TM
 IES MASTER Institute for Engineers (IES/GATE/PSUs)

GANT 2018 ENGINEERING

Detailed Solution

EXAM DATE: 10-02-2019
 AFTERNOON SESSION (02:30 PM-05:30 PM)

NOIDA: B-23 A, 5th Floor, Gaurav Deep Heights, Near Fortis Hospital Sector 62, Noida- 201305 Ph: 01204151100

SECTION: GENERAL APTITUDE

1. Daytime temperature in Delhi can \qquad $40^{\circ} \mathrm{C}$
(a) Peak
(b) reach
(c) get
(d) stand

Ans. (b)
2. The growth rate of $A B C$ Motors in 2017 was the same \qquad XYZ Motors in 2016.
(a) As those of
(b) As that off
(c) As that of
(d) As off

Ans. (c)
Sol. "As that of"
3. Suresh wanted to lay a new carpet in his new mansion with an area of 7055 sq. mts. However an area of 550 sq. mts had to be left out for flower pots. If the cost of carpet is Rs. 50 per sq. mts, how much money (in Rs.) will be spent by Suresh for the carpet now?
(a) $1,65,000$
(b) Rs. 1,92,500
(c) Rs. $1,27,500$
(d) Rs. 2,75,000

Ans. (a)
Sol. Area of mansion $=70 \times 55=3850 \mathrm{~m}^{2}$
Area for flower pots $=550 \mathrm{~m}^{2}$
$\therefore \quad$ Area left for carpet $=3850-550=3300 \mathrm{~m}^{2}$
$\therefore \quad$ Cost $=3300 \times 50=165000$
4. A retaining wall with measurements $30 \mathrm{~m} \times 12$ $m \times 6 \mathrm{~m}$ was constructed with bricks of dimensions $8 \mathrm{~cm} \times 6 \mathrm{~cm}$. If 60% of the wall consists of bricks used for the construction is
\qquad lakhs.
(a) 45
(b) 30
(c) 40
(d) 75

Ans. (a)
Sol. Volume of wall $=30 \times 12 \times 6=2160 \mathrm{~m}^{3}$
$=2160 \times 10^{6} \mathrm{~cm}^{3}$
Total volume of bricks required $=2160 \times 10^{6}$ $\times 0.6 \mathrm{~cm}^{3}=1296 \times 10^{6} \mathrm{~cm}^{3}$

Volume of one brick $=8 \times 6 \times 6=288 \mathrm{~cm}^{3}$
No. of bricks required $=\frac{1296 \times 10^{6}}{288}$
$=4.5 \times 10^{6}=45$ lakhs
5. Hima Das was ___ only Indian athlete to win \qquad gold for India.
(a) the, many
(b) an, the
(c) an, a
(d) the, a

Ans. (d)
Sol. the, a
6. Population of state X increased by $x \%$ and the population of state Y increased by $y \%$ from 2001 to 2011. Assume that x is greater than y. Let P be the ratio of the population of state X to state Y in a given year. The percentage increase in P from 2001 to 2011 is \qquad
(a) $x-y$
(b) $\frac{100(x-y)}{100+x}$
(c) $\frac{100(x-y)}{100+y}$
(d) $\frac{x}{y}$

Ans. (c)
Sol. Let population of X is ' A ' in 2001 and Population of Y is ' B ' in 2001
\therefore Population of A in $2011=A\left(1+\frac{x}{100}\right)$
\& Population of B in $2011=B\left(1+\frac{y}{100}\right)$
Given, $\frac{A}{B}=P$
$\%$ increase in $P=\frac{\frac{A\left(1+\frac{x}{100}\right)}{B\left(1+\frac{y}{100}\right)}-\frac{A}{B}}{\frac{A}{B}} \times 100$
$=\frac{\left[\frac{P\left(1+\frac{x}{100}\right)}{\left(1+\frac{y}{100}\right)}-P\right]}{P} \times 100$
$=\left[\frac{1+\frac{x}{100}}{1+\frac{y}{100}}-1\right] \times 100=\frac{(x-y) 100}{100+y}$
7. The Newspaper report that over 500 hectares of tribal land spread across 28 tribal seetlements in Mohinitampuram forest division have already been "alienated'. A top forest official said, "First the tribals are duped out of their land holdings. Second, the families thus rendered landless are often forced to enroach further into the forests".
On the basis of the information available in the paragraph, \qquad is/are responsible for duping the tribals.
(a) The newspaper
(b) Landless families
(c) forest officials
(d) it cannot be inferred who

Ans. (d)
Sol. "it cannot be inferred who"
From given information, nobody can be held responsible.
8. An oil tank can be filled by pipe X in 5 hours and pipe Y in 4 hours, each pump working on its own. When the oil tank is full and the drainage hole is open, the oil is drained in 20 hours. If initially the tank was empty and someone started the two pumps together but left the drainage hole open, how many hours will it tak for the tank to be filled? (Assume that the rate of drainage is independent of the head)
(a) 2.50
(b) 1.50
(c) 2.00
(d) 4.00

Ans. (a)
Sol. Pipe X will fill how much in one hour $=\frac{1}{5} \tan \mathrm{k}$ Pipe Y will fill how much in one hour $=\frac{1}{4}$ tank Drainage will drain out how much water in 1 hour $=\frac{1}{20}$ tank
$\therefore \quad$ Total tank filled in one hour
$=\left(\frac{1}{5}+\frac{1}{4}-\frac{1}{20}\right) \tan \mathrm{k}=\frac{2}{5} \tan \mathrm{k}$
$\frac{2}{5}$ tank gets filled in $=1$ hour
$\therefore \quad$ Full (i) tank gets filled in $=\frac{1}{\left(\frac{2}{5}\right)} \times 1$
$=\frac{5}{2}=2.5 \mathrm{hr}$
9. Mohan, the manager, wants his foru workers to work in pairs. No paper should work for more than 5 hours. Ram and Johan have worked together for 5 hours. Krishna and Amir have worked as a team for 2 hours. Krishan does not want to work with Ram whom should

Institute for Engineers (IES/GATE/PSUs)

Take Your Preparation for ESE | GATE | PSUS to the Next Level

ADMISSIONS
 OPENfor SESSION 2019-20

Announcing Regular and Weekend Batches

Batches starting from
DELHI

Regular Batch
$15^{\text {th }}$ Feb (Morning)
$18^{\text {th }}$ Feb (Evening)

Weekend Batch
$16^{\text {th }}$ Feb

NOIDA
Weekend Batch $16^{\text {th }}$ Feb
F-126

Katwaria Sarai New Delhi-110016 8010009955

B-23 A
Behind Fortis Hospital Sector 62, Noida- 201305 01204151100
mohan allot to work with Johan, if we wants all the workers to continue working?
(a) Amir
(b) Krishna
(c) Ram
(d) None of the three

Ans. (b)
Sol. Conditions given:
(i) Ram \& John have worked for 5 hours.
(ii) Krishna doesn't want to work with Ram.
(iii) No pair should work beyond 5 hours.

Hence, Krishna should work with John to satisfy the above conditions.
10. "Popular Hindi fiction, despite - or perhaps because of - its wide reach, often does not appear in our cinema. As ideals that viewers are meant to look up to rather than identify with, Hindi film protagonisits usually read books of apsirational value: textbooks, English books, or high value literature".

Which one of the following CANNOT be inferred from the paragraph above?
(a) Textbooks, English books or high literature have apsirational value, but not popular Hindi fiction
(b) People do not look up to writers of textbooks, English book or high value litrature
(c) Though popular hindi fiction was wide readh, it often does not appear in the movies
(d) Protagonists in Hindi movies, being ideals for viewers, read only books of aspirational value.

Ans. (b)

SECTION : CIVIL ENGINEERING

1. What is curl of the vector field $2 x^{2} y i+5 z^{2} j-4 y z k ?$
(a) $-14 z i-2 x^{2} k$
(b) $6 z i+4 x j-2 x^{2} k$
(c) $6 z i+8 x y j+2 x^{2} y k$
(d) $-14 z i+6 y j+2 x^{2} k$

Ans. (a)
Sol.

$$
\begin{aligned}
& \text { Curl }=\left|\begin{array}{lcc}
\hat{i} & \hat{j} & \hat{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
2 x^{2} y & 5 z^{2} & -4 y z
\end{array}\right| \\
& =\hat{i}(-4 z-10 z)-\hat{j}(0-0)+\hat{k}\left(0-2 x^{2}\right) \\
& =-14 z \hat{i}-2 x^{2} \hat{k}
\end{aligned}
$$

2. Analysis of a water sample revealed that the sample contains the following species.
$\mathrm{CO}_{3}^{2-}, \mathrm{Na}^{+}, \mathrm{H}^{+}, \mathrm{PO}_{4}^{3-}, \mathrm{Al}^{3+}, \mathrm{H}_{2} \mathrm{CO}_{3}, \mathrm{Cl}^{-}, \mathrm{Ca}^{2+}$,
$\mathrm{Mg}^{2+}, \mathrm{HCO}_{3}^{-}, \mathrm{Fe}^{2+}, \mathrm{OH}^{-}$
Concentrations of which of the species will be required to compute alkalinity?
(a) $\mathrm{CO}_{3}^{2-}, \mathrm{H}^{+}, \mathrm{HCO}_{3}^{-}, \mathrm{OH}^{-}$
(b) $\mathrm{H}^{+}, \mathrm{H}_{2} \mathrm{CO}_{3}, \mathrm{HCO}_{3}^{-}, \mathrm{OH}^{-}$
(c) $\mathrm{CO}_{3}^{2-}, \mathrm{H}_{2} \mathrm{CO}_{3}, \mathrm{HCO}_{3}^{-}, \mathrm{OH}^{-}$
(d) $\mathrm{CO}_{3}^{2-}, \mathrm{H}^{+}, \mathrm{H}_{2} \mathrm{CO}_{3}, \mathrm{HCO}_{3}^{-}$

Ans. (a)
Sol. $\mathrm{H}_{2} \mathrm{CO}_{3}$ and $\mathrm{HCO}_{3}{ }^{-}$never come together
3. The value of the function $f(x)$ is given at n distinct values of x and its value is to be interpolated at the point x^{*} using all the n points. The estimate is obtained first by the Lagrange polynomial, denoted by I_{L}, and then by the Newton polynomial, denoted by I_{N}.

Which one of the following statements is correct?
(a) I_{L} is always greater than I_{N}
(b) No definite relation exists between I_{L} and I_{N}.
(c) I_{L} is alway less than I_{N}
(d) I_{L} and I_{N} are always equal

Ans. (b)
Sol. Lagrange's form is more efficient when you have to interpolate several data sets on the same data point.

Newton's form is more efficient when you have to interpolate data incrementally. So no relationship between both.
4. If the fineness modulus of a sample of the fine aggregates is 4.3, the mean size of the particles in the sample is between
(a) $150 \mu \mathrm{~m}$ and $300 \mu \mathrm{~m}$
(b) 2.36 mm and 4.75 mm
(c) $300 \mu \mathrm{~m}$ and $600 \mu \mathrm{~m}$
(d) 1.18 mm and 2.36 mm

Ans. (d)
Sol.
$150 \mu \mathrm{~m}, 300 \mu \mathrm{~m}, 600 \mu \mathrm{~m}, 1.18 \mathrm{~mm}, 2.36 \mathrm{~mm}$, $4.75 \mathrm{~mm}, 10 \mathrm{~mm}, 20 \mathrm{~mm}, 40 \mathrm{~mm}, 80 \mathrm{~mm}$

```
150-1
300-2
```

$$
\left.\begin{array}{l}
600-3 \\
1.18-4 \\
2.36-5
\end{array}\right] \rightarrow 4.3
$$

5. The command area of a canal grows only one crop, i.e., wheat. The base period of wheat is 120 days and its total water requirement, Δ, is 40 cm . If the canal discharge is $2 \mathrm{~m}^{3} / \mathrm{s}$, the area, in hectares, rounded off to the nearest integer, which could be irrigated (neglecting all losses) is \qquad
Ans. (5184)
Sol.

$$
\begin{aligned}
\mathrm{B} & =120 \text { days } \\
\Delta & =0.4 \mathrm{~m} \\
\text { and } \mathrm{D} \Delta & =8.64 \mathrm{~B}
\end{aligned}
$$

$\Rightarrow D=2592$ has per ($\mathrm{m}^{3} / \mathrm{s}$)
\therefore For $2 \mathrm{~m}^{3} / \mathrm{sec}$ water, area will be 5184 ha
6. The characteristic compressive strength of concrete required is a project is 25 MPa and standard deviation in the observed compressive strength expected at site is 4 MPa . The average compressive strength of cubes tested at different water-cement (w/c) ratios using the same material as is used for the project is given in the table.

w/c (\%)	45	50	55	60
Average compressive strength of cubes (MPa)	35	25	20	15

The water-cement ratio (in percent, round off to the lower integer) to be used in the mix is \qquad

MASTER TALENT REWARD EXAM (MTRE) A National Level Online Scholarship Test

- Opportunity to get up to 100% off on tuition fee
- Chance to study with the best engineering minds
- Learn in a stress-free environment
- Know your ranking at national level

GATE 2019 Detailed Solution 10-02-2019 | AFTERNOON SESSION

Ans. (46)
Sol. $\quad f_{c k}=25 ; \sigma=4 \mathrm{MPa}$
$\mathrm{f}_{\mathrm{m}}=\mathrm{f}_{\mathrm{ck}}+1.65 \sigma=31.6 \mathrm{MPa}$
Using interpolation
w / c req. $=50-\frac{(50-45)}{(35-25)} \times(31.6-25)$
$=46.7$ (Rounded off to the lowest integer).
7. A solid sphere of radius, r, and made of material with density ρ_{s}, is moving through the atmosphere (constant pressure, p) with a velocity, v. The net force ONLY due to atmospheric pressure $\left(F_{p}\right)$ acting on the sphere at any time, t, is
(a) $\frac{4}{3} \pi r^{3} \rho_{s} \frac{d v}{d t}$
(b) Zero
(c) $\pi r^{2} p$
(d) $4 \pi r^{2} p$

Ans. (b)
Sol. \quad Force $=$ area $\times P$

Net force will be zero as pressure acts from all sides.
8. An earthen dam of height H is made of cohesive soil whose cohesion and unit weight are cand γ, respectively. If the factor of safety against cohesion is F_{c}, the Taylor's stability
(a) $\frac{\gamma \mathrm{H}}{\mathrm{cF}_{\mathrm{c}}}$
(b) $\frac{\mathrm{F}_{\mathrm{c}} \gamma \mathrm{H}}{\mathrm{c}}$
(c) $\frac{c}{F_{c} \gamma H}$
(d) $\frac{\mathrm{cF}_{\mathrm{c}}}{\gamma \mathrm{H}}$

Ans. (c)
Sol.

$$
S_{n}=\frac{C}{F_{c} \gamma H}
$$

9. A closed thin walled tube has thickness, t, mean enclosed area within the boundary of the centrline of tube's thickness, A_{m}, and shear stress τ. Torsional moment of resistance, T of the section would be
(a) $2 \tau \mathrm{~A}_{\mathrm{m}} \mathrm{t}$
(b) $\tau \mathrm{A}_{\mathrm{m}} \mathrm{t}$
(c) $0.5 \tau \mathrm{~A}_{\mathrm{m}} \mathrm{t}$
(d) $4 \tau \mathrm{~A}_{\mathrm{m}} \mathrm{t}$

Ans. (a)
Sol.

$$
\begin{aligned}
\tau t & =\frac{T}{2 A_{m}} \\
\Rightarrow \quad \mathrm{~T} & =2 \mathrm{~A}_{\mathrm{m}} \tau t
\end{aligned}
$$

10. For a channel section subjected to a downward vertical shear force at its centroid, which one of the following represents the correct distribution of shear stress in flange and web?
(a)

(b)

Ans. (c)

GATE 2019
Detailed Solution
10-02-2019 | AFTERNOON SESSION

Sol. Standard result
11. The degree of static indeterminancy of the plane frame is shown in the figure is \qquad

Ans. (15)
Sol.

(Total R' $=2$)
$D_{s}=3 C-R^{\prime}$
$C=6$
$D_{s}=(3 \times 6-2)-1$ (due to hinge) $=15$
12. Structural failures considered in the mechanistic method of bituminous pavement design are
(a) Shear and slippage
(b) Fatique and Rutting
(c) Fatique and shear
(d) Rutting and shear

Ans. (b)
Sol. As per IRC66:2012
13. Which one of the options contains ONLY primary air pollutants?
(a) Ozone and peroxyacetyl nitrate
(b) Nitrogen oxides and peroxyacetyl nitrate
(c) Hydrocarbons and nitrogen oxides
(d) Hydrocarbons and ozone

Ans. (c)
Sol. Ozone PAN are secondary air pollutants.
14. The following inequality is true for all x close to 0 .

$$
2-\frac{x^{2}}{3}<\frac{x \sin x}{1-\cos x}<2
$$

What is the value of $\lim _{x \rightarrow 0} \frac{x \sin x}{1-\cos x}$?
(a) 2
(b) $1 / 2$
(c) 0
(d) 1

Ans. (a)
Sol.
$\lim _{x \rightarrow 0} \frac{x \sin x}{1-\cos x}$
It is $\frac{0}{0}$ form
L's hospital rule (differentiate)
$\Rightarrow \lim _{x \rightarrow 0} \frac{x \cos x+\sin x}{-(-\sin x)}$
Putting 0 everywhere \Rightarrow still $\frac{0}{0}$ form. Differentiating numerator and denominator again,

$$
\lim _{x \rightarrow 0} \frac{x(-\sin x)+\cos x+\cos x}{\cos x}=2
$$

15. The velocity field in a flow system is given by $v=2 i+(x+y) j+(x y z) k$. The acceleration of the fluid at $(1,1,2)$ is

CONVENTIONAL QUESTION PRACTICE PROGRAM for ESE-2019 Mains Exam

COMPLETE PACKAGE

Classroom Program

includes Subject-wise tests

Conventional Test Series

11 Mixed Topic-wise \& 6 Full-length tests

Classroom Program

$18^{\text {th }}$ Feb Monday to Saturday
250-300 hrs 8:30 am to 2:30 pm
I Subject wise Practice, Discussion and Test
I Practice Booklets with Solution Outlines
I How to Write Answer- Test \& Counselling Session
1 Discussion and Practice Session of 250-300 hrs
I Under Guidance of Mr. Kanchan Kr. Thakur

Conventional Test Series
$17^{\text {th }}$ March \mid Every Sunday

a) New Topics
b) Revision Topics

I Classroom Solutions + Discussion
I Improve Question Selection Ability
I Cover all Concepts in Various Topics
I Improve Time Management
1 Under Simulated Classroom Exam Env. Unique Approach : Test on New Topics + Revision Topics

Course	Branch	Tees (F)
Complete Package (Classroom Program + Conventional Test Series) for Non IES Master Students	CE	18000/-
Complete Package (Classroom Program + Conventional Test Series) for Ex- IES Master Students	CE	15000/-
Conventional Classroom Program (For Non IES Master Students)	CE	16000/-
Conventional Classroom Program (For Ex- IES Master Students)	CE	13000/-
Conventional Classroom Program (For Current year IES Master Classroom Program Students)	CE	11000/-
Conventional Offline Test Series (For Non IES Master Students)	CE, ME, EE, ECE	5000/-
Conventional Offline Test Series (For Ex- IES Master Students)	CE, ME, EE, ECE	5000/-
Conventional Offline Test Series (For Current year IES Master Classroom Program Students)	CE, ME, EE, ECE	Free
Conventional Online Test Series (For All Students)	CE, ME, EE, ECE	3000/-

TM IES MASTER
 Institute for Engineers (IES/GATE/PSUs)

GATE 2019 Detailed Solution 10-02-2019 | AFTERNOON SESSION

(a) $j+k$
(b) $2 \mathrm{i}+10 \mathrm{k}$
(c) $4 \mathrm{j}+10 \mathrm{k}$
(d) $4 \mathrm{i}+12 \mathrm{k}$

Ans. (c)
Sol.

$$
\begin{aligned}
a_{x} & =u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}+w \frac{\partial u}{\partial z}+\frac{\partial u}{\partial t} \\
\Rightarrow \quad a_{x} & =\frac{2 \times \partial(2)}{\partial x}+(x+y) \frac{\partial(2)}{\partial y}+(x y z) \frac{\partial(2)}{\partial z}+\frac{\partial(2)}{\partial t} \\
a_{x} & =0
\end{aligned}
$$

and $a_{y}=u \frac{\partial v}{\partial x}+v \frac{\partial v}{\partial y}+w \frac{\partial v}{\partial z}+\frac{\partial v}{\partial t}$

$$
=\frac{2 \partial(x+y)}{\partial x}+(x+y) \frac{\partial(x+y)}{\partial y}
$$

$$
+(\mathrm{xyz}) \frac{\partial(\mathrm{x}+\mathrm{y})}{\partial \mathrm{z}}+\frac{\partial(\mathrm{x}+\mathrm{y})}{\partial \mathrm{t}}
$$

$$
=2+(x+y)+(x y z)(0)+0
$$

$$
a_{y}=2+x+y
$$

$\Rightarrow \quad a_{y}=2+1+1$
$\Rightarrow \quad \overrightarrow{\mathrm{a}}_{\mathrm{y}}=4 \hat{\mathrm{j}}$
and $a_{z}=u \frac{\partial w}{\partial x}+v \frac{\partial w}{\partial y}+w \frac{\partial w}{\partial z}+\frac{\partial w}{\partial t}$

$$
=2(y z)+(x+y)(x z)+(x y z)(x y)+0
$$

$$
a_{z}=2(1 \times 2)+(1+1)(1 \times 2)+(1 \times 1 \times 2)(1 \times 1)
$$

$$
\overrightarrow{\mathrm{a}}_{\mathrm{z}}=(4+4+2) \hat{\mathrm{k}}=10 \hat{\mathrm{k}}
$$

$$
\vec{a}=a_{x} \hat{i}+a_{y} \hat{j}+a_{z} \hat{k}
$$

$$
\overrightarrow{\mathrm{a}}=4 \hat{\mathrm{j}}+10 \hat{\mathrm{k}}
$$

16. A steel column is restrained against both translation and rotation at one end and is restrained only against rotation but free to
translate at the other end. Theoretical and design (IS: 800 - 2007) values, respectively, of effective length factor of the column are
(a) 1.0 and 1.0
(b) 1.2 and 1.0
(c) 1.2 and 1.2
(d) 1.0 and 1.2

Ans. (d)
Sol. As per IS:800-2007
17. Euclindean norm (length) of the vector $[4-2-6]^{\top}$ is
(a) $\sqrt{48}$
(b) $\sqrt{24}$
(c) $\sqrt{12}$
(d) $\sqrt{56}$

Ans. (d)
Sol. Length $=\sqrt{4^{2}+(-2)^{2}+(-6)^{2}}=\sqrt{56}$
18. An inflow hydrograph is routed through a reservoir to produce an outflow hydrograph. The peak flow of the inflow hydrograph is $P_{\text {, }}$ and the time of occurrence of the peak is t_{1}. The peak flow of the outflow hydrograph is P_{0} and the time of occurance of the peak is t_{0}. Which one of the following statements is correct?
(a) $P_{1}<P_{0}$ and $t_{1}>t_{0}$
(b) $P_{1}>P_{0}$ and $t_{1}>t_{0}$
(c) $P_{1}<P_{0}$ and $t_{1}<t_{0}$
(d) $P_{1}>P_{0}$ and $t_{1}<t_{0}$

Ans. (d)
Sol.

$$
P_{1}>P_{0} ; t_{1}<t_{0}
$$

19. Construction of a new building founded on a clayey soil was completed in January 2010. In January 2014, the average consolidation settlement of the foundation in clay was recorded as 10 mm . The ultimate consolidation settlement was estimated in design as 40 mm . Considering double drainage to occur at the clayey soil site, the expected consolidation settlement in January 2019 (in mm, round off to the nearest integer) will be \qquad
Ans. (15)
Sol.

$$
\text { Ultimate consolidation }=40 \mathrm{~mm}
$$

Recorded consolidation $=10 \mathrm{~mm}$
$\therefore U \%=\frac{10}{40} \times 100=25 \%$
$\therefore \quad U=0.25$
$\mathrm{T}_{\mathrm{V}}=\frac{\pi}{4} \mathrm{U}^{2}=\frac{\mathrm{C}_{\mathrm{V}} \mathrm{t}}{\mathrm{H}^{2}}$
$\therefore U^{2} \propto \mathrm{t}$

$$
\left[\begin{array}{l}
\mathrm{t}_{1}=4 \mathrm{yrs} ; \mathrm{U}_{1}=0.25 \\
\mathrm{t}_{2}=9 \mathrm{yrs} ; \mathrm{U}_{2}=?
\end{array}\right]
$$

$$
\frac{U_{1}^{2}}{U_{2}^{2}}=\frac{t_{1}}{t_{2}}
$$

$\Rightarrow \frac{(0.25)^{2}}{\mathrm{U}_{2}^{2}}=\frac{4}{9}$
$\Rightarrow \frac{0.25}{U_{2}}=\frac{2}{3} \Rightarrow U_{2}=0.375$
\therefore Total recorded consolidation
$\Rightarrow 40 \times 0.375$
$\Rightarrow \quad 15 \mathrm{~mm}$
20. The notation "SC" as per Indian standard Soil Classification System refers to
(a) Clayey silt
(b) Sandy clay
(c) Calyey sand
(d) Silty clay

Ans. (c)
Sol.
SC: clayey sand
21. The speed-density relationship in a mid-block section of a highway follows the Greenshield's model. If the free flow speed is v_{f} and the jam density is k_{j}, the maximum flow observed on this ection is
(a) $\frac{\mathrm{v}_{\mathrm{f}} \mathrm{k}_{\mathrm{j}}}{2}$
(b) $\frac{v_{f} k_{j}}{8}$
(c) $\mathrm{v}_{\mathrm{f}} \mathrm{k}_{\mathrm{j}}$
(d) $\frac{v_{f} k_{j}}{4}$

Ans. (d)
Sol.

$$
\begin{aligned}
Q & =\left[\frac{-V_{f}}{K_{j}} K+V_{f}\right] K \\
\frac{d Q}{d K} & =\frac{-V_{f}}{K_{j}} \times 2 K+V_{f}=0 \\
\Rightarrow \quad K & =\frac{K_{j}}{2} \\
\therefore \quad Q & =\left[\frac{-V_{f}}{K_{j}} \times \frac{K_{j}}{2}+V_{f}\right] \frac{K_{j}}{2}=\frac{V_{f} K_{j}}{4}
\end{aligned}
$$

22. An anisotropic soil deposit has coefficient of permeability in vertical and horizontal directions as k_{z} and k_{x}, respectively. For constructing a flow net, the horizontal dimension of the problem's geometry is transformed by a multiplying factor of
(a) $\frac{\mathrm{k}_{\mathrm{z}}}{\mathrm{k}_{\mathrm{x}}}$
(b) $\frac{\mathrm{k}_{\mathrm{x}}}{\mathrm{k}_{\mathrm{z}}}$
(c) $\sqrt{\frac{k_{z}}{k_{x}}}$
(d) $\sqrt{\frac{k_{x}}{k_{z}}}$

Ans. (c)
Sol. Flow net for anisotropic soil.
$k_{x} \frac{\partial^{2} h}{\partial x^{2}}+k_{z} \frac{\partial^{2} h}{\partial z^{2}}=0$
$\Rightarrow \quad \frac{\mathrm{k}_{\mathrm{x}}}{\mathrm{k}_{\mathrm{z}}} \frac{\partial^{2} \mathrm{~h}}{\partial \mathrm{x}^{2}}+\frac{\partial^{2} \mathrm{~h}}{\partial \mathrm{z}^{2}}=0$
If we transformed geometry in x direction let x cordinate be transformed to the new cordinate x_{t} by the transformation.

$$
\begin{align*}
x_{t} & =x \sqrt{\frac{k_{z}}{k_{x}}} \\
\Rightarrow \quad x & =x_{t} \sqrt{\frac{k_{x}}{k_{z}}} \tag{ii}
\end{align*}
$$

From eq. (i) \& (ii),
$\Rightarrow \frac{\mathrm{k}_{\mathrm{x}}}{\mathrm{k}_{\mathrm{z}}} \frac{\partial^{2} \mathrm{~h}}{\partial\left(\mathrm{x}_{\mathrm{t}} \sqrt{\frac{\mathrm{k}_{\mathrm{x}}}{\mathrm{k}_{\mathrm{z}}}}\right)^{2}}+\frac{\partial^{2} \mathrm{~h}}{\partial \mathrm{z}^{2}}=0$
$\Rightarrow \quad \frac{\partial^{2} h}{\partial x_{t}{ }^{2}}+\frac{\partial^{2} h}{\partial z^{2}}=0 \quad$ Hence prove
So, multiplied factor $=\sqrt{\frac{k_{z}}{k_{x}}}$
23. The Laplace transform of \sinh (at) is
(a) $\frac{s}{s^{2}-a^{2}}$
(b) $\frac{\mathrm{s}}{\mathrm{s}^{2}+\mathrm{a}^{2}}$
(c) $\frac{a}{s^{2}-a^{2}}$
(d) $\frac{a}{s^{2}+a^{2}}$

Ans. (c)
Sol. Laplace transform of $\sinh (a t)=\frac{a}{s^{2}-a^{2}}$
24. The data from a closed traverse survey PQRS (run in the clockwise direction) are given in the table

Line	Included angle (in degree)
PQ	88
QR	92
RS	94
SP	89

The closing error for the traverse PQRS (in degrees) is \qquad
Ans. $\mathbf{(3}^{\circ}$)
Sol. $n=4$ (number of sides of closed traverse)
$(2 n-4) \times 90^{\circ}=360^{\circ}$
so, error in included angle
$=(88+92+94+89)-360=+3^{\circ}$
25. A vehicle is moving on a road of grade $+4 \%$ at a speed of $20 \mathrm{~m} / \mathrm{s}$. Consider the coefficient of rolling friction as 0.46 and acceleration due to gravity as $10 \mathrm{~m} / \mathrm{s}^{2}$. On applying brakes to reach a speed of $10 \mathrm{~m} / \mathrm{s}$, the required braking distance (in m , round off to nearest integer) along the horizontal, is \qquad .

Ans. (30)
Sol. Given: grade $=+4 \%$

$$
\begin{aligned}
\mathrm{V}_{1} & =20 \mathrm{~m} / \mathrm{sec} . \\
\mathrm{f} & =0.46 \\
\mathrm{~g} & =10 \mathrm{~m} / \mathrm{sec} . \\
\mathrm{V}_{1} & =10 \mathrm{~m} / \mathrm{sec} .
\end{aligned}
$$

We know,

$$
\begin{aligned}
\mathrm{V}_{2}^{2} & =\mathrm{V}_{1}^{2}+2 \mathrm{as} \\
(10)^{2} & =(20)^{2}+2 \mathrm{~s}\left[-\mathrm{g}\left(\mathrm{f}+\frac{\mathrm{n} \%}{100}\right)\right] \\
\Rightarrow \quad & \mathrm{s}
\end{aligned} \mathrm{=30m}
$$

26. A broad gauge railway line passes through a horizontal curved section (radius $=875 \mathrm{~m}$) of length 200 m . The allowable speed on this

TM IES MASTER
 Institute for Engineers (IES/GATE/PSUs)

ESE-2019 Conventional Test Schedule, Civil Engineering

Date Topic	
17th Mar 2019	N.T. : M-1, M-3, M-4, SM-1, SM-3, SM-8
	R.T.
24th Mar 2019	N.T. : SA-1, SA-2, SA-5, HY-1, HY-4, HY-5, M-5
	R.T. : SM-1, M-1
31st Mar 2019	N.T. : DSS-4, DSS-5, FM-1, FM-4, FM-6
	R.T. : M-3, SA-1, SA-2
07th Apr 2019	N.T. : SA-6, SA-4, SA-3, EE-6, EE-5, EE-4
	R.T. : FM-4, FM-6, M-1, M-4, M-3, HY-1
14th Apr 2019	N.T. : FM-7, RCC-1, RCC-2, RCC-3, HY-2
	R.T. : SA-1, SA-2, SM-3, FM-6, EE-6
21st Apr 2019	N.T. : SM-4, DSS-1, DSS-2, DSS-3, RCC-4, RCC-5, RCC-6
	R.T. : SM-1, SA-3, EE-5
28th Apr 2019	N.T. : SU-1, SU-2, SU-3, SM-2, SM-5, SM-6, SM-7, HY-3, SU-5
	R.T. : FM-7, RCC-1, RCC-2, RCC-3, HY-1, EE-6
05th May 2019	N.T. : TF-1, TF-2, TF-3, TF-4, FM-5, M-2
	R.T. : RCC-5, DSS-1, DSS-2, SM-4, M-1, M-3, M-4, FM-4, SA-1
12th May 2019	N.T. : IR-1, IR-2, IR-3, IR-4, EE-7
	R.T. : SM-5, SM-6, FM-1, EE-5, DSS-3, DSS-4, HY-3, HY-4, HY-5, SU-1, SU-2
19th May 2019	N.T. : CPM-1, CPM-2, EE-1, EE-2, EE-3, SU-4 (Railway \& Airport)
	R.T. : SM-4, FM-5, TF-1, TF-2, FM-7, SA-3, SU-3, SU-5, RCC-5
26th May 2019	N.T. : FM-2, FM-3, FM-8, Building Material, Ports \& Harbors/Tunneling
	R.T. IR-1, IR-2, HY-2, DSS-4, DSS-2, SA-1, SA-2, SA-3, RCC-6, EE-2, FM-6
02nd Jun 2019	Full Length-1 (Test Paper-1 + Test Paper-2)
09th Jun 2019	Full Length-2 (Test Paper-1 + Test Paper-2)
16th Jun 2019	Full Length-3 (Test Paper-1 + Test Paper-2)
Test Type Timing Day	
Conventional Test 10:00 A.M. to 1:00 P.M. ___ Sunday	
Conventional Full Length Test Paper-1 \qquad 10:00 A.M. to 1:00 P.M. \qquad Sunday Conventional Full Length Test Paper-2 \qquad 02:00 P.M. to 5:00 P.M. \qquad Sunday	
Note : The timing of the test may change on certain dates. Prior information will be given in this regard. *N.T. : New Topic. ${ }^{* R}$ R.T. : Revision Topic Call us : 8010009955, 011-41013406 or Mail us : info@iesmaster.org	

Subject Code Details

portion is $100 \mathrm{~km} / \mathrm{h}$. For calculating the cant, consider the gauge as centre-to-centre distance between the rail heads, equal to 1750 mm , The maximum permissible cant (in mm, round off to 1 decimal place) with respect to the centre-to-centre distance between the rail heads is
\qquad -.

Ans. (157.5)
Sol. Given data:

$$
R=875 \mathrm{~mm}
$$

Allowable speed $=100 \mathrm{kmph}$
Gauge length $G=1750 \mathrm{~mm}$
Allowable cant $=\frac{\mathrm{GV}_{\text {all }}^{2}}{127 \mathrm{R}}$

$$
=\frac{1750 \times 100^{2}}{127 \times 875}=157.6 \mathrm{~mm}
$$

27. When a specimen of M25 concrete is loaded to a stress level of 12.5 MPa , a strain of 500×10^{-6} is recorded. If this load is allowed to stand for a long time, the strain increases to 1000×10^{-6}. In accordance with provisions of IS: 456-2000, considering the long-term effects, the effective modulus of elasticity of the concrete (in MPa) is \qquad
Ans. (12500)
Sol. Short term strain $=500 \times 10^{-6}$
Long term strain $=1000 \times 10^{-6}$
So, creep coefficient, $\theta=\frac{(1000-500) \times 10^{-6}}{500 \times 10^{-6}}$
$\theta=1$
Long-term effective modulus
$=\frac{E_{s}}{1+\theta}=\frac{5000 \sqrt{25}}{1+1}$
$=12500 \mathrm{~N} / \mathrm{mm}^{2}=12500 \mathrm{MPa}$
or

$$
\begin{aligned}
\mathrm{E}_{\mathrm{cc}} & =\frac{\text { Stress }}{\text { Long term strain }} \\
& =\frac{12.5}{1000 \times 10^{-6}}=12500 \mathrm{MPa}
\end{aligned}
$$

28. The probability density function of a continuous random variable distributed uniformly between x and y (for $y>x$) is
(a) $\frac{1}{x-y}$
(b) $x-y$
(c) $y-x$
(d) $\frac{1}{y-x}$

Ans. (d)
Sol. Probability density function of a uniformly distributed random variable.

29. The uniform arrival and uniform service rates observed on an approach road to a signalized intersection are 20 and 50 vehicles/minutes, respectively. For this signal, the red time is 30 s , the effective green time is 30 s , and the cycle length is 60 s . Assuming that initially there are no vehicles in the queue, the average delay per vehicle using the approach road during a cycle length (in s, round off to 2 decimal places) is \qquad
Ans. (12.5)

GATE 2019 Detailed Solution 10-02-2019 | AFTERNOON SESSION

Sol.

$C \rightarrow$ Cycle time
Average delay per vehicle
$=\frac{C\left(1-\frac{g}{C}\right)^{2}}{2\left(1-\frac{v}{s}\right)}$
$=\frac{60}{2} \frac{\left(1-\frac{30}{60}\right)^{2}}{\left(1-\frac{20}{50}\right)}=\frac{60}{2} \frac{\left(1-\frac{30}{60}\right)^{2}}{\left(1-\frac{20}{50}\right)}=\frac{50}{4}$
$=12.5 \mathrm{sec}$
30. A rolled I-section beam is supported on a 75 mm wide bearing plate as shown in the figure. Thickness of flange and web of the l-section are 20 mm and 8 mm , respectively. Root radius of the 1 -section is 10 mm . Assuming: material yield stress, $f_{y}=250 \mathrm{MPa}$ and partial safety factor for material, $\gamma_{\mathrm{mo}}=1.10$

As per IS: 800-2007, the web bearing strength (in kN , round off to 2 decimal places) of the beam is \qquad
Ans. (272.73)

Sol.

Effective area in bearing $=[75+2.5$ (flange thickness + root radius)] $\times 8$

$$
\begin{aligned}
& =[75+2.5(20+10)] \times 8 \\
& =1200 \mathrm{~mm}^{2}
\end{aligned}
$$

so, web bearing strength $=A_{g} \frac{f_{y}}{1.1}$

$$
\begin{aligned}
& =1200 \times \frac{250}{1.1} \times 10^{-3} \\
& =272.73 \mathrm{kN}
\end{aligned}
$$

31. The critical bending compressive stress in the extreme fibre of a structural steel section is 1000 MPa . It is given that the yield strength of the steel is 250 MPa , width of flange is 250 mm and thickness of flange is 15 mm . As per the provisions of IS: 800-2007, the nondimensional slendeness ratio of the steel crosssection is
(a) 0.50
(b) 2.00
(c) 0.25
(d) 0.75

Ans. (a)
Sol. Non-dimensional slenderness ratio

$$
\lambda=\sqrt{\frac{f_{y}}{f_{c c}}}=\sqrt{\frac{250}{1000}}=0.50
$$

32. At the foot of a spillyway, water flows at a depth of 23 cm with a velocity of $8.1 \mathrm{~m} / \mathrm{s}$, as shown in the figure.

IES MASTER

BIHAR PUBLIC SERVICE COMMISSION MAINS TEST SERIES

Assistant Engineer CIVIL ENGINEERING

Online/Offiline mode

- Test papers as per latest exam pattern \& syllabus
- Thoroughly researched test papers by experts
- Get into the real BPSC-AE exam mode
- Evaluate preparation level in real exam environment
- Develop time management skills and speed
- Detailed analysis and feedback after each test

GATE 2019
Detailed Solution
10-02-2019 | AFTERNOON SESSION

The flow enters as an M-3 profile in the long wide rectangular channel with bed slope $=$ $\frac{1}{1800}$ and Manning's $n=0.015$. A hydraulic jump is formed at a certain distance from the foot of the spillway. Assume the acceleration due to gravity, $g=9.81 \mathrm{~m} / \mathrm{s}^{2}$. Just before the hydraulic jump, the depth of flow y_{1} (in m, round off to 2 decimal places) is \qquad
Ans. (0.417)
Sol. Given data:

$$
\begin{aligned}
y & =0.23 \mathrm{~m} \\
\mathrm{~V} & =8.1 \mathrm{~m} / \mathrm{sec} . \\
\text { Slope, } \mathrm{s} & =\frac{1}{1800} \\
\mathrm{~h} & =0.015 \\
\mathrm{~g} & =9.81 \mathrm{~m} / \mathrm{sec}^{2} \\
\mathrm{q} & =\mathrm{yV}=8.1 \times 0.23 \\
& =1.863 \mathrm{~m}^{3} / \mathrm{sec} / \mathrm{m}
\end{aligned}
$$

It is given that flow enters as an M-3 profile in the long wide rectangular channel with bed slope $=\frac{1}{1800}$
From manning equation at M_{3} profile section.

$$
\begin{aligned}
Q & =\frac{1}{n} R^{\frac{2}{3}} \sqrt{s} A \\
q \cdot B & =\frac{1}{n} y^{2 / 3} \sqrt{s} \cdot y \cdot B
\end{aligned}
$$

[for wide channel $R=y$]

$$
\begin{aligned}
1.863 & =\frac{1}{0.015} \sqrt{\frac{1}{1800}} y^{5 / 3} \\
\Rightarrow \quad y_{n} & =1.11 \mathrm{~m}
\end{aligned}
$$

The flow profile will follow normal depth $\left(y_{n}\right)$ after jump.

For wide rectangular channel,

$$
\begin{gathered}
y_{c}=\left(\frac{q^{2}}{g}\right)^{1 / 3} \\
\therefore \quad y_{c}=\left(\frac{1.863^{2}}{9.81}\right)^{1 / 3}=0.707 \mathrm{~m}
\end{gathered}
$$

Here, $y_{n}=y_{2}=1.11 \mathrm{~m}$

$$
\begin{gathered}
F_{2}^{2}=\frac{q^{2}}{g y_{2}^{3}} \\
\Rightarrow F_{2}=\sqrt{\frac{1.863^{2}}{9.81 \times 1.11^{3}}}=0.508
\end{gathered}
$$

Again, $\frac{\mathrm{y}_{1}}{\mathrm{y}_{2}}=\frac{1}{2}\left[\sqrt{1+8 \mathrm{~F}_{2}^{2}}-1\right]$
$\Rightarrow \quad \frac{y_{1}}{y_{2}}=\frac{1}{2}\left[\sqrt{1+8 \times 0.508^{2}}-1\right]$
$\Rightarrow y_{1}=0.417 \mathrm{~m}<\mathrm{y}_{\mathrm{c}}$ [supercritical]
33. Consider the reactor shown in the figure. The concentration (in mg/l) of a compound in the influent and effluent are C_{0} and C , flow rate through the reactor is $Q \mathrm{~m}^{3} / \mathrm{h}$ respectively. The compound is degraded in the reactor following the first order reactions. The mixing condition of the reactor Complete Mix Flow Reactor (CMFR) or a plug-flow reactor (PFR). The length of the reactor can be adjusted in these two mixing conditions to $L_{\text {CMFR }}$ and $L_{\text {PER }}$ while keeping the cross-section of the reactor constant. Assuming steady state and for $\mathrm{C} / \mathrm{C}_{0}$ $=0.8$, the value of $\mathrm{L}_{\mathrm{CMFR}} / \mathrm{L}_{\text {PER }}$ (round off to 2 decimal places) is \qquad

Ans. (1.12)
Sol.

$A=$ constant
$Q=A L$
For plug flow $=C=C_{o} e^{-k t_{d_{1}}}$
[$t_{d_{1}}=$ detention time for plug flow reaction]
For completely mix $=C=\frac{C_{0}}{1+k t_{d_{2}}}$
[$\mathrm{t}_{\mathrm{d}_{2}}=$ detention time for completely mix reaction]
$\Rightarrow 0.8=e^{-k t_{d_{1}}}$
$\Rightarrow k t_{d_{1}}=0.223=k \cdot \frac{A L_{\text {plug }}}{Q}$
Also, $0.8=\frac{1}{1+\mathrm{kt}_{\mathrm{d}_{2}}}$
$\Rightarrow k t_{d_{2}}=0.25=k \cdot \frac{A L_{\text {com }}}{Q}$
$\Rightarrow \frac{k t_{d_{1}}}{k t_{d_{2}}}=\frac{L_{\text {plug }}}{L_{\text {com }}}=\frac{0.223}{0.25}=0.892 \simeq 0.89$
$\Rightarrow \frac{\mathrm{L}_{\text {com }}}{\mathrm{L}_{\text {plug }}}=\frac{1}{0.89}=1.12$
34. A series of perpendicular offsets taken from a curved boundary wall to a straight survey line at an interval of 6 m are $1.22,1.67,2.04,2.34$, $2.14,1.87$, and 1.15 m . The area (in m^{2}, round off to 2 decimal places) boundary by the survey line, curved boundary wall, the first and the last offsets, determined using Simpson's rule, is \qquad .

Ans. (68.50)

GATE 2019 Detailed Solution 10-02-2019 | AFTERNOON SESSION

Sol. Area by simpson's rule $=\frac{h}{3}\left[\left(y_{1}+y_{n}\right)+\right.$ $\left.4\left(y_{2}+y_{4}+\ldots y_{n-1}\right)+2\left(y_{3}+y_{5}+\ldots+y_{n-2}\right)\right]$ $=\frac{6}{3}[(1.22+1.15)+4(1.67+2.34+1.87)$

$$
+2(2.04+2.14)]
$$

$=68.50 \mathrm{~m}^{2}$
35. A water treatment plant treats $6000 \mathrm{~m}^{3}$ of water per day. As a part of the treatment process, discrete particles are required to be settled in a clarifier. A column test indicates that an overflow rate of 1.5 m per hour would produce the desired removal of particles through settling in the clarifier having a depth of 3.0 m . The volume of the required clarifier, (in m^{3}, round off to 1 decimal place) would be

Ans. (500)
Sol. Given data:

$$
\text { Flow rate }=6000 \mathrm{~m}^{3} / \text { day }
$$

Over flow rate $=1.5 \mathrm{~m} /$ hour

$$
\begin{aligned}
& =1.5 \times 24 \mathrm{~m} / \text { day }=36 \mathrm{~m} / \text { day } \\
\text { Flow area } & =\frac{\text { Flow rate }}{\text { over flow rate }}=\frac{6000}{36} \\
& =166.67 \mathrm{~m}^{2}
\end{aligned}
$$

Volume required for clarifier $=$ Flow area \times depth

$$
=166.67 \times 3=500 \mathrm{~m}^{3}
$$

36. A flexible pavement has the following class of loads during a particular hour of the day.
i. 80 buses with 2 -axles (each axle load of 40 kN);
ii. 160 trucks with 2-axles (front and rear axle loads of 40 kN and 80 kN , respectively)
The equivalent standard axle load repetitions for this vehicle combination as per IRC:37-2012 would be

Railway Recruitment Board Junior Engineers (RRB-JE)

IES Master Amnounces

Classroom Gourse and Online Test Series RRB-JE 2019

1^{14} stage CBT

Online Test Series FREE with Classroom Course

Starts from $23^{\text {ri }}$ Feb

Online Test Series

- 12 Topic-wise
- 4 Subject-wise
- 8 Mixed Subjects Tests - 6 Full Length Tests

Total: 30 Tests

Classroom Program and Online Test Series for RRB-JE 2nd Stage CBT to be announced soon.

For further details and updated information, visit iesmaster.org or contact us at 8010009955, 9711853908
(a) 320
(b) 250
(c) 240
(d) 180

Ans. (d)
Sol. $\quad E S A L=80 \times\left(\frac{40}{80}\right)^{4}+80 \times\left(\frac{40}{80}\right)^{4}$

$$
\begin{aligned}
& +160 \times\left(\frac{40}{80}\right)^{4}+160 \times\left(\frac{80}{80}\right)^{4} \\
= & 5+5+10+160 \\
= & 180
\end{aligned}
$$

37. Constant head permeability tests were performed on two soil specimens, S1 and S2. The ratio of height of the two specimens ($\mathrm{L}_{\mathrm{s} 1}$: $\mathrm{L}_{\mathrm{s} 2}$) is 1.5 , the ratio of the diameter of specimens ($\mathrm{D}_{\mathrm{s} 1}: \mathrm{D}_{\mathrm{s} 2}$) is 0.5 , and the ratio of the constant head ($\mathrm{h}_{\mathrm{s} 1}: \mathrm{h}_{\mathrm{s} 2}$) applied on the specimens is 2.0. If the discharge from both the specimens is equal, the ratio of the permeability of the soil specimens $\left(\mathrm{k}_{\mathrm{s} 1}: \mathrm{k}_{\mathrm{s} 2}\right)$ is
\qquad
Ans. (3)
Sol. For constant head permeability test,

$$
\mathrm{k}=\frac{\mathrm{QL}}{\mathrm{ah}}
$$

Q \rightarrow discharge
$\mathrm{L} \rightarrow$ length of specimen
a \rightarrow area of cross-section of specimen
$\mathrm{h} \rightarrow$ constant head
Given,

$$
\begin{aligned}
\frac{L_{s_{1}}}{L_{s_{2}}} & =\frac{3}{2} \\
\frac{D_{s_{1}}}{D_{s_{2}}} & =0.5 \\
\Rightarrow \quad \frac{a_{s_{1}}}{a_{s_{2}}} & =\left(\frac{D_{s_{1}}}{D_{s_{2}}}\right)^{2}=(0.5)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{h_{s_{1}}}{h_{s_{2}}}=2 \\
& Q_{s_{1}}=Q_{s_{2}}
\end{aligned}
$$

$$
\therefore \quad \frac{k_{s_{1}}}{k_{s_{2}}}=\frac{\left(\frac{Q_{s_{1}} L_{s_{1}}}{a_{s_{1}} h_{s_{1}}}\right)}{\left(\frac{Q_{s_{2}} L_{s_{2}}}{a_{s_{2}} h_{s_{2}}}\right)}
$$

$$
=\frac{Q_{s_{1}}}{Q_{s_{2}}} \times \frac{L_{s_{1}}}{L_{s_{2}}} \times \frac{h_{s_{2}}}{h_{s_{1}}} \times \frac{a_{s_{2}}}{a_{s_{1}}}
$$

$$
=1 \times \frac{3}{2} \times \frac{1}{2} \times \frac{1}{(0.5)^{2}}
$$

$$
=\frac{3}{2^{2}} \times 2^{2}=3
$$

38. A long uniformly distributed load of $10 \mathrm{kN} / \mathrm{m}$ and a concentrated load of 60 kN are moving together on the beam ABCD shown in the figure (not drawn to scale). The relative positions of the two loads are not fixed. The maximum shear force (in kN, round off to the nearest integer) caused at the internal hinge B due to the two loads is \qquad

Ans. (70 kN)
Sol.

GATE 2019 Detailed Solution 10-02-2019 | AFTERNOON SESSION

$$
\begin{aligned}
& \text { Maximum SF }=60 \times 1+\left(\frac{1}{2} \times 1 \times 2\right) \times 10 \\
& =60+10=70 \mathrm{kN}
\end{aligned}
$$

39. A square footing of $2 m$ sides rests on the surface of a homogeneous soil bed having the properties: cohesion $\mathrm{c}=24 \mathrm{kPa}$, angle of internal friction $\phi=25^{\circ}$, and unit weight $\gamma=$ $18 \mathrm{kN} / \mathrm{m}^{3}$. Terzaghi's bearing capacity factor ϕ
$=25^{\circ}$ are $\mathrm{N}_{\mathrm{c}}=25.1, \mathrm{~N}_{\mathrm{q}}=12.7, \mathrm{~N}_{\gamma}=9.7, \mathrm{~N}_{\mathrm{c}}^{\prime}$ $=14.8, \mathrm{~N}_{\mathrm{q}}^{\prime}=5.6$, and $\mathrm{N}_{\gamma}^{\prime}=3.2$. The ultimate bearing capacity of the foundation (in kPa , round off to 2 decimal places) is \qquad -

Ans. (353.92)
Sol.

$$
\begin{aligned}
\mathrm{Q}_{\mathrm{ultimate}}= & 1.3 \mathrm{c}^{\prime} \mathrm{N}_{\mathrm{c}}^{\prime}+\mathrm{qN}_{\mathrm{q}}^{\prime}+0.4 \mathrm{~B}_{\gamma} \mathrm{N}_{\gamma}^{\prime} \\
= & 1.3 \times\left(\frac{2}{3} \times 24\right) \times 14.8+0+0.4 \\
& \times 2 \times 18 \times 3.2 \\
= & 353.92 \mathrm{kPa}
\end{aligned}
$$

Here,

$$
\phi<29^{\circ}
$$

Footing rests on the ground
Hence, $q=0$
so, $\quad c^{\prime}=\frac{2}{3} c$
use, $\quad N_{\mathrm{q}}^{\prime}, \mathrm{N}_{\mathrm{c}}^{\prime}, \mathrm{N}_{\gamma}^{\prime}$ accordingly.
40. The dimensions of a soil sampler are given in the table.

Parameter	Cutting edge	Sampling tube
Inside diameter (mm)	80	86
Outside diameter (mm)	100	90

For this sampler, the outside clearance ratio (in percent, round off to 2 decimal places) is
\qquad .

Ans. (11.11\%)
Sol. Given:

$$
\begin{aligned}
& D_{4}=90 \mathrm{~mm} \\
& D_{2}=100 \mathrm{~mm}
\end{aligned}
$$

$\therefore \quad$ Outside clearance $=\frac{D_{2}-D_{4}}{D_{4}} \times 100$

$$
=\frac{100-90}{90} \times 100=11.11 \%
$$

41. A plane frame shown in the figure (not to scale) has linear elastic springs at node H . The spring constants are $\mathrm{k}_{\mathrm{x}}=\mathrm{k}_{\mathrm{y}}=5 \times 10^{5} \mathrm{kN} / \mathrm{m}^{3}$ and k_{θ} $=3 \times 10^{5} \mathrm{kNm} / \mathrm{rad}$.

For the externally applied moment of 30 kNm at node F, the rotation (in degrees, round off to 3 decimals) observed in the rotational spring at node H is \qquad
Ans. (0.006 degree)
Sol.

Institute for Engineers (IES/GATE/PSUs)

General Awareness Classroom Course for

 SSC-JE

 SSC-JE 2019

- Classes by expert faculty in respective domains
- Well-structured study curriculum
- Test Series (online/offline) to determine level of preparation
- Learn how to read, decode, and deduce an answer
- Get rub-off with the best minds aspiring for SSC-JE
- Also, useful for State Engg Services/PSUs/State PSUs/ RRB-JE, etc.

Batch starting from
$25^{\text {h }}$ Feb, 2019
Course Duration
140-150 Hrs
(3-4 Hrs a day Monday to Friday)
Timing
05:30 to 08:30
Fee
₹ $6,800+$ GST (18\%)

Program includes

- All General Awareness topics as per SSC-JE syllabus
- 3 Full-length tests (Online/ Offline)

GATE 2019
Detailed Solution
10-02-2019 | AFTERNOON SESSION
$R \times 3=30$
$\Rightarrow R=10 \mathrm{kN}$
From right side of $F B D$
$R \times 3=K_{\theta} \cdot \theta$
$\theta=\frac{3 \mathrm{R}}{\mathrm{K}_{\theta}}=\frac{3 \times 10 \mathrm{kNm}}{3 \times 10^{5} \mathrm{kNm} / \mathrm{rad}}$
$=10^{-4} \mathrm{rad}=0.0057$
$=0.006$ degree
42. Chlorine is used as the disinfectant in a municipal water treatment plant. It achieves 50 percent of disinfection efficiency measured in terms of killing the indicator microorganisms (E -Coli) in 3 minutes. The minimum time required to achieve 99 percent disinfection efficiency would be
(a) 9.93 minutes
(b) 11.93 minutes
(c) 21.93 minutes
(d) 19.93 minutes

Ans. (d)
Sol. Disinfection eff. $=\frac{N_{0}-N}{N_{0}}$

$$
\begin{aligned}
& =\frac{N_{0}-N_{0} e^{-k t}}{N_{o}}=\left(1-e^{-k t}\right) \\
0.5 & =1-e^{-k \times 3} \\
\Rightarrow \quad \mathrm{k} & =\frac{\ln 2}{3} \\
\text { Again, } 0.99 & =1-e^{-\frac{\ln 2}{3} \times t}
\end{aligned}
$$

$\Rightarrow \quad 0.01=e^{-\frac{\ln 2}{3} x t}$
$\Rightarrow-4.605=-\frac{\ell \mathrm{n} 2}{3} \times \mathrm{t}$
$\Rightarrow \quad t=19.93 \mathrm{~min}$.
43. A confined aquifer of 15 m constant thickness is sandwiched between two aquicludes as shown in the figure (not drawn to scale)

The heads indicated by two piezometers P and Q are 55.2 m and 34.1 m , respectively. The aquifer has a hydraulic conductivity of $80 \mathrm{~m} /$ day and its effective porosity is 0.25 . If the distance between the piezometers is 2500 m , the time taken by the water to travel through the aquifer from piezometer location P to Q (in days, round off to 1 decimal place) is \qquad —.

Ans. (925.9)
Sol. Given,

$$
\begin{aligned}
\mathrm{k} & =80 \mathrm{~m} / \text { day }=\frac{80}{24 \times 3600} \mathrm{~m} / \mathrm{s} \\
& =9.259 \times 10^{-4} \mathrm{~m} / \mathrm{s} \\
\mathrm{~h} & =55.2-34.1=21.1 \mathrm{~m} \\
\mathrm{~L} & =2500 \mathrm{~m} \\
\mathrm{n} & =0.25 \\
B & =15 \mathrm{~m}
\end{aligned}
$$

As per Darcy's law,

$$
\begin{aligned}
V & =\mathrm{ki} \\
& =9.259 \times 10^{-4} \times \frac{\mathrm{h}}{\mathrm{~L}} \\
& =9.259 \times 10^{-4} \times \frac{21.1}{2500} \\
& =7.814 \times 10^{-6} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Seepage velocity $V_{s}=\frac{V}{n}$
$=\frac{7.814 \times 10^{-6}}{0.25}=3.125 \times 10^{-5} \mathrm{~m} / \mathrm{s}$

Institute for Engineers (IES/GATE/PSUs)

SSC-JE 2019

Online

 Test Series
Branches CE ME EE

- Quality questions as per SSC-JE exam syllabus and paitern
- Covers all tech and non-tech topics as per SSC-JE Paper-I syllabus
- Designed to make students get into real exam mode
- Get the desired boost in confidence
> 13 Subject-wise Tests
> 11 Mixed Subjects Tests
> 6 Full Length Tests

GATE 2019 Detailed Solution 10-02-2019 | AFTERNOON SESSION
$\therefore \quad$ Time taken $(\mathrm{t})=\frac{\mathrm{L}}{\mathrm{V}_{\mathrm{s}}}=\frac{2500}{3.125 \times 10^{-5}}$
$=800 \times 10^{5}$ sec. $=\frac{800 \times 10^{5}}{24 \times 3600}=925.9$ days
44. For a plane stress problem, the state of stress at a point P is represented by the stress element as shown in the figure.

By how much angle (θ) in degrees the stress element should be rotated in order to get the planes of maximum shear stress?

(a) 26.6
(b) 48.3
(c) 31.7
(d) 13.3

Ans. (c)
Sol.

Coordinates of $C=\left(\frac{80-20}{2}, \frac{25-25}{2}\right)$ $=(30,0)$

In $\triangle A B C$,
$\mathrm{BC}=80-30=50 \mathrm{MPa}$
$\mathrm{AB}=25 \mathrm{MPa}$
$\alpha=\tan ^{-1}\left(\frac{25}{50}\right)=26.56^{\circ}$
$\therefore \quad \theta=90^{\circ}-\alpha=63.44^{\circ}$

Angle to be rotated $=\frac{\theta}{2}=\frac{63.44}{2}=31.7^{\circ}$
45. The inverse of the matix $\left[\begin{array}{lll}2 & 3 & 4 \\ 4 & 3 & 1 \\ 1 & 2 & 4\end{array}\right]$ is
(a) $\left[\begin{array}{ccc}2 & -\frac{4}{5} & -\frac{9}{5} \\ -3 & \frac{4}{5} & \frac{14}{5} \\ 1 & -\frac{1}{5} & -\frac{6}{5}\end{array}\right]$
(b) $\left[\begin{array}{ccc}-2 & \frac{4}{5} & \frac{9}{5} \\ 3 & -\frac{4}{5} & -\frac{14}{5} \\ -1 & \frac{1}{5} & \frac{6}{5}\end{array}\right]$
(c) $\left[\begin{array}{ccc}10 & -4 & -9 \\ -15 & 4 & 14 \\ 5 & -1 & -6\end{array}\right]$
(d) $\left[\begin{array}{ccc}-10 & 4 & 9 \\ 15 & -4 & -14 \\ -5 & 1 & 6\end{array}\right]$

R IES MASTER

Launching Soon

CIVIL ENGINEERING

 GENERALAWARENESS \& REASONING$$
\text { SSC-JE } 2019
$$

Previous Years Topicwise Objective Detailed Solution with Theory (2004-2018)

- Comprehensive theory covered as per previous years' trend
- Detailed topicwise explanation and solution
- Complete solutions of all questions from 2004 to 2018
- Questions on facts, analytics, chronology, basics, and current
- Also, useful for State Engg Services /PSUs/RRB-JE/State PSUs/ DMRC/LMRC, etc.

Available at IES MASTER Delhi Centre \& all leading book stores
Buy online:

Ans. (b)

Sol.

$$
A=\left[\begin{array}{lll}
2 & 3 & 4 \\
4 & 3 & 1 \\
1 & 2 & 4
\end{array}\right]
$$

Det. of matrix, $|A|=2(12-2)-3(16-1)+$ $4(8-3)$

$$
\begin{aligned}
& =20-45+20 \\
& =-5 \\
A^{-1} & =\frac{1}{|A|}(\operatorname{adj} \cdot A) \\
(\operatorname{adj} A) & =(\operatorname{cof} A)^{\prime} \\
\text { cof of } A_{11} & =12-2=10 \\
\text { cof of } A_{12} & =-(16-1)=-15 \\
\text { cof of } A_{13} & =8-3=5 \\
\text { cof of } A_{21} & =-(12-8)=-4 \\
\text { cof of } A_{22} & =(8-4)=4 \\
\text { cof of } A_{23} & =-(4-3)=-1 \\
\text { cof of } A_{31} & =(3-12)=-9 \\
\text { cof of } A_{32} & =-(2-16)=14 \\
\text { cof of } A_{33} & =(6-12)=-6
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{cof} A=\left[\begin{array}{ccc}
10 & -15 & 5 \\
-4 & 4 & -1 \\
-9 & 14 & -6
\end{array}\right] \\
& \operatorname{adj} A=(\operatorname{cof} A)^{\prime}
\end{aligned}
$$

$$
=\left[\begin{array}{ccc}
10 & -4 & -9 \\
-15 & 4 & 14 \\
5 & -1 & -6
\end{array}\right]
$$

$A^{-1}=-\frac{1}{5}\left[\begin{array}{ccc}10 & -4 & -9 \\ -15 & 4 & 14 \\ 5 & -1 & -6\end{array}\right]$

$$
=\left[\begin{array}{ccc}
-2 & 4 / 5 & 9 / 5 \\
3 & -4 / 5 & -14 / 5 \\
-1 & 1 / 5 & 6 / 5
\end{array}\right]
$$

46. Two identical pipes (i.e. having the same length, same diameter, and same roughness) are used to withdraw water from a reservoir. In the first case, they are attached in series and also discharge freely into the atmosphere. In the second case, they are attached in parallel and friction factor is same in both the cases, the ratio of the discharge in the parallel arrangement to that in the series arrangement (round off to 2 decimal places) is \qquad
Ans. (2.828)
Sol. Case (1): Series connection,

then $\quad \Delta h=\frac{f \times(2 \ell) Q_{\text {series }}^{2}}{12.1 d^{5}}$
Case (ii) : parallel connection

then, $\quad \Delta \mathrm{h}=\frac{\mathrm{f} \times \ell \times\left(\mathrm{Q}_{\text {parallel }} / 2\right)^{2}}{12.1 \mathrm{~d}^{5}}$
then from equation (i) and (ii)

$$
\begin{aligned}
& \frac{f(2 \ell) \times Q_{\text {series }}^{2}}{12.1 d^{5}}=\frac{f \times \ell \times\left(Q_{\text {parallel }} / 2\right)^{2}}{12.1 d^{5}} \\
& \Rightarrow 2 Q_{\text {series }}^{2}=\frac{Q_{\text {parallel }}^{2}}{4} \\
& \Rightarrow \frac{Q_{\text {parallel }}}{Q_{\text {series }}}=(8)^{1 / 2}=2 \sqrt{2} \\
& \frac{Q_{\text {parallel }}}{Q_{\text {series }}}=2.828
\end{aligned}
$$

GATE 2019 Detailed Solution 10-02-2019 | AFTERNOON SESSION

47. A camera with a focal length of 20 cm fitted in an aircraft is used for taking vertical aerial photographs of a terrain. The average elevation of the terrain is 1200 m above mean sea level (MSL). What is the height above MSL at which an aircraft must fly in order to get the aerial photographs at a scale of $1: 8000$?
(a) 3200 m
(b) 2800 m
(c) 2600 m
(d) 3000 m

Ans. (b)
Sol. Given that

$$
\begin{aligned}
f & =0.2 \mathrm{~m} \\
\mathrm{~h} & =1200 \mathrm{~m} \\
\mathrm{~s} & =\frac{1}{8000} \\
\text { then, } \quad \mathrm{s} & =\left(\frac{\mathrm{f}}{\mathrm{H}-\mathrm{h}}\right) \\
\Rightarrow \quad \frac{1}{8000} & =\frac{0.2}{\mathrm{H}-1200} \\
\mathrm{H} & =2800 \mathrm{~m}
\end{aligned}
$$

48. Raw municipal solid waste (MSW) collected from a city contains 70\% decomposable material that can be converted to methane. The water content of the decomposable material is 35%. An elemental anlysis of the decomposable material yields the following mass percent.
$\mathrm{C}: \mathrm{H}: \mathrm{O}: \mathrm{N}:$ other $=44: 6: 43: 0.8: 6.2$
The methane production of the decomposable material is governed by the following stoichiometric relation
$\mathrm{C}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{O}_{\mathrm{c}} \mathrm{N}_{\mathrm{d}}+\mathrm{nH}_{2} \mathrm{O} \rightarrow \mathrm{mCH}_{4}+\mathrm{sCO}_{2}+\mathrm{dNH}_{3}$
Given atomic weights: $\mathrm{C}=12, \mathrm{H}=1, \mathrm{O}=16$, $\mathrm{N}=14$. The mass of methane produced (in grams, round off to 1 decimal place) per kg of raw MSW will be \qquad
Ans. (137.6 g)

Sol. For the MSW, the phase diagram is as follows

From the mass percent given,

$$
12 a=44 x
$$

$$
b=6 x
$$

$$
16 c=43 x
$$

$$
14 d=0.8 x
$$

$$
\Sigma=100 x
$$

100x = wt of decomposable waste
$=0.455 \mathrm{~kg}$
$\Rightarrow \quad x=\frac{0.455}{100} \mathrm{~kg}=4.55 \mathrm{~g}$
$\Rightarrow \quad a=16.683, \mathrm{~b}=27.3$,

$$
c=12.228, d=0.26
$$

From the balance of reaction we have
$a=m+s$
$b+2 n=4 m+3 d$

$$
\begin{equation*}
c+n=2 s \tag{B}
\end{equation*}
$$

$$
\Rightarrow \quad 2 \mathrm{c}+2 \mathrm{n}=4 \mathrm{~s}
$$

$\Rightarrow \quad b-2 c=4 m-4 s+3 d$
$\Rightarrow \quad \frac{\mathrm{b}-2 \mathrm{c}-3 \mathrm{~d}}{4}=\mathrm{m}-\mathrm{s}$
$\Rightarrow \quad \mathrm{m}-\mathrm{s}=0.516$
$\Rightarrow \quad m+s=16.683$
$\Rightarrow \quad m=8.6$
$\Rightarrow \quad$ Methane produced $=8.6 \times 16 \mathrm{~g}=137.6 \mathrm{~g}$
49. In the context of provisions relating to durability of concrete, consider the following assertion:

Assertion (1): As per IS 456-2000, air entrainment to the extent of 3% to 6% is required for concrete exposed to marine environment.

M IES MASTER

Launching Soon

CIVIL ENGINEERING

UPSC CIVIL SERVICES CONVENTIONAL EXAMINATION PREVIOUS YEARS SOLVED PAPERS - I \& II
 (2003-2018)

- Complete Solutions with Explanation
Also ideal for UPSC ESE Conventional and State Engineering Services exams

Available at IES MASTER Delhi Centre \& all leading book stores Buy online:

Assertion (2): The equivalent alkali content (in terms of $\mathrm{Na}_{2} \mathrm{O}$ equivalent) for a cement containing 1% and 0.6% of $\mathrm{Na}_{2} \mathrm{O}$ and $\mathrm{K}_{2} \mathrm{O}$, respectively, is approximately 1.4% (rounded to 1 decimal place).
Which one of the following statements is correct?
(a) Assertion
(1) is true and Assertion
(2) is FALSE
(b) Both Assertion (1) and Assertion (2) are TRUE
(c) Both Assertion (1) and Assertion 2) are FALSE
(d) Assertion (1) is false and Assertion (2) is TRUE

Ans. (b)
Sol. As per IS-456, where freezing and thawing actions under wet conditions exit, inhance durability can be obtained by the use of suitable air entraining admixture.

The entrained air percentage can vary from 4 ± 1 to 5 ± 1 (i.e. 3 to 6%) depending on size of aggregate. Hence, Assertion (1) is correct.

Equivalent alkali content (in terms of $\mathrm{Na}_{2} \mathrm{O}$ equivalent)
$=\mathrm{Na}_{2} \mathrm{O}+0.658 \times \mathrm{K}_{2} \mathrm{O}$
Molecular ratio of $\mathrm{Na}_{2} \mathrm{O}$ to $\mathrm{K}_{2} \mathrm{O}=0.658$
$=1 \%+0.658 \times 0.6 \%=1.39$
$\simeq 1.4$ (rounded to 1 decimal place).
50. The ordinates, u of a 2 -hour unit hydrograph (i.e. for 1 cm of effective rain), for a catchment are shown in the table.

t (hour)	0	1	2	3	4	5	6	7	8	9	10	11
$\mathrm{u}\left(\mathrm{m}^{2} / \mathrm{s}\right)$	0	2	8	18	32	45	30	19	12	7	3	1

A 6-hour storm occurs over the catchment such that the effective rainfall intensity is $1 \mathrm{~cm} /$ hour for the first two hours, zero for the next two
hours, and $0.5 \mathrm{~cm} /$ hour for the last two hours. If the base flow is constant at $5 \mathrm{~m}^{3} / \mathrm{s}$, the peak flow due to this storm (in $\mathrm{m}^{3} / \mathrm{s}$, round off to 1 decimal place) will be \qquad -

Ans. (97)
Sol.
$0-2 \mathrm{hr}-$ total rainfall $=1 \times 2=2 \mathrm{~cm}$
$2-4 \mathrm{hr}$ - total rainfall $=0 \mathrm{~cm}$
$4-6 \mathrm{hr}-$ total rainfall $=2 \times 0.5=1 \mathrm{~cm}$

Time hour	u $\mathrm{m}^{3} / \mathrm{sec}$	$\mathrm{u} \times 2 \mathrm{~cm}$	$\mathrm{a} \times \mathrm{u}$ lagged by 2 hr	$1 \times \mathrm{u}$ lagged by 1 hr.	sum $=1+2+3$
0	0	0			0
1	2	4			4
2	8	16	0		16
3	18	36	0		36
4	32	64	0	0	64
5	45	90	0	2	92
6	30	60	0	8	68
7	19	38	0	18	56
8	12	24	0	32	56
9	7	14	0	45	59
10	3	6	0	30	36
11	1	2	0	19	21
12	0	0	0	12	12

Maximum ordinate is $92 \mathrm{~m}^{3} / \mathrm{sec}$.
Maximum flood discharge $=92+5$
$=97 \mathrm{~m}^{3} / \mathrm{sec}$
51. The speed-density relationship of a highway is given as

$$
u=100-0.5 \mathrm{k}
$$

where, $\mathrm{u}=$ speed in km per hour, $\mathrm{k}=$ density in vehicles per km . The maximum flow (in vehicles per hour, round off to the nearest integer) is \qquad
Ans. (5000)
Sol. Given that,

$$
u=100-0.5 k
$$

Maximum flow $=\frac{\mathrm{u}_{\mathrm{f}} \mathrm{k}_{\mathrm{jam}}}{4}$
at $\mathrm{k}=0, \mathrm{u}=\mathrm{u}_{\mathrm{f}}=100 \mathrm{~km} / \mathrm{hr}$
and $u=0$, then $k=k_{j a m}=200 \mathrm{Veh} / \mathrm{km}$.
so, maximum flow $=\frac{200 \times 100}{4}$
$=5000$ vehicles $/ \mathrm{hr}$
52. Consider the hemi-spherical tank of radius 13 m as shown in the figure (not drawn to scale). What is the volume of water (in m^{3}) when the depth of water at the centre of the tank is 6 m ?

(a) 78π
(b) 468π
(c) 156π
(d) 396π

Ans. (d)
Sol. Volume generated by the Y axis revolution equaton of circle

$\Rightarrow \quad(x-0)^{2}+(y-13)^{2}=13^{2}$

$$
\begin{aligned}
\text { Volume } & =\pi \int_{y_{1}}^{y_{2}} x^{2} d y \\
& =\pi \int_{0}^{6}\left(169-(y-13)^{2} d y\right.
\end{aligned}
$$

GATE 2019 Detailed Solution 10-02-2019 | AFTERNOON SESSION

$$
=396 \pi
$$

53. A timber pile of length 8 m and diameter of 0.2 m is driven with a 20 kN drop hammer, falling freely from a height of 1.5 m . The total penetration of the pile in the last 5 blows is 40 mm . Use the engineering news record expression. Assume a factor of safety of 6 and empirical factor (allowing reducing in the theoretical set, due to energy losses) of 2.5 cm . The safe load carrying capacity of the pile (in kN , round off to 2 decimal places) is \qquad
Ans. (151.515)
Sol. Engineering news record expression
$Q_{u}=\left(\frac{w h}{s+c}\right)$
$\mathrm{s}=$ Penetration of pile per hammer blow.

$$
=\frac{40 \mathrm{~mm}}{8}=8 \mathrm{~mm}=0.008 \mathrm{~m}
$$

$C=2.5 \mathrm{~cm}=0.025 \mathrm{~m}$
so, $\quad Q_{u}=\frac{20 \times 1.5}{(0.025+0.008)}=909.09 \mathrm{kN}$
then safe load carrying capacity

$$
=\frac{909.09}{6}=151.515 \mathrm{kN}
$$

54. A $2 \mathrm{~m} \times 4 \mathrm{~m}$ rectangular footing has to carry a uniformly distributed load of 120 kPa . As per the $2: 1$ dispersion method of stress distribution, the increment in vertical stress (in kPa) at a depth of 2 m below the footing is \qquad _.

Ans. (40)
Sol. Increment in the vertical stress

$$
\begin{aligned}
& =\frac{120 \times 2 \times 4}{(2+h)(4+h)} \\
& =\frac{120 \times 2 \times 4}{(2+2)(4+2)}=40 \mathrm{kPa}
\end{aligned}
$$

Institute for Engineers (IES/GATE/PSUs)

Our Star Performers - UPSC ESE 2018
 "Consistent Quality, Outstanding Results"

CONGRATULATIONS TO ALL

Civil Engineering

 Electrical Engineering

Electronics \& Telecommunication Engineering

55. An ordinary differential equation is given below:

$$
\left(\frac{d y}{d x}\right)(x \ln x)=y
$$

The solution for the above equation is (Note: K denotes a constant in the options)
(a) $y=K \ln x$
(b) $y=K x \ln x$
(c) $y=K x e^{x}$
(d) $y=K x e^{-x}$

Ans. (a)

Sol. $\quad \frac{d y}{d x} x \ell n x=y$
$\Rightarrow \quad \int \frac{d y}{y}=\int \frac{d x}{x \ln x}$

$$
\begin{aligned}
& \text { taking } \ell \mathrm{nx}=\mathrm{t} \\
& \Rightarrow \quad \frac{1}{\mathrm{x}} \mathrm{dx}=\mathrm{dt} \\
& \Rightarrow \quad \int \frac{\mathrm{dy}}{\mathrm{y}}=\int \frac{\mathrm{dt}}{\mathrm{t}} \\
& \Rightarrow \quad \ell \mathrm{nx}=\ell \mathrm{nt}+\ell \mathrm{nk} \\
& \Rightarrow \quad y=\mathrm{kt} \\
& \Rightarrow \quad y=\mathrm{k} \ell \mathrm{nx}
\end{aligned}
$$

