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Introduction

Photometric stereo is a method of estimating surface geometry by using

a fixed-position camera and multiple light sources.

It was proposed by Robert J Woodham in 1980 as an alternative to other

stereo techniques, that needed two images of the same object, viewed from

different directions, to determine its surface orientation. These techniques

require some knowledge of the correspondence between picture elements, that

is not always easy to achieve.

The idea of photometric stereo is to vary the direction of incident illu-

mination between successive images, while the viewing direction is constant;

in this way, the correspondence of image points is known beforehand, as the

position of the object is not changed, and surface orientation is determined

by using the radiance values recorded with the different images.

Photometric stereo has several applications: it is used to detect small

surface defects, imperceptible to the human eye; it has also medical applica-

tions, i.e. to detect skin lesions and help in the diagnosis of melanoma. More

recently, it has been used also to perform a non-invasive 3D scan of surfaces,

and as a cheap method to get a real-time facial motion capture, widely used

in computer graphics applications.

The goals of this thesis are to describe the main algorithms used to achieve

a photometric stereo analysis of surfaces, and the realization of a hardware

device capable of acquire the images.

In Chapter 1 we will introduce the methods currently used to perform 3D

scanning.
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Introduction ii

In Chapter 2 we will discuss photometric stereo in detail, explaining the most

popular algorithms and the methods used to get light calibration, height map

and curvature maps.

In Chapter 3 we will show two different implementations of Woodham’s al-

gorithm, one of them performed using a GPU.

In Chapter 4 we will describe the hardware choices that led us to build the

rig used to acquire the images.

In Chapter 5 there will be the results of our work, and a comparison with a

commercial software (MVTec Halcon).
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Chapter 1

State-of-the-art of 3D scanning

techniques

One of the most classic and challenging problems in computer vision is

shape recovery that, altogether with surface analysis, has several applica-

tions in industrial productions, medicine and movie industries. During years

several methods have been proposed, that let us recover the shape and ex-

press it as a depth map, as a surface normal map or as a surface gradient

map. These methods can be classified according to the interaction between

the scanner and the object, and a tree-diagram of this classification is shown

in Figure 1.1.
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Chapter 1 2

Figure 1.1: Tree diagram showing all the 3D scanning techniques

The first optical and passive approach was the so-called shape from shad-

ing (SFS), introduced by Horn in 1975: he thought it was possible to retrieve

information about surface by using one single image. Now, it is known to be

an ill-posed problem, as it can provide non-unique solutions and is affected

by convex/concave ambiguity, as shown in Figure 1.2.

Figure 1.2: Image showing the crater illusion. In the left image there appear two

domes, while in the right one (that is the same upside down) there are

two craters.
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Later, in 1980, Woodham proposed the photometric stereo (PS) approach,

based on the fact that the amount of light reflected by an object is linked

both to the orientation of its surface and to the direction of incoming light.

In 1994, Hayakawa showed how to estimate a surface normal and reflectance

map without a-priori knowledge about light direction or intensity (mandatory

for Woodham’s algorithm). Other popular approaches are geometric stereo,

laser triangulation and projected pattern triangulation.

Geometric stereo (GS) is based on the usage of two cameras, placed at a

known distance one from the other; the acquired images are rectified to ease

the search of corresponding points, then the coordinates of the matches have

to be find in order to get a point cloud. Geometric stereo can provide good

results, but it is strongly dependent on the correspondence density.

Laser triangulation (LT) is based on the usage of a system composed of a

laser and a camera; while the laser projects a line onto an object, the camera

acquires the images. Then information about the height of the object are

extracted by deploying the deformation of the projected line.

Projected pattern triangulation (PPT) is similar to laser triangulation,

as it is based on the projection of a known pattern onto an object; the

3D shape of the object is retrieved after computing the deformation of the

pattern. This is a very accurate procedure, but also very expensive.

Among all these techniques, photometric stereo can be considered as the

best compromise between cost and accuracy. In Figure 1.3 there is a table

showing the main differences in terms of cost, computation time, accuracy

and other qualities between the methods aforementioned.

Figure 1.3: Table showing a comparison between optical 3D scanning alternatives
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Photometric stereo

In this chapter, we will describe the main algorithms used in photomet-

ric stereo, that are Woodham’s and Hayakawa’s algorithms. We will also

describe the procedure to calibrate the light sources, required for our im-

plementation. In section 4 we will describe a way to integrate the normal

map to get the height map, used for 3D reconstruction. In section 5 there is

a description of how to get surface curvature information, from the normal

map. In section 6 we will list the main limitations of photometric stereo, and

some ways to overcome them.

2.1 Woodham’s algorithm

First, let us give some basic definitions.

The irradiance is a measure of light arriving at a surface. It can be expressed

as L(λ, xp, Np), as a function of the wavelength of the light, the point where

the light is directed to, and the normal direction of the surface on that point.

Unit of measurement: [W/m2]

The radiance is a measure of light emitted or reflected from a surface, and

depends on the direction of the surface. It can be expressed as E(λ, x, d) as

a function of the wavelength of the light, the point from which is emitted the

radiance, and the emitting direction. Unit of measurement: [W/(sr ∗m2)]

4
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The reflectance is the ratio between the amount of light reflected and the

amount of light incident to an object. It is an adimensional parameter, and

it depends on the material of which an object is made. It can be expressed

as a function φ(i, e, g) of the incident (i), emergent (e) and phase (g) angles.

The luminance is the ratio between the intensity of the light emitted by a

source to an observer and the apparent area of the emitting surface, as seen

by the observer. Unit of measurement: [cd/m2]

A BRDF (Bidirectional Reflectance Distribution Function) is a 4-dimensional

equation that describes how a light is reflected at an opaque surface. In gen-

eral, it is given by the ratio between the emitted radiance and incoming

irradiance on a point. If vectors ω0 and ωi represent the direction of the light

reflected to an observer and the direction of incoming light respectively, then

the BRDF can be defined as:

fr(ω0, ωi) =
dLr(ω0)

dEi(ωi)
=

dLr(ω0)

Li(ωi)cosθidωi

(2.1)

The Lambertian reflectance is a property that defines a diffusely reflecting

surface: the apparent luminosity of a Lambertian surface is the same regard-

less of the observer’s angle of view. The luminance of the surface is isotropic

and the luminous intensity obeys Lambert’s cosine law.

The behaviour of a Lambertian material and an example of a Lambertian

sphere are shown in Figure 2.1.

Figure 2.1: In the left image, diffuse and specular reflection from a lambertian

surface. In the right one, an example of a lambertian sphere
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Now, consider an object whose surface can be written as z = f(x, y); a

surface normal can be defined as n = [ ∂z
∂x
, ∂z
∂y
,−1].

Defining p = ∂z
∂x

and q = ∂z
∂y

then

n = [p, q,−1] (2.2)

Figure 2.2: Basic diagram of light reflection

Consider figure 2.2. Define vectors n̂ and ŝ as the surface normal vector

and the vector that points to the light source respectively. They can be

defined as follows:

n̂ = [p, q,−1]T (2.3)

ŝ = [ps, qs,−1] (2.4)

Our problem is to determine the direction of the surface normal, knowing

the direction of the lights. Let us assume that:

1. The surface has a Lambertian reflectance

2. Light rays are parallel and uniform

3. The camera is orthographic and monochromatic

Then the Lambertian BRDF is a constant:

BRDFLamb =
ρd
π

(2.5)

and the surface radiance is given by:

E =
ρd
π
n̂ · ŝ = ρn̂ · ŝ = ρŝT · n̂ (2.6)
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Suppose that the irradiated light is directed towards a camera, and that

the response of the camera is linear; In this case, the radiance coincides with

the intensity of a pixel:

I = ρn̂ · ŝ (2.7)

The problem is that this is an equation with 3 known variables (the 2

components of light’s direction and the pixel intensity, namely ps, qs, I) and

3 unknowns (the components of the normal and the albedo, p, q, ρ).

Consider a simple case, using Lambert’s cosine law:

E = ρL cos(θ) (2.8)

where E is the radiance, ρ is the albedo of the surface, L is the irradiance

and θ is the angle between the normal and the direction of light. The value

of cos(θ) can be retrieved by applying the scalar product definitions from

linear algebra:

n̂ · ŝ = pps + qqs + 1 =
√
p2 + q2 + 1

√
p2
s + q2

s + 1 cos(θ) (2.9)

This leads to:

E = ρL
pps + qqs + 1√

p2 + q2 + 1
√
p2
s + q2

s + 1
(2.10)

If the response of the camera is linear, then the intensity of the pixel

coincides with the irradiance, then:

I = ρL
pps + qqs + 1√

p2 + q2 + 1
√
p2
s + q2

s + 1
(2.11)

This is an equation with 3 knowns (ps, qs, I) and three unknowns (p, q, ρ).

So we need at least three images to solve this problem.

Define I = [I1, I2, I3]T as the column vector collecting the intensities recorded

at a given point (x, y) in the three images I1, I2 and I3.

Define N = [n̂1, n̂2, n̂3]T as the vector containing the normals in point (x, y)

computed in the three images.
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Define L = [s1, s2, s3] as the vector collecting the directions of incoming light

at a point (x, y) in the three images.

Equation 2.7 becomes:

I = ρN · L = ρLT ·N (2.12)

Then

N = ρ−1(LT )−1I (2.13)

ρ = ||(LT )−1I|| (2.14)

This computation requires that matrix L must be non-singular (in other

words the directions of the lights must not lie on the same plane). This

means that in the three images the orientation of light must be changed.

Now, consider a more general case in which we get n images. This means

that matrix LT is not a square matrix, but we can refer to the Moore-Penrose

pseudoinverse. Equations 2.13 and 2.14 become:

N = ρ−1(LTL)−1LT I (2.15)

ρ = ||(LTL)−1LT I|| (2.16)

Note that equations 2.15 and 2.16 represent the solution of the photometric

stereo problem by means of the Least Squares method.

Remark. Woodham’s algorithm assumes that the camera performs an or-

thographic projection. That is, you must use a telecentric lens or a lens with

a long focal distance. It also assumes that each of the light sources delivers a

parallel and uniform beam of light. That is, you must use telecentric illumi-

nation sources with uniform intensity or, as an alternative, distant point light

sources. Additionally, the object must have lambertian reflectance character-

istics, i.e., it must reflect incoming light in a diffuse way. Objects or regions

of an object that have specular reflectance characteristics (i.e., mirroring or

glossy surfaces) cannot be processed correctly and thus lead to erroneous re-

sults.
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2.2 Hayakawa’s uncalibrated algorithm

In 1994 Hayakawa showed how to estimate a surface normal and re-

flectance without a-priori knowledge on the light direction or intensity. This

method is based on the Singular Value Decomposition (SVD) of the ma-

trix collecting pixel intensities; it assumes a Lambertian reflectance model

(the same as the Woodham’s algorithm), but adds also some constraints on

the surface reflectance (at least 6 pixels must have a known or constant re-

flectance) and on the light-source intensity (at least 6 frames must have a

known or constant light intensity).

Consider a p× f matrix I:

I =


i11 · · · i1f
...

...
...

ip1 · · · ipf

 (2.17)

that is the matrix collecting the pixel intensities for each frame acquired. Un-

der the assumption of Lambertian reflectance for the object, and supposing

the light source is single and far from it, then:

I = RNMT (2.18)

where R is the reflectance matrix, N is the normal matrix, M is the light-

direction matrix and T is the light-intensity matrix. Equation 2.18 can be

written in a compact form:

I = SL (2.19)

where S is the surface matrix, L is the light-source matrix.

Assuming that p ≥ f , matrix I can be decomposed into three matrices

Up×f , Σf×f and Vf×f :

I = UΣV (2.20)

Supposing that the image I we get from the camera could be affected

by noise (thus it would be different from the noiseless ideal one I∗), we
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can rely on an estimation of the ideal image starting from the best rank-3

approximation; let U
′
,Σ

′
,V

′
be the first three columns of U , the first 3 × 3

submatrix of Σ and the first 3 rows of V respectively; then the estimation of

I∗ is:

Î = U
′
Σ

′
V

′
(2.21)

From this equation we can retrieve the estimations of the surface and

light-source matrices:

Ŝ = U
′ ± [Σ

′
]
1
2

L̂ = ±[Σ
′
]
1
2V

′ (2.22)

The different signs in the previous equations correspond to the solutions in

the right- and left-handed coordinate system. We can choose the solution in

the right-handed coordinate system from the two solutions in equation 2.22

by using the relationship of an arbitrary triplet of light-source directions,

which do not lie in a plane. In general, matrices Ŝ and L̂ are different than

S and L; we can define a matrix A such that

S = ŜA

L = A−1L̂
(2.23)

A can be found by applying the constraints on the surface reflectance or

on the light intensity described at the beginning of this section.
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2.3 Light calibration

Light calibration is a sub-problem linked to the photometric stereo. In

fact, the orientation of lights with respect to the camera must be known in

order to solve the equations to determine normals and albedo. A widely-

used technique to perform light calibration is using a reflective sphere, whose

radius and position (with respect to the camera) must be known; the light

source direction is determined thanks to the highlight present on the surface

of the sphere. In Figure 2.3 it is shown the reflection on a black sphere when

light source has different positions.

Figure 2.3: Image showing different highlight locations due to different light posi-

tions

The idea is to place a highly reflective sphere in the scene; it should act

as a perfect mirror, reflecting the incoming light towards the viewer. For a

perfect mirror, light direction can be computed as follows:

L = 2(N ×R)×N −R (2.24)

where L is the light direction, N is the normal direction and R is the reflec-

tion direction. Those vectors are shown in Figure 2.4.

To solve equation (2.24), we need R and N .
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Figure 2.4: Diagram of specular reflection

As we are considering the reflection coming from a highlight directed to

the camera, then R is the vector pointing to the camera, that is [0, 0, 1]. To

find N , we need to determine the direction of the normal vector at the point

with maximum intensity on the sphere. First, we have to find the region with

the maximum intensity; it can be seen as a tilted circle. Then we can find

its central point. Consider Figure 2.5. Knowing the positions of the center

of the circle [Cx, Cy] and of the center of the sphere [Sx, Sy] on the image, we

can write:

Nx = Cx − Sx (2.25)

Ny = Cy − Sy (2.26)

By applying the Pythagorean theorem:

Nz =
√
r2 −N2

x −N2
y (2.27)

where r is the radius of the sphere. Nx, Ny, Nz are the components of the

normal vector.

Figure 2.5: Projections of center of the sphere and of the circle into the image

plane
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2.4 Getting the height map

Once we get the normal map and the albedo, we can get some information

about the depth of the object. Theoretically, if we integrate point-by-point

the normal map, we would get the depth map.

The simplest approach is the following. Recall the definition of vector n:

n = [
∂z

∂x
,
∂z

∂y
,−1] = [p, q,−1] (2.28)

where z is the surface of our object. Once we get the estimations of p

and q, then:

z(x, y) = z(x0, y0) +

∫ (x̄,ȳ)

(0,0)

(pdx+ qdy) (2.29)

In a practical way, we can integrate p along a row of the image to get

z(x, 0), then integrate q along all the columns starting from the value of the

first row (as shown in Figure 2.6).

Figure 2.6: Sketch of the integration procedure

If one integrates a derivative field along a closed curve, the final value

should coincide with the starting one, but the problem is that p and q can be

noisy, meaning that the final result would be affected by an additive error.

This is clearly a problem involving the integrability condition of the estimate

of the normal field.

In general, given a function f = f(x, y) the integrability holds if:

∂

∂y

∂f

∂x
=

∂

∂x

∂f

∂y
(2.30)
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In our case
∂p

∂y
6= ∂q

∂x
(2.31)

B.K.P. Horn[5] in 1986 proposed a solution based on the minimization of

a functional cost: ∫∫
image

(zx − p)2 + (zy − q)2dxdy (2.32)

where zx and zy are the partial derivatives of the surface and p and q are

the estimated components of the gradient.

A variant of the solution was proposed by Frankot and Chellappa [6], con-

sidering the surface z as:

z(x, y) =
∑
ω∈Ω

C(ω)φ(x, y, ω) (2.33)

In this way, the problem is finding the expansion coefficients C(ω) that

minimize equation 2.32. Both the solutions provide values of zx and zy such

that the resulting surface z is integrable.

However, a simpler method to get the height map is the following [15].

Recall the definition of surface normal:

n = [
∂z

∂x
,
∂z

∂y
,−1] = [nx, ny, nz] (2.34)

and of p and q:

p =
nx

nz

(2.35)

q =
ny

nz

(2.36)

As we are considering discrete surfaces, we can approximate them using finite

difference expressions:

p ≈ z(x+ 1, y)− z(x, y) (2.37)

q ≈ z(x, y + 1)− z(x, y) (2.38)
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Then, combining the previous relations, we get:

nx = nz[z(x+ 1, y)− z(x, y)] (2.39)

ny = nz[z(x, y + 1)− z(x, y)] (2.40)

To find the values of the depth, we have to solve those linear equations, in

a least square sense. Note that we have a couple of equations for each pixel

of the image; we have to build up a linear system, and the final equation will

have a form like Az = v, where:

1. matrix A will be a sparse matrix, in which each row will represent a

constraint for each point inside the object and on its edge. If the normal

map has npixel pixels, then A will have a size of (2 · npixel, npixel);

2. vector v will contain all the values of partial derivatives p and q.

Av = z →


1 −1 0 0 · · ·
1 0 −1 0 · · ·
1 0 0 −1 · · ·
...

...
...

...




z(x, y)

z(x+ 1, y)

z(x, y + 1)
...

 =


−p
−q
...

 (2.41)

Solution can be found by applying the least square estimation method:

z = (ATA)−1ATv (2.42)
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2.5 Curvature analysis

In general, curvature is a property on an object; it intuitively represents

the deviation of a surface from being flat or, in a two-dimensional case, of

a curve from being straight. In mathematics, there are several definitions

of curvature, depending on the context. As for surface analysis, it is clear

that the study of curvature is important because it can show if and where

eventual anomalies are present. In image processing, curvature analysis is

used to segment scratches or bumps on a surface.

On a bidimensional surface, curvature varies depending on the direction

along which it is computed. Given a point P on the surface, we have to

consider all planes passing by the normal vector entering the surface in P ;

the intersection between each plane and the surface determines a plane curve

on which it is possible to compute the curvature. It is positive if the curve

follows the same direction of the normal, negative otherwise.

The maximum and minimum values of the curvature are said main curva-

tures ; given the two main curvatures k1 and k2, it is possible to determine

two measures of the curvature: Gaussian and mean curvature.

Let us define a bidimensional vector field f(r, c).

Gaussian curvature K is the product of the two principal curvatures, and

can be computed as follows:

K =
∂f(r,c)2

∂2r
· ∂f(r,c)2

∂2c
− ∂f(r,c)2

∂r∂c
· ∂f(r,c)2

∂c∂r

(1 + ∂f(r,c)2

∂r
+ ∂f(r,c)2

∂c
)

(2.43)

If K > 0 then the surface is said to have an elliptic point, where the surface

is dome-like; if K < 0 the surface has a saddle point, while if K = 0 it is a

parabolic point.

Mean curvauture H is the arithmetic average of the two main curvatures. It

can be computed as follows:

H =
A−B + C

D
(2.44)

where:
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A = (1 +
∂f(r, c)2

∂r
)
∂2f(r, c)

∂c2
(2.45)

B =
∂f(r, c)

∂r

∂f(r, c)

∂c
(
∂2f(r, c)

∂r∂c
+
∂2f(r, c)

∂c∂r
) (2.46)

C = (1 +
∂f(r, c)2

∂c
)
∂2f(r, c)

∂r2
(2.47)

D = (1 +
∂f(r, c)2

∂r
+
∂f(r, c)2

∂c
)
3
2 (2.48)
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2.6 Limitations of photometric stereo

As already specified in Section 2.1, Woodham’s photometric stereo algo-

rithm relies on some hypothesis, that here we recall:

1. The surface has a Lambertian reflectance

2. Light rays are parallel and uniform

3. The camera is orthographic and monochromatic

When one of those conditions is not met, results can not be considered as

reliable. The strongest limitation is represented by the reflectance of surfaces:

in fact, often it is required to analyze metallic or plastic objects, that are not

Lambertian. In these cases, the presence of highly reflective points may affect

negatively the photometric process. It is possible to use other reflectance

models, i.e. Phong model, that takes into account also ambient and specular

lighting as shown in Figure 2.7.

Figure 2.7: Visual illustration of Phong equation

To solve the problem of the presence of complex global illumination ef-

fects, a solution has been proposed by several authors in [9] that lets us

”decompose” an image and get the direct and global illuminations. Direct

illumination is due to the light source, while the global is due to the reflec-

tion, refraction and diffuse lights coming from other points.

Their method, depicted in Figure 2.8, consists in projecting a high-frequency

moving illumination pattern on the scene (i.e. a shifted checker board pat-

tern) that will create ”patches” on the scene: some of them will be lit, the
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others will be unlit. The lit patches will contain both global and direct illu-

mination while the unlit ones will contain only the global illumination. The

authors also describes a way to get direct and global illumination by using a

single image.

This method should be applied to each acquired photometric stereo image.

Figure 2.8: In the left image it is shown the basic setup of camera, projector and

a surface; in the other there is an example of the acquired images and

the final results.

Another limitation is the camera resolution. In general, it affects the size

of the final retrieved 3D scan of an object. Furthermore, a surface can have

sub-pixel geometric structures that unlikely will be well-described by a single

normal per pixel. The best idea would be increasing the camera resolution,

to improve the level of detail of the acquired image and of the final model,

but this has the drawback of increasing the computation load.

In 2016 a system employing a ultra-high resolution camera was tested [10].

It is composed of a Microsoft Apsara camera (resolution of 1.6 gigapixel)

and a set of 16 controllable LEDs. Among the results, it was shown how this

device could scan a painting (from a distance of 1.6 meters) and, through

the photometric stereo technique, determine a normal map at brush-stroke

detail (see Figure 2.9).
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Figure 2.9: Result of the Gigapixel apparatus

In [11] it is shown a procedure to get a high-resolution model of an object

starting from a lower resolution set of images. At first, to recover the distri-

bution of surface normals inside each pixel it uses a generalized reflectance

model. The normal distribution is used to infer sub-pixel structures on a

surface of uniform material. Figure 2.10 shows a result of this approach.

Figure 2.10: Result of the resolution-enhanced algorithm. The first image is the

acquired frame, the second is the depth field retrieved from the first;

the successive ones are the depth maps retrieved with the enhancing

at different levels (2x and 4x)
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Algorithm implementation

In this chapter we will discuss how Woodham’s algorithm has been imple-

mented through a popular open source computer vision library (OpenCV),

explaining also how we implemented the calibration algorithm. Moreover, we

will also show the implementation of the algorithm using a parallel computing

platform (CUDA) to make the process faster.

3.1 CPU implementation

OpenCV (Open Source Computer Vision) is a library of programming

functions mainly aimed at real-time computer vision [19]. It has C++, C,

Python and Java interfaces and supports Windows, Linux, Mac OS, iOS

and Android. OpenCV was designed for computational efficiency and with

a strong focus on real-time applications. Written in optimized C/C++, the

library can take advantage of multi-core processing. Enabled with OpenCL,

it can take advantage of the hardware acceleration of the underlying het-

erogeneous compute platform. Usage ranges from interactive art, to mines

inspection, stitching maps on the web or through advanced robotics.

One of the basic classes of this library is Mat, the matrix class. It represents

an n-dimensional dense numerical single-channel or multi-channel array. It

21



Chapter 3 22

can be used to store real or complex-valued vectors and matrices, grayscale

or color images, vector fields, point clouds and many other structures. The

Mat class supports also algebraic operations (i.e. inverse and transpose of

a matrix). In OpenCV one can find several useful and already-implemented

computer vision algorithms, for example ones regarding image thresholding,

segmentation and morphologic analysis.

Our implementation of photometric stereo is divided in three principal phases:

1. Light calibration;

2. Image acquisition;

3. Photometry.

In the following, we will describe light calibration and the basic implementa-

tion of Woodham’s algorithm. As for image acquisition, it will be described

in Chapter 4, altogether with the image acquisition system.

The results of photometry can later be used for other processes, i.e. curvature

analysis and depth computation. We have implemented both Gaussian and

mean curvature derivation, and results will be shown in Section 5. As for the

depth map, we used a Matlab implementation of the procedure explained at

the end of Section 2.4 [20].
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3.1.1 Light calibration

The basic concept of light calibration is explained in Section 2.3. Briefly,

the idea is to place a black reflective ball in front of the camera, and capture

a frame each time a light is on. Then, we have to find the most reflective

point on the sphere for each acquired image. As the position of the sphere

will remain constant during calibration process, we can make use of an alpha

mask; applying it to each acquired image, we get almost-black images, in

which the only white regions are the highly reflective ones. In this way, by

applying the well-known morphological operation of opening by an elliptical

structuring element, it is possible to locate the reflective spots, and their

coordinates. Finally, by applying equations from (2.25) to (2.27), we can

find the vector that defines the orientation of a light source.

Algorithm 1 Light calibration pseudocode

1: Load Mask image;

2: Apply opening by a circular structuring element;

3: Individuate the bounding box, then get its side length (that coincides

with the radius of the sphere) and its center (Sx, Sy);

4: Load all acquired images;

5: for all images do

6: Apply the mask image. The result will be a black image, with a white

area representing the reflection area;

7: Apply opening by a circular structuring element;

8: Determine the bounding box and its center (Cx, Cy);

9: Apply equations (2.25) to (2.27) and get the components of normal

vector N ;

10: Save N inside a matrix (Light matrix);

11: end for

12: Export the light matrix.
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3.1.2 Photometry

The main problem to solve is the construction of equations (2.15) and

(2.16). In fact, to make our implementation the most general possible, we

consider the case in which we have more than three images.

First, we have to collect all the images, then we build the Intensity vector,

that contains the intensities of a specific pixel in all the acquired images.

Given the Light matrix previously computed, we compute its pseudo-inverse

according to the Moore-Penrose operator. Then we are ready to compute

the albedo (that is the norm of the product between the pseudo-inverse and

the Intensity vector) and the normal for each pixel.

Algorithm 2 Photometry pseudocode

1: Load the Light matrix;

2: Compute its pseudo-inverse LMpseudo;

3: Load all acquired images as single-channel matrices;

4: for all pixels in an image do

5: Create a vector I containing intensities of each image at a specific

location (h,w);

6: Compute the product between LMpseudo and the Intensity vector;

7: Compute the norm of the resulting vector to get Albedo at a specific

pixel;

8: if Albedo 6= null then

9: Compute the normal vector as the ratio between the resulting

vector and albedo;

10: else

11: Set normal vector as null;

12: end if

13: Set the pixels for normal and albedo maps at location (h,w);

14: end for

15: Save albedo and normal maps as images.
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3.2 GPU implementation

Photometric stereo usually needs a large amount of data to get good

results, and large amount of data requires a certain calculation power. To

increase the speed of this process, we implemented Woodham’s algorithm to

make it work on a GPU [21].

Graphical Processing Units, or GPUs, are a particular type of computing pro-

cessors used in modern computers mainly to render graphical images. Their

architecture is highly suitable to manage and perform operations with ma-

trices and vectors. Since 2001, when floating-point arithmetic started being

supported, GPUs were used also to perform mathematical operations, not di-

rectly related with graphic processes. The scientific computing community’s

experiments with the new hardware began with a matrix multiplication rou-

tine; later, one of the first common scientific programs to run faster on GPUs

than CPUs was an implementation of LU factorization. This usage of GPUs

is usually referred to as ”General Purpose computing on GPU” or GPGPU.

Nowadays, there are several programming interfaces for graphics processors,

as OpenGL, OpenCL and DirectX, that allow a customized usage of graphic

processors. One of these interfaces is CUDA.

CUDA is a parallel computing platform and application programming in-

terface (API) model created by Nvidia. The CUDA platform is a software

layer that gives direct access to the GPU’s virtual instruction set and parallel

computational elements. It allows a fast parallelization, useful to solve large

linear problems and to perform image processing.

CUDA code is executed as a sequence of functions, said kernels, that contain

a set of instructions. Each kernel is synchronized with each other. For each

kernel there is a determined number of threads, that are organized in blocks

inside a grid. Grids can be at most three-dimensional structures.

The basic workflow is the following: first we have to upload the reference and

result images to the GPU, then create a grid with a certain number of blocks.

Each block will perform the instructions contained in the photometric stereo

kernel on a limited set of pixels of the reference images.
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In simple words, it is like splitting the images and send each part to a dif-

ferent block; after the operation, the resulting images are gathered together

and downloaded to the CPU.

Algorithm 3 Photometry on GPU pseudocode

1: Load the Light matrix;

2: Compute its pseudo-inverse LMpseudo;

3: Load all acquired images as single-channel matrices;

4: Create local destination matrices;

5: Upload acquired images, destination matrices and LMpseudo to GPU;

6: Create a GPU grid with a proper size, according to image height and

width;

7: Start the GPU kernels, and wait until the device ends and synchronizes;

8: Download the results from GPU ;

9: Save results.
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Image acquisition system

In this chapter we will discuss about the hardware components that let us

acquire the images. We will also briefly describe the control of the lightning

system, required to synchronize it to the frame acquisition. In the final

section there is an overview about the graphical user interface we developed.

4.1 Camera, light source and controller

The hardware is composed by a camera, a ring-light as a source and a

controller.

The camera is an Allied Manta G-201B, that is a 2 Megapixel monochrome

camera. It captures at a maximum resolution of 1624 × 1234 pixels, and

it supports Ethernet connection with a maximum frame-rate of 14.7 fps.

This camera is supported by a proprietary set of API (PvAPI) that can be

employed through OpenCV.

As for the illuminator, we chose a CSS HPR2-150SW, that is a 4-sectors

controllable light ring, that requires an input voltage of 24 V DC. It has an

outer diameter of 166 mm and inner of 116 mm. As shown in Figure 4.1, the

constructor guarantees an almost uniform illumination at different distances

from the target.

27



Chapter 4 28

Figure 4.1: Uniformity of relative irradiance of the light ring CSS HPR2-150SW.

LWD is the Light to Workpiece Distance.

Keeping the light ring at a distance of 150mm from the working object

and using a 12mm lens on the camera, we can frame a region of about

14400mm2.

The controller is a Gardasoft RTCC420-20, that provides an Ethernet con-

nection with TCP/UDP protocols. It has 4 output channels that can be used

to control different light sources, and the constructor provides a SDK that

lets us actively control the outputs.

The final hardware is shown in Figure 4.2.

Figure 4.2: Two different views of our rig.
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4.2 Image acquisition

One of the main concerns we encountered is the different time response

of the devices. In fact, there was a latency between the input signal sent to

turn on a light and the effective power on. In a first instance, this affected

the image acquisition because the delay was not constant, so, even if a set

of images was illuminated as expected, the subsequent one might have been

wrong. The solution was simply to add a waiting time between the turn on

of the light and the acquisition of the frame.

Algorithm 4 Image acquisition sequence

1: for each light channel do

2: Send light turn-on command;

3: Wait;

4: Acquire image;

5: Wait;

6: Send light turn-off command.

7: end for

The command signals are strings that are sent to the controller via TCP,

using the proprietary SDK. In each string, one must specify the channel to

which we are sending the command, and the percentage of the light intensity.

In fact, the power rating of the devices connected to the controller is made

by the controller itself during the start-up.

4.3 Software User Interface

We developed a software with a graphical user interface, in C#, that lets

the user easily perform different operations, from light calibration to photo-

metric stereo, to curvature analysis. The software allows the user to specify

the working folder and to see both input and output images. Moreover, it

permits the choice of operating parameters, like the serial number of the
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controller, the exposure times for each image and the intensity of the light.

In Figures 4.3 and 4.4 are shown two screens of our software.

Figure 4.3: The main screen of the user interface

Figure 4.4: The options screen of our software
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Results

In this chapter, we will present the results we obtained with our pho-

tometric stereo system. In the first section we will show the results of the

calibration process, and in the second there will be the results of the pho-

tometry algorithm, obtained using our acquisitions and some other reference

images. Results will be also compared with the ones got with a popular

commercial software, that is MVTec Halcon.

5.1 Light calibration

The calibration procedure has already been explained in Chapter 3, and

we are briefly recalling it. We have to load the images, where a highly

reflective black sphere has been lighted; an example is shown in Figure 5.1.

Our algorithm requires then an opening, performed on all images, and then

the recognition of the most reflective areas.

Figure 5.1: Four examples of a black sphere illuminated from different directions.
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In Figure 5.2 it is shown an intermediate step, where there are the highly

reflective spots and a line, that represents the planar distance from its center

and the center of the sphere.

Figure 5.2: An intermediate step of the light calibration, showing the high reflec-

tive spots and, in blue, the segment connecting the center of the spot

to the center of the sphere.

5.2 Photometry results

Photometric stereo can be used for several applications.

In Figure 5.3 there are the results of the process on a medicine package, where

a braille text is impressed. Image A is the albedo, where it is practically im-

possible the recognition of braille characters, while in the two subsequent

images there are the Gaussian curvatures obtained with our implementation

(B) and with Halcon (C). Here we can notice the main difference, that is a

post-processing that improves the contrast of Halcon’s result, that makes the

image more human-readable.

Another example is shown in Figure 5.4 that represents the photometric

analysis performed on a marble tile. There are small defects, that are unde-

tectable on albedo (A) but they are more visible using the mean curvature,

as shown in images B and C, obtained - again - with our implementation and

Halcon respectively.
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Figure 5.3: Photometric results on a medicine package. A is albedo, B is the

Gaussian curvature (with our software), C is the Gaussian curvature

(with Halcon).
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Figure 5.4: Photometric results on a marble tile. A is albedo, B and C are the

mean curvatures with our software and Halcon respectively.

In Figure 5.5 there are the results on a small plastic piece where an

identification number has been embossed. In image A it is more difficult to

perform the character recognition (OCR) than using images B or D. Image

C shows the normal map obtained with our software.

Figure 5.5: Photometric results on an embossed plastic piece. A is albedo, B is

Halcon’s mean curvature, C is the normal map and D is the mean

curvature with our software.
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Figure 5.6: Photometric result and analysis on a blister pack. Image A is one of

the acquired images, B is the Gaussian curvature. C is the result of a

blob detection, and D is the result of a floodfill algorithm for labeling.

Figure 5.6 shows the results on a blister pack, whose images were acquired

using our rig. Image A represents one of the acquired images, while B is the

Gaussian curvature, that is almost unintellegible. However, we can apply

some algorithms to detect the presence of blobs (shown in image C) after a

thresholding and an edge detection, and then perform a labeling (image D).

Another interesting result is shown in Figure 5.7, that is the mean curvature

of a STM32 microcontroller. Further analysis may enhance details of the

printed circuitry and of possible defects.
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Figure 5.7: Mean curvature of a STM32 microcontroller.

In Figure 5.8 there are the results obtained on a small husky model. Image

A is albedo, B is the normal map and C is the mean curvature. All the three

have been computed with our software. Image D is the depth map obtained

with the Matlab code, while E is the reconstructed height map obtained with

Halcon, using a Poisson integrator.

Those height maps have been employed to get approximate 3D recon-

structions. Results, obtained using a CAD software, are shown in Figure 5.9.

Image A is the reconstruction based on the Matlab depth map, image B is

based on Halcon’s result. Both reconstructions are not as accurate as ex-

pected, but clearly image A is more reliable. In fact, even if the model used

has not a strictly lambertian material, and its colors are not uniform, the

reconstruction still maintains the most of the shape. This does not happen

in image B, where a deformation is more evident.
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Figure 5.8: Results of photometry on a husky model. A is the albedo, B is the nor-

mal map, C is the mean curvature, D and E are height maps obtained

with Matlab and Halcon respectively.

Figure 5.9: 3D reconstructions of the husky model obtained from Matlab’s depth

map (A) and Halcon (B).
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Conclusions

The goals of this thesis were the description of the main algorithms used

to achieve a photometric stereo analysis of surfaces, as well as the realiza-

tion of a hardware device capable of acquire the images, and of a software

capable to analyze them. In particular, we focused on the implementation of

Woodham’s algorithm, and other image processing operators.

We briefly showed the most recent ways used nowadays to get a 3D recon-

struction. We explained Woodham’s algorithm, showing its simplicity and

accuracy, but also its limitations. We described its analytical derivation, and

the mathematical procedures used to calibrate the lighting system and get

the height map.

In this thesis, we also showed how these algorithms were implemented, and

showed the most significant results, that evidenced how, as for photometric

stereo, our software and a commercial one are comparable.

However, further improvements are possible.

In fact, both camera resolution and light system can be upgraded to get more

precise results. Moreover, the depth map reconstruction algorithm can be

improved, in terms of speed and final reliability, and can be implemented to

be processed directly on a GPU.
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