally not practical for the API gateway to implement ACLs that control
access to individual domain objects, because that requires detailed knowledge of a ser-
vice’s domain logic.

 The other place to implement authorization is in the services. A service can imple-
ment role-based authorization for URLs and for service methods. It can also implement
ACLs to manage access to aggregates. Order Service can, for example, implement the
role-based and ACL-based authorization mechanism for controlling access to orders.
Other services in the FTGO application implement similar authorization logic.

USING JWTS TO PASS USER IDENTITY AND ROLES

When implementing security in a microservice architecture, you need to decide which
type of token an API gateway should use to pass user information to the services.
There are two types of tokens to choose from. One option is to use opaque tokens,
which are typically UUIDs. The downside of opaque tokens is that they reduce perfor-
mance and availability and increase latency. That’s because the recipient of such a
token must make a synchronous RPC call to a security service to validate the token
and retrieve the user information.

 An alternative approach, which eliminates the call to the security service, is to use a
transparent token containing information about the user. One such popular standard
for transparent tokens is the JSON Web Token (JWT). JWT is standard way to securely
represent claims, such as user identity and roles, between two parties. A JWT has a pay-
load, which is a JSON object that contains information about the user, such as their
identity and roles, and other metadata, such as an expiration date. It’s signed with a
secret that’s only known to the creator of the JWT, such as the API gateway and the
recipient of the JWT, such as a service. The secret ensures that a malicious third party
can’t forge or tamper with a JWT.

357Developing secure services
 One issue with JWT is that because a token is self-contained, it’s irrevocable. By
design, a service will perform the request operation after verifying the JWT’s signature
and expiration date. As a result, there’s no practical way to revoke an individual JWT
that has fallen into the hands of a malicious third party. The solution is to issue JWTs
with short expiration times, because that limits what a malicious party could do. One
drawback of short-lived JWTs, though, is that the application must somehow continually
reissue JWTs to keep the session active. Fortunately, this is one of the many protocols
that are solved by a security standard calling OAuth 2.0. Let’s look at how that works.

USING OAUTH 2.0 IN A MICROSERVICE ARCHITECTURE

Let’s say you want to implement a User Service for the FTGO application that man-
ages a user database containing user information, such as credentials and roles. The
API gateway calls the User Service to authenticate a client request and obtain a JWT.
You could design a User Service API and implement it using your favorite web frame-
work. But that’s generic functionality that isn’t specific to the FTGO application—
developing such a service wouldn’t be an efficient use of development resources.

 Fortunately, you don’t need to develop this kind of security infrastructure. You can
use an off-the-shelf service or framework that implements a standard called OAuth 2.0.
OAuth 2.0 is an authorization protocol that was originally designed to enable a user of
a public cloud service, such as GitHub or Google, to grant a third-party application
access to its information without revealing its password. For example, OAuth 2.0 is the
mechanism that enables you to securely grant a third party cloud-based Continuous
Integration (CI) service access to your GitHub repository.

 Although the original focus of OAuth 2.0 was authorizing access to public cloud
services, you can also use it for authentication and authorization in your application.
Let’s take a quick look at how a microservice architecture might use OAuth 2.0.

The key concepts in OAuth 2.0 are the following:

 Authorization Server—Provides an API for authenticating users and obtain-
ing an access token and a refresh token. Spring OAuth is a great example of a
framework for building an OAuth 2.0 authorization server.

 Access Token—A token that grants access to a Resource Server. The format of
the access token is implementation dependent. But some implementations,
such as Spring OAuth, use JWTs.

About OAuth 2.0
OAuth 2.0 is a complex topic. In this chapter, I can only provide a brief overview and
describe how it can be used in a microservice architecture. For more information
on OAuth 2.0, check out the online book OAuth 2.0 Servers by Aaron Parecki
(www.oauth.com). Chapter 7 of Spring Microservices in Action (Manning, 2017) also
covers this topic (https://livebook.manning.com/#!/book/spring-microservices-in-
action/chapter-7/).

http://www.oauth.com
https://livebook.manning.com/#!/book/spring-microservices-in-action/chapter-7/
https://livebook.manning.com/#!/book/spring-microservices-in-action/chapter-7/

358 CHAPTER 11 Developing production-ready services
 Refresh Token—A long-lived yet revocable token that a Client uses to obtain a
new AccessToken.

 Resource Server—A service that uses an access token to authorize access. In a
microservice architecture, the services are resource servers.

 Client—A client that wants to access a Resource Server. In a microservice
architecture, API Gateway is the OAuth 2.0 client.

Later in this section, I describe how to support login-based clients. But first, let’s talk
about how to authenticate API clients.

 Figure 11.4 shows how the API gateway authenticates a request from an API client.
The API gateway authenticate the API client by making a request to the OAuth 2.0
authorization server, which returns an access token. The API gateway then makes one
or more requests containing the access token to the services.

 The sequence of events shown in figure 11.4 is as follows:

1 The client makes a request, supplying its credentials using basic authentication.
2 The API gateway makes an OAuth 2.0 Password Grant request (www.oauth.com/

oauth2-servers/access-tokens/password-grant/) to the OAuth 2.0 authentication
server.

Order

Service

User

database

Contains the user
ID and their roles

Password grant request

API gateway

Spring OAuth2

Authentication

Server

GET /orders/1
Authorization: Basic...
....

POST/oauth/token
userid=...&password=...

GET /orders/1
Authorization: Bearer AccessToken

HTTP/1.1 200 OK
...
{
"access_token": "AccessToken"
...
}API client

Figure 11.4 An API gateway authenticates an API client by making a Password Grant request to the OAuth 2.0
authentication server. The server returns an access token, which the API gateway passes to the services. A service
verifies the token’s signature and extracts information about the user, including their identity and roles.

http://www.oauth.com/oauth2-servers/access-tokens/password-grant/
http://www.oauth.com/oauth2-servers/access-tokens/password-grant/
http://www.oauth.com/oauth2-servers/access-tokens/password-grant/

359Developing secure services
3 The authentication server validates the API client’s credentials and returns an
access token and a refresh token.

4 The API gateway includes the access token in the requests it makes to the ser-
vices. A service validates the access token and uses it to authorize the request.

An OAuth 2.0-based API gateway can authenticate session-oriented clients by using an
OAuth 2.0 access token as a session token. What’s more, when the access token
expires, it can obtain a new access token using the refresh token. Figure 11.5 shows
how an API gateway can use OAuth 2.0 to handle session-oriented clients. An API cli-
ent initiates a session by POSTing its credentials to the API gateway’s /login end-
point. The API gateway returns an access token and a refresh token to the client. The
API client then supplies both tokens when it makes requests to the API gateway.

The sequence of events is as follows:

1 The login-based client POSTs its credentials to the API gateway.
2 The API gateway’s Login Handler makes an OAuth 2.0 Password Grant request

(www.oauth.com/oauth2-servers/access-tokens/password-grant/) to the OAuth
2.0 authentication server.

Order

Service

User

database

Password grant request

API gateway

Spring OAuth2

Authentication

Server

POST/login
userId=...&password=...

GET/orders/1
Cookie: access_token=...;refresh_token...

HTTP/1.1 200 OK
Set-Cookie: access_token=...
Set-Cookie:refresh_token=...

POST/oauth/token
userid=...&password=...

GET /orders/1
Authorization: Bearer AccessToken

HTTP/1.1 200 OK
...
{
"access_token": "AccessToken"
...
}

Login-based
client

Login

handler

Session

authentication

interceptor

Figure 11.5 A client logs in by POSTing its credentials to the API gateway. The API gateway authenticates the
credentials using the OAuth 2.0 authentication server and returns the access token and refresh token as cookies.
A client includes these tokens in the requests it makes to the API gateway.

http://www.oauth.com/oauth2-servers/access-tokens/password-grant/

360 CHAPTER 11 Developing production-ready services
3 The authentication server validates the client’s credentials and returns an access
token and a refresh token.

4 The API gateway returns the access and refresh tokens to the client—as cookies,
for example.

5 The client includes the access and refresh tokens in requests it makes to the API
gateway.

6 The API gateway’s Session Authentication Interceptor validates the access
token and includes it in requests it makes to the services.

If the access token has expired or is about to expire, the API gateway obtains a new
access token by making an OAuth 2.0 Refresh Grant request (www.oauth.com/
oauth2-servers/access-tokens/refreshing-access-tokens/), which contains the refresh
token, to the authorization server. If the refresh token hasn’t expired or been revoked,
the authorization server returns a new access token. API Gateway passes the new
access token to the services and returns it to the client.

 An important benefit of using OAuth 2.0 is that it’s a proven security standard.
Using an off-the-shelf OAuth 2.0 Authentication Server means you don’t have to
waste time reinventing the wheel or risk developing an insecure design. But OAuth
2.0 isn’t the only way to implement security in a microservice architecture. Regardless
of which approach you use, the three key ideas are as follows:

 The API gateway is responsible for authenticating clients.
 The API gateway and the services use a transparent token, such as a JWT, to pass

around information about the principal.
 A service uses the token to obtain the principal’s identity and roles.

Now that we’ve looked at how to make services secure, let’s see how to make them
configurable.

11.2 Designing configurable services
Imagine that you’re responsible for Order History Service. As figure 11.6 shows, the
service consumes events from Apache Kafka and reads and writes AWS DynamoDB
table items. In order for this service to run, it needs various configuration properties,
including the network location of Apache Kafka and the credentials and network loca-
tion for AWS DynamoDB.

 The values of these configuration properties depend on which environment the
service is running in. For example, the developer and production environments will
use different Apache Kafka brokers and different AWS credentials. It doesn’t make
sense to hard-wire a particular environment’s configuration property values into the
deployable service because that would require it to be rebuilt for each environment.
Instead, a service should be built once by the deployment pipeline and deployed into
multiple environments.

 Nor does it make sense to hard-wire different sets of configuration properties into
the source code and use, for example, the Spring Framework’s profile mechanism to

http://www.oauth.com/oauth2-servers/access-tokens/refreshing-access-tokens/
http://www.oauth.com/oauth2-servers/access-tokens/refreshing-access-tokens/
http://www.oauth.com/oauth2-servers/access-tokens/refreshing-access-tokens/

361Designing configurable services
select the appropriate set at runtime. That’s because doing so would introduce a secu-
rity vulnerability and limit where it can be deployed. Additionally, sensitive data such
as credentials should be stored securely using a secrets storage mechanism, such as
Hashicorp Vault (www.vaultproject.io) or AWS Parameter Store (https://docs.aws
.amazon.com/systems-manager/latest/userguide/systems-manager-paramstore.html).
Instead, you should supply the appropriate configuration properties to the service at
runtime by using the Externalized configuration pattern.

An externalized configuration mechanism provides the configuration property values
to a service instance at runtime. There are two main approaches:

 Push model—The deployment infrastructure passes the configuration properties
to the service instance using, for example, operating system environment vari-
ables or a configuration file.

 Pull model—The service instance reads its configuration properties from a con-
figuration server.

We’ll look at each approach, starting with the push model.

Pattern: Externalized configuration
Supply configuration property values, such as database credentials and network
location, to a service at runtime. See http://microservices.io/patterns/externalized-
configuration.html.

Order

History

Service

Environment-specific configuration

Environment-specific configuration

Apache

Kafka

consumer

Apache Kafka

bootstrap.servers=kafka1:9092
..

aws.access.key.id=...
aws.secret.access.key=...
aws.region=...

«Order event channel»

DynamoDB

adapter AWS DynamoDB

«Delivery event channel»

Figure 11.6 Order History Service uses Apache Kafka and AWS DynamoDB. It needs to be
configured with each service’s network location, credentials, and so on.

http://www.vaultproject.io
https://docs.aws.amazon.com/systems-manager/latest/userguide/systems-manager-paramstore.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/systems-manager-paramstore.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/systems-manager-paramstore.html
http://microservices.io/patterns/externalized-configuration.html
http://microservices.io/patterns/externalized-configuration.html

362 CHAPTER 11 Developing production-ready services
11.2.1 Using push-based externalized configuration

The push model relies on the collaboration of the deployment environment and the
service. The deployment environment supplies the configuration properties when it
creates a service instance. It might, as figure 11.7 shows, pass the configuration prop-
erties as environment variables. Alternatively, the deployment environment may sup-
ply the configuration properties using a configuration file. The service instance then
reads the configuration properties when it starts up.

The deployment environment and the service must agree on how the configuration
properties are supplied. The precise mechanism depends on the specific deployment
environment. For example, chapter 12 describes how you can specify the environment
variables of a Docker container.

 Let’s imagine that you’ve decided to supply externalized configuration property
values using environment variables. Your application could call System.getenv() to
obtain their values. But if you’re a Java developer, it’s likely that you’re using a frame-
work that provides a more convenient mechanism. The FTGO services are built using
Spring Boot, which has an extremely flexible externalized configuration mechanism
that retrieves configuration properties from a variety of sources with well-defined pre-
cedence rules (https://docs.spring.io/spring-boot/docs/current/reference/html/boot-
features-external-config.html). Let’s look at how it works.

 Spring Boot reads properties from a variety of sources. I find the following sources
useful in a microservice architecture:

Order

History Service

instance

Process

Environment variables

Deployment
infrastructure

Configures

Creates

Reads

BOOTSTRAP_SERVERS=kafka1:9092
AWS_ACCESS_KEY_ID=
AWS_SECRET_ACCESS_KEY=...
AWS_REGION=...
....

Figure 11.7 When the deployment infrastructure creates an instance of Order History
Service, it sets the environment variables containing the externalized configuration. Order
History Service reads those environment variables.

https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-external-config.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-external-config.html

363Designing configurable services
1 Command-line arguments
2 SPRING_APPLICATION_JSON, an operating system environment variable or JVM

system property that contains JSON
3 JVM System properties
4 Operating system environment variables
5 A configuration file in the current directory

A particular property value from a source earlier in this list overrides the same prop-
erty from a source later in this list. For example, operating system environment vari-
ables override properties read from a configuration file.

 Spring Boot makes these properties available to the Spring Framework’s
ApplicationContext. A service can, for example, obtain the value of a property using
the @Value annotation:

public class OrderHistoryDynamoDBConfiguration {

@Value("${aws.region}")
private String awsRegion;

The Spring Framework initializes the awsRegion field to the value of the aws.region
property. This property is read from one of the sources listed earlier, such as a config-
uration file or from the AWS_REGION environment variable.

 The push model is an effective and widely used mechanism for configuring a ser-
vice. One limitation, however, is that reconfiguring a running service might be chal-
lenging, if not impossible. The deployment infrastructure might not allow you to
change the externalized configuration of a running service without restarting it. You
can’t, for example, change the environment variables of a running process. Another
limitation is that there’s a risk of the configuration property values being scattered
throughout the definition of numerous services. As a result, you may want to consider
using a pull-based model. Let’s look at how it works.

11.2.2 Using pull-based externalized configuration

In the pull model, a service instance reads its configuration properties from a configura-
tion server. Figure 11.8 shows how it works. On startup, a service instance queries the
configuration service for its configuration. The configuration properties for accessing
the configuration server, such as its network location, are provided to the service
instance via a push-based configuration mechanism, such as environment variables.

 There are a variety of ways to implement a configuration server, including the
following:

 Version control system such as Git
 SQL and NoSQL databases
 Specialized configuration servers, such as Spring Cloud Config Server, Hashicorp

Vault, which is a store for sensitive data such as credentials, and AWS Parameter
Store

364 CHAPTER 11 Developing production-ready services
The Spring Cloud Config project is a good example of a configuration server-based
framework. It consists of a server and a client. The server supports a variety of backends
for storing configuration properties, including version control systems, databases, and
Hashicorp Vault. The client retrieves configuration properties from the server and
injects them into the Spring ApplicationContext.

 Using a configuration server has several benefits:

 Centralized configuration—All the configuration properties are stored in one
place, which makes them easier to manage. What’s more, in order to eliminate
duplicate configuration properties, some implementations let you define global
defaults, which can be overridden on a per-service basis.

 Transparent decryption of sensitive data—Encrypting sensitive data such as database
credentials is a security best practice. One challenge of using encryption, though,
is that usually the service instance needs to decrypt them, which means it needs
the encryption keys. Some configuration server implementations automatically
decrypt properties before returning them to the service.

 Dynamic reconfiguration—A service could potentially detect updated property val-
ues by, for example, polling, and reconfigure itself.

The primary drawback of using a configuration server is that unless it’s provided by
the infrastructure, it’s yet another piece of infrastructure that needs to be set up and
maintained. Fortunately, there are various open source frameworks, such as Spring
Cloud Config, which make it easier to run a configuration server.

 Now that we’ve looked at how to design configurable services, let’s talk about how
to design observable services.

11.3 Designing observable services
Let’s say you’ve deployed the FTGO application into production. You probably want
to know what the application is doing: requests per second, resource utilization, and

Order

History Service

instance

Process
Configures

Creates

CONFIG_SERVER_URL=...

getConfiguration(“orderHistoryService”)

BOOTSTRAP_SERVERS=kafka1:9092
AWS_ACCESS_KEY_ID=
AWS_SECRET_ACCESS_KEY=...
AWS_REGION=...
....

Environment variables

Deployment

infrastructure

Configuration

server

Figure 11.8 On startup, a service instance retrieves its configuration properties from a configuration server. The
deployment infrastructure provides the configuration properties for accessing the configuration server.

365Designing observable services
so on. You also need to be alerted if there’s a problem, such as a failed service instance
or a disk filling up—ideally before it impacts a user. And, if there’s a problem, you
need to be able to troubleshoot and identify the root cause.

 Many aspects of managing an application in production are outside the scope of
the developer, such as monitoring hardware availability and utilization. These are
clearly the responsibility of operations. But there are several patterns that you, as a ser-
vice developer, must implement to make your service easier to manage and trouble-
shoot. These patterns, shown in figure 11.9, expose a service instance’s behavior and
health. They enable a monitoring system to track and visualize the state of a service
and generate alerts when there’s a problem. These patterns also make troubleshoot-
ing problems easier.
You can use the following patterns to design observable services:

 Health check API—Expose an endpoint that returns the health of the service.
 Log aggregation—Log service activity and write logs into a centralized logging

server, which provides searching and alerting.

Pattern

participant

Key

Operations

responsibility

Distributed

tracing

server

Exception

Tracking

Service

Logging

Server

Logging

aggregation

pipeline

Log file

Metrics

Service

Developer

responsibility

Pattern

Observable

Service

Distributed

tracing

exporter

Exception

reporter

Metrics

exporter

Health

check

API

Health check

invoker, such as

monitoring service

Invokes

Audit

database

adapter

Auditing

database

Logging

adapter

Distributed

tracing pattern

Application

metrics pattern

Audit

logging pattern

Health check

API pattern

Exception

tracking pattern
Log aggregation

pattern

Figure 11.9 The observability patterns enable developers and operations to understand the behavior of an
application and troubleshoot problems. Developers are responsible for ensuring that their services are observable.
Operations are responsible for the infrastructure that collects the information exposed by the services.

366 CHAPTER 11 Developing production-ready services
 Distributed tracing—Assign each external request a unique ID and trace requests
as they flow between services.

 Exception tracking—Report exceptions to an exception tracking service, which
de-duplicates exceptions, alerts developers, and tracks the resolution of each
exception.

 Application metrics—Services maintain metrics, such as counters and gauges, and
expose them to a metrics server.

 Audit logging—Log user actions.

A distinctive feature of most of these patterns is that each pattern has a developer
component and an operations component. Consider, for example, the Health check
API pattern. The developer is responsible for ensuring that their service implements a
health check endpoint. Operations is responsible for the monitoring system that peri-
odically invokes the health check API. Similarly, for the Log aggregation pattern, a
developer is responsible for ensuring that their services log useful information,
whereas operations is responsible for log aggregation.

 Let’s take a look at each of these patterns, starting with the Health check API pattern.

11.3.1 Using the Health check API pattern

Sometimes a service may be running but unable to handle requests. For instance, a
newly started service instance may not be ready to accept requests. The FTGO Con-
sumer Service, for example, takes around 10 seconds to initialize the messaging and
database adapters. It would be pointless for the deployment infrastructure to route
HTTP requests to a service instance until it’s ready to process them.

 Also, a service instance can fail without terminating. For example, a bug might
cause an instance of Consumer Service to run out of database connections and
be unable to access the database. The deployment infrastructure shouldn’t route
requests to a service instance that has failed yet is still running. And, if the service
instance does not recover, the deployment infrastructure must terminate it and create
a new instance.

A service instance needs to be able to tell the deployment infrastructure whether or
not it’s able to handle requests. A good solution is for a service to implement a health
check endpoint, which is shown in figure 11.10. The Spring Boot Actuator Java library,
for example, implements a GET /actuator/health endpoint, which returns 200 if and
only if the service is healthy, and 503 otherwise. Similarly, the HealthChecks .NET

Pattern: Health check API
A service exposes a health check API endpoint, such as GET /health, which returns
the health of the service. See http://microservices.io/patterns/observability/health-
check-api.html.

http://microservices.io/patterns/observability/health-check-api.html
http://microservices.io/patterns/observability/health-check-api.html

367Designing observable services
library implements a GET /hc endpoint (https://docs.microsoft.com/en-us/dotnet/
standard/microservices-architecture/implement-resilient-applications/monitor-app-
health). The deployment infrastructure periodically invokes this endpoint to determine
the health of the service instance and takes the appropriate action if it’s unhealthy.

A Health Check Request Handler typically tests the service instance’s connections to
external services. It might, for example, execute a test query against a database. If all
the tests succeed, Health Check Request Handler returns a healthy response, such as
an HTTP 200 status code. If any of them fails, it returns an unhealthy response, such
as an HTTP 500 status code.

 Health Check Request Handler might simply return an empty HTTP response with
the appropriate status code. Or it might return a detailed description of the health of
each of the adapters. The detailed information is useful for troubleshooting. But
because it may contain sensitive information, some frameworks, such as Spring Boot
Actuator, let you configure the level of detail in the health endpoint response.

 There are two issues you need to consider when using health checks. The first is
the implementation of the endpoint, which must report back on the health of the ser-
vice instance. The second issue is how to configure the deployment infrastructure to
invoke the health check endpoint. Let’s first look at how to implement the endpoint.

IMPLEMENTING THE HEALTH CHECK ENDPOINT

The code that implements the health check endpoint must somehow determine the
health of the service instance. One simple approach is to verify that the service
instance can access its external infrastructure services. How to do this depends on the

Service

Checks

Checks

Health check

invoker

Invokes

Health check

endpoint
Health check

request

handler

Messaging

adapter

Message

broker

Database

adapter

MySQL

Tests the service’s connections
to infrastructure services

For example: monitoring
system, Service registry, and others

Figure 11.10 A service implements a health check endpoint, which is periodically invoked by the
deployment infrastructure to determine the health of the service instance.

https://docs.microsoft.com/en-us/dotnet/standard/microservices-architecture/implement-resilient-applications/monitor-app-health
https://docs.microsoft.com/en-us/dotnet/standard/microservices-architecture/implement-resilient-applications/monitor-app-health
https://docs.microsoft.com/en-us/dotnet/standard/microservices-architecture/implement-resilient-applications/monitor-app-health
https://docs.microsoft.com/en-us/dotnet/standard/microservices-architecture/implement-resilient-applications/monitor-app-health

368 CHAPTER 11 Developing production-ready services
infrastructure service. The health check code can, for example, verify that it’s con-
nected to an RDBMS by obtaining a database connection and executing a test query.
A more elaborate approach is to execute a synthetic transaction that simulates the
invocation of the service’s API by a client. This kind of health check is more thorough,
but it’s likely to be more time consuming to implement and take longer to execute.

 A great example of a health check library is Spring Boot Actuator. As mentioned
earlier, it implements a /actuator/health endpoint. The code that implements this
endpoint returns the result of executing a set of health checks. By using convention
over configuration, Spring Boot Actuator implements a sensible set of health checks
based on the infrastructure services used by the service. If, for example, a service uses
a JDBC DataSource, Spring Boot Actuator configures a health check that executes a
test query. Similarly, if the service uses the RabbitMQ message broker, it automatically
configures a health check that verifies that the RabbitMQ server is up.

 You can also customize this behavior by implementing additional health checks for
your service. You implement a custom health check by defining a class that imple-
ments the HealthIndicator interface. This interface defines a health() method,
which is called by the implementation of the /actuator/health endpoint. It returns
the outcome of the health check.

INVOKING THE HEALTH CHECK ENDPOINT

A health check endpoint isn’t much use if nobody calls it. When you deploy your ser-
vice, you must configure the deployment infrastructure to invoke the endpoint. How
you do that depends on the specific details of your deployment infrastructure. For
example, as described in chapter 3, you can configure some service registries, such as
Netflix Eureka, to invoke the health check endpoint in order to determine whether
traffic should be routed to the service instance. Chapter 12 discusses how to configure
Docker and Kubernetes to invoke a health check endpoint.

11.3.2 Applying the Log aggregation pattern

Logs are a valuable troubleshooting tool. If you want to know what’s wrong with your
application, a good place to start is the log files. But using logs in a microservice archi-
tecture is challenging. For example, imagine you’re debugging a problem with the
getOrderDetails() query. As described in chapter 8, the FTGO application imple-
ments this query using API composition. As a result, the log entries you need are scat-
tered across the log files of the API gateway and several services, including Order
Service and Kitchen Service.

Pattern: Log aggregation
Aggregate the logs of all services in a centralized database that supports searching
and alerting. See http://microservices.io/patterns/observability/application-logging
.html.

http://microservices.io/patterns/observability/application-logging.html
http://microservices.io/patterns/observability/application-logging.html
http://microservices.io/patterns/observability/application-logging.html

369Designing observable services
The solution is to use log aggregation. As figure 11.11 shows, the log aggregation pipe-
line sends the logs of all of the service instances to a centralized logging server. Once
the logs are stored by the logging server, you can view, search, and analyze them. You
can also configure alerts that are triggered when certain messages appear in the logs.

The logging pipeline and server are usually the responsibility of operations. But ser-
vice developers are responsible for writing services that generate useful logs. Let’s first
look at how a service generates a log.

HOW A SERVICE GENERATES A LOG

As a service developer, there are a couple of issues you need to consider. First you
need to decide which logging library to use. The second issue is where to write the log
entries. Let’s first look at the logging library.

 Most programming languages have one or more logging libraries that make it easy
to generate correctly structured log entries. For example, three popular Java logging
libraries are Logback, log4j, and JUL (java.util.logging). There’s also SLF4J, which is a
logging facade API for the various logging frameworks. Similarly, Log4JS is a popular
logging framework for NodeJS. One reasonable way to use logging is to sprinkle calls
to one of these logging libraries in your service’s code. But if you have strict logging
requirements that can’t be enforced by the logging library, you may need to define
your own logging API that wraps a logging library.

 You also need to decide where to log. Traditionally, you would configure the log-
ging framework to write to a log file in a well-known location in the filesystem. But
with the more modern deployment technologies, such as containers and serverless,

Service A

instance 1

Logging

library

Service B

instance 1

Logging

library

Service A

instance 2

Logging

library

Log

View Notify

Log

Log

Log

pipeline

Logging

server

User

Figure 11.11 The log aggregation infrastructure ships the logs of each service instance to a
centralized logging server. Users can view and search the logs. They can also set up alerts, which are
triggered when log entries match search criteria.

370 CHAPTER 11 Developing production-ready services
described in chapter 12, this is often not the best approach. In some environments,
such as AWS Lambda, there isn’t even a “permanent” filesystem to write the logs to!
Instead, your service should log to stdout. The deployment infrastructure will then
decide what to do with the output of your service.

THE LOG AGGREGATION INFRASTRUCTURE

The logging infrastructure is responsible for aggregating the logs, storing them, and
enabling the user to search them. One popular logging infrastructure is the ELK
stack. ELK consists of three open source products:

 Elasticsearch—A text search-oriented NoSQL database that’s used as the logging
server

 Logstash—A log pipeline that aggregates the service logs and writes them to
Elasticsearch

 Kibana—A visualization tool for Elasticsearch

Other open source log pipelines include Fluentd and Apache Flume. Examples of log-
ging servers include cloud services, such as AWS CloudWatch Logs, as well as numerous
commercial offerings. Log aggregation is a useful debugging tool in a microservice
architecture.

 Let’s now look at distributed tracing, which is another way of understanding the
behavior of a microservices-based application.

11.3.3 Using the Distributed tracing pattern

Imagine you’re a FTGO developer who is investigating why the getOrderDetails()
query has slowed down. You’ve ruled out the problem being an external networking
issue. The increased latency must be caused by either the API gateway or one of the
services it has invoked. One option is to look at each service’s average response time.
The trouble with this option is that it’s an average across requests rather than the tim-
ing breakdown for an individual request. Plus more complex scenarios might involve
many nested service invocations. You may not even be familiar with all services. As a
result, it can be challenging to troubleshoot and diagnose these kinds of performance
problems in a microservice architecture.

A good way to get insight into what your application is doing is to use distributed trac-
ing. Distributed tracing is analogous to a performance profiler in a monolithic applica-
tion. It records information (for example, start time and end time) about the tree of
service calls that are made when handling a request. You can then see how the services

Pattern: Distributed tracing
Assign each external request a unique ID and record how it flows through the system
from one service to the next in a centralized server that provides visualization and
analysis. See http://microservices.io/patterns/observability/distributed-tracing.html.

http://microservices.io/patterns/observability/distributed-tracing.html

371Designing observable services
interact during the handling of external requests, including a breakdown of where
the time is spent.

 Figure 11.12 shows an example of how a distributed tracing server displays what
happens when the API gateway handles a request. It shows the inbound request to the
API gateway and the request that the gateway makes to Order Service. For each
request, the distributed tracing server shows the operation that’s performed and the
timing of the request.

Figure 11.12 shows what in distributed tracing terminology is called a trace. A trace
represents an external request and consists of one or more spans. A span represents
an operation, and its key attributes are an operation name, start timestamp, and end
time. A span can have one or more child spans, which represent nested operations.
For example, a top-level span might represent the invocation of the API gateway, as
is the case in figure 11.12. Its child spans represent the invocations of services by the
API gateway.

 A valuable side effect of distributed tracing is that it assigns a unique ID to each
external request. A service can include the request ID in its log entries. When com-
bined with log aggregation, the request ID enables you to easily find all log entries
for a particular external request. For example, here’s an example log entry from
Order Service:

2018-03-04 17:38:12.032 DEBUG [ftgo-order-
service,8d8fdc37be104cc6,8d8fdc37be104cc6,false]

7 --- [nio-8080-exec-6] org.hibernate.SQL :
select order0_.id as id1_3_0_, order0_.consumer_id as consumer2_3_0_, order

0_.city as city3_3_0_,
order0_.delivery_state as delivery4_3_0_, order0_.street1 as street5_3_0_,
order0_.street2 as street6_3_0_, order0_.zip as zip7_3_0_,

order0_.delivery_time as delivery8_3_0_, order0_.a

Parent span Child span Trace

Figure 11.12 The Zipkin server shows how the FTGO application handles a request that’s routed
by the API gateway to Order Service. Each request is represented by a trace. A trace is a set of
spans. Each span, which can contain child spans, is the invocation of a service. Depending on the
level of detail collected, a span can also represent the invocation of an operation inside a service.

372 CHAPTER 11 Developing production-ready services
The [ftgo-order-service,8d8fdc37be104cc6,8d8fdc37be104cc6,false] part of the
log entry (the SLF4J Mapped Diagnostic Context—see www.slf4j.org/manual.html)
contains information from the distributed tracing infrastructure. It consists of four
values:

 ftgo-order-service—The name of the application
 8d8fdc37be104cc6—The traceId
 8d8fdc37be104cc6—The spanId
 false—Indicates that this span wasn’t exported to the distributed tracing server

If you search the logs for 8d8fdc37be104cc6, you’ll find all log entries for that request.
 Figure 11.13 shows how distributed tracing works. There are two parts to distrib-

uted tracing: an instrumentation library, which is used by each service, and a distributed
tracing server. The instrumentation library manages the traces and spans. It also adds

Span ABC: API gateway

Trace XYZ

API

gateway

GET/orders/1 HTTP/1.1
....

GET/orders/1 HTTP/1.1

X-B3-TraceId: XYZ

X-B3-ParentSpanId: ABC

Service: API gateway

TraceId: XYZ

ParentSpan: NONE

Span: ABC

Views traces

Service: Order Service

TraceId: XYZ

ParentSpan: ABC

Span: DEF

Span DEF: Order Service

Transport

Distributed tracing server

Order

Service

Instrumentation

library

Instrumentation

library

User

Trace

database

Figure 11.13 Each service (including the API gateway) uses an instrumentation library. The
instrumentation library assigns an ID to each external request, propagates tracing state between
services, and reports spans to the distributed tracing server.

http://www.slf4j.org/manual.html

373Designing observable services
tracing information, such as the current trace ID and the parent span ID, to outbound
requests. For example, one common standard for propagating trace information is
the B3 standard (https://github.com/openzipkin/b3-propagation), which uses head-
ers such as X-B3-TraceId and X-B3-ParentSpanId. The instrumentation library also
reports traces to the distributed tracing server. The distributed tracing server stores
the traces and provides a UI for visualizing them.

 Let’s take a look at the instrumentation library and the distribution tracing server,
beginning with the library.

USING AN INSTRUMENTATION LIBRARY

The instrumentation library builds the tree of spans and sends them to the distributed
tracing server. The service code could call the instrumentation library directly, but that
would intertwine the instrumentation logic with business and other logic. A cleaner
approach is to use interceptors or aspect-oriented programming (AOP).

 A great example of an AOP-based framework is Spring Cloud Sleuth. It uses the
Spring Framework’s AOP mechanism to automagically integrate distributed tracing
into the service. As a result, you have to add Spring Cloud Sleuth as a project depen-
dency. Your service doesn’t need to call a distributed tracing API except in those cases
that aren’t handled by Spring Cloud Sleuth.

ABOUT THE DISTRIBUTED TRACING SERVER

The instrumentation library sends the spans to a distributed tracing server. The dis-
tributed tracing server stitches the spans together to form complete traces and stores
them in a database. One popular distributed tracing server is Open Zipkin. Zipkin was
originally developed by Twitter. Services can deliver spans to Zipkin using either
HTTP or a message broker. Zipkin stores the traces in a storage backend, which is
either a SQL or NoSQL database. It has a UI that displays traces, as shown earlier in
figure 11.12. AWS X-ray is another example of a distributed tracing server.

11.3.4 Applying the Application metrics pattern

A key part of the production environment is monitoring and alerting. As figure 11.14
shows, the monitoring system gathers metrics, which provide critical information
about the health of an application, from every part of the technology stack. Metrics
range from infrastructure-level metrics, such as CPU, memory, and disk utilization, to
application-level metrics, such as service request latency and number of requests exe-
cuted. Order Service, for example, gathers metrics about the number of placed,
approved, and rejected orders. The metrics are collected by a metrics service, which
provides visualization and alerting.

Pattern: Application metrics
Services report metrics to a central server that provides aggregation, visualization,
and alerting.

https://github.com/openzipkin/b3-propagation

374 CHAPTER 11 Developing production-ready services
Metrics are sampled periodically. A metric sample has the following three properties:

 Name—The name of the metric, such as jvm_memory_max_bytes or placed_orders
 Value—A numeric value
 Timestamp—The time of the sample

In addition, some monitoring systems support the concept of dimensions, which are
arbitrary name-value pairs. For example, jvm_memory_max_bytes is reported with dimen-
sions such as area="heap",id="PS Eden Space" and area="heap",id="PS Old Gen".
Dimensions are often used to provide additional information, such as the machine
name or service name, or a service instance identifier. A monitoring system typically
aggregates (sums or averages) metric samples along one or more dimensions.

 Many aspects of monitoring are the responsibility of operations. But a service
developer is responsible for two aspects of metrics. First, they must instrument their
service so that it collects metrics about its behavior. Second, they must expose those
service metrics, along with metrics from the JVM and the application framework, to
the metrics server.

 Let’s first look at how a service collects metrics.

COLLECTING SERVICE-LEVEL METRICS

How much work you need to do to collect metrics depends on the frameworks that
your application uses and the metrics you want to collect. A Spring Boot-based service
can, for example, gather (and expose) basic metrics, such as JVM metrics, by including

View Notify

Metrics

Service

User

Service instance

Deployment infrastructure

Metrics sample:

name=cpu_percent
value=68
timestamp=34938934893
dimensions:

machine=node1
...

Application framework

Language runtime

Application code

Metrics library Visualization

Metrics

ingestion

Alerts

Metrics

database

Figure 11.14 Metrics at every level of the stack are collected and stored in a metrics service, which
provides visualization and alerting.

375Designing observable services
the Micrometer Metrics library as a dependency and using a few lines of configura-
tion. Spring Boot’s autoconfiguration takes care of configuring the metrics library and
exposing the metrics. A service only needs to use the Micrometer Metrics API directly
if it gathers application-specific metrics.

 The following listing shows how OrderService can collect metrics about the number
of orders placed, approved, and rejected. It uses MeterRegistry, which is the interface-
provided Micrometer Metrics, to gather custom metrics. Each method increments an
appropriately named counter.

public class OrderService {

@Autowired
private MeterRegistry meterRegistry;

public Order createOrder(...) {
...
meterRegistry.counter("placed_orders").increment();
return order;

}

public void approveOrder(long orderId) {
...
meterRegistry.counter("approved_orders").increment();
}

public void rejectOrder(long orderId) {
...
meterRegistry.counter("rejected_orders").increment();
}

DELIVERING METRICS TO THE METRICS SERVICE

A service delivers metrics to the Metrics Service in one of two ways: push or pull. With
the push model, a service instance sends the metrics to the Metrics Service by invoking
an API. AWS Cloudwatch metrics, for example, implements the push model.

 With the pull model, the Metrics Service (or its agent running locally) invokes a
service API to retrieve the metrics from the service instance. Prometheus, a popular
open source monitoring and alerting system, uses the pull model.

 The FTGO application’s Order Service uses the micrometer-registry-prometheus
library to integrate with Prometheus. Because this library is on the classpath, Spring
Boot exposes a GET /actuator/prometheus endpoint, which returns metrics in the
format that Prometheus expects. The custom metrics from OrderService are reported
as follows:

$ curl -v http://localhost:8080/actuator/prometheus | grep _orders
HELP placed_orders_total
TYPE placed_orders_total counter

Listing 11.1 OrderService tracks the number of orders placed, approved, and
rejected.

The Micrometer Metrics
library API for managing
application-specific meters

Increments the
placedOrders counter
when an order has
successfully been
placed

Increments the
approvedOrders
counter when an
order has been
approved

Increments the
rejectedOrders
counter when an
order has been
rejected

376 CHAPTER 11 Developing production-ready services
placed_orders_total{service="ftgo-order-service",} 1.0
HELP approved_orders_total
TYPE approved_orders_total counter
approved_orders_total{service="ftgo-order-service",} 1.0

The placed_orders counter is, for example, reported as a metric of type counter.
 The Prometheus server periodically polls this endpoint to retrieve metrics. Once

the metrics are in Prometheus, you can view them using Grafana, a data visualization
tool (https://grafana.com). You can also set up alerts for these metrics, such as when
the rate of change for placed_orders_total falls below some threshold.

 Application metrics provide valuable insights into your application’s behavior.
Alerts triggered by metrics enable you to quickly respond to a production issue, per-
haps before it impacts users. Let’s now look at how to observe and respond to another
source of alerts: exceptions.

11.3.5 Using the Exception tracking pattern

A service should rarely log an exception, and when it does, it’s important that you
identify the root cause. The exception might be a symptom of a failure or a program-
ming bug. The traditional way to view exceptions is to look in the logs. You might even
configure the logging server to alert you if an exception appears in the log file. There
are, however, several problems with this approach:

 Log files are oriented around single-line log entries, whereas exceptions consist
of multiple lines.

 There’s no mechanism to track the resolution of exceptions that occur in log
files. You would have to manually copy/paste the exception into an issue tracker.

 There are likely to be duplicate exceptions, but there’s no automatic mecha-
nism to treat them as one.

A better approach is to use an exception tracking service. As figure 11.15 shows, you
configure your service to report exceptions to an exception tracking service via, for
example, a REST API. The exception tracking service de-duplicates exceptions, gener-
ates alerts, and manages the resolution of exceptions.

 There are a couple of ways to integrate the exception tracking service into your
application. Your service could invoke the exception tracking service’s API directly. A
better approach is to use a client library provided by the exception tracking service.
For example, HoneyBadger’s client library provides several easy-to-use integration
mechanisms, including a Servlet Filter that catches and reports exceptions.

Pattern: Exception tracking
Services report exceptions to a central service that de-duplicates exceptions, gener-
ates alerts, and manages the resolution of exceptions. See http://microservices.io/
patterns/observability/audit-logging.html.

http://microservices.io/patterns/observability/audit-logging.html
http://microservices.io/patterns/observability/audit-logging.html
http://microservices.io/patterns/observability/audit-logging.html
https://grafana.com

377Designing observable services
The Exception tracking pattern is a useful way to quickly identify and respond to pro-
duction issues.

 It’s also important to track user behavior. Let’s look at how to do that.

11.3.6 Applying the Audit logging pattern

The purpose of audit logging is to record each user’s actions. An audit log is typically
used to help customer support, ensure compliance, and detect suspicious behavior.
Each audit log entry records the identity of the user, the action they performed, and
the business object(s). An application usually stores the audit log in a database table.

Exception tracking services
There are several exception tracking services. Some, such as Honeybadger (www
.honeybadger.io), are purely cloud-based. Others, such as Sentry.io (https://sentry.io/
welcome/), also have an open source version that you can deploy on your own infra-
structure. These services receive exceptions from your application and generate alerts.
They provide a console for viewing exceptions and managing their resolution. An excep-
tion tracking service typically provides client libraries in a variety of languages.

Pattern: Audit logging
Record user actions in a database in order to help customer support, ensure com-
pliance, and detect suspicious behavior. See http://microservices.io/patterns/
observability/audit-logging.html.

View & manage Notify

User

POST/exceptions

java.lang.NullPointerException
at net.chrisrichardson.ftgo...
at net.chrisrichardson.ftgo...
at net.chrisrichardson.ftgo...

Order Service

Exception tracking

client library

Exception database

Exception tracking service
Report exception

Figure 11.15 A service reports exceptions to an exception tracking service, which de-duplicates
exceptions and alerts developers. It has a UI for viewing and managing exceptions.

http://www.honeybadger.io
http://www.honeybadger.io
http://www.honeybadger.io
https://sentry.io/welcome/
https://sentry.io/welcome/
https://sentry.io/welcome/
http://microservices.io/patterns/observability/audit-logging.html
http://microservices.io/patterns/observability/audit-logging.html
http://microservices.io/patterns/observability/audit-logging.html

378 CHAPTER 11 Developing production-ready services
There are a few different ways to implement audit logging:

 Add audit logging code to the business logic.
 Use aspect-oriented programming (AOP).
 Use event sourcing.

Let’s look at each option.

ADD AUDIT LOGGING CODE TO THE BUSINESS LOGIC

The first and most straightforward option is to sprinkle audit logging code through-
out your service’s business logic. Each service method, for example, can create an
audit log entry and save it in the database. The drawback with this approach is that it
intertwines auditing logging code and business logic, which reduces maintainability.
The other drawback is that it’s potentially error prone, because it relies on the devel-
oper writing audit logging code.

USE ASPECT-ORIENTED PROGRAMMING

The second option is to use AOP. You can use an AOP framework, such as Spring
AOP, to define advice that automatically intercepts each service method call and per-
sists an audit log entry. This is a much more reliable approach, because it automati-
cally records every service method invocation. The main drawback of using AOP is
that the advice only has access to the method name and its arguments, so it might be
challenging to determine the business object being acted upon and generate a business-
oriented audit log entry.

USE EVENT SOURCING

The third and final option is to implement your business logic using event sourcing.
As mentioned in chapter 6, event sourcing automatically provides an audit log for cre-
ate and update operations. You need to record the identity of the user in each event.
One limitation with using event sourcing, though, is that it doesn’t record queries. If
your service must create log entries for queries, then you’ll have to use one of the
other options as well.

11.4 Developing services using the Microservice chassis
pattern
This chapter has described numerous concerns that a service must implement, includ-
ing metrics, reporting exceptions to an exception tracker, logging and health checks,
externalized configuration, and security. Moreover, as described in chapter 3, a ser-
vice may also need to handle service discovery and implement circuit breakers. That’s
not something you’d want to set up from scratch each time you implement a new ser-
vice. If you did, it would potentially be days, if not weeks, before you wrote your first
line of business logic.

379Developing services using the Microservice chassis pattern
A much faster way to develop services is to build your services upon a microservices
chassis. As figure 11.16 shows, a microservice chassis is a framework or set of frameworks
that handle these concerns. When using a microservice chassis, you write little, if any,
code to handle these concerns.

In this section, I first describe the concept of a microservice chassis and suggest some
excellent microservice chassis frameworks. After that I introduce the concept of a ser-
vice mesh, which at the time of writing is emerging as an intriguing alternative to
using frameworks and libraries.

 Let’s first look at the idea of a microservice chassis.

11.4.1 Using a microservice chassis

A microservices chassis is a framework or set of frameworks that handle numerous
concerns including the following:

 Externalized configuration
 Health checks
 Application metrics
 Service discovery

Pattern: Microservice chassis
Build services on a framework or collection of frameworks that handle cross-cutting
concerns, such as exception tracking, logging, health checks, externalized configu-
ration, and distributed tracing. See http://microservices.io/patterns/microservice-
chassis.html.

Service

Service code

Circuit breaker

Microservice chassis

Service discovery

Distributed tracing Application metrics

Logging Health check

Externalized config. ...
Figure 11.16 A microservice chassis
is a framework that handles numerous
concerns, such as exception tracking,
logging, health checks, externalized
configuration, and distributed tracing.

http://microservices.io/patterns/microservice-chassis.html
http://microservices.io/patterns/microservice-chassis.html

380 CHAPTER 11 Developing production-ready services
 Circuit breakers
 Distributed tracing

It significantly reduces the amount of code you need to write. You may not even need
to write any code. Instead, you configure the microservice chassis to fit your require-
ments. A microservice chassis enables you to focus on developing your service’s busi-
ness logic.

 The FTGO application uses Spring Boot and Spring Cloud as the microservice
chassis. Spring Boot provides functions such as externalized configuration. Spring
Cloud provides functions such as circuit breakers. It also implements client-side ser-
vice discovery, although the FTGO application relies on the infrastructure for service
discovery. Spring Boot and Spring Cloud aren’t the only microservice chassis frame-
works. If, for example, you’re writing services in GoLang, you could use either Go Kit
(https://github.com/go-kit/kit) or Micro (https://github.com/micro/micro).

 One drawback of using a microservice chassis is that you need one for every lan-
guage/platform combination that you use to develop services. Fortunately, it’s likely
that many of the functions implemented by a microservice chassis will instead be
implemented by the infrastructure. For example, as described in chapter 3, many
deployment environments handle service discovery. What’s more, many of the network-
related functions of a microservice chassis will be handled by what’s known as a service
mesh, an infrastructure layer running outside of the services.

11.4.2 From microservice chassis to service mesh

A microservice chassis is a good way to implement various cross-cutting concerns, such
as circuit breakers. But one obstacle to using a microservice chassis is that you need
one for each programming language you use. For example, Spring Boot and Spring
Cloud are useful if you’re a Java/Spring developer, but they aren’t any help if you
want to write a NodeJS-based service.

An emerging alternative that avoids this problem is to implement some of this func-
tionality outside of the service in what’s known as a service mesh. A service mesh is net-
working infrastructure that mediates the communication between a service and other
services and external applications. As figure 11.17 shows, all network traffic in and out
of a service goes through the service mesh. It implements various concerns including
circuit breakers, distributed tracing, service discovery, load balancing, and rule-based
traffic routing. A service mesh can also secure interprocess communication by using

Pattern: Service mesh
Route all network traffic in and out of services through a networking layer that imple-
ments various concerns, including circuit breakers, distributed tracing, service dis-
covery, load balancing, and rule-based traffic routing. See http://microservices.io/
patterns/deployment/service-mesh.html.

http://microservices.io/patterns/deployment/service-mesh.html
http://microservices.io/patterns/deployment/service-mesh.html
http://microservices.io/patterns/deployment/service-mesh.html
https://github.com/go-kit/kit
https://github.com/micro/micro

381Developing services using the Microservice chassis pattern
TLS-based IPC between services. As a result, you no longer need to implement these
particular concerns in the services.

 When using a service mesh, the microservice chassis is much simpler. It only needs
to implement concerns that are tightly integrated with the application code, such as
externalized configuration and health checks. The microservice chassis must support
distributed tracing by propagating distributed tracing information, such as the B3
standard headers I discussed earlier in section 11.3.3.

The service mesh concept is an extremely promising idea. It frees the developer from
having to deal with various cross-cutting concerns. Also, the ability of a service mesh to

The current state of service mesh implementations
There are various service mesh implementations, including the following:

 Istio (https://istio.io)
 Linkerd (https://linkerd.io)
 Conduit (https://conduit.io)

As of the time of writing, Linkerd is the most mature, with Istio and Conduit still under
active development. For more information about this exciting new technology, take a
look at each product’s documentation.

API

gateway

Microservice

chassis

Order

Service

Service

mesh

Microservice

chassis

Restaurant

Service

Microservice

chassis

Deployment infrastructure

Circuit breaker Service discovery

Distributed tracing
Smart traffic routing

Load balancing

Logging

Microservice chassis

Functionality moved from
microservice chassis to

service mesh

Fewer functions

Externalized config.

Distributed tracing

Application metrics

Health check

...

Secure communications

Figure 11.17 All network traffic in and out of a service flows through the service mesh. The service
mesh implements various functions including circuit breakers, distributed tracing, service discovery,
and load balancing. Fewer functions are implemented by the microservice chassis. It also secures
interprocess communication by using TLS-based IPC between services.

https://istio.io
https://linkerd.io
https://conduit.io

382 CHAPTER 11 Developing production-ready services
route traffic enables you to separate deployment from release. It gives you the ability
to deploy a new version of a service into production but only release it to certain users,
such as internal test users. Chapter 12 discusses this concept further when describing
how to deploy services using Kubernetes.

Summary
 It’s essential that a service implements its functional requirements, but it must

also be secure, configurable, and observable.
 Many aspects of security in a microservice architecture are no different than in

a monolithic architecture. But there are some aspects of application security
that are necessarily different, including how user identity is passed between the
API gateway and the services and who is responsible for authentication and autho-
rization. A commonly used approach is for the API gateway to authenticate clients.
The API gateway includes a transparent token, such as a JWT, in each request to a
service. The token contains the identity of the principal and their roles. The ser-
vices use the information in the token to authorize access to resources. OAuth 2.0
is a good foundation for security in a microservice architecture.

 A service typically uses one or more external services, such as message brokers
and databases. The network location and credentials of each external service
often depend on the environment that the service is running in. You must apply
the Externalized configuration pattern and implement a mechanism that pro-
vides a service with configuration properties at runtime. One commonly used
approach is for the deployment infrastructure to supply those properties via
operating system environment variables or a properties file when it creates a
service instance. Another option is for a service instance to retrieve its configu-
ration from a configuration properties server.

 Operations and developers share responsibility for implementing the observ-
ability patterns. Operations is responsible for the observability infrastructure,
such as servers that handle log aggregation, metrics, exception tracking, and
distributed tracing. Developers are responsible for ensuring that their services
are observable. Services must have health check API endpoints, generate log
entries, collect and expose metrics, report exceptions to an exception tracking
service, and implement distributed tracing.

 In order to simplify and accelerate development, you should develop services
on top of a microservices chassis. A microservices chassis is framework or set of
frameworks that handle various cross-cutting concerns, including those described
in this chapter. Over time, though, it’s likely that many of the networking-
related functions of a microservice chassis will migrate into a service mesh, a
layer of infrastructure software through which all of a service’s network traffic
flows.

Deploying microservices
Mary and her team at FTGO are almost finished writing their first service. Although
it’s not yet feature complete, it’s running on developer laptops and the Jenkins CI
server. But that’s not good enough. Software has no value to FTGO until it’s run-
ning in production and available to users. FTGO needs to deploy their service into
production.

This chapter covers
 The four key deployment patterns, how they work,

and their benefits and drawbacks:
– Language-specific packaging format
– Deploying a service as a VM
– Deploying a service as a container
– Serverless deployment

 Deploying services with Kubernetes

 Using a service mesh to separate deployment
from release

 Deploying services with AWS Lambda

 Picking a deployment pattern
383

384 CHAPTER 12 Deploying microservices
 Deployment is a combination of two interrelated concepts: process and architecture.
The deployment process consists of the steps that must be performed by people—
developers and operations—in order to get software into production. The deploy-
ment architecture defines the structure of the environment in which that software
runs. Both aspects of deployment have changed radically since I first started develop-
ing Enterprise Java applications in the late 1990s. The manual process of developers
throwing code over the wall to production has become highly automated. As figure 12.1
shows, physical production environments have been replaced by increasingly light-
weight and ephemeral computing infrastructure.

Back in the 1990s, if you wanted to deploy an application into production, the first
step was to throw your application along with a set of operating instructions over the
wall to operations. You might, for example, file a trouble ticket asking operations to
deploy the application. Whatever happened next was entirely the responsibility of
operations, unless they encountered a problem they needed your help to fix. Typi-
cally, operations bought and installed expensive and heavyweight application servers
such as WebLogic or WebSphere. Then they would log in to the application server
console and deploy your applications. They would lovingly care for those machines, as
if they were pets, installing patches and updating the software.

 In the mid 2000s, the expensive application servers were replaced with open
source, lightweight web containers such as Apache Tomcat and Jetty. You could still
run multiple applications on each web container, but having one application per web
container became feasible. Also, virtual machines started to replace physical machines.

Physical

machine

Application

Physical

machine

Virtual

machine

Application

Physical

machine

Virtual

machine

Container

runtime

Application

Physical

machine

1990s 2006 2013 2014

AWS EC2

released

Initial Docker

release

AWS Lambda

introduced

Hidden

infrastructure

Serverless

runtime

Application

Lightweight,

ephemeral,

automated

Heavyweight,

permanent,

manual

Time

Figure 12.1 Heavyweight and long-lived physical machines have been abstracted away
by increasingly lightweight and ephemeral technologies.

385
But machines were still treated as beloved pets, and deployment was still a fundamen-
tally manual process.

 Today, the deployment process is radically different. Instead of handing off code to
a separate production team, the adoption of DevOps means that the development
team is also responsible for deploying their application or services. In some organiza-
tions, operations provides developers with a console for deploying their code. Or, bet-
ter yet, once the tests pass, the deployment pipeline automatically deploys the code
into production.

 The computing resources used in a production environment have also changed rad-
ically with physical machines being abstracted away. Virtual machines running on a
highly automated cloud, such as AWS, have replaced the long-lived, pet-like physical and
virtual machines. Today’s virtual machines are immutable. They’re treated as disposable
cattle instead of pets and are discarded and recreated rather than being reconfigured.
Containers, an even more lightweight abstraction layer of top of virtual machines, are an
increasingly popular way of deploying applications. You can also use an even more light-
weight serverless deployment platform, such as AWS Lambda, for many use cases.

 It’s no coincidence that the evolution of deployment processes and architectures has
coincided with the growing adoption of the microservice architecture. An application
might have tens or hundreds of services written in a variety of languages and frame-
works. Because each service is a small application, that means you have tens or hundreds
of applications in production. It’s no longer practical, for example, for system adminis-
trators to hand configure servers and services. If you want to deploy microservices at
scale, you need a highly automated deployment process and infrastructure.

 Figure 12.2 shows a high-level view of a production environment. The production
environment enables developers to configure and manage their services, the deployment

Service

A

Consumes

servicesService

C

Service

B

Service

D

User

Observe and

troubleshoot

services

Update

services

Configure

and manage

services

Developer

Routing

Dash-

boards

Monitoring

Service

management

interface

Runtime

Service

management

Alerting

Deployment

pipeline

Figure 12.2 A simplified view of the production environment. It provides four main capabilities:
service management enables developers to deploy and manage their services, runtime management
ensures that the services are running, monitoring visualizes service behavior and generates alerts,
and request routing routes requests from users to the services.

386 CHAPTER 12 Deploying microservices
pipeline to deploy new versions of services, and users to access functionality imple-
mented by those services.

 A production environment must implement four key capabilities:

 Service management interface—Enables developers to create, update, and config-
ure services. Ideally, this interface is a REST API invoked by command-line and
GUI deployment tools.

 Runtime service management—Attempts to ensure that the desired number of ser-
vice instances is running at all times. If a service instance crashes or is somehow
unable to handle requests, the production environment must restart it. If a
machine crashes, the production environment must restart those service instances
on a different machine.

 Monitoring—Provides developers with insight into what their services are doing,
including log files and metrics. If there are problems, the production environ-
ment must alert the developers. Chapter 11 describes monitoring, also called
observability.

 Request routing—Routes requests from users to the services.

In this chapter I discuss the four main deployment options:

 Deploying services as language-specific packages, such as Java JAR or WAR files.
It’s worthwhile exploring this option, because even though I recommend using
one of the other options, its drawbacks motivate the other options.

 Deploying services as virtual machines, which simplifies deployment by packag-
ing a service as a virtual machine image that encapsulate the service’s technol-
ogy stack.

 Deploying services as containers, which are more lightweight than virtual
machines. I show how to deploy the FTGO application’s Restaurant Service
using Kubernetes, a popular Docker orchestration framework.

 Deploying services using serverless deployment, which is even more modern than
containers. We’ll look at how to deploy Restaurant Service using AWS Lambda,
a popular serverless platform.

Let’s first look at how to deploy services as language-specific packages.

12.1 Deploying services using the Language-specific
packaging format pattern
Let’s imagine that you want to deploy the FTGO application’s Restaurant Service,
which is a Spring Boot-based Java application. One way to deploy this service is by
using the Service as a language-specific package pattern. When using this pattern,
what’s deployed in production and what’s managed by the service runtime is a service
in its language-specific package. In the case of Restaurant Service, that’s either the
executable JAR file or a WAR file. For other languages, such as NodeJS, a service is a
directory of source code and modules. For some languages, such as GoLang, a service
is an operating system-specific executable.

387Deploying services using the Language-specific packaging format pattern
To deploy Restaurant Service on a machine, you would first install the necessary
runtime, which in this case is the JDK. If it’s a WAR file, you also need to install a
web container such as Apache Tomcat. Once you’ve configured the machine, you
copy the package to the machine and start the service. Each service instance runs as
a JVM process.

 Ideally, you’ve set up your deployment pipeline to automatically deploy the service
to production, as shown in figure 12.3. The deployment pipeline builds an executable
JAR file or WAR file. It then invokes the production environment’s service manage-
ment interface to deploy the new version.

A service instance is typically a single process but sometimes may be a group of pro-
cesses. A Java service instance, for example, is a process running the JVM. A NodeJS
service might spawn multiple worker processes in order to process requests concur-
rently. Some languages support deploying multiple service instances within the same
process.

 Sometimes you might deploy a single service instance on a machine, while retain-
ing the option to deploy multiple service instances on the same machine. For exam-
ple, as figure 12.4 shows, you could run multiple JVMs on a single machine. Each JVM
runs a single service instance.

Pattern: Language-specific packaging format
Deploy a language-specific package into production. See http://microservices.io/
patterns/deployment/language-specific-packaging.html.

JVM

process

JVM

process

JVM

process

Service instanceBuild time Runtime

Service runtime management

Machine

Production

JDK/JRE

Machine

JDK/JRE

Service

code

Executable

JAR/WAR file

Deployment

pipeline

Figure 12.3 The deployment pipeline builds an executable JAR file and deploys it into production.
In production, each service instance is a JVM running on a machine that has the JDK or JRE installed.

http://microservices.io/patterns/deployment/language-specific-packaging.html
http://microservices.io/patterns/deployment/language-specific-packaging.html
http://microservices.io/patterns/deployment/language-specific-packaging.html

388 CHAPTER 12 Deploying microservices
Some languages also let you run multiple services instances in a single process. For
example, as figure 12.5 shows, you can run multiple Java services on a single Apache
Tomcat.

This approach is commonly used when deploying applications on traditional expen-
sive and heavyweight application servers, such as WebLogic and WebSphere. You can
also package services as OSGI bundles and run multiple service instances in each
OSGI container.

 The Service as a language-specific package pattern has both benefits and draw-
backs. Let’s first look at the benefits.

12.1.1 Benefits of the Service as a language-specific package pattern

The Service as a language-specific package pattern has a few benefits:

 Fast deployment
 Efficient resource utilization, especially when running multiple instances on

the same machine or within the same process

Let’s look at each one.

JVM

Process

Physical or virtual machine

Tomcat

Service

instance A

JVM

Process

Tomcat

Service

instance B

JVM

Process

Tomcat

Service

instance ...

Figure 12.4 Deploying multiple service
instances on the same machine. They
might be instances of the same service
or instances of different services. The
overhead of the OS is shared among the
service instances. Each service instance
is a separate process, so there’s some
isolation between them.

Process

Physical or virtual machine

Service

instance A

JVM

Tomcat

Service

instance B

Service

instance ...
Figure 12.5 Deploying multiple
services instances on the same web
container or application server. They
might be instances of the same service
or instances of different services. The
overhead of the OS and runtime is shared
among all the service instances. But
because the service instances are in the
same process, there’s no isolation
between them.

389Deploying services using the Language-specific packaging format pattern
FAST DEPLOYMENT

One major benefit of this pattern is that deploying a service instance is relatively
fast: you copy the service to a host and start it. If the service is written in Java, you
copy a JAR or WAR file. For other languages, such as NodeJS or Ruby, you copy the
source code. In either case, the number of bytes copied over the network is rela-
tively small.

 Also, starting a service is rarely time consuming. If the service is its own process,
you start it. Otherwise, if the service is one of several instances running in the same
container process, you either dynamically deploy it into the container or restart the
container. Because of the lack of overhead, starting a service is usually fast.

EFFICIENT RESOURCE UTILIZATION

Another major benefit of this pattern is that it uses resources relatively efficiently. Mul-
tiple service instances share the machine and its operating system. It’s even more effi-
cient if multiple service instances run within the same process. For example, multiple
web applications could share the same Apache Tomcat server and JVM.

12.1.2 Drawbacks of the Service as a language-specific package pattern

Despite its appeal, the Service as a language-specific package pattern has several signif-
icant drawbacks:

 Lack of encapsulation of the technology stack.
 No ability to constrain the resources consumed by a service instance.
 Lack of isolation when running multiple service instances on the same machine.
 Automatically determining where to place service instances is challenging.

Let’s look at each drawback.

LACK OF ENCAPSULATION OF THE TECHNOLOGY STACK

The operation team must know the specific details of how to deploy each and every
service. Each service needs a particular version of the runtime. A Java web application,
for example, needs particular versions of Apache Tomcat and the JDK. Operations
must install the correct version of each required software package.

 To make matters worse, services can be written in a variety of languages and frame-
works. They might also be written in multiple versions of those languages and frame-
works. Consequently, the development team must share lots of details with operations.
This complexity increases the risk of errors during deployment. A machine might, for
example, have the wrong version of the language runtime.

NO ABILITY TO CONSTRAIN THE RESOURCES CONSUMED BY A SERVICE INSTANCE

Another drawback is that you can’t constrain the resources consumed by a service
instance. A process can potentially consume all of a machine’s CPU or memory, starv-
ing other service instances and operating systems of resources. This might happen, for
example, because of a bug.

390 CHAPTER 12 Deploying microservices
LACK OF ISOLATION WHEN RUNNING MULTIPLE SERVICE INSTANCES ON THE SAME MACHINE

The problem is even worse when running multiple instances on the same machine.
The lack of isolation means that a misbehaving service instance can impact other ser-
vice instances. As a result, the application risks being unreliable, especially when run-
ning multiple service instances on the same machine.

AUTOMATICALLY DETERMINING WHERE TO PLACE SERVICE INSTANCES IS CHALLENGING

Another challenge with running multiple service instances on the same machine is
determining the placement of service instances. Each machine has a fixed set of
resources, CPU, memory, and so on, and each service instance needs some amount of
resources. It’s important to assign service instances to machines in a way that uses the
machines efficiently without overloading them. As I explain shortly, VM-based clouds
and container orchestration frameworks handle this automatically. When deploying
services natively, it’s likely that you’ll need to manually decide the placement.

 As you can see, despite its familiarity, the Service as a language-specific package
pattern has some significant drawbacks. You should rarely use this approach, except
perhaps when efficiency outweighs all other concerns.

 Let’s now look at modern ways of deploying services that avoid these problems.

12.2 Deploying services using the Service as a virtual
machine pattern
Once again, imagine you want to deploy the FTGO Restaurant Service, except this
time it’s on AWS EC2. One option would be to create and configure an EC2 instance
and copy onto it the executable or WAR file. Although you would get some benefit
from using the cloud, this approach suffers from the drawbacks described in the pre-
ceding section. A better, more modern approach is to package the service as an Ama-
zon Machine Image (AMI), as shown in figure 12.6. Each service instance is an EC2
instance created from that AMI. The EC2 instances would typically be managed by an
AWS Auto Scaling group, which attempts to ensure that the desired number of
healthy instances is always running.

The virtual machine image is built by the service’s deployment pipeline. The deploy-
ment pipeline, as figure 12.6 shows, runs a VM image builder to create a VM image
that contains the service’s code and whatever software is required to run it. For
example, the VM builder for a FTGO service installs the JDK and the service’s exe-
cutable JAR. The VM image builder configures the VM image machine to run the
application when the VM boots, using Linux’s init system, such as upstart.

Pattern: Deploy a service as a VM
Deploy services packaged as VM images into production. Each service instance is a
VM. See http://microservices.io/patterns/deployment/service-per-vm.html.

http://microservices.io/patterns/deployment/service-per-vm.html

391Deploying services using the Service as a virtual machine pattern
There are a variety of tools that your deployment pipeline can use to build VM
images. One early tool for creating EC2 AMIs is Aminator, created by Netflix, which
used it to deploy its video-streaming service on AWS (https://github.com/Netflix/
aminator). A more modern VM image builder is Packer, which unlike Aminator sup-
ports a variety of virtualization technologies, including EC2, Digital Ocean, Virtual
Box, and VMware (www.packer.io). To use Packer to create an AMI, you write a config-
uration file that specifies the base image and a set of provisioners that install software
and configure the AMI.

About Elastic Beanstalk
Elastic Beanstalk, which is provided by AWS, is an easy way to deploy your services
using VMs. You upload your code, such as a WAR file, and Elastic Beanstalk deploys
it as one or more load-balanced and managed EC2 instances. Elastic Beanstalk is
perhaps not quite as fashionable as, say, Kubernetes, but it’s an easy way to deploy
a microservices-based application on EC2.

Interestingly, Elastic Beanstalk combines elements of the three deployment patterns
described in this chapter. It supports several packaging formats for several lan-
guages, including Java, Ruby, and .NET. It deploys the application as VMs, but rather
than building an AMI, it uses a base image that installs the application on startup.

Build time Runtime

Requests

Deployed as

Service

EC2 instance

Autoscaling group

Service

EC2 instance

Service

EC2 instance

Service

code

Deployment pipeline

CreatesVM image

builder

Elastic load

balancer

AMI

(VM

image)

Figure 12.6 The deployment pipeline packages a service as a virtual machine image, such as an EC2
AMI, containing everything required to run the service, including the language runtime. At runtime,
each service instance is a VM, such as an EC2 instance, instantiated from that image. An EC2 Elastic
Load Balancer routes requests to the instances.

https://github.com/Netflix/aminator
https://github.com/Netflix/aminator
https://github.com/Netflix/aminator
http://www.packer.io

392 CHAPTER 12 Deploying microservices
Let’s look at the benefits and drawbacks of using this approach.

12.2.1 The benefits of deploying services as VMs

The Service as a virtual machine pattern has a number of benefits:

 The VM image encapsulates the technology stack.
 Isolated service instances.
 Uses mature cloud infrastructure.

Let’s look at each one.

THE VM IMAGE ENCAPSULATES THE TECHNOLOGY STACK

An important benefit of this pattern is that the VM image contains the service and all
of its dependencies. It eliminates the error-prone requirement to correctly install and
set up the software that a service needs in order to run. Once a service has been pack-
aged as a virtual machine, it becomes a black box that encapsulates your service’s tech-
nology stack. The VM image can be deployed anywhere without modification. The API
for deploying the service becomes the VM management API. Deployment becomes
much simpler and more reliable.

SERVICE INSTANCES ARE ISOLATED

A major benefit of virtual machines is that each service instance runs in complete iso-
lation. That, after all, is one of the main goals of virtual machine technology. Each vir-
tual machine has a fixed amount of CPU and memory and can’t steal resources from
other services.

USES MATURE CLOUD INFRASTRUCTURE

Another benefit of deploying your microservices as virtual machines is that you can
leverage mature, highly automated cloud infrastructure. Public clouds such as AWS
attempt to schedule VMs on physical machines in a way that avoids overloading the
machine. They also provide valuable features such as load balancing of traffic across
VMs and autoscaling.

12.2.2 The drawbacks of deploying services as VMs

The Service as a VM pattern also has some drawbacks:

 Less-efficient resource utilization
 Relatively slow deployments
 System administration overhead

Let’s look at each drawback in turn.

(continued)

Elastic Beanstalk can also deploy Docker containers. Each EC2 instance runs a col-
lection of one or more containers. Unlike a Docker orchestration framework, covered
later in the chapter, the unit of scaling is the EC2 instance rather than a container.

393Deploying services using the Service as a container pattern
LESS-EFFICIENT RESOURCE UTILIZATION

Each service instance has the overhead of an entire virtual machine, including its
operating system. Moreover, a typical public IaaS virtual machine offers a limited set
of VM sizes, so the VM will probably be underutilized. This is less likely to be a prob-
lem for Java-based services because they’re relatively heavyweight. But this pattern
might be an inefficient way of deploying lightweight NodeJS and GoLang services.

RELATIVELY SLOW DEPLOYMENTS

Building a VM image typically takes some number of minutes because of the size of
the VM. There are lots of bits to be moved over the network. Also, instantiating a VM
from a VM image is time consuming because of, once again, the amount of data that
must be moved over the network. The operating system running inside the VM also
takes some time to boot, though slow is a relative term. This process, which perhaps
takes minutes, is much faster than the traditional deployment process. But it’s much
slower than the more lightweight deployment patterns you’ll read about soon.

SYSTEM ADMINISTRATION OVERHEAD

You’re responsible for patching the operation system and runtime. System administra-
tion may seem inevitable when deploying software, but later in section 12.5, I describe
serverless deployment, which eliminates this kind of system administration.

 Let’s now look at an alternative way to deploy microservices that’s more light-
weight, yet still has many of the benefits of virtual machines.

12.3 Deploying services using the Service as
a container pattern
Containers are a more modern and lightweight deployment mechanism. They’re an
operating-system-level virtualization mechanism. A container, as figure 12.7 shows,
consists of usually one but sometimes multiple processes running in a sandbox, which
isolates it from other containers. A container running a Java service, for example,
would typically consist of the JVM process.

 From the perspective of a process running in a container, it’s as if it’s running on
its own machine. It typically has its own IP address, which eliminates port conflicts. All
Java processes can, for example, listen on port 8080. Each container also has its own
root filesystem. The container runtime uses operating system mechanisms to isolate
the containers from each other. The most popular example of a container runtime is
Docker, although there are others, such as Solaris Zones.

Pattern: Deploy a service as a container
Deploy services packaged as container images into production. Each service instance
is a container. See http://microservices.io/patterns/deployment/service-per-container
.html.

http://microservices.io/patterns/deployment/service-per-container.html
http://microservices.io/patterns/deployment/service-per-container.html
http://microservices.io/patterns/deployment/service-per-container.html

394 CHAPTER 12 Deploying microservices
When you create a container, you can specify its CPU, memory resources, and, depend-
ing on the container implementation, perhaps the I/O resources. The container run-
time enforces these limits and prevents a container from hogging the resources of its
machine. When using a Docker orchestration framework such as Kubernetes, it’s espe-
cially important to specify a container’s resources. That’s because the orchestration
framework uses a container’s requested resources to select the machine to run the
container and thereby ensure that machines aren’t overloaded.

 Figure 12.8 shows the process of deploying a service as a container. At build-time,
the deployment pipeline uses a container image-building tool, which reads the ser-
vice’s code and a description of the image, to create the container image and stores it
in a registry. At runtime, the container image is pulled from the registry and used to
create containers.

 Let’s take a look at build-time and runtime steps in more detail.

Container

Machine

Service

process

Container

Container runtime, such as Docker

Service

process

Container

Service

process

Operating System

Each container is a sandbox
that isolates the processes.

Shared by all of the containers

Figure 12.7 A container consists of one or more processes
running in an isolated sandbox. Multiple containers usually run
on a single machine. The containers share the operating system.

395Deploying services using the Service as a container pattern
12.3.1 Deploying services using Docker

To deploy a service as a container, you must package it as a container image. A container
image is a filesystem image consisting of the application and any software required to
run the service. It’s often a complete Linux root filesystem, although more lightweight
images are also used. For example, to deploy a Spring Boot-based service, you build a
container image containing the service’s executable JAR and the correct version of
the JDK. Similarly, to deploy a Java web application, you would build a container
image containing the WAR file, Apache Tomcat, and the JDK.

BUILDING A DOCKER IMAGE

The first step in building an image is to create a Dockerfile. A Dockerfile describes how
to build a Docker container image. It specifies the base container image, a series of
instructions for installing software and configuring the container, and the shell com-
mand to run when the container is created. Listing 12.1 shows the Dockerfile used to
build an image for Restaurant Service. It builds a container image containing the
service’s executable JAR file. It configures the container to run the java -jar com-
mand on startup.

Build time Runtime

$ docker build ... Deployed

as

Deployed

as

Service

instance

Container

VM

VM

Container

image registry

Service

instance

Container

Service

instance

Container

Service

code

Container runtime

Container runtime

Deployment pipeline

CreatesContainer

builder tool

Docker

file

Service

container

image

Figure 12.8 A service is packaged as a container image, which is stored in a registry. At runtime
the service consists of multiple containers instantiated from that image. Containers typically run on
virtual machines. A single VM will usually run multiple containers.

396 CHAPTER 12 Deploying microservices
FROM openjdk:8u171-jre-alpine
RUN apk --no-cache add curl
CMD java ${JAVA_OPTS} -jar ftgo-restaurant-service.jar
HEALTHCHECK --start-period=30s --

interval=5s CMD curl http://localhost:8080/actuator/health || exit 1
COPY build/libs/ftgo-restaurant-service.jar .

The base image openjdk:8u171-jre-alpine is a minimal footprint Linux image con-
taining the JRE. The Dockerfile copies the service’s JAR into the image and config-
ures the image to execute the JAR on startup. It also configures Docker to periodically
invoke the health check endpoint, described in chapter 11. The HEALTHCHECK direc-
tive says to invoke the health check endpoint API, described in chapter 11, every 5 sec-
onds after an initial 30-second delay, which gives the service time to start.

 Once you’ve written the Dockerfile, you can then build the image. The following
listing shows the shell commands to build the image for Restaurant Service. The
script builds the service’s JAR file and executes the docker build command to create
the image.

cd ftgo-restaurant-service
../gradlew assemble
docker build -t ftgo-restaurant-service .

The docker build command has two arguments: the -t argument specifies the name
of the image, and the . specifies what Docker calls the context. The context, which in
this example is the current directory, consists of Dockerfile and the files used to
build the image. The docker build command uploads the context to the Docker dae-
mon, which builds the image.

PUSHING A DOCKER IMAGE TO A REGISTRY

The final step of the build process is to push the newly built Docker image to what is
known as a registry. A Docker registry is the equivalent of a Java Maven repository for
Java libraries, or a NodeJS npm registry for NodeJS packages. Docker hub is an exam-
ple of a public Docker registry and is equivalent to Maven Central or NpmJS.org. But
for your applications you’ll probably want to use a private registry provided by ser-
vices, such as Docker Cloud registry or AWS EC2 Container Registry.

 You must use two Docker commands to push an image to a registry. First, you use
the docker tag command to give the image a name that’s prefixed with the hostname

Listing 12.1 The Dockerfile used to build Restaurant Service

Listing 12.2 The shell commands used to build the container image for
Restaurant Service

The base image Install curl for
use by the
health check.

Configure Docker
to run java -jar ..
when the container
is started.

Configure Docker to
invoke the health

check endpoint.
Copies the JAR in Gradle’s build

directory into the image

Change to the
service’s directory. Build the

service’s JAR.

Build the image.

397Deploying services using the Service as a container pattern

ent
and optional port of the registry. The image name is also suffixed with the version,
which will be important when you make a new release of the service. For example, if
the hostname of the registry is registry.acme.com, you would use this command to
tag the image:

docker tag ftgo-restaurant-service registry.acme.com/ftgo-restaurant-
service:1.0.0.RELEASE

Next you use the docker push command to upload that tagged image to the registry:

docker push registry.acme.com/ftgo-restaurant-service:1.0.0.RELEASE

This command often takes much less time than you might expect. That’s because a
Docker image has what’s known as a layered file system, which enables Docker to only
transfer part of the image over the network. An image’s operating system, Java run-
time, and the application are in separate layers. Docker only needs to transfer those
layers that don’t exist in the destination. As a result, transferring an image over a net-
work is quite fast when Docker only has to move the application’s layers, which are a
small fraction of the image.

 Now that we’ve pushed the image to a registry, let’s look at how to create a
container.

RUNNING A DOCKER CONTAINER

Once you’ve packaged your service as a container image, you can then create one or
more containers. The container infrastructure will pull the image from the registry
onto a production server. It will then create one or more containers from that image.
Each container is an instance of your service.

 As you might expect, Docker provides a docker run command that creates and
starts a container. Listing 12.3 shows how to use this command to run Restaurant
Service. The docker run command has several arguments, including the container
image and a specification of environment variables to set in the runtime container.
These are used to pass an externalized configuration, such as the database’s network
location and more.

docker run \
-d \
--name ftgo-restaurant-service \
-p 8082:8080 \
-e SPRING_DATASOURCE_URL=... -e SPRING_DATASOURCE_USERNAME=... \
-e SPRING_DATASOURCE_PASSWORD=... \
registry.acme.com/ftgo-restaurant-service:1.0.0.RELEASE

Listing 12.3 Using docker run to run a containerized service

Runs it as a
background daemon The name of

the container
Binds port 8080 of the
container to port 8082
of the host machine

Environm
variables

Image to run

398 CHAPTER 12 Deploying microservices
The docker run command pulls the image from the registry if necessary. It then cre-
ates and starts the container, which runs the java -jar command specified in the
Dockerfile.

 Using the docker run command may seem simple, but there are a couple of prob-
lems. One is that docker run isn’t a reliable way to deploy a service, because it creates
a container running on a single machine. The Docker engine provides some basic
management features, such as automatically restarting containers if they crash or if
the machine is rebooted. But it doesn’t handle machine crashes.

 Another problem is that services typically don’t exist in isolation. They depend on
other services, such as databases and message brokers. It would be nice to deploy or
undeploy a service and its dependencies as a unit.

 A better approach that’s especially useful during development is to use Docker
Compose. Docker Compose is a tool that lets you declaratively define a set of contain-
ers using a YAML file, and then start and stop those containers as a group. What’s
more, the YAML file is a convenient way to specify numerous externalized configura-
tion properties. To learn more about Docker Compose, I recommend reading Docker
in Action by Jeff Nickoloff (Manning, 2016) and looking at the docker-compose.yml
file in the example code.

 The problem with Docker Compose, though, is that it’s limited to a single machine.
To deploy services reliably, you must use a Docker orchestration framework, such as
Kubernetes, which turns a set of machines into a pool of resources. I describe how to
use Kubernetes later, in section 12.4. First, let’s review the benefits and drawbacks of
using containers.

12.3.2 Benefits of deploying services as containers

Deploying services as containers has several benefits. First, containers have many of
the benefits of virtual machines:

 Encapsulation of the technology stack in which the API for managing your ser-
vices becomes the container API.

 Service instances are isolated.
 Service instances’s resources are constrained.

But unlike virtual machines, containers are a lightweight technology. Container
images are typically fast to build. For example, on my laptop it takes as little as five sec-
onds to package a Spring Boot application as a container image. Moving a container
image over the network, such as to and from the container registry, is also relatively
fast, primarily because only a subset of an image’s layers need to be transferred. Con-
tainers also start very quickly, because there’s no lengthy OS boot process. When a
container starts, all that runs is the service.

399Deploying the FTGO application with Kubernetes
12.3.3 Drawbacks of deploying services as containers

One significant drawback of containers is that you’re responsible for the undifferenti-
ated heavy lifting of administering the container images. You must patch the operat-
ing system and runtime. Also, unless you’re using a hosted container solution such as
Google Container Engine or AWS ECS, you must administer the container infrastruc-
ture and possibly the VM infrastructure it runs on.

12.4 Deploying the FTGO application with Kubernetes
Now that we’ve looked at containers and their trade-offs, let’s look at how to deploy
the FTGO application’s Restaurant Service using Kubernetes. Docker Compose,
described in section 12.3.1, is great for development and testing. But to reliably run
containerized services in production, you need to use a much more sophisticated con-
tainer runtime, such as Kubernetes. Kubernetes is a Docker orchestration framework,
a layer of software on top of Docker that turns a set of machines into a single pool of
resources for running services. It endeavors to keep the desired number of instances
of each service running at all times, even when service instances or machines crash.
The agility of containers combined with the sophistication of Kubernetes is a compel-
ling way to deploy services.

 In this section, I first give an overview of Kubernetes, its functionality, and its archi-
tecture. After that, I show how to deploy a service using Kubernetes. Kubernetes is a
complex topic, and covering it exhaustively is beyond the scope of this book, so I only
show how to use Kubernetes from the perspective of a developer. For more informa-
tion, I recommend Kubernetes in Action by Marko Luksa (Manning, 2018).

12.4.1 Overview of Kubernetes

Kubernetes is a Docker orchestration framework. A Docker orchestration framework treats
a set of machines running Docker as a pool of resources. You tell the Docker orches-
tration framework to run N instances of your service, and it handles the rest. Figure 12.9
shows the architecture of a Docker orchestration framework.

 A Docker orchestration framework, such as Kubernetes , has three main functions:

 Resource management—Treats a cluster of machines as a pool of CPU, memory,
and storage volumes, turning the collection of machines into a single machine.

 Scheduling—Selects the machine to run your container. By default, scheduling
considers the resource requirements of the container and each node’s available
resources. It might also implement affinity, which colocates containers on the
same node, and anti-affinity, which places containers on different nodes.

 Service management—Implements the concept of named and versioned services
that map directly to services in the microservice architecture. The orchestration
framework ensures that the desired number of healthy instances is running at
all times. It load balances requests across them. The orchestration framework
performs rolling upgrades of services and lets you roll back to an old version.

400 CHAPTER 12 Deploying microservices
Docker orchestration frameworks are an increasingly popular way to deploy applica-
tions. Docker Swarm is part of the Docker engine, so is easy to set up and use. Kuber-
netes is much more complex to set up and administer, but it’s much more sophisticated.
At the time of writing, Kubernetes has tremendous momentum, with a massive open
source community. Let’s take a closer look at how it works.

KUBERNETES ARCHITECTURE

Kubernetes runs on a cluster of machines. Figure 12.10 shows the architecture of a
Kubernetes cluster. Each machine in a Kubernetes cluster is either a master or a node.
A typical cluster has a small number of masters—perhaps just one—and many nodes.
A master machine is responsible for managing the cluster. A node is a worker than runs
one or more pods. A pod is Kubernetes’s unit of deployment and consists of a set of
containers.

 A master runs several components, including the following:

 API server—The REST API for deploying and managing services, used by the
kubectl command-line interface, for example.

 Etcd—A key-value NoSQL database that stores the cluster data.

SVC

A

SVC

B

SVC

C

Container

Docker orchestration framework

Container Container

Docker

Operating

system

Machine

Docker

Operating

system

Machine

Docker

Operating

system

Machine

Service management

Scheduling

Resource management

Figure 12.9 A Docker orchestration
framework turns a set of machines running
Docker into a cluster of resources. It assigns
containers to machines. The framework
attempts to keep the desired number of
healthy containers running at all times.

401Deploying the FTGO application with Kubernetes
 Scheduler—Selects a node to run a pod.
 Controller manager—Runs the controllers, which ensure that the state of the clus-

ter matches the intended state. For example, one type of controller known as a
replication controller ensures that the desired number of instances of a service
are running by starting and terminating instances.

A node runs several components, including the following:

 Kubelet—Creates and manages the pods running on the node
 Kube-proxy—Manages networking, including load balancing across pods
 Pods—The application services

SVC

Pod

Kubernetes master

etcd

Kubelet Kube-proxy

Kubernetes node

SVC

Pod

Kubelet Kube-proxy

Kubernetes node

Application

requests

Configuration

commands

Developer

Aplication

user

Deployment

pipeline

Kubecti

CLI
API Server

Controller

management

Scheduler

Figure 12.10 A Kubernetes cluster consists of a master, which manages the cluster, and nodes,
which run the services. Developers and the deployment pipeline interact with Kubernetes through the
API server, which along with other cluster-management software runs on the master. Application
containers run on nodes. Each node runs a Kubelet, which manages the application container, and a
kube-proxy, which routes application requests to the pods, either directly as a proxy or indirectly by
configuring iptables routing rules built into the Linux kernel.

402 CHAPTER 12 Deploying microservices
Let’s now look at key Kubernetes concepts you’ll need to master to deploy services on
Kubernetes.

KEY KUBERNETES CONCEPTS

As mentioned in the introduction to this section, Kubernetes is quite complex. But it’s
possible to use Kubernetes productively once you master a few key concepts, called
objects. Kubernetes defines many types of objects. From a developer’s perspective, the
most important objects are the following:

 Pod—A pod is the basic unit of deployment in Kubernetes. It consists of one or
more containers that share an IP address and storage volumes. The pod for a
service instance often consists of a single container, such as a container running
the JVM. But in some scenarios a pod contains one or more sidecar containers,
which implement supporting functions. For example, an NGINX server could
have a sidecar that periodically does a git pull to download the latest version
of the website. A pod is ephemeral, because either the pod’s containers or the
node it’s running on might crash.

 Deployment—A declarative specification of a pod. A deployment is a controller
that ensures that the desired number of instances of the pod (service instances)
are running at all times. It supports versioning with rolling upgrades and roll-
backs. Later in section 12.4.2, you’ll see that each service in a microservice
architecture is a Kubernetes deployment.

 Service—Provides clients of an application service with a static/stable network
location. It’s a form of infrastructure-provided service discovery, described in
chapter 3. A service has an IP address and a DNS name that resolves to that IP
address and load balances TCP and UDP traffic across one or more pods. The
IP address and a DNS name are only accessible within the Kubernetes. Later, I
describe how to configure services that are accessible from outside the cluster.

 ConfigMap—A named collection of name-value pairs that defines the external-
ized configuration for one or more application services (see chapter 11 for an
overview of externalized configuration). The definition of a pod’s container
can reference a ConfigMap to define the container’s environment variables. It
can also use a ConfigMap to create configuration files inside the container. You
can store sensitive information, such as passwords, in a form of ConfigMap
called a Secret.

Now that we’ve reviewed the key Kubernetes concepts, let’s see them in action by look-
ing at how to deploy an application service on Kubernetes.

12.4.2 Deploying the Restaurant service on Kubernetes

As mentioned earlier, to deploy a service on Kubernetes, you need to define a deploy-
ment. The easiest way to create a Kubernetes object such as a deployment is by writing
a YAML file. Listing 12.4 is a YAML file defining a deployment for Restaurant Service.
This deployment specifies running two replicas of a pod. The pod has just one container.

403Deploying the FTGO application with Kubernetes
The container definition specifies the Docker image running along with other attri-
butes, such as the values of environment variables. The container’s environment vari-
ables are the service’s externalized configuration. They are read by Spring Boot and
made available as properties in the application context.

apiVersion: extensions/v1beta1
kind: Deployment
metadata:
name: ftgo-restaurant-service
spec:
replicas: 2
template:
metadata:
labels:
app: ftgo-restaurant-service

spec:
 containers:

- name: ftgo-restaurant-service
 image: msapatterns/ftgo-restaurant-service:latest
 imagePullPolicy: Always
 ports:
 - containerPort: 8080
 name: httpport
 env:
 - name: JAVA_OPTS
 value: "-Dsun.net.inetaddr.ttl=30"
 - name: SPRING_DATASOURCE_URL
 value: jdbc:mysql://ftgo-mysql/eventuate
 - name: SPRING_DATASOURCE_USERNAME
 valueFrom:
 secretKeyRef:
 name: ftgo-db-secret
 key: username
 - name: SPRING_DATASOURCE_PASSWORD
 valueFrom:
 secretKeyRef:
 name: ftgo-db-secret
 key: password
 - name: SPRING_DATASOURCE_DRIVER_CLASS_NAME
 value: com.mysql.jdbc.Driver
 - name: EVENTUATELOCAL_KAFKA_BOOTSTRAP_SERVERS
 value: ftgo-kafka:9092
 - name: EVENTUATELOCAL_ZOOKEEPER_CONNECTION_STRING
 value: ftgo-zookeeper:2181
 livenessProbe:
 httpGet:
 path: /actuator/health
 port: 8080
 initialDelaySeconds: 60
 periodSeconds: 20
 readinessProbe:

Listing 12.4 Kubernetes Deployment for ftgo-restaurant-service

Specifies that this is an
object of type Deployment

The name of the deployment

Number of pod replicas

Gives each pod a label
called app whose value is
ftgo-restaurant-service

The specification of
the pod, which defines
just one container

 The container’s port

The container’s environment
variables, which are read by
Spring Boot

Sensitive values that
are retrieved from the
Kubernetes Secret
called ftgo-db-secret

Configure Kubernetes
to invoke the health
check endpoint.

404 CHAPTER 12 Deploying microservices
 httpGet:
 path: /actuator/health
 port: 8080
 initialDelaySeconds: 60
 periodSeconds: 20

This deployment definition configures Kubernetes to invoke Restaurant Service’s
health check endpoint. As described in chapter 11, a health check endpoint enables
Kubernetes to determine the health of the service instance. Kubernetes implements
two different checks. The first check is readinessProbe, which it uses to determine
whether it should route traffic to a service instance. In this example, Kubernetes
invokes the /actuator/health HTTP endpoint every 20 seconds after an initial 30-
second delay, which gives it a chance to initialize. If some number (default is 1) of
consecutive readinessProbes succeeds, Kubernetes considers the service to be ready,
whereas if some number (default, 3) of consecutive readinessProbes fail, it’s consid-
ered not to be ready. Kubernetes will only route traffic to the service instance when
the readinessProbe indicates that it’s ready.

 The second health check is the livenessProbe. It’s configured the same way as the
readinessProbe. But rather than determine whether traffic should be routed to a ser-
vice instance, the livenessProbe determines whether Kubernetes should terminate
and restart the service instance. If some number (default, 3) of consecutive liveness-
Probes fail in a row, Kubernetes will terminate and restart the service.

 Once you’ve written the YAML file, you can create or update the deployment by
using the kubectl apply command:

kubectl apply -f ftgo-restaurant-service/src/deployment/kubernetes/ftgo-
restaurant-service.yml

This command makes a request to the Kubernetes API server that results in the cre-
ation of the deployment and the pods.

 To create this deployment, you must first create the Kubernetes Secret called
ftgo-db-secret. One quick and insecure way to do that is as follows:

kubectl create secret generic ftgo-db-secret \
--from-literal=username=mysqluser --from-literal=password=mysqlpw

This command creates a secret containing the database user ID and password speci-
fied on the command line. See the Kubernetes documentation (https://kubernetes
.io/docs/concepts/configuration/secret/#creating-your-own-secrets) for more secure
ways to create secrets.

CREATING A KUBERNETES SERVICE

At this point the pods are running, and the Kubernetes deployment will do its best to
keep them running. The problem is that the pods have dynamically assigned IP
addresses and, as such, aren’t that useful to a client that wants to make an HTTP
request. As described in chapter 3, the solution is to use a service discovery mechanism.

https://kubernetes.io/docs/concepts/configuration/secret/#creating-your-own-secrets
https://kubernetes.io/docs/concepts/configuration/secret/#creating-your-own-secrets
https://kubernetes.io/docs/concepts/configuration/secret/#creating-your-own-secrets

405Deploying the FTGO application with Kubernetes
One approach is to use a client-side discovery mechanism and install a service registry,
such as Netflix OSS Eureka. Fortunately, we can avoid doing that by using the service
discovery mechanism built in to Kubernetes and define a Kubernetes service.

 A service is a Kubernetes object that provides the clients of one or more pods with a
stable endpoint. It has an IP address and a DNS name that resolves that IP address.
The service load balances traffic to that IP address across the pods. Listing 12.5
shows the Kubernetes service for Restaurant Service. This service routes traffic
from http://ftgo-restaurant-service:8080 to the pods defined by the deploy-
ment shown in the listing.

apiVersion: v1
kind: Service
metadata:
name: ftgo-restaurant-service
spec:
ports:
- port: 8080

targetPort: 8080
selector:
 app: ftgo-restaurant-service

The key part of the service definition is selector, which selects the target pods. It selects
those pods that have a label named app with the value ftgo-restaurant-service. If
you look closely, you’ll see that the container defined in listing 12.4 has such a label.

 Once you’ve written the YAML file, you can create the service using this command:

kubectl apply -f ftgo-restaurant-service-service.yml

Now that we’ve created the Kubernetes service, any clients of Restaurant Service
that are running inside the Kubernetes cluster can access its REST API via http://
ftgo-restaurant-service:8080. Later, I discuss how to upgrade running services,
but first let’s take a look at how to make the services accessible from outside the
Kubernetes cluster.

12.4.3 Deploying the API gateway

The Kubernetes service for Restaurant Service, shown in listing 12.5, is only accessi-
ble from within the cluster. That’s not a problem for Restaurant Service, but what
about API Gateway? Its role is to route traffic from the outside world to the service. It
therefore needs to be accessible from outside the cluster. Fortunately, a Kubernetes
service supports this use case as well. The service we looked at earlier is a ClusterIP
service, which is the default, but there are, however, two other types of services: Node-
Port and LoadBalancer.

Listing 12.5 The YAML definition of the Kubernetes service for
ftgo-restaurant-service

The name of the service,
also the DNS name

The exposed
port The container port

to route traffic to

Selects the containers
to route traffic to

406 CHAPTER 12 Deploying microservices
 A NodePort service is accessible via a cluster-wide port on all the nodes in the clus-
ter. Any traffic to that port on any cluster node is load balanced to the backend pods.
You must select an available port in the range of 30000–32767. For example, listing 12.6
shows a service that routes traffic to port 30000 of Consumer Service.

apiVersion: v1
kind: Service
metadata:
name: ftgo-api-gateway

spec:
type: NodePort
ports:
- nodePort: 30000

port: 80
targetPort: 8080

selector:
app: ftgo-api-gateway

API Gateway is within the cluster using the URL http://ftgo-api-gateway and out-
side the URL http://<node-ip-address>:3000/, where node-ip-address is the IP
address of one of the nodes. After configuring a NodePort service you can, for exam-
ple, configure an AWS Elastic Load Balancer (ELB) to load balance requests from the
internet across the nodes. A key benefit of this approach is that the ELB is entirely
under your control. You have complete flexibility when configuring it.

 A NodePort type service isn’t the only option, though. You can also use a Load-
Balancer service, which automatically configures a cloud-specific load balancer. The
load balancer will be an ELB if Kubernetes is running on AWS. One benefit of this
type of service is that you no longer have to configure your own load balancer. The
drawback, however, is that although Kubernetes does give a few options for configur-
ing the ELB, such the SSL certificate, you have a lot less control over its configuration.

12.4.4 Zero-downtime deployments

Imagine you’ve updated Restaurant Service and want to deploy those changes into
production. Updating a running service is a simple three-step process when using
Kubernetes:

1 Build a new container image and push it to the registry using the same process
described earlier. The only difference is that the image will be tagged with a dif-
ferent version tag—for example, ftgo-restaurant-service:1.1.0.RELEASE.

2 Edit the YAML file for the service’s deployment so that it references the new image.
3 Update the deployment using the kubectl apply -f command.

Kubernetes will then perform a rolling upgrade of the pods. It will incrementally cre-
ate pods running version 1.1.0.RELEASE and terminate the pods running version

Listing 12.6 The YAML definition of a NodePort service that routes traffic to port
8082 of Consumer Service

Specifies a type
of NodePort

The cluster-
wide port

407Deploying the FTGO application with Kubernetes
1.0.0.RELEASE. What’s great about how Kubernetes does this is that it doesn’t ter-
minate old pods until their replacements are ready to handle requests. It uses the
readinessProbe mechanism, a health check mechanism described earlier in this
section, to determine whether a pod is ready. As a result, there will always be pods
available to handle requests. Eventually, assuming the new pods start successfully, all
the deployment’s pods will be running the new version.

 But what if there’s a problem and the version 1.1.0.RELEASE pods don’t start?
Perhaps there’s a bug, such as a misspelled container image name or a missing envi-
ronment variable for a new configuration property. If the pods fail to start, the deploy-
ment will become stuck. At that point, you have two options. One option is to fix the
YAML file and rerun kubectl apply -f to update the deployment. The other option is
to roll back the deployment.

 A deployment maintains the history of what are termed rollouts. Each time you
update the deployment, it creates a new rollout. As a result, you can easily roll back a
deployment to a previous version by executing the following command:

kubectl rollout undo deployment ftgo-restaurant-service

Kubernetes will then replace the pods running version 1.1.0.RELEASE with pods run-
ning the older version, 1.0.0.RELEASE.

 A Kubernetes deployment is a good way to deploy a service without downtime. But
what if a bug only appears after the pod is ready and receiving production traffic? In
that situation, Kubernetes will continue to roll out new versions, so a growing number
of users will be impacted. Though your monitoring system will hopefully detect the issue
and quickly roll back the deployment, you won’t avoid impacting at least some users. To
address this issue and make rolling out a new version of a service more reliable, we need
to separate deploying, which means getting the service running in production, from
releasing the service, which means making it available to handle production traffic.
Let’s look at how to accomplish that using a service mesh.

12.4.5 Using a service mesh to separate deployment from release

The traditional way to roll out a new version of a service is to first test it in a staging
environment. Then, once it’s passed the test in staging, you deploy in production by
doing a rolling upgrade that replaces old instances of the service with new service
instances. On one hand, as you just saw, Kubernetes deployments make doing a roll-
ing upgrade very straightforward. On the other hand, this approach assumes that
once a service version has passed the tests in the staging environment, it will work in
production. Sadly, this is not always the case.

 One reason is because staging is unlikely to be an exact clone, if for no other reason
than the production environment is likely to be much larger and handle much more
traffic. It’s also time consuming to keep the two environments synchronized. As a result
of discrepancies, it’s likely that some bugs will only show up in production. And even it
were an exact clone, you can’t guarantee that testing will catch all bugs.

408 CHAPTER 12 Deploying microservices
 A much more reliable way to roll out a new version is to separate deployment from
release:

 Deployment—Running in the production environment
 Releasing a service—Making it available to end users

You then deploy a service into production using the following steps:

1 Deploy the new version into production without routing any end-user requests
to it.

2 Test it in production.
3 Release it to a small number of end users.
4 Incrementally release it to an increasingly larger number of users until it’s han-

dling all the production traffic.
5 If at any point there’s an issue, revert back to the old version—otherwise, once

you’re confident the new version is working correctly, delete the old version.

Ideally, those steps will be performed by a fully automated deployment pipeline that
carefully monitors the newly deployed service for errors.

 Traditionally, separating deployments and releases in this way has been challeng-
ing because it requires a lot of work to implement it. But one of the benefits of using a
service mesh is that using this style of deployment is a lot easier. A service mesh is, as
described in chapter 11, networking infrastructure that mediates all communication
between a service and other services and external applications. In addition to taking
on some of the responsibilities of the microservice chassis framework, a service mesh
provides rule-based load balancing and traffic routing that lets you safely run multiple
versions of your services simultaneously. Later in this section, you’ll see that you can
route test users to one version of a service and end-users to a different version, for
example.

 As described in chapter 11, there are several service meshes to choose from. In this
section, I show you how to use Istio, a popular, open source service mesh originally
developed by Google, IBM, and Lyft. I begin by providing a brief overview of Istio and
a few of its many features. Next I describe how to deploy an application using Istio.
After that, I show how to use its traffic-routing capabilities to deploy and release an
upgrade to a service.

OVERVIEW OF THE ISTIO SERVICE MESH

The Istio website describes Istio as an “An open platform to connect, manage, and
secure microservices” (https://istio.io). It’s a networking layer through which all of
your services’ network traffic flows. Istio has a rich set of features organized into four
main categories:

 Traffic management—Includes service discovery, load balancing, routing rules,
and circuit breakers

 Security—Secures interservice communication using Transport Layer Security
(TLS)

https://istio.io

409Deploying the FTGO application with Kubernetes
 Telemetry—Captures metrics about network traffic and implements distributed
tracing

 Policy enforcement—Enforces quotas and rate limits

This section focuses on Istio’s traffic-management capabilities.
 Figure 12.11 shows Istio’s architecture. It consists of a control plane and a data

plane. The control plane implements management functions, including configuring
the data plane to route traffic. The data plane consists of Envoy proxies, one per ser-
vice instance.

 The two main components of the control plane are the Pilot and the Mixer. The Pilot
extracts information about deployed services from the underlying infrastructure. When
running on Kubernetes, for example, the Pilot retrieves the services and healthy pods. It
configures the Envoy proxies to route traffic according to the defined routing rules. The
Mixer collects telemetry from the Envoy proxies and enforces policies.

API Gateway

container

GET/consumers/1

GET/consumers/1
GET/consumers/1

Host: ftgo-consumer-service

GET/consumers/1

Host: ftgo-consumer-service

Pod

Service registry

Consumer

Service

container

Istio Envoy

container

Logging

Server

Service Pod

Metrics

Server

Istio Envoy

container

MixerPilot

Istio control plane

Configures Checks

Telemetry

Kubernetes

Pod

Key

Configuration

Requests

Policy check

Telemetry

Monitoring infrastructure

Istio data plane

Queries for deployed services

Figure 12.11 Istio consists of a control plane, whose components include the Pilot and the Mixer, and a data
plane, which consists of Envoy proxy servers. The Pilot extracts information about deployed services from the
underlying infrastructure and configures the data plane. The Mixer enforces policies such as quotas and gathers
telemetry, reporting it to the monitoring infrastructure servers. The Envoy proxy servers route traffic in and out of
services. There’s one Envoy proxy server per service instance.

410 CHAPTER 12 Deploying microservices
The Istio Envoy proxy is a modified version of Envoy (www.envoyproxy.io). It’s a high-
performance proxy that supports a variety of protocols, including TCP, low-level pro-
tocols such as HTTP and HTTPS, and higher-level protocols. It also understands
MongoDB, Redis, and DynamoDB protocols. Envoy also supports robust interservice
communication with features such as circuit breakers, rate limiting, and automatic
retries. It can secure communication within the application by using TLS for inter-
Envoy communication.

 Istio uses Envoy as a sidecar, a process or container that runs alongside the service
instance and implements cross-cutting concerns. When running on Kubernetes, the
Envoy proxy is a container within the service’s pod. In other environments that don’t
have the pod concept, Envoy runs in the same container as the service. All traffic to
and from a service flows through its Envoy proxy, which routes traffic according to the
routing rules given to it by the control plane. For example, direct Service Service
communication becomes Service Source Envoy Destination Envoy Service.

Istio is configured using Kubernetes-style YAML configuration files. It has a command-
line tool called istioctl that’s similar to kubectl. You use istioctl for creating,
updating, and deleting rules and policies. When using Istio on Kubernetes, you can
also use kubectl.

 Let’s look at how to deploy a service with Istio.

DEPLOYING A SERVICE WITH ISTIO

Deploying a service on Istio is quite straightforward. You define a Kubernetes Service
and a Deployment for each of your application’s services. Listing 12.7 shows the defini-
tion of Service and Deployment for Consumer Service. Although it’s almost identical
to the definitions I showed earlier, there are a few differences. That’s because Istio has
a few requirements for the Kubernetes services and pods:

 A Kubernetes service port must use the Istio naming convention of <proto-
col>[-<suffix>], where protocol is http, http2, grpc, mongo, or redis. If the
port is unnamed, Istio will treat the port as a TCP port and won’t apply rule-
based routing.

 A pod should have an app label such as app: ftgo-consumer-service, which
identifies the service, in order to support Istio distributed tracing.

 In order to run multiple versions of a service simultaneously, the name of a
Kubernetes deployment must include the version, such as ftgo-consumer-
service-v1, ftgo-consumer-service-v2, and so on. A deployment’s pods should
have a version label, such as version: v1, which specifies the version, so that
Istio can route to a specific version.

Pattern: Sidecar
Implement cross-cutting concerns in a sidecar process or container that runs alongside
the service instance. See http://microservices.io/patterns/deployment/sidecar.html.

http://microservices.io/patterns/deployment/sidecar.html
http://www.envoyproxy.io

411Deploying the FTGO application with Kubernetes
apiVersion: v1
kind: Service
metadata:
name: ftgo-consumer-service

spec:
ports:
- name: http
port: 8080
targetPort: 8080

selector:
app: ftgo-consumer-service

apiVersion: extensions/v1beta1
kind: Deployment
metadata:
name: ftgo-consumer-service-v2
spec:
replicas: 1
template:
metadata:
labels:
app: ftgo-consumer-service
version: v2

spec:
containers:
- image: image: ftgo-consumer-service:v2

...

By now, you may be wondering how to run the Envoy proxy container in the service’s
pod. Fortunately, Istio makes that remarkably easy by automating modifying the pod
definition to include the Envoy proxy. There are two ways to do that. The first is to use
manual sidecar injection and run the istioctl kube-inject command:

istioctl kube-inject -f ftgo-consumer-service/src/deployment/kubernetes/ftgo-
consumer-service.yml | kubectl apply -f -

This command reads a Kubernetes YAML file and outputs the modified configura-
tion containing the Envoy proxy. The modified configuration is then piped into
kubectl apply.

 The second way to add the Envoy sidecar to the pod is to use automatic sidecar injec-
tion. When this feature is enabled, you deploy a service using kubectl apply. Kubernetes
automatically invokes Istio to modify the pod definition to include the Envoy proxy.

 If you describe your service’s pod, you’ll see that it consists of more than your ser-
vice’s container:

$ kubectl describe po ftgo-consumer-service-7db65b6f97-q9jpr

Name: ftgo-consumer-service-7db65b6f97-q9jpr
Namespace: default
...

Listing 12.7 Deploying Consumer Service with Istio

Named port

Versioned
deployment

Recommended
labels

Image
version

412 CHAPTER 12 Deploying microservices
Init Containers:
istio-init:

Image: docker.io/istio/proxy_init:0.8.0
....

Containers:
ftgo-consumer-service:

Image: msapatterns/ftgo-consumer-service:latest
...

istio-proxy:
Image: docker.io/istio/proxyv2:0.8.0

...

Now that we’ve deployed the service, let’s look at how to define routing rules.

CREATE ROUTING RULES TO ROUTE TO THE V1 VERSION

Let’s imagine that you deployed the ftgo-consumer-service-v2 deployment. In the
absence of routing rules, Istio load balances requests across all versions of a service. It
would, therefore, load balance across versions 1 and 2 of ftgo-consumer-service,
which defeats the purpose of using Istio. In order to safely roll out a new version, you
must define a routing rule that routes all traffic to the current v1 version.

Initializes the pod

The service
container

The Envoy
container

API gateway

pod
VirtualService DestinationRule

Consumer

Service

v1 pod

metadata:
labels:
app: ftgo-consumer-service
version: v1

Consumer

Service

v2 pod

Routes to the v subset1

Routing rule for the
Consumer Service

Defines subsets of
pods of a service

No traffic routed to v2.

Defines subsets
v and v21

All traffic routed to v1

metadata:
labels:
app: ftgo-consumer-service
version: v2

kind: DestinationRule
metadata:
name:ftgo-consumer-service
spec:
host: ftgo-consumer-service
subsets:
-name: v1
labels:
version: v1

-name: v2
labels:
version: v2

kind: VirtualService
metadata:
name:ftgo-consumer-service
spec:
hosts:
-ftgo-consumer-service
http:
-route:
-destination:
host: ftgo-consumer-service
subset: v1
weight: 100

GET/consumers/1
host:ftgo-consumer-

service

Figure 12.12 The routing rule for Consumer Service, which routes all traffic to the v1 pods. It consists of a
VirtualService, which routes its traffic to the v1 subset, and a DestinationRule, which defines the v1
subset as the pods labeled with version: v1. Once you’ve defined this rule, you can safely deploy a new version
without routing any traffic to it initially.

413Deploying the FTGO application with Kubernetes
Figure 12.12 shows the routing rule for Consumer Service that routes all traffic to v1.
It consists of two Istio objects: a VirtualService and a DestinationRule.

 A VirtualService defines how to route requests for one or more hostnames. In this
example, VirtualService defines the routes for a single hostname: ftgo-consumer-
service. Here’s the definition of VirtualService for Consumer Service:

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
name: ftgo-consumer-service

spec:
hosts:
- ftgo-consumer-service
http:
- route:
- destination:

host: ftgo-consumer-service
subset: v1

It routes all requests for the v1 subset of the pods of Consumer Service. Later, I show
more complex examples that route based on HTTP requests and load balance across
multiple weighted destinations.

 In addition to VirtualService, you must also define a DestinationRule, which
defines one or more subsets of pods for a service. A subset of pods is typically a service
version. A DestinationRule can also define traffic policies, such as the load-balancing
algorithm. Here’s the DestinationRule for Consumer Service:

apiVersion: networking.istio.io/v1alpha3
kind: DestinationRule
metadata:
name: ftgo-consumer-service

spec:
host: ftgo-consumer-service
subsets:
- name: v1
labels:
version: v1

- name: v2
labels:
version: v2

This DestinationRule defines two subsets of pods: v1 and v2. The v1 subset selects
pods with the label version: v1. The v2 subset selects pods with the label version: v2.

 Once you’ve defined these rules, Istio will only route traffic pods labeled version:
v1. It’s now safe to deploy v2.

Applies to the
Consumer Service

Routes to
Consumer Service

The v1 subset

The name of
the subset

The pod selector
for the subset

414 CHAPTER 12 Deploying microservices
DEPLOYING VERSION 2 OF CONSUMER SERVICE

Here’s an excerpt of the version 2 Deployment for Consumer Service:

apiVersion: extensions/v1beta1
kind: Deployment
metadata:
name: ftgo-consumer-service-v2
spec:
replicas: 1
template:
metadata:
labels:
app: ftgo-consumer-service
version: v2

...

This deployment is called ftgo-consumer-service-v2. It labels its pods with version:
v2. After creating this deployment, both versions of the ftgo-consumer-service will be
running. But because of the routing rules, Istio won’t route any traffic to v2. You’re
now ready to route some test traffic to v2.

ROUTING TEST TRAFFIC TO VERSION 2
Once you’ve deployed a new version of a service, the next step is to test it. Let’s sup-
pose that requests from test users have a testuser header . We can enhance the ftgo-
consumer-service VirtualService to route requests with this header to v2 instances
by making the following change:

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
name: ftgo-consumer-service

spec:
hosts:
- ftgo-consumer-service
http:
- match:
- headers:

testuser:
regex: "^.+$"

route:
- destination:

host: ftgo-consumer-service
subset: v2

- route:
- destination:

host: ftgo-consumer-service
subset: v1

In addition to the original default route, VirtualService has a routing rule that
routes requests with the testuser header to the v2 subset. After you’ve updated the
rules, you can now test Consumer Service. Then, once you feel confident that the v2 is
working, you can route some production traffic to it. Let’s look at how to do that.

Version 2

Pod is labeled
with the version

Matches a nonblank
testuser header

Routes test
users to v2

Routes everyone
else to v1

415Deploying services using the Serverless deployment pattern
ROUTING PRODUCTION TRAFFIC TO VERSION 2
After you’ve tested a newly deployed service, the next step is to start routing produc-
tion traffic to it. A good strategy is to initially only route a small amount of traffic.
Here, for example, is a rule that routes 95% of traffic to v1 and 5% to v2:

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
name: ftgo-consumer-service

spec:
hosts:
- ftgo-consumer-service
http:
- route:
- destination:

host: ftgo-consumer-service
subset: v1

weight: 95
- destination:

host: ftgo-consumer-service
subset: v2

weight: 5

As you gain confidence that the service can handle production traffic, you can incre-
mentally increase the amount of traffic going to the version 2 pods until it reaches
100%. At that point, Istio isn’t routing any traffic to the v1 pods. You could leave them
running for a little while longer before deleting the version 1 Deployment.

 By letting you easily separate deployment from release, Istio makes rolling out a
new version of a service much more reliable. Yet I’ve barely scratched the surface of
Istio’s capabilities. As of the time of writing, the current version of Istio is 0.8. I’m
excited to watch it and the other service meshes mature and become a standard part
of a production environment.

12.5 Deploying services using the Serverless deployment
pattern
The Language-specific packaging (section 12.1), Service as a VM (section 12.2), and
Service as a container (section 12.3) patterns are all quite different, but they share
some common characteristics. The first is that with all three patterns you must prepro-
vision some computing resources—either physical machines, virtual machines, or con-
tainers. Some deployment platforms implement autoscaling, which dynamically adjusts
the number of VMs or containers based on the load. But you’ll always need to pay for
some VMs or containers, even if they’re idle.

 Another common characteristic is that you’re responsible for system administra-
tion. If you’re running any kind of machine, you must patch the operating system. In
the case of physical machines, this also includes racking and stacking. You’re also
responsible for administering the language runtime. This is an example of what Ama-
zon called “undifferentiated heavy lifting.” Since the early days of computing, system

416 CHAPTER 12 Deploying microservices
administration has been one of those things you need to do. As it turns out, though,
there’s a solution: serverless.

12.5.1 Overview of serverless deployment with AWS Lambda

At AWS Re:Invent 2014, Werner Vogels, the CTO of Amazon, introduced AWS
Lambda with the amazing phrase “magic happens at the intersection of functions,
events, and data.” As this phrase suggests, AWS Lambda was initially for deploying
event-driven services. It’s “magic” because, as you’ll see, AWS Lambda is an example of
serverless deployment technology.

AWS Lambda supports Java, NodeJS, C#, GoLang, and Python. A lambda function is a
stateless service. It typically handles requests by invoking AWS services. For example, a
lambda function that’s invoked when an image is uploaded to an S3 bucket could
insert an item into a DynamoDB IMAGES table and publish a message to Kinesis to
trigger image processing. A lambda function can also invoke third-party web services.

 To deploy a service, you package your application as a ZIP file or JAR file, upload it
to AWS Lambda, and specify the name of the function to invoke to handle a request
(also called an event). AWS Lambda automatically runs enough instances of your
microservice to handle incoming requests. You’re billed for each request based on the
time taken and the memory consumed. Of course, the devil is in the details, and later
you’ll see that AWS Lambda has limitations. But the notion that neither you as a devel-
oper nor anyone in your organization need worry about any aspect of servers, virtual
machines, or containers is incredibly powerful.

Serverless deployment technologies
The main public clouds all provide a serverless deployment option, although AWS
Lambda is the most advanced. Google Cloud has Google Cloud functions, which as
of the time writing is in beta (https://cloud.google.com/functions/). Microsoft Azure
has Azure functions (https://azure.microsoft.com/en-us/services/functions).

There are also open source serverless frameworks, such as Apache Openwhisk
(https://openwhisk.apache.org) and Fission for Kubernetes (https://fission.io), that
you can run on your own infrastructure. But I’m not entirely convinced of their value.
You need to manage the infrastructure that runs the serverless framework—which
doesn’t exactly sound like serverless. Moreover, as you’ll see later in this section,
serverless provides a constrained programming model in exchange for minimal sys-
tem administration. If you need to manage infrastructure, then you have the con-
straints without the benefit.

Pattern: Serverless deployment
Deploy services using a serverless deployment mechanism provided by a public cloud.
See http://microservices.io/patterns/deployment/serverless-deployment.html.

https://cloud.google.com/functions/
https://azure.microsoft.com/en-us/services/functions
https://openwhisk.apache.org
https://fission.io
http://microservices.io/patterns/deployment/serverless-deployment.html

417Deploying services using the Serverless deployment pattern
12.5.2 Developing a lambda function

Unlike when using the other three patterns, you must use a different programming
model for your lambda functions. A lambda function’s code and the packaging
depend on the programming language. A Java lambda function is a class that imple-
ments the generic interface RequestHandler, which is defined by the AWS Lambda
Java core library and shown in the following listing. This interface takes two type
parameters: I, which is the input type, and O, which is the output type. The type of I
and O depend on the specific kind of request that the lambda handles.

public interface RequestHandler<I, O> {
public O handleRequest(I input, Context context);

}

The RequestHandler interface defines a single handleRequest() method. This method
has two parameters, an input object and a context, which provide access to the lambda
execution environment, such as the request ID. The handleRequest() method
returns an output object. For lambda functions that handle HTTP requests that are
proxied by an AWS API Gateway, I and O are APIGatewayProxyRequestEvent and
APIGatewayProxyResponseEvent, respectively. As you’ll soon see, the handler func-
tions are quite similar to old-style Java EE servlets.

 A Java lambda is packaged as either a ZIP file or a JAR file. A JAR file is an uber JAR
(or fat JAR) created by, for example, the Maven Shade plugin. A ZIP file has the
classes in the root directory and JAR dependencies in the lib directory. Later, I show
how a Gradle project can create a ZIP file. But first, let’s look at the different ways of
invoking lambda function.

12.5.3 Invoking lambda functions

There are four ways to invoke a lambda function:

 HTTP requests
 Events generated by AWS services
 Scheduled invocations
 Directly using an API call

Let’s look at each one.

HANDLING HTTP REQUESTS

One way to invoke a lambda function is to configure an AWS API Gateway to route
HTTP requests to your lambda. The API gateway exposes your lambda function as
an HTTPS endpoint. It functions as an HTTP proxy, invokes the lambda function
with an HTTP request object, and expects the lambda function to return an HTTP
response object. By using the API gateway with AWS Lambda you can, for example,
deploy RESTful services as lambda functions.

Listing 12.8 A Java lambda function is a class that implements the RequestHandler
interface.

418 CHAPTER 12 Deploying microservices
HANDLING EVENTS GENERATED BY AWS SERVICES

The second way to invoke a lambda function is to configure your lambda function to
handle events generated by an AWS service. Examples of events that can trigger a
lambda function include the following:

 An object is created in an S3 bucket.
 An item is created, updated, or deleted in a DynamoDB table.
 A message is available to read from a Kinesis stream.
 An email is received via the Simple email service.

Because of this integration with other AWS services, AWS Lambda is useful for a wide
range of tasks.

DEFINING SCHEDULED LAMBDA FUNCTIONS

Another way to invoke a lambda function is to use a Linux cron-like schedule. You can
configure your lambda function to be invoked periodically—for example, every minute,
3 hours, or 7 days. Alternatively, you can use a cron expression to specify when AWS
should invoke your lambda. cron expressions give you tremendous flexibility. For exam-
ple, you can configure a lambda to be invoked at 2:15 p.m. Monday through Friday.

INVOKING A LAMBDA FUNCTION USING A WEB SERVICE REQUEST

The fourth way to invoke a lambda function is for your application to invoke it using a
web service request. The web service request specifies the name of the lambda function
and the input event data. Your application can invoke a lambda function synchronously
or asynchronously. If your application invokes the lambda function synchronously, the
web service’s HTTP response contains the response of the lambda function. Other-
wise, if it invokes the lambda function asynchronously, the web service response indi-
cates whether the execution of the lambda was successfully initiated.

12.5.4 Benefits of using lambda functions

Deploying services using lambda functions has several benefits:

 Integrated with many AWS services—It’s remarkably straightforward to write lamb-
das that consume events generated by AWS services, such as DynamoDB and
Kinesis, and handle HTTP requests via the AWS API Gateway.

 Eliminates many system administration tasks—You’re no longer responsible for low-
level system administration. There are no operating systems or runtimes to
patch. As a result, you can focus on developing your application.

 Elasticity—AWS Lambda runs as many instances of your application as are needed
to handle the load. You don’t have the challenge of predicting needed capacity or
run the risk of underprovisioning or overprovisioning VMs or containers.

 Usage-based pricing—Unlike a typical IaaS cloud, which charges by the minute or
hour for a VM or container even when it’s idle, AWS Lambda only charges you
for the resources that are consumed while processing each request.

419Deploying a RESTful service using AWS Lambda and AWS Gateway
12.5.5 Drawbacks of using lambda functions

As you can see, AWS Lambda is an extremely convenient way to deploy services, but
there are some significant drawbacks and limitations:

 Long-tail latency—Because AWS Lambda dynamically runs your code, some
requests have high latency because of the time it takes for AWS to provision an
instance of your application and for the application to start. This is particularly
challenging when running Java-based services because they typically take at least
several seconds to start. For instance, the example lambda function described in
the next section takes a while to start up. Consequently, AWS Lambda may not
be suited for latency-sensitive services.

 Limited event/request-based programming model—AWS Lambda isn’t intended to be
used to deploy long-running services, such as a service that consumes messages
from a third-party message broker.

Because of these drawbacks and limitations, AWS Lambda isn’t a good fit for all
services. But when choosing a deployment pattern, I recommend first evaluating
whether serverless deployment supports your service’s requirements before consid-
ering alternatives.

12.6 Deploying a RESTful service using AWS Lambda
and AWS Gateway
Let’s take a look at how to deploy Restaurant Service using AWS Lambda. It’s a ser-
vice that has a REST API for creating and managing restaurants. It doesn’t have long-
lived connections to Apache Kafka, for example, so it’s a good fit for AWS lambda. Fig-
ure 12.13 shows the deployment architecture for this service. The service consists of
several lambda functions, one for each REST endpoint. An AWS API Gateway is
responsible for routing HTTP requests to the lambda functions.

 Each lambda function has a request handler class. The ftgo-create-restaurant
lambda function invokes the CreateRestaurantRequestHandler class, and the ftgo-
find-restaurant lambda function invokes FindRestaurantRequestHandler. Because
these request handler classes implement closely related aspects of the same service,
they’re packaged together in the same ZIP file, restaurant-service-aws-lambda
.zip. Let’s look at the design of the service, including those handler classes.

12.6.1 The design of the AWS Lambda version of Restaurant Service

The architecture of the service, shown in figure 12.14, is quite similar to that of a tra-
ditional service. The main difference is that Spring MVC controllers have been
replaced by AWS Lambda request handler classes. The rest of the business logic is
unchanged.

 The service consists of a presentation tier consisting of the request handlers, which
are invoked by AWS Lambda to handle the HTTP requests, and a traditional business

420 CHAPTER 12 Deploying microservices
API gateway

AWS Lambda

functions

ftgo-create-restaurant ftgo-find-restaurant

ftgo-restaurant-service-aws-lambda.zip

ftgo-...

POST/restaurant
GET/restaurant/
{restaurantId}

«class»
Create

Restaurant
Request
Handler

«class»
FindRestaurant

Request
Handler

«class»
...

Request
Handler

Figure 12.13 Deploying Restaurant Service as AWS Lambda functions. The
AWS API Gateway routes HTTP requests to the AWS Lambda functions, which are
implemented by request handler classes defined by Restaurant Service.

Create
Restaurant
Request
Handler

Presentation layer

POST/restaurant GET/restaurant/{restaurantId}

Business and

data access layer

Find
Restaurant
Request
Handler

RestaurantService

RestaurantRepository Restaurant

...
Request
Handler

Figure 12.14 The design of the AWS Lambda-based Restaurant Service. The
presentation layer consists of request handler classes, which implement the lambda
functions. They invoke the business tier, which is written in a traditional style
consisting of a service class, an entity, and a repository.

421Deploying a RESTful service using AWS Lambda and AWS Gateway
tier. The business tier consists of RestaurantService, the Restaurant JPA entity, and
RestaurantRepository, which encapsulates the database.

 Let’s take a look at the FindRestaurantRequestHandler class.

THE FINDRESTAURANTREQUESTHANDLER CLASS

The FindRestaurantRequestHandler class implements the GET /restaurant/

{restaurantId} endpoint. This class along with the other request handler classes are
the leaves of the class hierarchy shown in figure 12.15. The root of the hierarchy is
RequestHandler, which is part of the AWS SDK. Its abstract subclasses handle errors
and inject dependencies.

The AbstractHttpHandler class is the abstract base class for HTTP request handlers.
It catches unhandled exceptions thrown during request handling and returns a 500 -
internal server error response. The AbstractAutowiringHttpRequestHandler class
implements dependency injection for request handlers. I’ll describe these abstract
superclasses shortly, but first let’s look at the code for FindRestaurantRequestHandler.

 Listing 12.9 shows the code for the FindRestaurantRequestHandler class. The
FindRestaurantRequestHandler class has a handleHttpRequest() method, which
takes an APIGatewayProxyRequestEvent representing an HTTP request as a parame-
ter. It invokes RestaurantService to find the restaurant and returns an APIGateway-
ProxyResponseEvent describing the HTTP response.

Request
Handler

Abstract
HttpHandler

Abstract
Autowiring
HttpRequest
Handler

Create
Restaurant
Request
Handler

Find
Restaurant
Request
Handler

...
Request
Handler

Figure 12.15 The design of the request handler
classes. The abstract superclasses implement
dependency injection and error handling.

422 CHAPTER 12 Deploying microservices
public class FindRestaurantRequestHandler
extends AbstractAutowiringHttpRequestHandler {

@Autowired
private RestaurantService restaurantService;

@Override
protected Class<?> getApplicationContextClass() {
return CreateRestaurantRequestHandler.class;

}

@Override
protected APIGatewayProxyResponseEvent

handleHttpRequest(APIGatewayProxyRequestEvent request, Context context) {
long restaurantId;
try {
restaurantId = Long.parseLong(request.getPathParameters()
 .get("restaurantId"));

} catch (NumberFormatException e) {
return makeBadRequestResponse(context);
}

Optional<Restaurant> possibleRestaurant = restaurantService.findById(restaur
antId);

return possibleRestaurant
.map(this::makeGetRestaurantResponse)
.orElseGet(() -> makeRestaurantNotFoundResponse(context,

restaurantId));

}

private APIGatewayProxyResponseEvent makeBadRequestResponse(Context context) {
...

}

private APIGatewayProxyResponseEvent
makeRestaurantNotFoundResponse(Context context, long restaurantId) { ... }

private APIGatewayProxyResponseEvent
makeGetRestaurantResponse(Restaurant restaurant) { ... }

}

As you can see, it’s quite similar to a servlet, except that instead of a service()
method, which takes an HttpServletRequest and returns HttpServletResponse, it
has a handleHttpRequest(), which takes an APIGatewayProxyRequestEvent and returns
APIGatewayProxyResponseEvent.

 Let’s now take a look at its superclass, which implements dependency injection.

Listing 12.9 The handler class for GET /restaurant/{restaurantId}

The Spring Java
configuration class to use
for the application context

Returns a 400 - bad request
response if the restaurantId
is missing or invalid

Returns either the
restaurant or a 404 -
not found response

423Deploying a RESTful service using AWS Lambda and AWS Gateway
DEPENDENCY INJECTION USING THE ABSTRACTAUTOWIRINGHTTPREQUESTHANDLER CLASS

An AWS Lambda function is neither a web application nor an application with a
main() method. But it would be a shame to not be able to use the features of Spring
Boot that we’ve been accustomed to. The AbstractAutowiringHttpRequestHandler
class, shown in the following listing, implements dependency injection for request han-
dlers. It creates an ApplicationContext using SpringApplication.run() and autowires
dependencies prior to handling the first request. Subclasses such as FindRestaurant-
RequestHandler must implement the getApplicationContextClass() method.

public abstract class AbstractAutowiringHttpRequestHandler
extends AbstractHttpHandler {

private static ConfigurableApplicationContext ctx;
private ReentrantReadWriteLock ctxLock = new ReentrantReadWriteLock();
private boolean autowired = false;

protected synchronized ApplicationContext getAppCtx() {
ctxLock.writeLock().lock();
try {
if (ctx == null) {
ctx = SpringApplication.run(getApplicationContextClass());

}
return ctx;

} finally {
ctxLock.writeLock().unlock();

}
}

@Override
protected void

beforeHandling(APIGatewayProxyRequestEvent request, Context context) {
super.beforeHandling(request, context);
if (!autowired) {
getAppCtx().getAutowireCapableBeanFactory().autowireBean(this);
autowired = true;

}
}

protected abstract Class<?> getApplicationContextClass();
}

This class overrides the beforeHandling() method defined by AbstractHttpHandler.
Its beforeHandling() method injects dependencies using autowiring before handling
the first request.

THE ABSTRACTHTTPHANDLER CLASS

The request handlers for Restaurant Service ultimately extend AbstractHttpHandler,
shown in listing 12.11. This class implements RequestHandler<APIGatewayProxy-
RequestEvent and APIGatewayProxyResponseEvent>. Its key responsibility is to catch
exceptions thrown when handling a request and throw a 500 error code.

Listing 12.10 An abstract RequestHandler that implements dependency injection

Creates the Spring
Boot application
context just once

Injects dependencies into
the request handler using

autowiring before handling
the first request

Returns the @Configuration
class used to create
ApplicationContext

424 CHAPTER 12 Deploying microservices
public abstract class AbstractHttpHandler implements
RequestHandler<APIGatewayProxyRequestEvent, APIGatewayProxyResponseEvent> {

private Logger log = LoggerFactory.getLogger(this.getClass());

@Override
public APIGatewayProxyResponseEvent handleRequest(

APIGatewayProxyRequestEvent input, Context context) {
log.debug("Got request: {}", input);
try {
beforeHandling(input, context);
return handleHttpRequest(input, context);

} catch (Exception e) {
log.error("Error handling request id: {}", context.getAwsRequestId(), e);
return buildErrorResponse(new AwsLambdaError(

"Internal Server Error",
"500",
context.getAwsRequestId(),
"Error handling request: " + context.getAwsRequestId() + " "

+ input.toString()));
}

}

protected void beforeHandling(APIGatewayProxyRequestEvent request,
Context context) {

// do nothing
}

protected abstract APIGatewayProxyResponseEvent handleHttpRequest(
APIGatewayProxyRequestEvent request, Context context);

}

12.6.2 Packaging the service as ZIP file

Before the service can be deployed, we must package it as a ZIP file. We can easily
build the ZIP file using the following Gradle task:

task buildZip(type: Zip) {
from compileJava
from processResources
into('lib') {

from configurations.runtime
}

}

This task builds a ZIP with the classes and resources at the top level and the JAR
dependencies in the lib directory.

 Now that we’ve built the ZIP file, let’s look at how to deploy the lambda function.

Listing 12.11 An abstract RequestHandler that catches exceptions and returns
a 500 HTTP response

425Deploying a RESTful service using AWS Lambda and AWS Gateway
12.6.3 Deploying lambda functions using the Serverless framework

Using the tools provided by AWS to deploy lambda functions and configure the API
gateway is quite tedious. Fortunately, the Serverless open source project makes using
lambda functions a lot easier. When using Serverless, you write a simple server-
less.yml file that defines your lambda functions and their RESTful endpoints.
Serverless then deploys the lambda functions and creates and configures an API gate-
way that routes requests to them.

 The following listing is an excerpt of the serverless.yml that deploys Restaurant
Service as a lambda.

service: ftgo-application-lambda

provider:
name: aws
runtime: java8
timeout: 35
region: ${env:AWS_REGION}
stage: dev
environment:
SPRING_DATASOURCE_DRIVER_CLASS_NAME: com.mysql.jdbc.Driver
SPRING_DATASOURCE_URL: ...
SPRING_DATASOURCE_USERNAME: ...
SPRING_DATASOURCE_PASSWORD: ...

package:
artifact: ftgo-restaurant-service-aws-lambda/build/distributions/
ftgo-restaurant-service-aws-lambda.zip

functions:
create-restaurant:
handler: net.chrisrichardson.ftgo.restaurantservice.lambda
.CreateRestaurantRequestHandler

events:
- http:

path: restaurants
method: post

find-restaurant:
handler: net.chrisrichardson.ftgo.restaurantservice.lambda
.FindRestaurantRequestHandler

events:
- http:

path: restaurants/{restaurantId}
method: get

You can then use the serverless deploy command, which reads the serverless.yml
file, deploys the lambda functions, and configures the AWS API Gateway. After a short

Listing 12.12 The serverless.yml deploys Restaurant Service.

Tells serverless to
deploy on AWS

Supplies the service’s
externalized configuration
via environment variables

The ZIP file
containing the
lambda functions

Lambda function definitions
consisting of the handler
function and HTTP endpoint

426 CHAPTER 12 Deploying microservices
wait, your service will be accessible via the API gateway’s endpoint URL. AWS Lambda
will provision as many instances of each Restaurant Service lambda function that are
needed to support the load. If you change the code, you can easily update the lambda
by rebuilding the ZIP file and rerunning serverless deploy. No servers involved!

 The evolution of infrastructure is remarkable. Not that long ago, we manually
deployed applications on physical machines. Today, highly automated public clouds
provide a range of virtual deployment options. One option is to deploy services as vir-
tual machines. Or better yet, we can package services as containers and deploy them
using sophisticated Docker orchestration frameworks such as Kubernetes. Sometimes
we even avoid thinking about infrastructure entirely and deploy services as light-
weight, ephemeral lambda functions.

Summary
 You should choose the most lightweight deployment pattern that supports your

service’s requirements. Evaluate the options in the following order: serverless,
containers, virtual machines, and language-specific packages.

 A serverless deployment isn’t a good fit for every service, because of long-tail
latencies and the requirement to use an event/request-based programming
model. When it is a good fit, though, serverless deployment is an extremely
compelling option because it eliminates the need to administer operating sys-
tems and runtimes and provides automated elastic provisioning and request-
based pricing.

 Docker containers, which are a lightweight, OS-level virtualization technol-
ogy, are more flexible than serverless deployment and have more predictable
latency. It’s best to use a Docker orchestration framework such as Kuberne-
tes, which manages containers on a cluster of machines. The drawback of
using containers is that you must administer the operating systems and run-
times and most likely the Docker orchestration framework and the VMs that
it runs on.

 The third deployment option is to deploy your service as a virtual machine. On
one hand, virtual machines are a heavyweight deployment option, so deploy-
ment is slower and it will most likely use more resources than the second
option. On the other hand, modern clouds such as Amazon EC2 are highly
automated and provide a rich set of features. Consequently, it may sometimes
be easier to deploy a small, simple application using virtual machines than to
set up a Docker orchestration framework.

 Deploying your services as language-specific packages is generally best avoided
unless you only have a small number of services. For example, as described in
chapter 13, when starting on your journey to microservices you’ll probably
deploy the services using the same mechanism you use for your monolithic
application, which is most likely this option. You should only consider setting

427Summary
up a sophisticated deployment infrastructure such as Kubernetes once you’ve
developed some services.

 One of the many benefits of using a service mesh—a networking layer that
mediates all network traffic in and out of services—is that it enables you to
deploy a service in production, test it, and only then route production traffic to
it. Separating deployment from release improves the reliability of rolling out
new versions of services.

Refactoring to
microservices
I hope that this book has given you a good understanding of the microservice
architecture, its benefits and drawbacks, and when to use it. There is, however, a
fairly good chance you’re working on a large, complex monolithic application.
Your daily experience of developing and deploying your application is slow and
painful. Microservices, which appear like a good fit for your application, seem like
distant nirvana. Like Mary and the rest of the FTGO development team, you’re
wondering how on earth you can adopt the microservice architecture?

 Fortunately, there are strategies you can use to escape from monolithic hell
without having to rewrite your application from scratch. You incrementally convert

This chapter covers
 When to migrate a monolithic application to a

microservice architecture

 Why using an incremental approach is essential
when refactoring a monolithic application to
microservices

 Implementing new features as services

 Extracting services from the monolith

 Integrating a service and the monolith
428

429Overview of refactoring to microservices
your monolith into microservices by developing what’s known as a strangler applica-
tion. The idea of a strangler application comes from strangler vines, which grow in
rain forests by enveloping and sometimes killing trees. A strangler application is a new
application consisting of microservices that you develop by implementing new func-
tionality as services and extracting services from the monolith. Over time, as the stran-
gler application implements more and more functionality, it shrinks and ultimately
kills the monolith. An important benefit of developing a strangler application is that,
unlike a big bang rewrite, it delivers value to the business early and often.

 I begin this chapter by describing the motivations for refactoring a monolith to a
microservice architecture. I then describe how to develop the strangler application
by implementing new functionality as services and extracting services from the
monolith. Next, I cover various design topics, including how to integrate the mono-
lith and services, how to maintain database consistency across the monolith and
services, and how to handle security. I end the chapter by describing a couple of
example services. One service is Delayed Order Service, which implements brand
new functionality. The other service is Delivery Service, which is extracted from
the monolith. Let’s start by taking a look at the concept of refactoring to a micro-
service architecture.

13.1 Overview of refactoring to microservices
Put yourself in Mary’s shoes. You’re responsible for the FTGO application, a large and
old monolithic application. The business is extremely frustrated with engineering’s
inability to deliver features rapidly and reliably. FTGO appears to be suffering from a
classic case of monolithic hell. Microservices seem, at least on the surface, to be the
answer. Should you propose diverting development resources away from feature devel-
opment to migrating to a microservice architecture?

 I start this section by discussing why you should consider refactoring to microser-
vices. I also discuss why it’s important to be sure that your software development prob-
lems are because you’re in monolithic hell rather than in, for example, a poor
software development process. I then describe strategies for incrementally refactoring
your monolith to a microservice architecture. Next, I discuss the importance of deliv-
ering improvements earlier and often in order to maintain the support of the busi-
ness. I then describe why you should avoid investing in a sophisticated deployment
infrastructure until you’ve developed a few services. Finally, I describe the various
strategies you can use to introduce services into your architecture, including imple-
menting new features as services and extracting services from the monolith.

13.1.1 Why refactor a monolith?

The microservice architecture has, as described in chapter 1, numerous benefits. It
has much better maintainability, testability, and deployability, so it accelerates devel-
opment. The microservice architecture is more scalable and improves fault isolation.
It’s also much easier to evolve your technology stack. But refactoring a monolith to

430 CHAPTER 13 Refactoring to microservices
microservices is a significant undertaking. It will divert resources away from new fea-
ture development. As a result, it’s likely that the business will only support the adop-
tion of microservices if it solves a significant business problem.

 If you’re in monolithic hell, it’s likely that you already have at least one business
problem. Here are some examples of business problems caused by monolithic hell:

 Slow delivery—The application is difficult to understand, maintain, and test, so
developer productivity is low. As a result, the organization is unable to compete
effectively and risks being overtaken by competitors.

 Buggy software releases—The lack of testability means that software releases are
often buggy. This makes customers unhappy, which results in losing customers
and reduced revenue.

 Poor scalability—Scaling a monolithic application is difficult because it combines
modules with very different resource requirements into one executable compo-
nent. The lack of scalability means that it’s either impossible or prohibitively
expensive to scale the application beyond a certain point. As a result, the appli-
cation can’t support the current or predicted needs of the business.

It’s important to be sure that these problems are there because you’ve outgrown your
architecture. A common reason for slow delivery and buggy releases is a poor software
development process. For example, if you’re still relying on manual testing, then
adopting automated testing alone can significantly increase development velocity.
Similarly, you can sometimes solve scalability problems without changing your archi-
tecture. You should first try simpler solutions. If, and only if, you still have software
delivery problems should you then migrate to the microservice architecture. Let’s
look at how to do that.

13.1.2 Strangling the monolith

The process of transforming a monolithic application into microservices is a form of
application modernization (https://en.wikipedia.org/wiki/Software_modernization).
Application modernization is the process of converting a legacy application to one having
a modern architecture and technology stack. Developers have been modernizing appli-
cations for decades. As a result, there is wisdom accumulated through experience we
can use when refactoring an application into a microservice architecture. The most
important lesson learned over the years is to not do a big bang rewrite.

 A big bang rewrite is when you develop a new application—in this case, a microservices-
based application—from scratch. Although starting from scratch and leaving the legacy
code base behind sounds appealing, it’s extremely risky and will likely end in failure.
You will spend months, possibly years, duplicating the existing functionality, and only
then can you implement the features that the business needs today! Also, you’ll
need to develop the legacy application anyway, which diverts effort away from the
rewrite and means that you have a constantly moving target. What’s more, it’s possible

https://en.wikipedia.org/wiki/Software_modernization

431Overview of refactoring to microservices
that you’ll waste time reimplementing features that are no longer needed. As Martin
Fowler reportedly said, “the only thing a Big Bang rewrite guarantees is a Big Bang!”
(www.randyshoup.com/evolutionary-architecture).

 Instead of doing a big bang rewrite, you should, as figure 13.1 shows, incrementally
refactor your monolithic application. You gradually build a new application, which is
called a strangler application. It consists of microservices that runs in conjunction
with your monolithic application. Over time, the amount of functionality imple-
mented by the monolithic application shrinks until either it disappears entirely or it
becomes just another microservice. This strategy is akin to servicing your car while
driving down the highway at 70 mph. It’s challenging, but is far less risky that attempt-
ing a big bang rewrite.

Martin Fowler refers to this application modernization strategy as the Strangler appli-
cation pattern (www.martinfowler.com/bliki/StranglerApplication.html). The name
comes from the strangler vine (or strangler fig—see https://en.wikipedia.org/wiki/
Strangler_fig) that is found in rain forests. A strangler vine grows around a tree in

The monolith shrinks over time.

The strangler application
grows larger over time.

Monolith Monolith

Service

Strangler application

Monolith

Service

Monolith

Service ...

... Monolith

Service Service

Service Service Service Service

Service Service Service

Service Service Service

Service Service

Service Service

Service Service

Service

Time

Figure 13.1 The monolith is incrementally replaced by a strangler application comprised of services.
Eventually, the monolith is replaced entirely by the strangler application or becomes another
microservice.

https://en.wikipedia.org/wiki/Strangler_fig
https://en.wikipedia.org/wiki/Strangler_fig
https://en.wikipedia.org/wiki/Strangler_fig
http://www.randyshoup.com/evolutionary-architecture
http://www.martinfowler.com/bliki/StranglerApplication.html

432 CHAPTER 13 Refactoring to microservices
order to reach the sunlight above the forest canopy. Often the tree dies, because
either it’s killed by the vine or it dies of old age, leaving a tree-shaped vine.

The refactoring process typically takes months, or years. For example, according to
Steve Yegge (https://plus.google.com/+RipRowan/posts/eVeouesvaVX) it took Ama-
zon.com a couple of years to refactor its monolith. In the case of a very large system,
you may never complete the process. You could, for example, get to a point where you
have tasks that are more important than breaking up the monolith, such as imple-
menting revenue-generating features. If the monolith isn’t an obstacle to ongoing
development, you may as well leave it alone.

DEMONSTRATE VALUE EARLY AND OFTEN

An important benefit of incrementally refactoring to a microservice architecture is
that you get an immediate return on your investment. That’s very different than a big
bang rewrite, which doesn’t deliver any benefit until it’s complete. When incremen-
tally refactoring the monolith, you can develop each new service using a new technology
stack and a modern, high-velocity, DevOps-style development and delivery process. As a
result, your team’s delivery velocity steadily increases over time.

 What’s more, you can migrate the high-value areas of your application to microser-
vices first. For instance, imagine you’re working on the FTGO application. The business
might, for example, decide that the delivery scheduling algorithm is a key competitive
advantage. It’s likely that delivery management will be an area of constant, ongoing
development. By extracting delivery management into a standalone service, the delivery
management team will be able to work independently of the rest of the FTGO develop-
ers and significantly increase their development velocity. They’ll be able to frequently
deploy new versions of the algorithm and evaluate their effectiveness.

 Another benefit of being able to deliver value earlier is that it helps maintain the
business’s support for the migration effort. Their ongoing support is essential, because
the refactoring effort will mean that less time is spent on developing features. Some
organizations have difficulty eliminating technical debt because past attempts were
too ambitious and didn’t provide much benefit. As a result, the business becomes
reluctant to invest in further cleanup efforts. The incremental nature of refactoring to
microservices means that the development team is able to demonstrate value early
and often.

MINIMIZE CHANGES TO THE MONOLITH

A recurring theme in this chapter is that you should avoid making widespread
changes to the monolith when migrating to a microservice architecture. It’s inevitable

Pattern: Strangler application
Modernize an application by incrementally developing a new (strangler) application
around the legacy application. See http://microservices.io/patterns/refactoring/
strangler-application.html.

http://microservices.io/patterns/refactoring/strangler-application.html
http://microservices.io/patterns/refactoring/strangler-application.html
http://microservices.io/patterns/refactoring/strangler-application.html
https://plus.google.com/+RipRowan/posts/eVeouesvaVX

433Strategies for refactoring a monolith to microservices
that you’ll need to make some changes in order to support migration to services. Sec-
tion 13.3.2 talks about how the monolith often needs to be modified so that it can par-
ticipate in sagas that maintain data consistency across the monolith and services. The
problem with making widespread changes to the monolith is that it’s time consuming,
costly, and risky. After all, that’s probably why you want to migrate to microservices in
the first place.

 Fortunately, there are strategies you can use for reducing the scope of the changes
you need to make. For example, in section 13.2.3, I describe the strategy of replicating
data from an extracted service back to the monolith’s database. And in section 13.3.2,
I show how you can carefully sequence the extraction of services to reduce the impact
on the monolith. By applying these strategies, you can reduce the amount of work
required to refactor the monolith.

TECHNICAL DEPLOYMENT INFRASTRUCTURE: YOU DON’T NEED ALL OF IT YET

Throughout this book I’ve discussed a lot of shiny new technology, including deploy-
ment platforms such as Kubernetes and AWS Lambda and service discovery mecha-
nisms. You might be tempted to begin your migrating to microservices by selecting
technologies and building out that infrastructure. You might even feel pressure from
the business people and from your friendly PaaS vendor to start spending money on
this kind of infrastructure.

 As tempting as it seems to build out this infrastructure up front, I recommend only
making a minimal up-front investment in developing it. The only thing you can’t live
without is a deployment pipeline that performs automating testing. For example, if
you only have a handful of services, you don’t need a sophisticated deployment and
observability infrastructure. Initially, you can even get away with just using a hard-
coded configuration file for service discovery. I suggest deferring any decisions about
technical infrastructure that involve significant investment until you’ve gained real
experience with the microservice architecture. It’s only once you have a few services
running that you’ll have the experience to pick technologies.

 Let’s now look at the strategies you can use for migrating to a microservice
architecture.

13.2 Strategies for refactoring a monolith to microservices
There are three main strategies for strangling the monolith and incrementally replac-
ing it with microservices:

1 Implement new features as services.
2 Separate the presentation tier and backend.
3 Break up the monolith by extracting functionality into services.

The first strategy stops the monolith from growing. It’s typically a quick way to
demonstrate the value of microservices, helping build support for the migration
effort. The other two strategies break apart the monolith. When refactoring your
monolith, you might sometimes use the second strategy, but you’ll definitely use the

434 CHAPTER 13 Refactoring to microservices
third strategy, because it’s how functionality is migrated from the monolith into the
strangler application.

 Let’s take a look at each of these strategies, starting with implementing new fea-
tures as services.

13.2.1 Implement new features as services

The Law of Holes states that “if you find yourself in a hole, stop digging” (https://
en.m.wikipedia.org/wiki/Law_of_holes). This is great advice to follow when your mono-
lithic application has become unmanageable. In other words, if you have a large, com-
plex monolithic application, don’t implement new features by adding code to the
monolith. That will make your monolith even larger and more unmanageable. Instead,
you should implement new features as services.

 This is a great way to begin migrating your monolithic application to a microser-
vice architecture. It reduces the growth rate of the monolith. It accelerates the devel-
opment of the new features, because you’re doing development in a brand new code
base. It also quickly demonstrates the value of adopting the microservice architecture.

INTEGRATING THE NEW SERVICE WITH THE MONOLITH

Figure 13.2 shows the application’s architecture after implementing a new feature as a
service. Besides the new service and monolith, the architecture includes two other ele-
ments that integrate the service into the application:

 API gateway—Routes requests for new functionality to the new service and
routes legacy requests to the monolith.

 Integration glue code—Integrates the service with the monolith. It enables the ser-
vice to access data owned by the monolith and to invoke functionality imple-
mented by the monolith.

The integration glue code isn’t a standalone component. Instead, it consists of adapt-
ers in the monolith and the service that use one or more interprocess communication
mechanisms. For example, integration glue for Delayed Delivery Service, described
in section 13.4.1, uses both REST and domain events. The service retrieves customer
contract information from the monolith by invoking a REST API. The monolith pub-
lishes Order domain events so that Delayed Delivery Service can track the state of
Orders and respond to orders that won’t be delivered on time. Section 13.3.1 describes
the integration glue code in more detail.

WHEN TO IMPLEMENT A NEW FEATURE AS A SERVICE

Ideally, you should implement every new feature in the strangler application rather
than in the monolith. You’ll implement a new feature as either a new service or as part
of an existing service. This way you’ll avoid ever having to touch the monolith code
base. Unfortunately, though, not every new feature can be implemented as a service.

 That’s because the essence of a microservice architecture is a set of loosely coupled
services that are organized around business capabilities. A feature might, for instance,
be too small to be a meaningful service. You might, for example, just need to add a

https://en.m.wikipedia.org/wiki/Law_of_holes
https://en.m.wikipedia.org/wiki/Law_of_holes
https://en.m.wikipedia.org/wiki/Law_of_holes

435Strategies for refactoring a monolith to microservices
few fields and methods to an existing class. Or the new feature might be too tightly
coupled to the code in the monolith. If you attempted to implement this kind of fea-
ture as a service you would typically find that performance would suffer because of
excessive interprocess communication. You might also have problems maintaining
data consistency. If a new feature can’t be implemented as a service, the solution is
often to initially implement the new feature in the monolith. Later on, you can then
extract that feature along with other related features into their own service.

 Implementing new features as services accelerates the development of those fea-
tures. It’s a good way to quickly demonstrate the value of the microservice architec-
ture. It also reduces the monolith’s growth rate. But ultimately, you need to break
apart the monolith using the two other strategies. You need to migrate functionality to
the strangler application by extracting functionality from the monolith into services.
You might also be able to improve development velocity by splitting the monolith hor-
izontally. Let’s look at how to do that.

Monolith

Outbound

adapter

API gateway
Old features New features

Integration

glue

Inbound

adapter

Inbound

adapter

Database

adapter

Database

adapter

Inbound

adapter

Event

subscriber

adapter

Event

publisher

adapter

Service

database

Monolith

database

«aggregate»
DelayedDelivery

Service

«aggregate»
Order

«aggregate»
Notification

Service
implementing
new feature

Figure 13.2 A new feature is implemented as a service that’s part of the strangler application. The
integration glue integrates the service with the monolith and consists of adapters that implement
synchronous and asynchronous APIs. An API gateway routes requests that invoke new functionality
to the service.

436 CHAPTER 13 Refactoring to microservices
13.2.2 Separate presentation tier from the backend

One strategy for shrinking a monolithic application is to split the presentation layer
from the business logic and data access layers. A typical enterprise application consists
of the following layers:

 Presentation logic—This consists of modules that handle HTTP requests and gener-
ate HTML pages that implement a web UI. In an application that has a sophisti-
cated user interface, the presentation tier is often a substantial body of code.

 Business logic—This consists of modules that implement the business rules, which
can be complex in an enterprise application.

 Data access logic—This consists of modules that access infrastructure services
such as databases and message brokers.

There is usually a clean separation between the presentation logic and the business
and data access logic. The business tier has a coarse-grained API consisting of one or
more facades that encapsulate the business logic. This API is a natural seam along
which you can split the monolith into two smaller applications, as shown in figure 13.3.

Business logic Business logic

REST

APIREST

client

Web

app

BrowserBrowser

HTML pages
HTML pages

Monolith containing
presentation logic and

backend business logic

Smaller, independently
deployable presentation

logic monolith

MySQL

Database

adapter

MySQL

Database

adapter

Web

application

Split

Smaller, independently
deployable backend

monolith

An API that is callable
by any future services

Figure 13.3 Splitting the frontend from the backend enables each to be deployed independently. It also exposes
an API for services to invoke.

437Strategies for refactoring a monolith to microservices
One application contains the presentation layer, and the other contains the business
and data access logic. After the split, the presentation logic application makes remote
calls to the business logic application.

 Splitting the monolith in this way has two main benefits. It enables you to develop,
deploy, and scale the two applications independently of one another. In particular, it
allows the presentation layer developers to rapidly iterate on the user interface and
easily perform A/B testing, for example, without having to deploy the backend.
Another benefit of this approach is that it exposes a remote API that can be called by
the microservices you develop later.

 But this strategy is only a partial solution. It’s very likely that at least one or both of
the resulting applications will still be an unmanageable monolith. You need to use the
third strategy to replace the monolith with services.

13.2.3 Extract business capabilities into services

Implementing new features as services and splitting the frontend web application
from the backend will only get you so far. You’ll still end up doing a lot of develop-
ment in the monolithic code base. If you want to significantly improve your applica-
tion’s architecture and increase your development velocity, you need to break apart
the monolith by incrementally migrating business capabilities from the monolith to
services. For example, section 13.5 describes how to extract delivery management
from the FTGO monolith into a new Delivery Service. When you use this strategy,
over time the number of business capabilities implemented by the services grows, and
the monolith gradually shrinks.

 The functionality you want extract into a service is a vertical slice through the
monolith. The slice consists of the following:

 Inbound adapters that implement API endpoints
 Domain logic
 Outbound adapters such as database access logic
 The monolith’s database schema

As figure 13.4 shows, this code is extracted from the monolith and moved into a stand-
alone service. An API gateway routes requests that invoke the extracted business capa-
bility to the service and routes the other requests to the monolith. The monolith and
the service collaborate via the integration glue code. As described in section 13.3.1,
the integration glue consists of adapters in the service and monolith that use one or
more interprocess communication (IPC) mechanisms.

 Extracting services is challenging. You need to determine how to split the mono-
lith’s domain model into two separate domain models, one of which becomes the ser-
vice’s domain model. You need to break dependencies such as object references. You
might even need to split classes in order to move functionality into the service. You
also need to refactor the database.

 Extracting a service is often time consuming, especially because the monolith’s
code base is likely to be messy. Consequently, you need to carefully think about which

438 CHAPTER 13 Refactoring to microservices
services to extract. It’s important to focus on refactoring those parts of the application
that provide a lot of value. Before extracting a service, ask yourself what the benefit is
of doing that.

 For example, it’s worthwhile to extract a service that implements functionality
that’s critical to the business and constantly evolving. It’s not valuable to invest effort
in extracting services when there’s not much benefit from doing so. Later in this sec-
tion I describe some strategies for determining what to extract and when. But first,
let’s look in more detail at some of the challenges you’ll face when extracting a service
and how to address them.

 You’ll encounter a couple of challenges when extracting a service:

 Splitting the domain model
 Refactoring the database

Let’s look at each one, starting with splitting the domain model.

Outbound

adapter

API gateway

Service containing
extracted code

Integration

glue

Inbound

adapter

Inbound

adapter

Database

adapter

Database

adapter

Inbound

adapter

Outbound

adapter

Inbound

adapter

Service

database

Monolith

database

Inbound

adapter

Database

adapter

Monolith

database

« »service

Order Service

«aggregate»
Courier

«aggregate»
Plan

«service»
Order Service

«aggregate»
Courier

«aggregate»
Plan

Code to

extract into

a serviceMonolith

« »service

Order Service

«aggregate»
Order

« »aggregate

Order

Glue code integrating
service with monolith

Figure 13.4 Break apart the monolith by extracting services. You identify a slice of functionality, which consists
of business logic and adapters, to extract into a service. You move that code into the service. The newly extracted
service and the monolith collaborate via the APIs provided by the integration glue.

439Strategies for refactoring a monolith to microservices
SPLITTING THE DOMAIN MODEL

In order to extract a service, you need to extract its domain model out of the monolith’s
domain model. You’ll need to perform major surgery to split the domain models. One
challenge you’ll encounter is eliminating object references that would otherwise span
service boundaries. It’s possible that classes that remain in the monolith will reference
classes that have been moved to the service or vice versa. For example, imagine that, as
figure 13.5 shows, you extract Order Service, and as a result its Order class references
the monolith’s Restaurant class. Because a service instance is typically a process, it
doesn’t make sense to have object references that cross service boundaries. Somehow
you need to eliminate these types of object reference.

One good way to solve this problem is to think in terms of DDD aggregates, described
in chapter 5. Aggregates reference each other using primary keys rather than object ref-
erences. You would, therefore, think of the Order and Restaurant classes as aggre-
gates and, as figure 13.6 shows, replace the reference to Restaurant in the Order class
with a restaurantId field that stores the primary key value.

FTGO monolith

Extracted service

«Entity»
Restaurant

Object reference that spans
service boundaries

«Entity»
Order

Delivery Service FTGO monolith

? «Entity»
Restaurant

«Entity»
Order

Figure 13.5 The Order domain class has a reference to a Restaurant class. If we extract
Order into a separate service, we need to do something about its reference to Restaurant,
because object references between processes don’t make sense.

Replace with primary key.

Delivery Service FTGO monolith

«Entity»
Restaurant

«Entity»
Order

restaurantId

Object reference that spans
service boundaries

Delivery Service FTGO monolith

? «Entity»
Restaurant

«Entity»
Order

Figure 13.6 The Order class’s reference to Restaurant is replaced with the Restaurant's
primary key in order to eliminate an object that would span process boundaries.

440 CHAPTER 13 Refactoring to microservices
One issue with replacing object references with primary keys is that although this is a
minor change to the class, it can potentially have a large impact on the clients of the
class, which expect an object reference. Later in this section, I describe how to reduce
the scope of the change by replicating data between the service and monolith. Delivery
Service, for example, could define a Restaurant class that’s a replica of the mono-
lith’s Restaurant class.

 Extracting a service is often much more involved than moving entire classes into a
service. An even greater challenge with splitting a domain model is extracting func-
tionality that’s embedded in a class that has other responsibilities. This problem often
occurs in god classes, described in chapter 2, that have an excessive number of responsi-
bilities. For example, the Order class is one of the god classes in the FTGO applica-
tion. It implements multiple business capabilities, including order management,
delivery management, and so on. Later in section 13.5, I discuss how extracting the
delivery management into a service involves extracting a Delivery class from the
Order class. The Delivery entity implements the delivery management functionality
that was previously bundled with other functionality in the Order class.

REFACTORING THE DATABASE

Splitting a domain model involves more than just changing code. Many classes in a
domain model are persistent. Their fields are mapped to a database schema. Conse-
quently, when you extract a service from the monolith, you’re also moving data. You
need to move tables from the monolith’s database to the service’s database.

 Also, when you split an entity you need to split the corresponding database table
and move the new table to the service. For example, when extracting delivery manage-
ment into a service, you split the Order entity and extract a Delivery entity. At the
database level, you split the ORDERS table and define a new DELIVERY table. You then
move the DELIVERY table to the service.

 The book Refactoring Databases by Scott W. Ambler and Pramod J. Sadalage (Addison-
Wesley, 2011) describes a set of refactorings for a database schema. For example, it
describes the Split Table refactoring, which splits a table into two or more tables.
Many of the technique in that book are useful when extracting services from the
monolith. One such technique is the idea of replicating data in order to allow you to
incrementally update clients of the database to use the new schema. We can adapt
that idea to reduce the scope of the changes you must make to the monolith when
extracting a service.

REPLICATE DATA TO AVOID WIDESPREAD CHANGES

As mentioned, extracting a service requires you to change to the monolith’s domain
model. For example, you replace object references with primary keys and split classes.
These types of changes can ripple through the code base and require you to make
widespread changes to the monolith. For example, if you split the Order entity and
extract a Delivery entity, you’ll have to change every place in the code that references
the fields that have been moved. Making these kinds of changes can be extremely
time consuming and can become a huge barrier to breaking up the monolith.

441Strategies for refactoring a monolith to microservices
 A great way to delay and possibly avoid making these kinds of expensive changes is
to use an approach that’s similar to the one described in Refactoring Databases. A major
obstacle to refactoring a database is changing all the clients of that database to use the
new schema. The solution proposed in the book is to preserve the original schema for
a transition period and use triggers to synchronize the original and new schemas. You
then migrate clients from the old schema to the new schema over time.

 We can use a similar approach when extracting services from the monolith. For
example, when extracting the Delivery entity, we leave the Order entity mostly
unchanged for a transition period. As figure 13.7 shows, we make the delivery-related
fields read-only and keep them up-to-date by replicating data from Delivery Service
back to the monolith. As a result, we only need to find the places in the monolith’s code
that update those fields and change them to invoke the new Delivery Service.

 Preserving the structure of the Order entity by replicating data from Delivery
Service significantly reduces the amount of work we need to do immediately. Over
time, we can migrate code that uses the delivery-related Order entity fields or ORDERS
table columns to Delivery Service. What’s more, it’s possible that we never need to

Read-only
delivery-related

fields

ORDER_ID

...

ORDER table

RESTAURANT_ID

...

SCHEDULED_PICKUP_TIME

...

SCHEDULED_DELIVERY_TIME

...

...

...

«Entity»
Order

FTGO monolith

...
consumerId
scheduledPickupTime
scheduledDeliveryTime
...

ORDER_ID

...

ORDER table

RESTAURANT_ID

...

SCHEDULED_PICKUP_TIME

...

SCHEDULED_DELIVERY_TIME

...

...

...

«Entity»
Order

FTGO monolith

...
consumerId
scheduledPickupTime
scheduledDeliveryTime
...

ORDER_ID

...

DELIVERY table

SCHEDULED_PICKUP_TIME

...

SCHEDULED_DELIVERY_TIME

...

...

...

«Entity»
Delivery

Delivery Service

Extract Order Service and move columns from
ORDER DELIVERYtable to a new table.

Replicate data from Delivery Service to FTGO monolith.

...
orderId
scheduledPickupTime
scheduledDeliveryTime
...

Figure 13.7 Minimize the scope of the changes to the FTGO monolith by replicating delivery-related data from the
newly extracted Delivery Service back to the monolith’s database.

442 CHAPTER 13 Refactoring to microservices
make that change in the monolith. If that code is subsequently extracted into a ser-
vice, then the service can access Delivery Service.

WHAT SERVICES TO EXTRACT AND WHEN

As I mentioned, breaking apart the monolith is time consuming. It diverts effort away
from implementing features. As a result, you must carefully decide the sequence in
which you extract services. You need to focus on extracting services that give the larg-
est benefit. What’s more, you want to continually demonstrate to the business that
there’s value in migrating to a microservice architecture.

 On any journey, it’s essential to know where you’re going. A good way to start the
migration to microservices is with a time-boxed architecture definition effort. You
should spend a short amount of time, such as a couple of weeks, brainstorming your
ideal architecture and defining a set of services. This gives you a destination to aim
for. It’s important, though, to remember that this architecture isn’t set in stone. As
you break apart the monolith and gain experience, you should revise the architecture
to take into account what you’ve learned.

 Once you’ve determined the approximate destination, the next step is to start
breaking apart the monolith. There are a couple of different strategies you can use to
determine the sequence in which you extract services.

 One strategy is to effectively freeze development of the monolith and extract ser-
vices on demand. Instead of implementing features or fixing bugs in the monolith,
you extract the necessary service or service(s) and change those. One benefit of this
approach is that it forces you to break up the monolith. One drawback is that the
extraction of services is driven by short-term requirements rather than long-term
needs. For instance, it requires you to extract services even if you’re making a small
change to a relatively stable part of the system. As a result, you risk doing a lot of work
for minimal benefit.

 An alternative strategy is a more planned approach, where you rank the modules
of an application by the benefit you anticipate getting from extracting them. There
are a few reasons why extracting a service is beneficial:

 Accelerates development—If your application’s roadmap suggests that a particular
part of your application will undergo a lot of development over the next year,
then converting it to a service accelerates development.

 Solves a performance, scaling, or reliability problem—If a particular part of your appli-
cation has a performance or scalability problem or is unreliable, then it’s valu-
able to convert it to a service.

 Enables the extraction of some other services—Sometimes extracting one service sim-
plifies the extraction of another service, due to dependencies between modules.

You can use these criteria to add refactoring tasks to your application’s backlog,
ranked by expected benefit. The benefit of this approach is that it’s more strategic
and much more closely aligned with the needs of the business. During sprint plan-
ning, you decide whether it’s more valuable to implement features or extract services.

443Designing how the service and the monolith collaborate
13.3 Designing how the service and the monolith
collaborate
A service is rarely standalone. It usually needs to collaborate with the monolith. Some-
times a service needs to access data owned by the monolith or invoke its operations.
For example, Delayed Delivery Service, described in detail in section 13.4.1, requires
access to the monolith’s orders and customer contact info. The monolith might also
need to access data owned by the service or invoke its operations. For example, later
in section 13.5, when discussing how to extract delivery management into a service, I
describe how the monolith needs to invoke Delivery Service.

 One important concern is maintaining data consistency between the service and
monolith. In particular, when you extract a service from the monolith, you invariably
split what were originally ACID transactions. You must be careful to ensure that data
consistency is still maintained. As described later in this section, sometimes you use
sagas to maintain data consistency.

 The interaction between a service and the monolith is, as described earlier, facili-
tated by integration glue code. Figure 13.8 shows the structure of the integration glue.
It consists of adapters in the service and monolith that communicate using some kind
of IPC mechanism. Depending on the requirements, the service and monolith might
interact over REST or they might use messaging. They might even communicate using
multiple IPC mechanisms.

For example, Delayed Delivery Service uses both REST and domain events. It
retrieves customer contact info from the monolith using REST. It tracks the state of
Orders by subscribing to domain events published by the monolith.

Monolith Service

Inbound

adapter

Integration

glue

API

adapter

API

adapter

Outbound

adapter

Outbound

adapter

Inbound

adapter

Figure 13.8 When migrating a monolith to microservices, the services and monolith often need to access each
other’s data. This interaction is facilitated by the integration glue, which consists of adapters that implement APIs.
Some APIs are messaging based. Other APIs are RPI based.

444 CHAPTER 13 Refactoring to microservices
 In this section, I first describe the design of the integration glue. I talk about the prob-
lems it solves and the different implementation options. After that I describe transaction
management strategies, including the use of sagas. I discuss how sometimes the require-
ment to maintain data consistency changes the order in which you extract services.

 Let’s first look at the design of the integration glue.

13.3.1 Designing the integration glue

When implementing a feature as a service or extracting a service from the monolith,
you must develop the integration glue that enables a service to collaborate with the
monolith. It consists of code in both the service and monolith that uses some kind of
IPC mechanism. The structure of the integration glue depends on the type of IPC
mechanism that is used. If, for example, the service invokes the monolith using REST,
then the integration glue consists of a REST client in the service and web controllers
in the monolith. Alternatively, if the monolith subscribes to domain events published
by the service, then the integration glue consists of an event-publishing adapter in the
service and event handlers in the monolith.

DESIGNING THE INTEGRATION GLUE API
The first step in designing the integration glue is to decide what APIs it provides to
the domain logic. There are a couple of different styles of interface to choose from,
depending on whether you’re querying data or updating data. Let’s say you’re work-
ing on Delayed Delivery Service, which needs to retrieve customer contact info
from the monolith. The service’s business logic doesn’t need to know the IPC mecha-
nism that the integration glue uses to retrieve the information. Therefore, that mecha-
nism should be encapsulated by an interface. Because Delayed Delivery Service is
querying data, it makes sense to define a CustomerContactInfoRepository:

interface CustomerContactInfoRepository {
CustomerContactInfo findCustomerContactInfo(long customerId)

}

The service’s business logic can invoke this API without knowing how the integration
glue retrieves the data.

 Let’s consider a different service. Imagine that you’re extracting delivery manage-
ment from the FTGO monolith. The monolith needs to invoke Delivery Service to
schedule, reschedule, and cancel deliveries. Once again, the details of the underlying
IPC mechanism aren’t important to the business logic and should be encapsulated by
an interface. In this scenario, the monolith must invoke a service operation, so using a
repository doesn’t make sense. A better approach is to define a service interface, such
as the following:

interface DeliveryService {
void scheduleDelivery(...);
void rescheduleDelivery(...);
void cancelDelivery(...);

}

445Designing how the service and the monolith collaborate
The monolith’s business logic invokes this API without knowing how it’s implemented
by the integration glue.

 Now that we’ve seen interface design, let’s look at interaction styles and IPC
mechanisms.

PICKING AN INTERACTION STYLE AND IPC MECHANISM

An important design decision you must make when designing the integration glue is
selecting the interaction styles and IPC mechanisms that enable the service and the
monolith to collaborate. As described in chapter 3, there are several interaction
styles and IPC mechanisms to choose from. Which one you should use depends on
what one party—the service or monolith—needs in order to query or update the
other party.

 If one party needs to query data owned by the other party, there are several
options. One option is, as figure 13.9 shows, for the adapter that implements the
repository interface to invoke an API of the data provider. This API will typically use a
request/response interaction style, such as REST or gRPC. For example, Delayed
Delivery Service might retrieve the customer contact info by invoking a REST API
implemented by the FTGO monolith.

In this example, the Delayed Delivery Service’s domain logic retrieves the customer
contact info by invoking the CustomerContactInfoRepository interface. The imple-
mentation of this interface invokes the monolith’s REST API.

 An important benefit of querying data by invoking a query API is its simplicity. The
main drawback is that it’s potentially inefficient. A consumer might need to make a
large number of requests. A provider might return a large amount of data. Another
drawback is that it reduces availability because it’s synchronous IPC. As a result, it
might not be practical to use a query API.

Delayed

Delivery Service

Customer
ContactInfo
Repository

GET/customers/{customerId}

FTGO

monolith

Monolith

database

REST

APIREST
client

Figure 13.9 The adapter that implements the CustomerContactInfoRepository interface invokes the
monolith’s REST API to retrieve the customer information.

446 CHAPTER 13 Refactoring to microservices
 An alternative approach is for the data consumer to maintain a replica of the data,
as shown in figure 13.10. The replica is essentially a CQRS view. The data consumer
keeps the replica up-to-date by subscribing to domain events published by the data
provider.

Using a replica has several benefits. It avoids the overhead of repeatedly querying the
data provider. Instead, as discussed when describing CQRS in chapter 7, you can
design the replica to support efficient queries. One drawback of using a replica,
though, is the complexity of maintaining it. A potential challenge, as described later
in this section, is the need to modify the monolith to publish domain events.

 Now that we’ve discussed how to do queries, let’s consider how to do updates. One
challenge with performing updates is the need to maintain data consistency across the
service and monolith. The party making the update request (the requestor) has
updated or needs to update its database. So it’s essential that both updates happen.
The solution is for the service and monolith to communicate using transactional mes-
saging implemented by a framework, such as Eventuate Tram. In simple scenarios, the
requestor can send a notification message or publish an event to trigger an update. In
more complex scenarios, the requestor must use a saga to maintain data consistency.
Section 13.3.2 discusses the implications of using sagas.

IMPLEMENTING AN ANTI-CORRUPTION LAYER

Imagine you’re implementing a new feature as a brand new service. You’re not con-
strained by the monolith’s code base, so you can use modern development techniques

Delayed

Delivery Service FTGO

monolith

Monolith

database

Service

database

Event

publisher

Customer event channel

Customer

domain

event
Event

subscriber

Database

adapter

Customer
ContactInfo
Repository

query()

update()

Figure 13.10 The integration glue replicates data from the monolith to the service. The monolith publishes
domain events, and an event handler implemented by the service updates the service’s database.

447Designing how the service and the monolith collaborate
such as DDD and develop a pristine new domain model. Also, because the FTGO
monolith’s domain is poorly defined and somewhat out-of-date, you’ll probably model
concepts differently. As a result, your service’s domain model will have different class
names, field names, and field values. For example, Delayed Delivery Service has a
Delivery entity with narrowly focused responsibilities, whereas the FTGO monolith
has an Order entity with an excessive number of responsibilities. Because the two
domain models are different, you must implement what DDD calls an anti-corruption
layer (ACL) in order for the service to communicate with the monolith.

The goal of an ACL is to prevent a legacy monolith’s domain model from polluting a
service’s domain model. It’s a layer of code that translates between the different
domain models. For example, as figure 13.11 shows, Delayed Delivery Service has a
CustomerContactInfoRepository interface, which defines a findCustomerContact-
Info() method that returns CustomerContactInfo. The class that implements the
CustomerContactInfoRepository interface must translate between the ubiquitous
language of Delayed Delivery Service and that of the FTGO monolith.

The implementation of findCustomerContactInfo() invokes the FTGO monolith to
retrieve the customer information and translates the response to CustomerContact-
Info. In this example, the translation is quite simple, but in other scenarios it could
be quite complex and involve, for example, mapping values such as status codes.

Pattern: Anti-corruption layer
A software layer that translates between two different domain models in order to
prevent concepts from one model polluting another. See https://microservices.io/
patterns/refactoring/anti-corruption-layer.html.

Delayed

Delivery Service FTGO

monolith

REST

API

API

Translation layer
GET/user/{userId}

Monolith layer

REST client

Customer
ContactInfo
Repository

Ubiquitous language of service

Ubiquitous language of monolith

Anti-corruption layer

Figure 13.11 A service adapter that invokes the monolith must translate between the service’s domain model
and the monolith’s domain model.

https://microservices.io/patterns/refactoring/anti-corruption-layer.html
https://microservices.io/patterns/refactoring/anti-corruption-layer.html
https://microservices.io/patterns/refactoring/anti-corruption-layer.html

448 CHAPTER 13 Refactoring to microservices
 An event subscriber, which consumes domain events, also has an ACL. Domain
events are part of the publisher’s domain model. An event handler must translate
domain events to the subscriber’s domain model. For example, as figure 13.12 shows,
the FTGO monolith publishes Order domain events. Delivery Service has an event
handler that subscribes to those events.

The event handler must translate domain events from the monolith’s domain lan-
guage to that of Delivery Service. It might need to map class and attribute names
and potentially attribute values.

 It’s not just services that use an anti-corruption layer. A monolith also uses an ACL
when invoking the service and when subscribing to domain events published by a ser-
vice. For example, the FTGO monolith schedules a delivery by sending a notification
message to Delivery Service. It sends the notification by invoking a method on the
DeliveryService interface. The implementation class translates its parameters into a
message that Delivery Service understands.

HOW THE MONOLITH PUBLISHES AND SUBSCRIBES TO DOMAIN EVENTS

Domain events are an important collaboration mechanism. It’s straightforward for a
newly developed service to publish and consume events. It can use one of the mech-
anisms described in chapter 3, such as the Eventuate Tram framework. A service
might even publish events using event sourcing, described in chapter 6. It’s poten-
tially challenging, though, to change the monolith to publish and consume events.
Let’s look at why.

 There are a couple of different ways that a monolith can publish domain events.
One approach is to use the same domain event publishing mechanism used by the

Delayed

Delivery

Service

FTGO

monolith

Event handler

Translation layer

Messaging client

Ubiquitous language of service

Ubiquitous language of monolith

Anti-corruption layer

Event channel

Order

event

Event

publisher

Figure 13.12 An event handler must translate from the event publisher’s domain model to the subscriber’s domain
model.

449Designing how the service and the monolith collaborate
services. You find all the places in the code that change a particular entity and insert a
call to an event publishing API. The problem with this approach is that changing a
monolith isn’t always easy. It might be time consuming and error prone to locate all
the places and insert calls to publish events. To make matters worse, some of the
monolith’s business logic might consist of stored procedures that can’t easily publish
domain events.

 Another approach is to publish domain events at the database level. You can, for
example, use either transaction logic tailing or polling, described in chapter 3. A key
benefit of using transaction tailing is that you don’t have to change the monolith. The
main drawback of publishing events at the database level is that it’s often difficult to
identify the reason for the update and publish the appropriate high-level business
event. As a result, the service will typically publish events representing changes to
tables rather than business entities.

 Fortunately, it’s usually easier for the monolith to subscribe to domain events pub-
lished as services. Quite often, you can write event handlers using a framework, such
as Eventuate Tram. But sometimes it’s even challenging for the monolith to subscribe
to events. For example, the monolith might be written in a language that doesn’t have
a message broker client. In that situation, you need to write a small “helper” applica-
tion that subscribes to events and updates the monolith’s database directly.

 Now that we’ve looked at how to design the integration glue that enables a ser-
vice and the monolith to collaborate, let’s look at another challenge you might face
when migrating to microservices: maintaining data consistency across a service and
a monolith.

13.3.2 Maintaining data consistency across a service and a monolith

When you develop a service, you might find it challenging to maintain data consis-
tency across the service and the monolith. A service operation might need to update
data in the monolith, or a monolith operation might need to update data in the ser-
vice. For example, imagine you extracted Kitchen Service from the monolith. You
would need to change the monolith’s order-management operations, such as create-
Order() and cancelOrder(), to use sagas in order to keep the Ticket consistent with
the Order.

 The problem with using sagas, however, is that the monolith might not be a will-
ing participant. As described in chapter 4, sagas must use compensating transactions
to undo changes. Create Order Saga, for example, includes a compensating transac-
tion that marks an Order as rejected if it’s rejected by Kitchen Service. The prob-
lem with compensating transactions in the monolith is that you might need to make
numerous and time-consuming changes to the monolith in order to support them.
The monolith might also need to implement countermeasures to handle the lack of
isolation between sagas. The cost of these code changes can be a huge obstacle to
extracting a service.

450 CHAPTER 13 Refactoring to microservices
Fortunately, many sagas are straightforward to implement. As covered in chapter 4, if
the monolith’s transactions are either pivot transactions or retriable transactions, then
implementing sagas should be straightforward. You may even be able to simplify
implementation by carefully ordering the sequence of service extractions so that the
monolith’s transactions never need to be compensatable. Or it may be relatively diffi-
cult to change the monolith to support compensating transactions. To understand
why implementing compensating transactions in the monolith is sometimes challeng-
ing, let’s look at some examples, beginning with a particularly troublesome one.

THE CHALLENGE OF CHANGING THE MONOLITH TO SUPPORT COMPENSATABLE TRANSACTIONS

Let’s dig into the problem of compensating transactions that you’ll need to solve when
extracting Kitchen Service from the monolith. This refactoring involves splitting the
Order entity and creating a Ticket entity in Kitchen Service. It impacts numerous
commands implemented by the monolith, including createOrder().

 The monolith implements the createOrder() command as a single ACID transac-
tion consisting of the following steps:

1 Validate order details.
2 Verify that the consumer can place an order.
3 Authorize consumer’s credit card.
4 Create an Order.

You need to replace this ACID transaction with a saga consisting of the following steps:

1 In the monolith
– Create an Order in an APPROVAL_PENDING state.
– Verify that the consumer can place an order.

Key saga terminology
I cover sagas in chapter 4. Here are some key terms:

 Saga—A sequence of local transactions coordinated through asynchronous
messaging.

 Compensating transaction—A transaction that undoes the updates made by a
local transaction.

 Countermeasure—A design technique used to handle the lack of isolation
between sagas.

 Semantic lock—A countermeasure that sets a flag in a record that is being
updated by a saga.

 Compensatable transaction—A transaction that needs a compensating trans-
action because one of the transactions that follows it in the saga can fail.

 Pivot transaction—A transaction that is the saga’s go/no-go point. If it suc-
ceeds, then the saga will run to completion.

 Retriable transaction—A transaction that follows the pivot transaction and is
guaranteed to succeed.

451Designing how the service and the monolith collaborate
2 In the Kitchen Service
– Validate order details.
– Create a Ticket in the CREATE_PENDING state.

3 In the monolith
– Authorize consumer’s credit card.
– Change state of Order to APPROVED.

4 In Kitchen Service
– Change the state of the Ticket to AWAITING_ACCEPTANCE.

This saga is similar to CreateOrderSaga described in chapter 4. It consists of four local
transactions, two in the monolith and two in Kitchen Service. The first transaction
creates an Order in the APPROVAL_PENDING state. The second transaction creates a
Ticket in the CREATE_PENDING state. The third transaction authorizes the Consumer
credit card and changes the state of the order to APPROVED. The fourth and final trans-
action changes the state of the Ticket to AWAITING_ACCEPTANCE.

 The challenge with implementing this saga is that the first step, which creates the
Order, must be compensatable. That’s because the second local transaction, which
occurs in Kitchen Service, might fail and require the monolith to undo the updates
performed by the first local transaction. As a result, the Order entity needs to have an
APPROVAL_PENDING, a semantic lock countermeasure, described in chapter 4, that
indicates an Order is in the process of being created.

 The problem with introducing a new Order entity state is that it potentially requires
widespread changes to the monolith. You might need to change every place in the
code that touches an Order entity. Making these kinds of widespread changes to the
monolith is time consuming and not the best investment of development resources.
It’s also potentially risky, because the monolith is often difficult to test.

SAGAS DON’T ALWAYS REQUIRE THE MONOLITH TO SUPPORT COMPENSATABLE TRANSACTIONS

Sagas are highly domain-specific. Some, such as the one we just looked at, require the
monolith to support compensating transactions. But it’s quite possible that when you
extract a service, you may be able to design sagas that don’t require the monolith to
implement compensating transactions. That’s because a monolith only needs to sup-
port compensating transactions if the transactions that follow the monolith’s transac-
tion can fail. If each of the monolith’s transactions is either a pivot transaction or a
retriable transaction, then the monolith never needs to execute a compensating trans-
action. As a result, you only need to make minimal changes to the monolith to sup-
port sagas.

 For example, imagine that instead of extracting Kitchen Service, you extract Order
Service. This refactoring involves splitting the Order entity and creating a slimmed-
down Order entity in Order Service. It also impacts numerous commands, including
createOrder(), which is moved from the monolith to Order Service. In order to
extract Order Service, you need to change the createOrder() command to use a
saga, using the following steps:

452 CHAPTER 13 Refactoring to microservices
1 Order Service
– Create an Order in an APPROVAL_PENDING state.

2 Monolith
– Verify that the consumer can place an order.
– Validate order details and create a Ticket.
– Authorize consumer’s credit card.

3 Order Service
– Change state of Order to APPROVED.

This saga consists of three local transactions, one in the monolith and two in Order
Service. The first transaction, which is in Order Service, creates an Order in the
APPROVAL_PENDING state. The second transaction, which is in the monolith, verifies
that the consumer can place orders, authorizes their credit card, and creates a
Ticket. The third transaction, which is in Order Service, changes the state of the
Order to APPROVED.

 The monolith’s transaction is the saga’s pivot transaction—the point of no return
for the saga. If the monolith’s transaction completes, then the saga will run until com-
pletion. Only the first and second steps of this saga can fail. The third transaction
can’t fail, so the second transaction in the monolith never needs to be rolled back. As
a result, all the complexity of supporting compensatable transactions is in Order
Service, which is much more testable than the monolith.

 If all the sagas that you need to write when extracting a service have this struc-
ture, you’ll need to make far fewer changes to the monolith. What’s more, it’s possi-
ble to carefully sequence the extraction of services to ensure that the monolith’s
transactions are either pivot transactions or retriable transactions. Let’s look at how
to do that.

SEQUENCING THE EXTRACTION OF SERVICES TO AVOID IMPLEMENTING COMPENSATING TRANSACTIONS
IN THE MONOLITH

As we just saw, extracting Kitchen Service requires the monolith to implement com-
pensating transactions, whereas extracting Order Service doesn’t. This suggests that
the order in which you extract services matters. By carefully ordering the extraction of
services, you can potentially avoid having to make widespread modifications to the
monolith to support compensatable transactions. We can ensure that the monolith’s
transactions are either pivot transactions or retriable transactions. For example, if we
first extract Order Service from the FTGO monolith and then extract Consumer
Service, extracting Kitchen Service will be straightforward. Let’s take a closer look
at how to do that.

 Once we have extracted Consumer Service, the createOrder() command uses the
following saga:

1 Order Service: create an Order in an APPROVAL_PENDING state.
2 Consumer Service: verify that the consumer can place an order.

453Designing how the service and the monolith collaborate
3 Monolith
– Validate order details and create a Ticket.
– Authorize consumer’s credit card.

4 Order Service: change state of Order to APPROVED.

In this saga, the monolith’s transaction is the pivot transaction. Order Service imple-
ments the compensatable transaction.

 Now that we’ve extracted Consumer Service, we can extract Kitchen Service. If we
extract this service, the createOrder() command uses the following saga:

1 Order Service: create an Order in an APPROVAL_PENDING state.
2 Consumer Service: verify that the consumer can place an order.
3 Kitchen Service: validate order details and create a PENDING Ticket.
4 Monolith: authorize consumer’s credit card.
5 Kitchen Service: change state of Ticket to APPROVED.
6 Order Service: change state of Order to APPROVED.

In this saga, the monolith’s transaction is still the pivot transaction. Order Service and
Kitchen Service implement the compensatable transactions.

 We can even continue to refactor the monolith by extracting Accounting Service. If
we extract this service, the createOrder() command uses the following saga:

1 Order Service: create an Order in an APPROVAL_PENDING state.
2 Consumer Service: verify that the consumer can place an order.
3 Kitchen Service: validate order details and create a PENDING Ticket.
4 Accounting Service: authorize consumer’s credit card.
5 Kitchen Service: change state of Ticket to APPROVED.
6 Order Service: change state of Order to APPROVED.

As you can see, by carefully sequencing the extractions, you can avoid using sagas that
require making complex changes to the monolith. Let’s now look at how to handle
security when migrating to a microservice architecture.

13.3.3 Handling authentication and authorization

Another design issue you need to tackle when refactoring a monolithic application to
a microservice architecture is adapting the monolith’s security mechanism to support
the services. Chapter 11 describes how to handle security in a microservice architec-
ture. A microservices-based application uses tokens, such as JSON Web tokens (JWT),
to pass around user identity. That’s quite different than a typical traditional, mono-
lithic application that uses in-memory session state and passes around the user iden-
tity using a thread local. The challenge when transforming a monolithic application
to a microservice architecture is that you need to support both the monolithic and
JWT-based security mechanisms simultaneously.

 Fortunately, there’s a straightforward way to solve this problem that only requires
you to make one small change to the monolith’s login request handler. Figure 13.13

454 CHAPTER 13 Refactoring to microservices
shows how this works. The login handler returns an additional cookie, which in this
example I call USERINFO, that contains user information, such as the user ID and roles.
The browser includes that cookie in every request. The API gateway extracts the infor-
mation from the cookie and includes it in the HTTP requests that it makes to a ser-
vice. As a result, each service has access to the needed user information.

The sequence of events is as follows:

1 The client makes a login request containing the user’s credentials.
2 API Gateway routes the login request to the FTGO monolith.
3 The monolith returns a response containing the JSESSIONID session cookie

and the USERINFO cookie, which contains the user information, such as ID
and roles.

4 The client makes a request, which includes the USERINFO cookie, in order to
invoke an operation.

5 API Gateway validates the USERINFO cookie and includes it in the Authoriza-
tion header of the request that it makes to the service. The service validates the
USERINFO token and extracts the user information.

Let’s look at LoginHandler and API Gateway in more detail.

THE MONOLITH’S LOGINHANDLER SETS THE USERINFO COOKIE

LoginHandler processes the POST of the user’s credentials. It authenticates the user
and stores information about the user in the session. It’s often implemented by a

FTGO Monolith

Order History Service

POST/login

GET/orders
Authorization: TOKEN
...

HTTP/1.1 200 OK
Set-cookie: JSESSIONID=...
Set-cookie: USERINFO=TOKEN
...

GET/orders
Cookie: JSESSIONID=...
Cookie: USERINFO=TOKEN
...

Browser-based

SPA application

Log in with user

ID and password.

User

database

API

gateway

userId: xxx
roles:[a, b, c]
...

OrderHistory
RequestHandler

Login

handler

Initializes

Query

POST/login

Log in with user

ID and password.

Return session cookie.

Provide JWT.

Provide session cookie.

Contains user information,
such as ID and roles

In-memory
session

Figure 13.13 The login handler is enhanced to set a USERINFO cookie, which is a JWT containing user
information. API Gateway transfers the USERINFO cookie to an authorization header when it invokes a
service.

455Implementing a new feature as a service: handling misdelivered orders
security framework, such as Spring Security or Passport for NodeJS. If the applica-
tion is configured to use the default in-memory session, the HTTP response sets a ses-
sion cookie, such as JSESSIONID. In order to support the migration to microservices,
LoginHandler must also set the USERINFO cookie containing the JWT that describes
the user.

THE API GATEWAY MAPS THE USERINFO COOKIE TO THE AUTHORIZATION HEADER

The API gateway, as described in chapter 8, is responsible for request routing and API
composition. It handles each request by making one or more requests to the monolith
and the services. When the API gateway invokes a service, it validates the USERINFO
cookie and passes it to the service in the HTTP request’s Authorization header. By
mapping the cookie to the Authorization header, the API gateway ensures that it
passes the user identity to the service in a standard way that’s independent of the type
of client.

 Eventually, we’ll most likely extract login and user management into services. But
as you can see, by only making one small change to the monolith’s login handler, it’s
now possible for services to access user information. This enables you focus on devel-
oping services that provide the greatest value to the business and delay extracting less
valuable services, such as user management.

 Now that we’ve looked at how to handle security when refactoring to microser-
vices, let’s see an example of implementing a new feature as a service.

13.4 Implementing a new feature as a service: handling
misdelivered orders
Let’s say you’ve been tasked with improving how FTGO handles misdelivered orders.
A growing number of customers have been complaining about how customer ser-
vice handles orders not being delivered. The majority of orders are delivered on
time, but from time to time orders are either delivered late or not at all. For exam-
ple, the courier gets delayed by unexpectedly bad traffic, so the order is picked up
and delivered late. Or perhaps by the time the courier arrives at the restaurant, it’s
closed, and the delivery can’t be made. To make matters worse, the first time cus-
tomer service hears about the misdelivery is when they receive an angry email from
an unhappy customer.

A true story: My missing ice cream
One Saturday night I was feeling lazy and placed an order using a well-known food
delivery app to have ice cream delivered from Smitten. It never showed up. The only
communication from the company was an email the next morning saying my order had
been canceled. I also got a voicemail from a very confused customer service agent
who clearly didn’t know what she was calling about. Perhaps the call was prompted
by one of my tweets describing what happened. Clearly, the delivery company had not
established any mechanisms for properly handling inevitable mistakes.

456 CHAPTER 13 Refactoring to microservices
The root cause for many of these delivery problems is the primitive delivery schedul-
ing algorithm used by the FTGO application. A more sophisticated scheduler is under
development but won’t be finished for a few months. The interim solution is for
FTGO to proactively handle delayed or canceled orders by apologizing to the cus-
tomer, and in some cases offering compensation before the customer complains.

 Your job is to implement a new feature that will do the following:

1 Notify the customer when their order won’t be delivered on time.
2 Notify the customer when their order can’t be delivered because it can’t be

picked up before the restaurant closes.
3 Notify customer service when an order can’t be delivered on time so that they

can proactively rectify the situation by compensating the customer.
4 Track delivery statistics.

This new feature is fairly simple. The new code must track the state of each Order, and
if an Order can’t be delivered as promised, the code must notify the customer and cus-
tomer support, by, for example, sending an email.

 But how—or perhaps more precisely, where—should you implement this new fea-
ture? One approach is to implement a new module in the monolith. The problem
there is that developing and testing this code will be difficult. What’s more, this
approach increases the size of the monolith and thereby makes monolith hell even
worse. Remember the Law of Holes from earlier: when you’re in a hole, it’s best to stop
digging. Rather than make the monolith larger, a much better approach is to imple-
ment these new features as a service.

13.4.1 The design of Delayed Delivery Service

We’ll implement this feature as a service called Delayed Order Service. Figure 13.14
shows the FTGO application’s architecture after implementing this service. The appli-
cation consists of the FTGO monolith, the new Delayed Delivery Service, and an
API Gateway. Delayed Delivery Service has an API that defines a single query opera-
tion called getDelayedOrders(), which returns the currently delayed or undeliver-
able orders. API Gateway routes the getDelayedOrders() request to the service and all
other requests to the monolith. The integration glue provides Delayed Order Service
with access to the monolith’s data.

 The Delayed Order Service’s domain model consists of various entities, including
DelayedOrderNotification, Order, and Restaurant. The core logic is implemented
by the DelayedOrderService class. It’s periodically invoked by a timer to find orders
that won’t be delivered on time. It does that by querying Orders and Restaurants. If
an Order can’t be delivered on time, DelayedOrderService notifies the consumer and
customer service.

 Delayed Order Service doesn’t own the Order and Restaurant entities. Instead,
this data is replicated from the FTGO monolith. What’s more, the service doesn’t
store the customer contact information, but instead retrieves it from the monolith.

457Implementing a new feature as a service: handling misdelivered orders
Let’s look at the design of the integration glue that provides Delayed Order Service
access to the monolith’s data.

13.4.2 Designing the integration glue for Delayed Delivery Service

Even though a service that implements a new feature defines its own entity classes, it
usually accesses data that’s owned by the monolith. Delayed Delivery Service is no
exception. It has a DelayedOrderNotification entity, which represents a notification
that it has sent to the consumer. But as I just mentioned, its Order and Restaurant enti-
ties replicate data from the FTGO monolith. It also needs to query user contact infor-
mation in order to notify the user. Consequently, we need to implement integration
glue that enables Delivery Service to access the monolith’s data.

 Figure 13.15 shows the design of the integration glue. The FTGO monolith pub-
lishes Order and Restaurant domain events. Delivery Service consumes these events
and updates its replicas of those entities. The FTGO monolith implements a REST

Monolith

???

API gateway

REST

API

Integration

glue

Delayed

Order

Service

GetDelayedOrders()

REST

API

Notification

Service

CRM system

Create case.

Send apology

notification.

Need to design.

???

«Service»
DelayedDelivery

Service

«stereotype»
Order

«entity»
Notification «entity»

Restaurant

«repository»
Customer

ContactInfo
Repository

«entity»
OpeningHours

Figure 13.14 The design of Delayed Delivery Service. The integration glue provides Delayed Delivery
Service access to data owned by the monolith, such as the Order and Restaurant entities, and the customer
contact information.

458 CHAPTER 13 Refactoring to microservices
endpoint for querying the customer contact information. Delivery Service calls this
endpoint when it needs to notify a user that their order cannot be delivered on time.

Let’s look at the design of each part of the integration, starting with the REST API for
retrieving customer contact information.

QUERYING CUSTOMER CONTACT INFORMATION USING CUSTOMERCONTACTINFOREPOSITORY

As described in section 13.3.1, there are a couple of different ways that a service such
as Delayed Delivery Service could read the monolith’s data. The simplest option is
for Delayed Order Service to retrieve data using the monolith’s query API. This
approach makes sense when retrieving the User contact information. There aren’t
any latency or performance, issues because Delayed Delivery Service rarely needs to
retrieve a user’s contact information, and the amount of data is quite small.

 CustomerContactInfoRepository is an interface that enables Delayed Delivery
Service to retrieve a consumer’s contact info. It’s implemented by a Customer-
ContactInfoProxy, which retrieves the user information by invoking the monolith’s
getCustomerContactInfo() REST endpoint.

PUBLISHING AND CONSUMING ORDER AND RESTAURANT DOMAIN EVENTS

Unfortunately, it isn’t practical for Delayed Delivery Service to query the mono-
lith for the state of all open Orders and Restaurant hours. That’s because it’s ineffi-
cient to repeatedly transfer a large amount of data over the network. Consequently,
Delayed Delivery Service must use the second, more complex option and main-
tain a replica of Orders and Restaurants by subscribing to events published by the
monolith. It’s important to remember that the replica isn’t a complete copy of the
data from the monolith—it just stores a small subset of the attributes of Order and
Restaurant entities.

Monolith

Event

subscriber

Delayed Order Service

Domain

event

publisher

REST

endpoint

Customer

ContactInfo

Proxy

<Repository>
Customer

ContactInfo
Repository

Restaurant events

getCustomerContactInfo()

Order events

Restaurant

events

Order

events

Figure 13.15 The integration glue provides Delayed Delivery Service with access to the data owned by
the monolith.

459Breaking apart the monolith: extracting delivery management
 As described earlier in section 13.3.1, there are a couple of different ways that we
can change the FTGO monolith so that it publishes Order and Restaurant domain
events. One option is to modify all the places in the monolith that update Orders and
Restaurants to publish high-level domain events. The second option is to tail the
transaction log to replicate the changes as events. In this particular scenario, we need
to synchronize the two databases. We don’t require the FTGO monolith to publish
high-level domain events, so either approach is fine.

 Delayed Order Service implements event handlers that subscribe to events from
the monolith and update its Order and Restaurant entities. The details of the event
handlers depend on whether the monolith publishes specific high-level events or low-
level change events. In either case, you can think of an event handler as translating an
event in the monolith’s bounded context to the update of an entity in the service’s
bounded context.

 An important benefit of using a replica is that it enables Delayed Order Service
to efficiently query the orders and the restaurant opening hours. One drawback,
however, is that it’s more complex. Another drawback is that it requires the mono-
lith to publish the necessary Order and Restaurant events. Fortunately, because
Delayed Delivery Service only needs what’s essentially a subset of the columns of
the ORDERS and RESTAURANT tables, we shouldn’t encounter the problems described
in section 13.3.1.

 Implementing a new feature such as delayed order management as a standalone
service accelerates its development, testing, and deployment. What’s more, it enables
you to implement the feature using a brand new technology stack instead of the
monolith’s older one. It also stops the monolith from growing. Delayed order man-
agement is just one of many new features planned for the FTGO application. The
FTGO team can implement many of these features as separate services.

 Unfortunately, you can’t implement all changes as new services. Quite often you
must make extensive changes to the monolith to implement new features or change
existing features. Any development involving the monolith will mostly likely be slow
and painful. If you want to accelerate the delivery of these features, you must break up
the monolith by migrating functionality from the monolith into services. Let’s look at
how to do that.

13.5 Breaking apart the monolith: extracting delivery
management
To accelerate the delivery of features that are implemented by a monolith, you need
to break up the monolith into services. For example, let’s imagine that you want to
enhance FTGO delivery management by implementing a new routing algorithm. A
major obstacle to developing delivery management is that it’s entangled with order
management and is part of the monolithic code base. Developing, testing, and deploy-
ing delivery management is likely to be slow. In order to accelerate its development,
you need to extract delivery management into a Delivery Service.

460 CHAPTER 13 Refactoring to microservices
 I start this section by describing delivery management and how it’s currently
embedded within the monolith. Next I discuss the design of the new, standalone
Delivery Service and its API. I then describe how Delivery Service and the FTGO
monolith collaborate. Finally I talk about some of the changes we need to make to the
monolith to support Delivery Service.

 Let’s begin by reviewing the existing design.

13.5.1 Overview of existing delivery management functionality

Delivery management is responsible for scheduling the couriers that pick up orders at
restaurants and deliver them to consumers. Each courier has a plan that is a schedule
of pickup and deliver actions. A pickup action tells the Courier to pick up an order
from a restaurant at a particular time. A deliver action tells the Courier to deliver an
order to a consumer. The plans are revised whenever orders are placed, canceled, or
revised, and as the location and availability of couriers changes.

 Delivery management is one of the oldest parts of the FTGO application. As fig-
ure 13.16 shows, it’s embedded within order management. Much of the code for man-
aging deliveries is in OrderService. What’s more, there’s no explicit representation of
a Delivery. It’s embedded within the Order entity, which has various delivery-related
fields, such as scheduledPickupTime and scheduledDeliveryTime.

 Numerous commands implemented by the monolith invoke delivery manage-
ment, including the following:

 acceptOrder()—Invoked when a restaurant accepts an order and commits to
preparing it by a certain time. This operation invokes delivery management to
schedule a delivery.

 cancelOrder()—Invoked when a consumer cancels an order. If necessary, it
cancels the delivery.

 noteCourierLocationUpdated()—Invoked by the courier’s mobile application
to update the courier’s location. It triggers the rescheduling of deliveries.

 noteCourierAvailabilityChanged()—Invoked by the courier’s mobile applica-
tion to update the courier’s availability. It triggers the rescheduling of deliveries.

Also, various queries retrieve data maintained by delivery management, including the
following:

 getCourierPlan()—Invoked by the courier’s mobile application and returns
the courier’s plan

 getOrderStatus()—Returns the order’s status, which includes delivery-related
information such as the assigned courier and the ETA

 getOrderHistory()—Returns similar information as getOrderStatus() except
about multiple orders

Quite often what’s extracted into a service is, as mentioned in section 13.2.3, an entire
vertical slice, with controllers at the top and database tables at the bottom. We could

461Breaking apart the monolith: extracting delivery management
consider the Courier-related commands and queries to be part of delivery manage-
ment. After all, delivery management creates the courier plans and is the primary con-
sumer of the Courier location and availability information. But in order to minimize
the development effort, we’ll leave those operations in the monolith and just extract
the core of the algorithm. Consequently, the first iteration of Delivery Service won’t
expose a publicly accessible API. Instead, it will only be invoked by the monolith.
Next, let’s explore the design of Delivery Service.

API

FTGO monolith

«Service»
OrderService

«Service»
CourierService

...
«delivery management»
scheduleDelivery()
rescheduleDelivery()
cancelDelivery()
reviseSchedule()
...

acceptOrder()
cancelOrder()
getOrderStatus()
getOrderHistory()

updateCourierLocation()
updateCourierAvailability()
getCourierPlan()

Order operations: Courier operations:

«entity»
Courier

«value object»
Plan

«entity»
Order

«entity»
Restaurant «value object»

Action

«value object»
Dropoff

«value object»
Pickup

Figure 13.16 Delivery management is entangled with order management within the FTGO monolith.

462 CHAPTER 13 Refactoring to microservices
13.5.2 Overview of Delivery Service

The proposed new Delivery Service is responsible for scheduling, rescheduling, and
canceling deliveries. Figure 13.17 shows a high-level view of the architecture of the
FTGO application after extracting Delivery Service. The architecture consists of
the FTGO monolith and Delivery Service. They collaborate using the integration
glue, which consists of APIs in both the service and monolith. Delivery Service has
its own domain model and database.

In order to flesh out this architecture and determine the service’s domain model, we
need to answer the following questions:

 Which behavior and data are moved to Delivery Service?
 What API does Delivery Service expose to the monolith?
 What API does the monolith expose to Delivery Service?

These issues are interrelated because the distribution of responsibilities between the
monolith and the service affects the APIs. For instance, Delivery Service will need to
invoke an API provided by the monolith to access the data in the monolith’s data-
base and vice versa. Later, I’ll describe the design of the integration glue that enables

Monolith

domain model

Integration glue

What API does the Delivery Service
expose to the monolith?

Delivery Service

domain model

FTGO Monolith Delivery Service

Delivery

Service

database

Monolith

database

AdapterAdapter

What API does the monolith
expose to the Delivery Service?

Which behavior and
data is moved to the

Delivery Service?

Figure 13.17 The high-level view of the FTGO application after extracting Delivery Service. The FTGO
monolith and Delivery Service collaborate using the integration glue, which consists of APIs in each of them.
The two key decisions that need to be made are which functionality and data are moved to Delivery Service
and how do the monolith and Delivery Service collaborate via APIs?

463Breaking apart the monolith: extracting delivery management
Delivery Service and the FTGO monolith to collaborate. But first, let’s look at the
design of Delivery Service’s domain model.

13.5.3 Designing the Delivery Service domain model

To be able to extract delivery management, we first need to identify the classes that
implement it. Once we’ve done that, we can decide which classes to move to Delivery
Service to form its domain logic. In some cases, we’ll need to split classes. We’ll
also need to decide which data to replicate between the service and the monolith.

 Let’s start by identifying the classes that implement delivery management.

IDENTIFYING WHICH ENTITIES AND THEIR FIELDS ARE PART OF DELIVERY MANAGEMENT

The first step in the process of designing Delivery Service is to carefully review the
delivery management code and identify the participating entities and their fields. Fig-
ure 13.18 shows the entities and fields that are part of delivery management. Some
fields are inputs to the delivery-scheduling algorithm, and others are the outputs. The
figure shows which of those fields are also used by other functionality implemented by
the monolith.

The delivery scheduling algorithm reads various attributes including the Order’s
restaurant, promisedDeliveryTime, and deliveryAddress, and the Courier’s location,
availability, and current plans. It updates the Courier’s plans, the Order’s scheduled-
PickupTime, and scheduledDeliveryTime. As you can see, the fields used by delivery
management are also used by the monolith.

Order

«Monolith Read/Write»
«Service Read»
state
deliveryAddress
promisedDeliveryTime
preparedByTime

«Service Read/Write»
«Monolith Read»
scheduledPickupTime
scheduledDeliveryTime

Restaurant

«Read»
address

Courier

«Monolith Read/Write»
«Service Read»
Location
availability

«Service Read/Write»
«Monolith Read»

Plan

Task

Figure 13.18 The entities and fields that are accessed by delivery management
and other functionality implemented by the monolith. A field can be read or written
or both. It can be accessed by delivery management, the monolith, or both.

464 CHAPTER 13 Refactoring to microservices
DECIDING WHICH DATA TO MIGRATE TO DELIVERY SERVICE

Now that we’ve identified which entities and fields participate in delivery manage-
ment, the next step is to decide which of them we should move to the service. In an
ideal scenario, the data accessed by the service is used exclusively by the service, so we
could simply move that data to the service and be done. Sadly, it’s rarely that simple,
and this situation is no exception. All the entities and fields used by the delivery man-
agement are also used by other functionality implemented by the monolith.

 As a result, when determining which data to move to the service, we need to keep
in mind two issues. The first is: how does the service access the data that remains in
the monolith? The second is: how does the monolith access data that’s moved to the
service? Also, as described earlier in section 13.3, we need to carefully consider how to
maintain data consistency between the service and the monolith.

 The essential responsibility of Delivery Service is managing courier plans and
updating the Order’s scheduledPickupTime and scheduledDeliveryTime fields. It
makes sense, therefore, for it to own those fields. We could also move the Cou-
rier.location and Courier.availability fields to Delivery Service. But because
we’re trying to make the smallest possible change, we’ll leave those fields in the mono-
lith for now.

THE DESIGN OF THE DELIVERY SERVICE DOMAIN LOGIC

Figure 13.19 shows the design of the Delivery Service’s domain model. The core of
the service consists of domain classes such as Delivery and Courier. The Delivery-
ServiceImpl class is the entry point into the delivery management business logic. It
implements the DeliveryService and CourierService interfaces, which are invoked
by DeliveryServiceEventsHandler and DeliveryServiceNotificationsHandlers,
described later in this section.

 The delivery management business logic is mostly code copied from the monolith.
For example, we’ll copy the Order entity from the monolith to Delivery Service,
rename it to Delivery, and delete all fields except those used by delivery manage-
ment. We’ll also copy the Courier entity and delete most of its fields. In order to
develop the domain logic for Delivery Service, we will need to untangle the code
from the monolith. We’ll need to break numerous dependencies, which is likely to be
time consuming. Once again, it’s a lot easier to refactor code when using a statically
typed language, because the compiler will be your friend.

 Delivery Service is not a standalone service. Let’s look at the design of the inte-
gration glue that enables Delivery Service and the FTGO monolith to collaborate.

465Breaking apart the monolith: extracting delivery management
13.5.4 The design of the Delivery Service integration glue

The FTGO monolith needs to invoke Delivery Service to manage deliveries. The
monolith also needs to exchange data with Delivery Service. This collaboration is
enabled by the integration glue. Figure 13.20 shows the design of the Delivery Ser-
vice integration glue. Delivery Service has a delivery management API. It also pub-
lishes Delivery and Courier domain events. The FTGO monolith publishes Courier
domain events.

 Let’s look at the design of each part of the integration glue, starting with Delivery
Service’s API for managing deliveries.

THE DESIGN OF THE DELIVERY SERVICE API
Delivery Service must provide an API that enables the monolith to schedule, revise,
and cancel deliveries. As you’ve seen throughout this book, the preferred approach is
to use asynchronous messaging, because it promotes loose coupling and increases
availability. One approach is for Delivery Service to subscribe to Order domain
events published by the monolith. Depending on the type of the event, it creates,

Delivery Service

DeliveryServiceImpl

«interface»

DeliveryService

void schedule(...)

void reschedule(...)

void cancel(...)

«interface»

CourierService

noteCourierLocationUpdated(...)

noteCourierAvailabilityUpdated(...)
«entity»
Courier«entity»

Delivery

«value object»
PlanDeliveryService

EventsHandlers

DeliveryService
NotificationHandlers

Figure 13.19 The design of the Delivery Service's domain model

466 CHAPTER 13 Refactoring to microservices
revises, and cancels a Delivery. A benefit of this approach is that the monolith doesn’t
need to explicitly invoke Delivery Service. The drawback of relying on domain events
is that it requires Delivery Service to know how each Order event impacts the corre-
sponding Delivery.

 A better approach is for Delivery Service to implement a notification-based API
that enables the monolith to explicitly tell Delivery Service to create, revise, and
cancel deliveries. Delivery Service’s API consists of a message notification channel
and three message types: ScheduleDelivery, ReviseDelivery, or CancelDelivery. A
notification message contains Order information needed by Delivery Service. For
example, a ScheduleDelivery notification contains the pickup time and location and
the delivery time and location. An important benefit of this approach is that Delivery
Service doesn’t have detailed knowledge of the Order lifecycle. It’s entirely focused
on managing deliveries and has no knowledge of orders.

 This API isn’t the only way that Delivery Service and the FTGO monolith collab-
orate. They also need to exchange data.

HOW THE DELIVERY SERVICE ACCESSES THE FTGO MONOLITH’S DATA

Delivery Service needs to access the Courier location and availability data, which is
owned by the monolith. Because that’s potentially a large amount of data, it’s not practi-
cal for the service to repeatedly query the monolith. Instead, a better approach is for the
monolith to replicate the data to Delivery Service by publishing Courier domain
events, CourierLocationUpdated and CourierAvailabilityUpdated. Delivery Service
has a CourierEventSubscriber that subscribes to the domain events and updates its
version of the Courier. It might also trigger the rescheduling of deliveries.

Delivery

Service

FTGO

monolith

Courier events

Courier events

Delivery events

Delivery Service

notifications

Delivery events

Courier events

Courier

event

subscriber

Delivery

event

subscriber

Delivery

Service

proxy

Messaging

adapter

Messaging

adapter

Delivery

Service

notifications

handlers

«interface»
DeliveryService«interface»

DeliveryService
«interface»

CourierService

Figure 13.20 The design of the Delivery Service integration glue. Delivery Service has a delivery
management API. The service and the FTGO monolith synchronize data by exchanging domain events.

467Breaking apart the monolith: extracting delivery management
HOW THE FTGO MONOLITH ACCESSES THE DELIVERY SERVICE DATA

The FTGO monolith needs to read the data that’s been moved to Delivery Service,
such as the Courier plans. In theory, the monolith could query the service, but that
requires extensive changes to the monolith. For the time being, it’s easier to leave the
monolith’s domain model and database schema unchanged and replicate data from
the service back to the monolith.

 The easiest way to accomplish that is for Delivery Service to publish Courier and
Delivery domain events. The service publishes a CourierPlanUpdated event when it
updates a Courier’s plan, and a DeliveryScheduleUpdate event when it updates a
Delivery. The monolith consumes these domain events and updates its database.

 Now that we’ve looked at how the FTGO monolith and Delivery Service interact,
let’s see how to change the monolith.

13.5.5 Changing the FTGO monolith to interact with Delivery Service

In many ways, implementing Delivery Service is the easier part of the extraction
process. Modifying the FTGO monolith is much more difficult. Fortunately, replicat-
ing data from the service back to the monolith reduces the size of the change. But we
still need to change the monolith to manage deliveries by invoking Delivery Service.
Let’s look at how to do that.

DEFINING A DELIVERYSERVICE INTERFACE

The first step is to encapsulate the delivery management code with a Java interface
corresponding to the messaging-based API defined earlier. This interface, shown in
figure 13.21, defines methods for scheduling, rescheduling, and canceling deliveries.

«interface»
DeliveryService

DeliveryServiceImpl

void schedule(...)
void reschedule(...)
void cancel(...)

Delivery
management

Delivery
management

client

Figure 13.21 The first step is to define DeliveryService, which
is a coarse-grained, remotable API for invoking the delivery
management logic.

468 CHAPTER 13 Refactoring to microservices
Eventually, we’ll implement this interface with a proxy that sends messages to the
delivery service. But initially, we’ll implement this API with a class that calls the deliv-
ery management code.

 The DeliveryService interface is a coarse-grained interface that’s well suited to
being implemented by an IPC mechanism. It defines schedule(), reschedule(), and
cancel() methods, which correspond to the notification message types defined earlier.

REFACTORING THE MONOLITH TO CALL THE DELIVERYSERVICE INTERFACE

Next, as figure 13.22 shows, we need to identify all the places in the FTGO monolith
that invoke delivery management and change them to use the DeliveryService inter-
face. This may take some time and is one of the most challenging aspects of extracting
a service from the monolith.

It certainly helps if the monolith is written in a statically typed language, such as Java,
because the tools do a better job of identifying dependencies. If not, then hopefully
you have some automated tests with sufficient coverage of the parts of the code that
need to be changed.

IMPLEMENTING THE DELIVERYSERVICE INTERFACE

The final step is to replace the DeliveryServiceImpl class with a proxy that sends
notification messages to the standalone Delivery Service. But rather than discard
the existing implementation right away, we’ll use a design, shown in figure 13.23, that
enables the monolith to dynamically switch between the existing implementation and
Delivery Service. We’ll implement the DeliveryService interface with a class that
uses a dynamic feature toggle to determine whether to invoke the existing implemen-
tation or Delivery Service.

«interface»
DeliveryService

DeliveryServiceImpl

void schedule(...)
void reschedule(...)
void cancel(...)

Delivery
management

Delivery
management

client

Figure 13.22 The second step is to change the FTGO monolith to
invoke delivery management via the DeliveryService interface.

469Breaking apart the monolith: extracting delivery management
Using a feature toggle significantly reduces the risk of rolling out Delivery Service. We
can deploy Delivery Service and test it. And then, once we’re sure it works, we can flip
the toggle to route traffic to it. If we then discover that Delivery Service isn’t working
as expected, we can switch back to the old implementation.

Once we’re sure that Delivery Service is working as expected, we can then remove
the delivery management code from the monolith.

 Delivery Service and Delayed Order Service are examples of the services that
the FTGO team will develop during their journey to the microservice architecture.
Where they go next after implementing these services depends on the priorities of the
business. One possible path is to extract Order History Service, described in chap-
ter 7. Extracting this service partially eliminates the need for Delivery Service to
replicate data back to the monolith.

About feature toggles
Feature toggles, or feature flags, let you deploy code changes without necessarily
releasing them to users. They also enable you to dynamically change the behavior
of the application by deploying new code. This article by Martin Fowler provides an
excellent overview of the topic: https://martinfowler.com/articles/feature-toggles
.html.

«interface»
DeliveryService

void schedule(...)
void reschedule(...)
void cancel(...)

FeatureToggleBased
DeliveryServiceImpl

DeliveryServiceImpl

DeliveryServiceProxy

Delivery
management

Invokes

Invokes

Sends
message

Delivery
management

client

Delivery notifications

Figure 13.23 The final step is to implement DeliveryService with a proxy class that sends
messages Delivery Service. A feature toggle controls whether the FTGO monolith uses the old
implementation or the new Delivery Service.

https://martinfowler.com/articles/feature-toggles.html
https://martinfowler.com/articles/feature-toggles.html
https://martinfowler.com/articles/feature-toggles.html

470 CHAPTER 13 Refactoring to microservices
 After implementing Order History Service, the FTGO team can then extract the
services in the order described in section 13.3.2: Order Service, Consumer Service,
Kitchen Service, and so on. As the FTGO team extracts each service, the maintain-
ability and testability of their application gradually improves, and their development
velocity increases.

Summary
 Before migrating to a microservice architecture, it’s important to be sure that

your software delivery problems are a result of having outgrown your mono-
lithic architecture. You might be able to accelerate delivery by improving your
software development process.

 It’s important to migrate to microservices by incrementally developing a stran-
gler application. A strangler application is a new application consisting of
microservices that you build around the existing monolithic application. You
should demonstrate value early and often in order to ensure that the business
supports the migration effort.

 A great way to introduce microservices into your architecture is to implement
new features as services. Doing so enables you to quickly and easily develop a
feature using a modern technology and development process. It’s a good way to
quickly demonstrate the value of migrating to microservices.

 One way to break up the monolith is to separate the presentation tier from the
backend, which results in two smaller monoliths. Although it’s not a huge
improvement, it does mean that you can deploy each monolith independently.
This allows, for example, the UI team to iterate more easily on the UI design
without impacting the backend.

 The main way to break up the monolith is by incrementally migrating function-
ality from the monolith into services. It’s important to focus on extracting the
services that provide the most benefit. For example, you’ll accelerate develop-
ment if you extract a service that implements functionality that’s being actively
developed.

 Newly developed services almost always have to interact with the monolith. A
service often needs to access a monolith’s data and invoke its functionality. The
monolith sometimes needs to access a service’s data and invoke its functionality.
To implement this collaboration, develop integration glue, which consists of
inbound and outbound adapters in the monolith.

 To prevent the monolith’s domain model from polluting the service’s domain
model, the integration glue should use an anti-corruption layer, which is a layer
of software that translates between domain models.

 One way to minimize the impact on the monolith of extracting a service is to
replicate the data that was moved to the service back to the monolith’s data-
base. Because the monolith’s schema is left unchanged, this eliminates the
need to make potentially widespread changes to the monolith code base.

471Summary
 Developing a service often requires you to implement sagas that involve the
monolith. But it can be challenging to implement a compensatable transaction
that requires making widespread changes to the monolith. Consequently, you
sometimes need to carefully sequence the extraction of services to avoid imple-
menting compensatable transactions in the monolith.

 When refactoring to a microservice architecture, you need to simultaneously
support the monolithic application’s existing security mechanism, which is often
based on an in-memory session, and the token-based security mechanism used
by the services. Fortunately, a simple solution is to modify the monolith’s login
handler to generate a cookie containing a security token, which is then for-
warded to the services by the API gateway.

index
Numerics

2PC (two-phase commit) 112
3rd party registration pattern 84–85, 108
4+1 view model of software architecture 35–37
500 status code, HTTP 367

A

AbstractAutowiringHttpRequestHandler class 423
AbstractHttpHandler class 423
accept() method 165, 172
acceptance tests 335–338

defining 336
executing specifications using Cucumber 338
writing using Gherkin 337–338

acceptOrder() method 460
Access Token 28, 354, 357
ACD (Atomicity, Consistency, Durability) 111
ACID (Atomicity, Consistency, Isolation, Dur-

ability) transactions 98, 110
ACLs (access control lists) 350
ActiveMQ message broker 92
add() method 310
addOrder() method 249–250
AggregateRepository class 206–208
aggregates 147, 374, 439

consistency boundaries 155
creating, finding, and updating 207–208
defining aggregate commands 207
defining with ReflectiveMutableCommand-

ProcessingAggregate class 206–207
designing business logic with 159–160
event sourcing

aggregate history 186, 199–200
aggregate methods and events 189–191

event sourcing-based Order aggregate
191–193

persisting aggregates using events 186–188
event sourcing and aggregate history 199–200
explicit boundaries 154–155
granularity 158
identifying 155
Order aggregate 175–180

methods 177–180
state machine 176–177
structure of 175–176

rules for 155–157
Ticket aggregate 169–173

behavior of 170–171
KitchenService domain service 171–172
KitchenServiceCommandHandler class

172–173
structure of Ticket class 170

traditional persistence and aggregate
history 186

aliases 285
Alternative pattern 22
AMI (Amazon Machine Image) 390
anomalies 126
Anti-corruption layer pattern 447
AOP (aspect-oriented programming) 373, 378
Apache Flume 370
Apache Kafka 92
Apache Openwhisk 416
Apache Shiro 351
API composition pattern 221–228

benefits and drawbacks of 227–228
increased overhead 227
lack of transactional data consistency

228
risk of reduced availability 227–228
473

INDEX474
API composition pattern (continued)
design issues 225–227

reactive programming model 227
role of API composer 225–227

findOrder() query operation 221–222, 224
overview of 222–224

API gateway 259–291
authentication 354–355
benefits of 267
design issues 268–271

being good citizen in architecture 270–271
handling partial failures 270
performance and scalability 268–269
reactive programming abstractions 269–270

drawbacks of 267
implementation using GraphQL 279–291

connecting schema to data 285–287
defining schema 282–284
executing queries 284–285
integrating Apollo GraphQL server with

Express 289–290
optimizing loading using batching and

caching 288
writing client 290–291

implementation using Netflix Zuul 273
implementation using off-the-shelf products/

services 271–272
API gateway products 272
AWS API gateway service 271–272
AWS Application Load Balancer service 272

implementation using Spring Cloud
Gateway 273–275

ApiGatewayApplication class 279
OrderConfiguration class 275–276
OrderHandlers class 276–278
OrderService class 278–279

mapping USERINFO cookie to Authorization
header 455

Netflix example 267–268
overview of 259–266

API composition 261
architecture 263–264
Backends for frontends pattern 264–266
client-specific API 262
edge functions 262–263
ownership model 264
protocol translation 262
request routing 260

ApiGatewayApplication class 279
ApiGatewayMain package 274
APIGatewayProxyRequestEvent 417, 421–422
APIGatewayProxyResponseEvent 417, 422
APIs

defining in microservice architecture 68–69
interprocess communication 69–71

creating specification for messaging-based
service API 89–90

major, breaking changes 70–71
minor, backward-compatible changes 70
semantic versioning 70
specifying REST APIs 74

refactoring to microservices 444–445, 465–466
testing microservices

consumer contract tests for messaging
APIs 305

consumer-side integration test for API gate-
way’s OrderServiceProxy 325–326

example contract for REST API 324
See also API gateways

Application architecture patterns
Microservice architecture 8–18, 40
Monolithic architecture 2–7, 22–34, 40

application infrastructure 24
application metrics 28, 366, 373–376

collecting service-level metrics 374–375
delivering metrics to metrics service 375–376

application modernization 23–24, 430–432
application security 349
apply() method 188, 193
architectural styles 37–40

hexagonal 38–40
layered 37–38
microservice architecture 40–43

loose coupling, defined 42–43
relative unimportance of size of service 43
role of shared libraries 43
services, defined 41–42

aspect-oriented programming (AOP) 373, 378
asynchronous (nonblocking) I/O model 268
asynchronous interactions 67
Asynchronous messaging pattern 85–103

competing receivers and message ordering
94–95

creating API specification 89–90
documenting asynchronous operations 90
documenting published events 90

duplicate messages 95–97
tracking messages and discarding

duplicates 96–97
writing idempotent message handlers 96

improving availability 103–108
eliminating synchronous interaction

104–108
synchronous communication and

availability 103–104
interaction styles 87–89

one-way notifications 89
publish/subscribe 89
request/response and asynchronous request/

response 87–88

INDEX 475
Asynchronous messaging pattern (continued)
libraries and frameworks for 100–103

basic messaging 101
command/reply-based messaging 102–103
domain event publishing 102

message brokers 90–94
benefits and drawbacks of 93–94
brokerless messaging 91–92
implementing message channels using 93
overview of 92

overview of 86–87
transactional messaging 97–100

publishing events using Polling publisher
pattern 98–99

publishing events using Transaction log tail-
ing pattern 99–100

using database table as message queue
97–98

asynchronous request/response interactions
implementing 87–88
integration tests for

consumer-side contract tests 332–335
contract tests 330–335
example contract 331–332

Atomicity, Consistency, Durability (ACD) 111
Atomicity, Consistency, Isolation, Durability

(ACID) transactions 98, 110
attribute value 245
audit logging 28, 186, 366, 377–378

adding code to business logic 378
aspect-oriented programming 378
event sourcing 378

auditing 350
authentication and authorization

refactoring to microservices 453–455
API gateway maps USERINFO cookie to

Authorization header 455
LoginHandler sets USERINFO cookie

454–455
security in microservice architecture

handling authentication 354–355
handling authorization 356

Authorization Server concept 357
automated testing 28, 293, 295–296
automatic sidecar injection 411
Avro 72
AWS API gateway service 271–272
AWS Application Load Balancer service 272
AWS DynamoDB 242–252

data modeling and query design 244–249
detecting duplicate events 248–249
findOrderHistory query 245–247
FTGO-order-history table 245
paginating query results 247
updating orders 247–248

OrderHistoryDaoDynamoDb class 249–252
addOrder() method 249–250
findOrderHistory() method 251–252
idempotentUpdate() method 250–251
notePickedUp() method 250

OrderHistoryEventHandlers module 243–244
AWS Gateway, deploying RESTful services

using 419–426
deploying lambda functions using Serverless

framework 425–426
design of Restaurant Service 419–423
packaging service as ZIP file 424

AWS Lambda
benefits of lambda functions 418
developing lambda functions 417
drawbacks of lambda functions 419
invoking lambda functions 417–418

defining scheduled lambda functions 418
handling events 418
handling HTTP requests 417
invoking lambda functions using web service

requests 418
overview of 416
RESTful services 419–426

deploying lambda functions using Serverless
framework 425–426

design of Restaurant Service 419–423
packaging service as ZIP file 424

aws.region property 363
Axon 202
Azure functions, Microsoft 416

B

Backends for frontends (BFF) pattern 264–266
batching 288
@Before setUp() method 309
beforeHandling() method 423
Big Ball of Mud pattern 2
big bang rewrite 430
binary message formats 72
bounded context 55
broker-based messaging 90–94

benefits and drawbacks of 93–94
implementing message channels using 93
overview of 92

brokerless messaging 91–92
Browser API module 264
business capability 40
business logic 146–219

adding audit logging code to 378
domain events 160–168

consuming 167–168
defined 161
event enrichment 161–162

INDEX476
business logic (continued)
generating 164–165
identifying 162–163
publishing 166–167
reasons to publish 160–161

domain model design 152–160
aggregates 154–160
problem with fuzzy boundaries 153–154

event sourcing 184–202
benefits of 199–200
drawbacks of 200–202
event publishing 194–195
evolving domain events 198–199
handling concurrent updates using optimis-

tic locking 193–194
idempotent message processing 197
overview of 186–193
snapshots, improving performance with

195–196
traditional persistence 185–186

event store implementation 202–209
Eventuate client framework for Java 205–209
Eventuate Local event store 203–205

Kitchen Service business logic 168–173
Order Service business logic 173–182

Order aggregate 175–180
OrderService class 180–182

organization patterns 147–152
Domain model pattern 150–151
domain-driven design 151–152
Transaction script pattern 149–150

sagas and event sourcing together 209–218
creating orchestration-based saga 211–212
implementing choreography-based sagas

using event sourcing 210
implementing event sourcing-based saga

participant 213–216
implementing saga orchestrators using event

sourcing 216–218
Business logic design patterns

Aggregate 147, 152–160
Domain event 160
Domain model 150–151
Event sourcing 184
Transaction script 149–150

business logic layer 38, 436
by value countermeasure 131–132

C

caching 262, 288
cancel() operation 177
cancelOrder() method 460
CAP theorem 113
CCP (Common Closure Principle) 56

centralized sessions 354
change failure rate 31
choreography 111
choreography-based sagas 118–121

benefits and drawbacks of 121
implementing Create Order saga 118–119
implementing using event sourcing 210
reliable event-based communication 120–121

CI (Continuous Integration) 6, 306, 357
Circuit breaker pattern 77–80

developing robust RPI proxies 79
recovering from unavailable services 79–80

Client concept 358
Client-side discovery pattern 82–83
command message 86
Command query responsibility segregation. See

CQRS pattern
command/reply-based messaging 102–103
commands 41
commit tests stage 306
committed records 130
Common Closure Principle (CCP) 56–57
communication

flexible 93
secure interprocess 350

communication patterns 23–25
commutative update countermeasure 130
compensatable transactions 116, 128, 450
compensating transaction 450
compile-time tests 297
component tests 306, 339–340

for FTGO Order Service
OrderServiceComponentTestStepDefinitions

class 341–344
running 344–345
writing 340–345

in-process component tests 339
out-of-process component tests 339–340

condition expression 248
Conduit 381
ConfigMap 402
configurable services 360–364

pull-based externalized configuration 363–364
push-based externalized configuration 362–363

@ConfigurationProperties class 276
consumer contract testing 301–303

for asynchronous request/response
interaction 332–335

for messaging APIs 305
for publish/subscribe-style interactions

328–330
for REST-based request/response style

interactions 324–326
consumer group 94
consumer-driven contract test 28, 302

INDEX 477
consumerId parameter 229
consumer-provider relationship 301
consumer-side contract test 28, 302
containers

container image 395
Deploy a service as a container 22, 393
Docker 395–398

continuous deployment 5
deployment pipeline 305–307

Continuous Integration (CI) 6, 306, 357
controllers, unit tests for 313–315
Conway, Melvin 30
Conway’s law 30
correlation ID 88–89, 120
countermeasures 111, 126, 450
CQRS (Command query responsibility

segregation) 26, 63, 160, 228–236
benefits of 235–236

efficient implementation 235
improved separation of concerns 235–236
querying in event sourcing-based

application 235
drawbacks of 236

more complex architecture 236
replication lag 236

motivations for using 229–232
findAvailableRestaurants() query

operation 231
findOrderHistory() query operation 229–231
need to separate concerns 231–232

overview of 232–235
query-only services 233–235
separating commands from queries 232–233

views
adding and updating 241–242
designing 236–242
implementing with AWS DynamoDB

242–252
Create Order saga 114–115, 135–142

CreateOrderSaga orchestrator 136–138
CreateOrderSagaState class 138
Eventuate Tram Saga framework 140–142
implementing using choreography 118–119
implementing using orchestration 122–123
KitchenServiceProxy class 139

create, update, and delete (CRUD)
operations 232

create() method 171, 204
createOrder() operation 114
CreateOrderSaga orchestrator 136–138
CreateOrderSagaState class 138
CreateOrderSagaTest class 312
Cross-cutting concerns patterns

Externalized configuration 28, 361
Microservice chassis 28, 378–382

CRUD (create, update, and delete)
operations 232

Cucumber framework 338
CustomerContactInfoRepository interface 445,

458

D

DAO (data access object) 39, 149, 239
data access logic layer 436
data consistency 449–453

API composition pattern and 228
maintaining across services 58
refactoring to microservices

sagas and compensatable transactions
451–452

sequencing extraction of services 452–453
supporting compensatable transactions

450–451
Saga pattern 25–26, 114–117

data consistency patterns 25
Saga pattern 25–26, 114–117

DataLoader module 288
DDD (domain-driven design) 24, 34
DDD aggregate pattern 152–160
Debezium 100
Decompose by business capability pattern 51–54

decomposition 52–54
identifying business capabilities 51–52
purpose of business capabilities 51

decomposition 33–64
Decompose by subdomain 54
defining application’s microservice

architecture 44–64
defining service APIs 61–64
guidelines for decomposition 56–57
identifying system operations 45–50
obstacles to decomposition 57–61
service definition with Decompose by business

capability pattern 51–54
service definition with Decompose by sub-

domain pattern 54–55
guidelines for 56–57

Common Closure Principle 56–57
Single Responsibility Principle 56

obstacles to 57–61
god classes 58–61
maintaining data consistency across

services 58
network latency 57
obtaining consistent view of data 58
synchronous interprocess communication 57

patterns
Decompose by business capability 24, 51–54
Decompose by subdomain 24, 54

INDEX478
Delayed Delivery Service
changing FTGO monolith to interact with

467–470
defining interface 467–468
implementing interface 468–470
refactoring monolith to call interface

468
design for 456–457
domain model 463–464

deciding which data to migrate 464
design of domain logic 464
identifying which entities and fields are

part of delivery management 463
existing delivery functionality 460–461
integration glue for 457–459, 465–467

CustomerContactInfoRepository
interface 458

design of API 465–466
how Delivery Service accesses FTGO

data 466
how FTGO accesses data 467
publishing and consuming Order and Restau-

rant domain events 458–459
overview of 462–463

deleted flag 201
deliver action 460
DeliveryServiceImpl class 468
dependencies 125
deploy stage 306
deployment 383–427

Language-specific packaging format
pattern 386–390

benefits of 388–389
drawbacks of 389–390

RESTful services using AWS Lambda and AWS
Gateway 419–426

deploying lambda functions using Serverless
framework 425–426

design of Restaurant Service 419–423
packaging service as ZIP file 424

Serverless deployment pattern 415–419
benefits of lambda functions 418
developing lambda functions 417
drawbacks of lambda functions 419
invoking lambda functions 417–418
overview of 416

Service as container pattern 393–399
benefits of 398
Docker 395–398
drawbacks of 399

Service as virtual machine pattern 390–393
benefits of 392
drawbacks of 392–393

Service mesh pattern 380
Sidecar pattern 410

with Kubernetes 399–415
deploying API gateway 405–406
deploying Restaurant Service 402–405
overview of 399–402
service meshes 407–415
zero-downtime deployments 406–407

deployment frequency 31
Deployment patterns

Deploy a service as a container 22, 393
Deploy a service as a VM 390, 392
Language-specific packaging format 386, 390
Serverless deployment 415–419
Service mesh 380
Sidecar 410

deployment pipeline 305–307
Deployment view 36
DestinationRule 413
dirty reads 127
Distributed tracing pattern 28, 366, 370–373

distributed tracing server 373
instrumentation libraries 373

Distributed Transaction Processing (DTP) 112
Docker 395–398

building images 395–396
pushing images to registry 396–397
running containers 397–398

docker build command 396
Docker containers 267
docker push command 397
docker run command 397
docker tag command 396
document message 86
domain event publishing 102
domain events 160–168, 198–199

consuming 167–168, 458–459
defined 161
defining 207
event enrichment 161–162
event schema evolution 198–199
generating 164–165
identifying 162–163
managing schema changes through

upcasting 199
publishing 102, 166–167, 448–449, 458–459
reasons to publish 160–161
subscribing to 208–209, 448–449

domain model 54, 150–160
aggregates

consistency boundaries 155
designing business logic with 159–160
explicit boundaries 154–155
granularity 158
identifying aggregates 155
rules for 155–157

creating high-level domain model 46–48

INDEX 479
domain model (continued)
Delivery Service 463–464

deciding which data to migrate 464
design of domain logic 464
identifying which entities and fields are part

of delivery management 463
problem with fuzzy boundaries 153–154
splitting 439–440

domain services
KitchenService 171–172
unit tests for 312–313

domain-driven design (DDD) 24, 34
DSL (domain-specific language) 303
DTP (Distributed Transaction Processing)

112
dumb pipes 14
duplicate messages 95–97

tracking messages and discarding
duplicates 96–97

writing idempotent message handlers 96
DynamoDB streams 100

E

edge functions 271
Elastic Beanstalk 391
Elasticsearch 370
@EnableGateway annotation 279
end-to-end tests 345–346

designing 345
running 346
writing 346

Enterprise Service Bus (ESB) 264
entities, unit tests for 309–310
Entity object, DDD 151
enums 283
ESB (Enterprise Service Bus) 264
event. See Domain events
event handlers

events generated by AWS services 418
idempotent 240–241
unit tests for 315–317

event message 86
event publishing 194–195

Asynchronous messaging pattern 89–90,
98–100, 102

domain events 160–168
consuming 167–168
defined 161
event enrichment 161–162
generating and publishing 164–167
identifying 162–163
reasons for 160–161

event sourcing 194–195, 199
traditional persistence and 186

using polling 194–195
using transaction log tailing 195

event sourcing 184–202
audit logging 378
benefits of 199–200

avoids O/R impedance mismatch
problem 200

preserves aggregate history 199–200
reliable domain event publishing 199
time machine for developers 200

concurrent updates and optimistic locking
193–194

drawbacks of 200–202
complexity 200
deleting data 201
evolving events 201
learning curve 200
querying event store 202

event publishing 194–195
using polling 194–195
using transaction log tailing 195

evolving domain events 198–199
event schema evolution 198–199
managing schema changes through

upcasting 199
idempotent message processing 197

with NoSQL-based event store 197
with RDBMS-based event store 197

overview of 186–193
aggregate methods required to generate

events 189–191
event sourcing-based Order aggregate 191–193
events representing state changes 188
persisting aggregates using events 186–188

sagas and 209–218
creating orchestration-based saga 211–212
implementing choreography-based sagas

using event sourcing 210
implementing event sourcing-based saga

participant 213–216
implementing saga orchestrators using event

sourcing 216–218
snapshots and performance improvement

195–196
trouble with traditional persistence 185–186

audit logging 186
event publishing bolted to business logic 186
lack of aggregate history 186
Object-Relational impedance mismatch

185–186
Event Store 202
event store implementation 202–209

Eventuate client framework for Java 205–209
AggregateRepository class 207–208
defining aggregate commands 207

INDEX480
event store implementation (continued)
defining aggregates with ReflectiveMutable-

CommandProcessingAggregate
class 206–207

defining domain events 207
subscribing to domain events 208–209

Eventuate Local event store 203–205
consuming events by subscribing to event

broker 205
event relay propagates events from database

to message broker 205
schema 203–205

event storming 162
event-driven I/O 269
@EventHandlerMethod annotation 208
events. See Domain events
@EventSubscriber annotation 208
Eventuate framework 101, 202, 205–209

and updating aggregates with the Aggregate-
Repository class 207–208

defining aggregate commands 207
defining aggregates with ReflectiveMutable-

CommandProcessingAggregate class
206–207

defining domain events 207
subscribing to domain events 208–209

Eventuate Local event store 203–205
consuming events by subscribing to event

broker 205
event relay propagates events from database to

message broker 205
schema 203–205

Eventuate Tram 100, 166
Eventuate Tram Saga framework 140–142
Exception tracking pattern 28, 366, 376–377
Express framework 289–290
external API patterns 253–291

API gateway 76, 227, 254, 259–272
API gateway implementation 271–291

using GraphQL 279–291
using Netflix Zuul 273
using off-the-shelf products/services 271–272
using Spring Cloud Gateway 273–275

API gateway pattern 76, 227, 254, 259–271
benefits of 267
design issues 268–271
drawbacks of 267
Netflix example 267–268
overview of 259–266

Backends for frontends 254, 262, 264–266
design issues 254–259

browser-based JavaScript applications 258
FTGO mobile client 255–258
third-party applications 258–259
web applications 258

externalized configuration 361
pull-based 363–364
push-based 262–263

Externalized Configuration pattern 28, 361

F

Factory object, DDD 151
fault isolation 6
feature flags 469
feature toggles 469
filter expression 247
filter parameter 229
find() operation 204
findAvailableRestaurants() query operation 231
findCustomerContactInfo() method 447
findOrder() operation 221–222, 224
findOrderHistory() query operation 229–231,

251–252
defining index for 245–247
implementing 247

FindRestaurantRequestHandler class 421–422
Fission framework 416
Fluentd 370
Flume 370
fold operation 187
FTGO application

API design issues for mobile client 255–258
changing monolith to interact with Delivery

Service 467–470
component tests for Order Service 340–345
deploying with Kubernetes 399–415

API gateway 405–406
Restaurant Service 402–405
service meshes 407–415
zero-downtime deployments 406–407

microservice architecture of 12–13
monolithic architecture of 3–4

ftgo-db-secret 404
FtgoGraphQLClient class 290
functional decomposition 10
fuzzy boundaries 153–154

G

GDPR (General Data Protection Regulation) 201
generalization pattern 22
GET REST endpoint 271
getDelayedOrders() method 456
getOrderDetails() query 368
Gherkin

executing specifications using Cucumber 338
writing acceptance tests 337–338

Go Kit 380
god classes 58–61

INDEX 481
GoLang (Go language) 4, 380
Google Cloud functions 416
graph-based schema 280
GraphQL 279, 281–291

connecting schema to data 285–287
defining schema 282–284
executing queries 284–285
integrating Apollo GraphQL server with

Express 289–290
load optimization using batching and caching 288
writing client 290–291

gRPC 76–77

H

handleHttpRequest() method 421
handleRequest() method 417
health check 82, 365
Health check API pattern 27, 366–368

implementing endpoint 367–368
invoking endpoint 368

hexagonal architecture 3, 38–40
high-level design patterns 20
Honeybadger 377
HttpServletResponse 422
Humble, Jez 30

I

idempotent message processing 96, 197
CQRS views 240–241
event sourcing-based saga participant 213
with NoSQL-based event store 197
with RDBMS-based event store 197

idempotentUpdate() method 250–251
IDL (interface definition language) 69
-ilities 8, 34, 37
Implementation view 35
inbound adapters 3, 38
infrastructure patterns 23–24
init system, Linux 390
in-memory security context 353
instrumentation libraries 373
integration glue 444–449

designing API for 444–445
for Delayed Delivery Service 457–459, 465–467

CustomerContactInfoRepository
interface 458

design of API 465–466
how Delivery Service accesses FTGO data 466
how FTGO accesses data 467
publishing and consuming Order and

Restaurant domain events 458–459
how monolith publishes and subscribes to

domain events 448–449

implementing anti-corruption layer 446–448
picking interaction style and IPC

mechanism 445–446
integration tests 319–335

asynchronous request/response
interactions 330–335

example contract 331–332
tests for asynchronous request/response

interaction 332–335
persistence integration tests 321–322
publish/subscribe-style interactions 326–330

contract for publishing OrderCreated
event 327–328

tests for Order History Service 329–330
tests for Order Service 328–329

REST-based request/response style
interactions 322–326

example contract 324
tests for API gateway OrderServiceProxy

325–326
tests for Order Service 324–325

interaction styles 67–68, 87–89
asynchronous 104–105
one-way notifications 89
publish/async responses 89
publish/subscribe 89
request/response and asynchronous request/

response 87–88
selecting 445–446

interface definition language (IDL) 69
invariants 153
IPC (interprocess communication) 24, 65,

93–109
overview of 66–72

defining APIs 68–69
evolving APIs 69–71
interaction styles 67–68
message formats 71–72

using asynchronous Messaging pattern 85–103
competing receivers and message

ordering 94–95
creating API specification 89–90
duplicate messages 95–97
improving availability 103–108
interaction styles 87–89
libraries and frameworks for 100–103
message brokers 90–94
overview of 86–87
transactional messaging 97–100

using synchronous Remote procedure invoca-
tion pattern 72–85

Circuit breaker pattern 77–80
gRPC 76–77
REST 73–76
service discovery 80–85

INDEX482
Istio 381
deploying services 410–412
Envoy proxy 410
service meshes 408–410

J

java -jar command 395
Jenkins 306
JSESSIONID cookie 351
JSON message 71
JUL (java.util.logging) 369
JWT (JSON Web Token) 28, 356–357

K

Kafka 92
key condition expression 247
Kibana 370
Kitchen Service

business logic 168–173
Ticket aggregate 169–173

KitchenServiceCommandHandler class 172–173
KitchenServiceProxy class 139
Kong package 272
kubectl apply command 404
kubectl apply -f command 406
Kubernetes 399–415

deploying API gateway 405–406
deploying Restaurant Service 402–405
overview of 399–402

architecture 400–402
key concepts 402

service meshes 407–415
deploying services 410–412
deploying v2 of Consumer Service 414
Istio 408–412
routing production traffic to v2 415
routing rules to route to v1 version

412–413
routing test traffic to v2 414

zero-downtime deployments 406–407

L

Lagom 202
lambda functions 271, 416

benefits of 418
deploying using Serverless framework 425–426
developing 417
drawbacks of 419
invoking 417–418

defining scheduled lambda functions 418
handling events generated by AWS

services 418

handling HTTP requests 417
using web service request 418

Language-specific packaging format pattern
386–390

benefits of 388–389
efficient resource utilization 389
fast deployment 389

drawbacks of 389–390
automatically determining where to place ser-

vice instances 390
lack of encapsulation of technology stack 389
lack of isolation 390
no ability to constrain resources

consumed 389
latency 419
layered architectural style 37–38
layered file system 397
lead time 31, 293
lines of code (LOC) application 5
LinkedIn Databus 100
Linkerd 381
livenessProbe 404
LoadBalancer service 405
LOC (lines of code) application 5
Log aggregation pattern 27, 365, 368–370

log aggregation infrastructure 370
log generation 369–370

log4j 369
Logback 369
Logical view 35
LoginHandler 352, 454–455
Logstash 370
loose coupling 93, 121
lost updates 127

M

MAJOR part, Semvers 70
makeContextWithDependencies() function 290
manual sidecar injection 411
Martin, Robert C. 57
master machine 400
mean time to recover 31
Memento pattern 196
message brokers 85, 90–94

benefits and drawbacks of 93–94
implementing message channels using 93
overview of 92

message buffering 93
message channels 86–87, 93
message handler adapter class 86
message handlers, unit tests for 315–317
message identifier 88
message ordering 94–95
message sender adapter class 86

INDEX 483
messaging. See Asynchronous messaging pattern
Messaging style patterns. See Asynchronous messag-

ing pattern
metrics collection 262
Micro framework 380
micrometer-registry-prometheus library 375
microservice architecture 8–14, 34, 43

as form of modularity 11–12
benefits of 14–17

continuous delivery and deployment of large,
complex applications 15

fault isolation improvement 16
independently scalable services 16
new technology experimentation and

adoption 16–17
small, easily maintained services 15

defining 44–64
decomposition guidelines 56–57
defining service APIs 61–64
identifying system operations 45–50
obstacles to decomposing an application into

services 57–61
service definition with Decompose by business

capability pattern 51–54
service definition with Decompose by sub-

domain pattern 54–55
drawbacks of 17–19

adoption timing 18–19
challenge of finding right services 17
complex distributed systems 17–18
deployment coordination 18

each service has own database 12
FTGO application 12–13
loose coupling, defined 42–43
not silver bullet 19–20
relationships between process, organization,

and 29–32
human side of adopting microservices

31–32
software development and delivery

organization 29–30
software development and delivery

process 30–31
relative unimportance of size of service 43
role of shared libraries 43
scale cube 8–11

X-axis scaling 9
Y-axis scaling 10–11
Z-axis scaling 9–10

service-oriented architecture versus 13–14
services, defined 41–42
software architecture 34–37

4+1 view model of 35–37
definition of 35
relevance of 37

transaction management 111–117
maintaining data consistency 114–117
need for distributed transactions 112
trouble with distributed transactions 112–114

Microservice chassis pattern 28, 378–382
service meshes 380–382
using 379–380

MINOR part, Semvers 70
Mixer 409
Mobile API module 264
Mockito 305
mocks 296
modularity, microservice architecture as form

of 11–12
Mono abstraction 277
monolithic architecture 1–32, 40

benefits of 4
causes of monolithic hell 4–7

intimidation due to complexity 4–5
long and arduous path from commit to

deployment 5–6
reliability challenges 6
scaling challenges 6
slow development 5
technology stack obsolescence 6–7

FTGO monolithic architecture 3–4
multiply() method 310
MyBATIS 185

N

Netflix Falcor 281
Netflix Hystrix 79
Netflix Zuul 273
Netflix, as API gateway 267–268
network latency 57
network timeouts 79
NodePort service 406
nodes 280, 400
nonblocking I/O 268
nonfunctional requirements 8
non-key attributes 246
NoSQL-based event store

creating saga orchestrator when using 211–212
idempotent message processing when using 197
SQL versus 237–238

notePickedUp() method 250

O

O/R (Object-Relational) impedance
mismatch 185–186, 200

OAuth 2.0 protocol 357–360
object-oriented design pattern 20
object-oriented programming (OOP) 149

INDEX484
Object-Relational (O/R) impedance
mismatch 185–186, 200

observability 349
observability patterns 27–28

Application metrics 373–376
Audit logging 377–378
Distributed tracing 370–373
Exception tracking 376–377
Health check API 366–368
Log aggregation 366, 368–370

observable services 364–378
Application metrics pattern 373–376

collecting service-level metrics 374–375
delivering metrics to metrics service 375–376

Audit logging pattern 377–378
adding code to business logic 378
aspect-oriented programming 378
event sourcing 378

Distributed tracing pattern 370–373
distributed tracing server 373
instrumentation libraries 373

Exception tracking pattern 376–377
Health check API pattern 366–368

implementing endpoint 367–368
invoking endpoint 368

Log aggregation pattern 368–370
log generation 369–370
logging aggregation infrastructure 370

ole-based authorization 353
one-size-fits-all (OSFA) 262
one-to-many interaction 67
one-to-one interaction 67
one-way notifications 68, 89
one-way notification-style API 90
OOP (object-oriented programming) 149
opaque tokens 356
Openwhisk 416
optimistic locking 193–194
Optimistic Offline Lock pattern 131
orchestration 111, 399
orchestration-based sagas 121–125

benefits and drawbacks of 125
creating 211–212
implementing Create Order saga 122–123
implementing using event sourcing 216–218
modeling saga orchestrators as state

machines 123–124
transactional messaging and 125

Order aggregate 175–180
event sourcing-based 191–193
methods 177–180
state machine 176–177
structure of 175–176

Order domain events, publishing and
consuming 458–459

Order History Service 329–330
Order Service

business logic 173–182
Order aggregate 175–180
OrderService class 180–182

consumer-driven contract integration tests
for 324–325

consumer-driven contract tests for 328–329
OrderCommandHandlers class 142–143
OrderService class 133–134
OrderServiceConfiguration class 143–145

OrderCommandHandlers class 142–143
OrderConfiguration class 275–276
OrderCreated event 327–328
OrderDetailsRequestHandler 352
OrderHandlers class 276–278
OrderHistoryDaoDynamoDb class 249–252

addOrder() method 249–250
findOrderHistory() method 251–252
idempotentUpdate() method 250–251
notePickedUp() method 250

OrderHistoryEventHandlers module 243–244
OrderService class 133–134, 180–182, 278–279
OrderServiceComponentTestStepDefinitions

class 341–344
OrderServiceConfiguration class 143–145
OrderServiceProxy 325–326
OSFA (one-size-fits-all) 262
outbound adapters 3, 38, 147
outstanding requests 79

P

pagination parameter 229
partition key 246
Passport framework 351
PATCH part, Semvers 70
patterns and pattern language 20–23

by name
3rd party registration 85
Access token 354
Aggregate 150
Anti-corruption layer 447
API composition 223
API gateway 259
Application metrics 373
Audit logging 377
Backends for frontends 265
Circuit breaker 78
Client-side discovery 83
Command query responsibility

segregation 228
Consumer-driven contract test 302
Consumer-side contract test 303
Decompose by business capability 51

INDEX 485
patterns and pattern language (continued)
Decompose by subdomain 54
Deploy a service as a container 393
Deploy a service as a VM 390
Distributed tracing 370
Domain event 160
Domain model 150
Event sourcing 184
Exception tracking 376
Externalized configuration 361
Health check API 366
Language-specific packaging format 387
Log aggregation 368
Messaging 85
Microservice architecture 40
Microservice chassis 379
Monolithic architecture 40
Polling publisher 98
Remote procedure invocation 72
Saga 114
Self registration 82
Serverless deployment 416
Server-side discovery 85
Service component test 335
Service mesh 380
Sidecar 410
Strangler application 432
Transaction log tailing 99
Transaction script 149
Transactional outbox 98

groups of patterns 23–29
communication patterns 24–25
data consistency patterns 25
for automated testing of services 28
for decomposing applications into

services 24
for handling cross-cutting concerns 28
for querying data 25–26
observability patterns 27–28
security patterns 28–29
service deployment patterns 26

sections of patterns
forces 21
related patterns 21–23
resulting context 21

pending state 176
persistence

persisting aggregates using events 186–188
traditional approach to 185–186

audit logging 186
event publishing bolted to business

logic 186
lack of aggregate history 186
object-relational impedance mismatch

185–186

persistence integration tests 321–322
Persistence layer 38
pessimistic view countermeasure 130–131
pickup action 460
Pilot 409
pivot transaction 128, 450
pods 402
point-to-point channel 87
policy enforcement 409
polling 194–195
Polling publisher pattern 98–99
ports 38
pre-commit tests stage 306
predecessor pattern 21
Presentation layer 38
presentation logic 436
primary key-based queries 235
Process view 36
process() method 190, 193
production-ready service development

348–382
configurable services 360–364

pull-based externalized configuration
363–364

push-based externalized configuration
362–363

Microservice chassis pattern 378–382
service meshes 380–382
using 379–380

observable services 364–378
Application metrics pattern 373–376
Audit logging pattern 377–378
Distributed tracing pattern 370–373
Exception tracking pattern 376–377
Health check API pattern 366–368
Log aggregation pattern 368–370

secure services 349–360
handling authentication in API gateway

354–355
handling authorization 356
in traditional monolithic application

350–353
using JWTs to pass user identity and

roles 356–357
using OAuth 2.0 357–360

Prometheus 375
properties, graph-based schema 280
Protocol Buffers 72
provider service 223
proxy classes 274
proxy interface 72
pseudonymization 201
Public API module 264
publish() method 166
publish/async responses 89

INDEX486
publish/subscribe-style interaction
implementing 89
integration tests for 326–330

contract for publishing OrderCreated
event 327–328

tests for Order History Service 329–330
tests for Order Service 328–329

publish-subscribe channel 87
pull model of externalized configuration 361, 375
push model of externalized configuration 361,

375

Q

quality attributes 8, 34, 37
quality of service 8, 37
queries 41
query arguments 286
query() operation 246, 249
querying patterns 220–252

API composition pattern 26, 64, 79, 221–228
benefits and drawbacks of 227–228
design issues 225–227
findOrder() query operation 221–222, 224
overview of 222–224

CQRS pattern 26, 63, 160, 184, 221, 228–236
benefits of 235–236
drawbacks of 236
motivations for using 229–232
overview of 232–235

R

RabbitMQ 92
rate limiting 262
RDBMS-based event store

creating saga orchestrator when using 211
idempotent message processing with 197

reactive programming model 227
readinessProbe 404, 407
receiving port interface 86
reduce operation 187
refactoring 428–471

application modernization 430–432
demonstrating value 432
designing how service and monolith

collaborate 443–455
authentication and authorization 453–455
data consistency 449–453
integration glue 444–449

extracting delivery management 459–470
changing FTGO monolith to interact with

Delivery Service 467–470
designing Delivery Service domain

model 463–464

designing Delivery Service integration
glue 465–467

existing delivery functionality 460–461
overview of Delivery Service 462–463

implementing new features as services 455–459
design for Delayed Delivery Service 456–457
integration glue for Delayed Delivery

Service 457–459
minimizing changes 432–433
overview of 429–433
reasons for 429–430
strategies for 433–442

extracting business capabilities into
services 437–442

implementing new features as services
434–435

separating presentation tier from
backend 436–437

technical deployment infrastructure 433
Refactoring to microservices patterns

Anti-corruption layer 446–447
Strangler application 431–432

ReflectiveMutableCommandProcessingAggregate
class 206–207

Refresh Token concept 358
Releasing services 408
Reliable communications pattern

Circuit breaker 77–80, 108
Remote procedure invocation (RPI) pattern

72–85
Circuit breaker pattern 77–80

developing robust RPI proxies 79
recovering from unavailable services 79–80

gRPC 76–77
REST 73–76

benefits and drawbacks of 75–76
fetching multiple resources in single

request 74–75
mapping operations to HTTP verbs 75
REST maturity model 74
specifying REST APIs 74

service discovery 80–85
overview of 81
using application-level service discovery

patterns 81–83
using platform-provided service discovery

patterns 83–85
reply channel header 88–89
Repository object, DDD 152
request attribute 10
request logging 262
request/async response-style API 90
request/response interactions 87–89

asynchronous 87–88
integration tests for REST-based 322–326

INDEX 487
RequestHandler interface 417
reread value countermeasure 131
Resource Server concept 358
REST 73–76

benefits and drawbacks of 75–76
fetching multiple resources in single

request 74–75
mapping operations to HTTP verbs 75
REST maturity model 74
specifying REST APIs 74

Rest Assured Mock MVC 314
Restaurant domain events 458–459
Restaurant Service

creating services 404–405
deploying 402–405
design of 419–423

AbstractAutowiringHttpRequestHandler
class 423

AbstractHttpHandler class 423
FindRestaurantRequestHandler class

421–422
REST-based request/response style interactions,

integration tests for 322–326
example contract 324
tests for API gateway OrderServiceProxy

325–326
tests for Order Service 324–325

RESTful services 419–426
deploying lambda functions using Serverless

framework 425–426
design of Restaurant Service 419–423
packaging service as ZIP file 424

retriable transactions 117, 129, 450
revise() method 179

S

Saas (Software-as-a-Service) 5
saga orchestration package 140
Saga pattern 26
SagaOrchestratorCreated event 216
SagaOrchestratorUpdated event 216
SagaReplyRequested pseudo event 213
sagas 17, 58, 106, 110–145, 209–218, 450

coordinating 117–125
choreography-based sagas 118–121
orchestration-based sagas 121–125

Create Order saga 135–142
CreateOrderSaga orchestrator 136–138
CreateOrderSagaState class 138
Eventuate Tram Saga framework 140–142
KitchenServiceProxy class 139

creating orchestration-based saga 211–212
with a NoSQL-based event store 211–212
with RDBMS-based event store 211

implementing choreography-based sagas using
event sourcing 210

implementing event sourcing-based saga
participant 213–216

implementing saga orchestrators using event
sourcing 216–218

persisting using event sourcing 216
processing replies exactly once 218
sending command messages reliably

216–218
lack of isolation 126–132

anomalies caused by 127
countermeasures for handling 128–132

Order Service
OrderCommandHandlers class 142–143
OrderService class 133–134
OrderServiceConfiguration class 143–145

transaction management 111–117
maintaining data consistency 114–117
need for distributed transactions 112
trouble with distributed transactions 112–114

unit tests for 310–312
SATURN conference 34
save() method 207
scalability 430
scale cube 8–11

X-axis scaling 9
Y-axis scaling 10–11
Z-axis scaling 9–10

secure services 349–360
authentication in API gateway 354–355
authorization 356
in traditional monolithic application 350–353
using JWTs to pass user identity and roles

356–357
using OAuth 2.0 357–360

security patterns 28–29
Access token 28, 38, 354

SELECT statements 188
Self registration pattern 82
semantic lock 450
semantic lock countermeasure 129–130
sending port interface 86
Serverless deployment with lambda 415–419

benefits of lambda functions 418
developing lambda functions 417
drawbacks of lambda functions 419
invoking lambda functions 417–418

defining scheduled lambda functions
418

handling events generated by AWS
services 418

handling HTTP requests 417
using web service request 418

overview of 416

INDEX488
Serverless framework 425–426
server-side discovery pattern 84–85
service API definition 61–64

assigning system operations to services
61–62

determining APIs required to support
collaboration between services
62–64

Service as a container pattern 393–399
benefits of 398
Docker 395–398

building Docker images 395–396
pushing Docker images to registry

396–397
running Docker containers 397–398

drawbacks of 399
Service as a virtual machine pattern

390–393
benefits of 392

mature cloud infrastructure 392
service instances are isolated 392
VM image encapsulates technology

stack 392
drawbacks of 392–393

less-efficient resource utilization 393
relatively slow deployments 393
system administration overhead 393

service component test 28, 335
service configurability 349
service definition 76

Decompose by business capability pattern
51–54

decomposition 52–54
identifying business capabilities 51–52
purpose of business capabilities 51

Decompose by sub-domain pattern
54–55

service deployment patterns 26
service discovery 80–85

3rd party registration 84–85, 108
Client-side discovery 82–83
overview of 81
Self registration 82
Server-side discovery 84–85

service meshes 380–382, 407–415
deploying v2 of Consumer Service 414
Istio 408–412
routing production traffic to v2 415
routing rules to route to v1 version

412–413
routing test traffic to v2 414

Service object, DDD 152
service() method 422
service-oriented architecture (SOA)

13–14

SES (Simple Email Service) 2
SessionBasedSecurityInterceptor 352
sessions 351
setUp() method 313
sharded channel 94
Shiro 351
Sidecar pattern 410
Simple Email Service (SES) 2
Single persistence layer 38
Single presentation layer 38
Single Responsibility Principle (SRP) 56
smart pipes 14
snapshots 195–196, 201
SOA (service-oriented architecture) 13
sociable unit test 308
software architecture 34–37

4+1 view model of 35–37
definition of 35
relevance of 37

software pattern 20
Software-as-a-Service (SaaS) 5
solitary unit test 308
SoundCloud 265
specialization pattern 22
Spring Cloud Contract 303–305
Spring Cloud Gateway 273–275

ApiGatewayApplication class 279
OrderConfiguration class 275–276
OrderHandlers class 276–278
OrderService class 278–279

Spring Mock MVC 314
Spring Security 351
SPRING_APPLICATION_JSON variable

363
SQL 237–238
SRP (Single Responsibility Principle) 56
state machines

modeling saga orchestrators as
123–124

Order aggregate 176–177
Strangler Application pattern 431–432
Strategy pattern 20
stubs 296, 339–340
successor pattern 21
SUT (system under test) 294
synchronous I/O model 268
synchronous interactions 67
system operations 45

assigning to services 61–62
creating high-level domain model 46–48
defining 48–50
identifying 45–50

system under test (SUT) 294
System.getenv() method 362

INDEX 489
T

telemetry 409
test cases 294
test double 296
test pyramid 298–299
test quadrant 297–298
@Test shouldCalculateTotal() method 309
@Test shouldCreateOrder() method 312
test suites 294
testing 292–347

acceptance tests 335–338
defining 336
writing using Gherkin 337–338

challenge of 299–305
consumer contract testing 301–303
consumer contract testing for messaging

APIs 305
Spring Cloud Contract 303–305

component tests 339–340
for FTGO Order Service 340–345
in-process component tests 339
out-of-process component tests

339–340
Consumer-driven contract test 28,

301–302
Consumer-side contract test 28, 303
deployment pipeline 305–307
end-to-end tests 345–346

designing 345
running 346
writing 346

integration tests 319–335
contract tests for asynchronous request/

response interactions 330–335
persistence integration tests 321–322
publish/subscribe-style interactions

326–330
REST-based request/response style

interactions 322–326
overview of 294–299

automated tests 295–296
different types of tests 297
mocks and stubs 296
test pyramid 298–299
test quadrant 297–298

Service component test 28, 335
unit tests 307–317

for controllers 313–315
for domain services 312–313
for entities 309–310
for event and message handlers 315–317
for sagas 310–312
for value objects 310

testuser header 414

text-based message formats 71–72
Ticket aggregate 169–173

behavior of 170–171
KitchenService domain service 171–172
KitchenServiceCommandHandler class

172–173
structure of Ticket class 170

tight coupling 121
timeouts 79
TLS (Transport Layer Security) 350
tokens 356
Traefik 272
traffic management 408
transaction log tailing 99–100, 195
transaction management 111–117

maintaining data consistency 114–117
need for distributed transactions 112
trouble with distributed transactions

112–114
See also sagas

Transaction script pattern 149–150
@Transactional annotation 111
transactional messaging 97–100

Polling publisher pattern 98–99
Transaction log tailing pattern 99–100
Transactional outbox pattern 97–98, 109
using database table as message queue

97–98
transparent tokens 356
Transport Layer Security (TLS) 350
two-phase commit (2PC) 112

U

Ubiquitous Language 54
unit tests 307–317

for controllers 313–315
for domain services 312–313
for entities 309–310
for event and message handlers 315–317
for sagas 310–312
for value objects 310

upcasting 199
UPDATE statement 193
update() method 204, 207, 215
UpdateItem() operation 248
USERINFO cookie

LoginHandler and 454–455
mapping to Authorization header 455

V

Value object, DDD 151
value objects, unit tests for 310
version file countermeasure 131

INDEX490
VIP (virtual IP) address 83
VirtualService 413
VMs (virtual machines) 26

W

WAR (Web Application Archive) file 2
WebSockets 257

X

XML message 71

Z

ZeroMQ 91
Zipkin 373

Enables

Enables

Architecture:

Microservice

architecture

Organization:

Small, autonomous,

cross-functional teams

Process:

DevOps/continuous delivery/deployment

Enables

Rapid, frequent,

and reliable delivery

of software

The rapid, frequent, and reliable delivery of large, complex applications requires
a combination of DevOps, which includes continuous delivery/deployment, small,
autonomous teams, and the microservice architecture.

Small, autonomous,
loosely coupled teams

Each service has
its own source
code repository.

Each service has
its own automated

deployment pipeline.

Small, simple,
reliable, easy to

maintain services

Order management team

Restaurant management team

Delivery management team

FTGO development

Production

Jenkins Cl

Deployment pipeline

Order Service

source code

repository

Order Service

Jenkins Cl

Deployment pipeline

Restaurant Service

source code

repository

Restaurant Service

Jenkins Cl

Deployment pipeline

Delivery Service

source code

repository

Delivery Service

The microservice architecture structures an application as a set of loosely coupled services that are
organized around business capabilities. Each team develops, tests, and deploys their services
independently.

Chris Richardson

S
uccessfully developing microservices-based applications
requires mastering a new set of architectural insights and
practices. In this unique book, microservice architecture

pioneer and Java Champion Chris Richardson collects, cata-
logues, and explains 44 patterns that solve problems such as
service decomposition, transaction management, querying,
and inter-service communication.

Microservices Patterns teaches you how to develop and deploy
production-quality microservices-based applications. This
invaluable set of design patterns builds on decades of dis-
tributed system experience, adding new patterns for writing
services and composing them into systems that scale and
perform reliably under real-world conditions. More than just
a patterns catalog, this practical guide offers experience-driven
advice to help you design, implement, test, and deploy your
microservices-based application.

What’s Inside
● How (and why!) to use the microservice architecture
● Service decomposition strategies
● Transaction management and querying patterns
● Effective testing strategies
● Deployment patterns including containers and serverless

Written for enterprise developers familiar with standard enter-
prise application architecture. Examples are in Java.

Chris Richardson is a Java Champion, a JavaOne rock star,
author of Manning’s POJOs in Action, and the creator of the
original CloudFoundry.com.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit manning.com/books/microservices-patterns

$49.99 / Can $65.99 [INCLUDING eBOOK]

Microservices Patterns

SOFTWARE DEVELOPMENT

M A N N I N G

“A comprehensive overview
of the challenges teams face

when moving to microservices,
with industry-tested solutions

to these problems.”
—Tim Moore, Lightbend

“Pragmatic treatment of
an important new

 architectural landscape.”
—Simeon Leyzerzon

Excelsior Software

“A solid compendium of
information that will quicken
your migration to this modern

cloud-based architecture.”—John Guthrie, Dell/EMC

“How to understand the
microservices approach, and
how to use it in real life.”

—Potito Coluccelli
Bizmatica Econocom

See first page

	Microservices Patterns
	brief contents
	contents
	preface
	acknowledgments
	about this book
	Who should read this book
	Roadmap
	About the code
	Book forum
	Other online resources
	About the author

	about the cover illustration
	Jefferys

	1 Escaping monolithic hell
	1.1 The slow march toward monolithic hell
	1.1.1 The architecture of the FTGO application
	1.1.2 The benefits of the monolithic architecture
	1.1.3 Living in monolithic hell

	1.2 Why this book is relevant to you
	1.3 What you?ll learn in this book
	1.4 Microservice architecture to the rescue
	1.4.1 Scale cube and microservices
	1.4.2 Microservices as a form of modularity
	1.4.3 Each service has its own database
	1.4.4 The FTGO microservice architecture
	1.4.5 Comparing the microservice architecture and SOA

	1.5 Benefits and drawbacks of the microservice architecture
	1.5.1 Benefits of the microservice architecture
	1.5.2 Drawbacks of the microservice architecture

	1.6 The Microservice architecture pattern language
	1.6.1 Microservice architecture is not a silver bullet
	1.6.2 Patterns and pattern languages
	1.6.3 Overview of the Microservice architecture pattern language

	1.7 Beyond microservices: Process and organization
	1.7.1 Software development and delivery organization
	1.7.2 Software development and delivery process
	1.7.3 The human side of adopting microservices

	Summary

	2 Decomposition strategies
	2.1 What is the microservice architecture exactly?
	2.1.1 What is software architecture and why does it matter?
	2.1.2 Overview of architectural styles
	2.1.3 The microservice architecture is an architectural style

	2.2 Defining an application?s microservice architecture
	2.2.1 Identifying the system operations
	2.2.2 Defining services by applying the Decompose by business capability pattern
	2.2.3 Defining services by applying the Decompose by sub-domain pattern
	2.2.4 Decomposition guidelines
	2.2.5 Obstacles to decomposing an application into services
	2.2.6 Defining service APIs

	Summary

	3 Interprocess communication in a microservice architecture
	3.1 Overview of interprocess communication in a microservice architecture
	3.1.1 Interaction styles
	3.1.2 Defining APIs in a microservice architecture
	3.1.3 Evolving APIs
	3.1.4 Message formats

	3.2 Communicating using the synchronous Remote procedure invocation pattern
	3.2.1 Using REST
	3.2.2 Using gRPC
	3.2.3 Handling partial failure using the Circuit breaker pattern
	3.2.4 Using service discovery

	3.3 Communicating using the Asynchronous messaging pattern
	3.3.1 Overview of messaging
	3.3.2 Implementing the interaction styles using messaging
	3.3.3 Creating an API specification for a messaging-based service API
	3.3.4 Using a message broker
	3.3.5 Competing receivers and message ordering
	3.3.6 Handling duplicate messages
	3.3.7 Transactional messaging
	3.3.8 Libraries and frameworks for messaging

	3.4 Using asynchronous messaging to improve availability
	3.4.1 Synchronous communication reduces availability
	3.4.2 Eliminating synchronous interaction

	Summary

	4 Managing transactions with sagas
	4.1 Transaction management in a microservice architecture
	4.1.1 The need for distributed transactions in a microservice architecture
	4.1.2 The trouble with distributed transactions
	4.1.3 Using the Saga pattern to maintain data consistency

	4.2 Coordinating sagas
	4.2.1 Choreography-based sagas
	4.2.2 Orchestration-based sagas

	4.3 Handling the lack of isolation
	4.3.1 Overview of anomalies
	4.3.2 Countermeasures for handling the lack of isolation

	4.4 The design of the Order Service and the Create Order Saga
	4.4.1 The OrderService class
	4.4.2 The implementation of the Create Order Saga
	4.4.3 The OrderCommandHandlers class
	4.4.4 The OrderServiceConfiguration class

	Summary

	5 Designing business logic in a microservice architecture
	5.1 Business logic organization patterns
	5.1.1 Designing business logic using the Transaction script pattern
	5.1.2 Designing business logic using the Domain model pattern
	5.1.3 About Domain-driven design

	5.2 Designing a domain model using the DDD aggregate pattern
	5.2.1 The problem with fuzzy boundaries
	5.2.2 Aggregates have explicit boundaries
	5.2.3 Aggregate rules
	5.2.4 Aggregate granularity
	5.2.5 Designing business logic with aggregates

	5.3 Publishing domain events
	5.3.1 Why publish change events?
	5.3.2 What is a domain event?
	5.3.3 Event enrichment
	5.3.4 Identifying domain events
	5.3.5 Generating and publishing domain events
	5.3.6 Consuming domain events

	5.4 Kitchen Service business logic
	5.4.1 The Ticket aggregate

	5.5 Order Service business logic
	5.5.1 The Order Aggregate
	5.5.2 The OrderService class

	Summary

	6 Developing business logic with event sourcing
	6.1 Developing business logic using event sourcing
	6.1.1 The trouble with traditional persistence
	6.1.2 Overview of event sourcing
	6.1.3 Handling concurrent updates using optimistic locking
	6.1.4 Event sourcing and publishing events
	6.1.5 Using snapshots to improve performance
	6.1.6 Idempotent message processing
	6.1.7 Evolving domain events
	6.1.8 Benefits of event sourcing
	6.1.9 Drawbacks of event sourcing

	6.2 Implementing an event store
	6.2.1 How the Eventuate Local event store works
	6.2.2 The Eventuate client framework for Java

	6.3 Using sagas and event sourcing together
	6.3.1 Implementing choreography-based sagas using event sourcing
	6.3.2 Creating an orchestration-based saga
	6.3.3 Implementing an event sourcing-based saga participant
	6.3.4 Implementing saga orchestrators using event sourcing

	Summary

	7 Implementing queries in a microservice architecture
	7.1 Querying using the API composition pattern
	7.1.1 The findOrder() query operation
	7.1.2 Overview of the API composition pattern
	7.1.3 Implementing the findOrder() query operation using the API composition pattern
	7.1.4 API composition design issues
	7.1.5 The benefits and drawbacks of the API composition pattern

	7.2 Using the CQRS pattern
	7.2.1 Motivations for using CQRS
	7.2.2 Overview of CQRS
	7.2.3 The benefits of CQRS
	7.2.4 The drawbacks of CQRS

	7.3 Designing CQRS views
	7.3.1 Choosing a view datastore
	7.3.2 Data access module design
	7.3.3 Adding and updating CQRS views

	7.4 Implementing a CQRS view with AWS DynamoDB
	7.4.1 The OrderHistoryEventHandlers module
	7.4.2 Data modeling and query design with DynamoDB
	7.4.3 The OrderHistoryDaoDynamoDb class

	Summary

	8 External API patterns
	8.1 External API design issues
	8.1.1 API design issues for the FTGO mobile client
	8.1.2 API design issues for other kinds of clients

	8.2 The API gateway pattern
	8.2.1 Overview of the API gateway pattern
	8.2.2 Benefits and drawbacks of an API gateway
	8.2.3 Netflix as an example of an API gateway
	8.2.4 API gateway design issues

	8.3 Implementing an API gateway
	8.3.1 Using an off-the-shelf API gateway product/service
	8.3.2 Developing your own API gateway
	8.3.3 Implementing an API gateway using GraphQL

	Summary

	9 Testing microservices: Part 1
	9.1 Testing strategies for microservice architectures
	9.1.1 Overview of testing
	9.1.2 The challenge of testing microservices
	9.1.3 The deployment pipeline

	9.2 Writing unit tests for a service
	9.2.1 Developing unit tests for entities
	9.2.2 Writing unit tests for value objects
	9.2.3 Developing unit tests for sagas
	9.2.4 Writing unit tests for domain services
	9.2.5 Developing unit tests for controllers
	9.2.6 Writing unit tests for event and message handlers

	Summary

	10 Testing microservices: Part 2
	10.1 Writing integration tests
	10.1.1 Persistence integration tests
	10.1.2 Integration testing REST-based request/response style interactions
	10.1.3 Integration testing publish/subscribe-style interactions
	10.1.4 Integration contract tests for asynchronous request/response interactions

	10.2 Developing component tests
	10.2.1 Defining acceptance tests
	10.2.2 Writing acceptance tests using Gherkin
	10.2.3 Designing component tests
	10.2.4 Writing component tests for the FTGO Order Service

	10.3 Writing end-to-end tests
	10.3.1 Designing end-to-end tests
	10.3.2 Writing end-to-end tests
	10.3.3 Running end-to-end tests

	Summary

	11 Developing production-ready services
	11.1 Developing secure services
	11.1.1 Overview of security in a traditional monolithic application
	11.1.2 Implementing security in a microservice architecture

	11.2 Designing configurable services
	11.2.1 Using push-based externalized configuration
	11.2.2 Using pull-based externalized configuration

	11.3 Designing observable services
	11.3.1 Using the Health check API pattern
	11.3.2 Applying the Log aggregation pattern
	11.3.3 Using the Distributed tracing pattern
	11.3.4 Applying the Application metrics pattern
	11.3.5 Using the Exception tracking pattern
	11.3.6 Applying the Audit logging pattern

	11.4 Developing services using the Microservice chassis pattern
	11.4.1 Using a microservice chassis
	11.4.2 From microservice chassis to service mesh

	Summary

	12 Deploying microservices
	12.1 Deploying services using the Language-specific packaging format pattern
	12.1.1 Benefits of the Service as a language-specific package pattern
	12.1.2 Drawbacks of the Service as a language-specific package pattern

	12.2 Deploying services using the Service as a virtual machine pattern
	12.2.1 The benefits of deploying services as VMs
	12.2.2 The drawbacks of deploying services as VMs

	12.3 Deploying services using the Service as a container pattern
	12.3.1 Deploying services using Docker
	12.3.2 Benefits of deploying services as containers
	12.3.3 Drawbacks of deploying services as containers

	12.4 Deploying the FTGO application with Kubernetes
	12.4.1 Overview of Kubernetes
	12.4.2 Deploying the Restaurant service on Kubernetes
	12.4.3 Deploying the API gateway
	12.4.4 Zero-downtime deployments
	12.4.5 Using a service mesh to separate deployment from release

	12.5 Deploying services using the Serverless deployment pattern
	12.5.1 Overview of serverless deployment with AWS Lambda
	12.5.2 Developing a lambda function
	12.5.3 Invoking lambda functions
	12.5.4 Benefits of using lambda functions
	12.5.5 Drawbacks of using lambda functions

	12.6 Deploying a RESTful service using AWS Lambda and AWS Gateway
	12.6.1 The design of the AWS Lambda version of Restaurant Service
	12.6.2 Packaging the service as ZIP file
	12.6.3 Deploying lambda functions using the Serverless framework

	Summary

	13 Refactoring to microservices
	13.1 Overview of refactoring to microservices
	13.1.1 Why refactor a monolith?
	13.1.2 Strangling the monolith

	13.2 Strategies for refactoring a monolith to microservices
	13.2.1 Implement new features as services
	13.2.2 Separate presentation tier from the backend
	13.2.3 Extract business capabilities into services

	13.3 Designing how the service and the monolith collaborate
	13.3.1 Designing the integration glue
	13.3.2 Maintaining data consistency across a service and a monolith
	13.3.3 Handling authentication and authorization

	13.4 Implementing a new feature as a service: handling misdelivered orders
	13.4.1 The design of Delayed Delivery Service
	13.4.2 Designing the integration glue for Delayed Delivery Service

	13.5 Breaking apart the monolith: extracting delivery management
	13.5.1 Overview of existing delivery management functionality
	13.5.2 Overview of Delivery Service
	13.5.3 Designing the Delivery Service domain model
	13.5.4 The design of the Delivery Service integration glue
	13.5.5 Changing the FTGO monolith to interact with Delivery Service

	Summary

	index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

	Microservices Patterns?back cover

