
Bad Flow
B1. Unprotected Access Request

- skips Access Policy System

1. Policy Language
Code-level CBAC-based

policy language to specify
access policies including
Resources, their sensitive
methods, Roles/Categories

Mitigating Authorisation Flaws with Hybrid Enforcement of Category-Based Access Control (CBAC)
Dr. Asad Ali, Innovation Manager, asad.ali@identitymethods.co.uk

Access Policy System

Good Flow:
A2. Access

Decision

Good Flow:
A1. Access

Request

Context & Problem Solution
2. Software patterns
Incorporating policy

elements:
resources, sensitive

methods, roles/categories

3. Static Verifier
Code analysis algorithm to

check at compile-time if
each call to a sensitive

method abides by the policy

Output

4. Dynamic Verifier
Code-generation algorithm

to surround calls to sensitive
methods with calls to IAM

tool where access depends
on dynamic attributes

Application with
sensitive methods

detectable

Output

Edit Access

Write

. . .
1. Cl ass Cust omer {
2. i nt x = z;
3. hel l oWor l d() ;
4. bal ance. r ead() ;
. . .
}
. . .

- "Sensitive" methods accessing sensitive resources
- Hard to detect and protect
- Inadequate protection (access control) is a critical source

of security attacks e.g., data leaks, system misuse, etc

Policies:
Permission P1 has
(Customer,
 finances.read)

Role R1 has P1

User U1 has R1

Policy Engine:
Request

(method + context)
 -->

Decision
(grant/deny)

Custom Application

Problem Statement
Authorisation flaws in software are an IEEE Top 10 Security Design Flaw
How can we ensure each sensitive method can run only when allowed by an access policy?

-Is access queried prior to every "sensitive" call?
-Is the method only run if the decision is to grant access?

Results & Outcomes

Application with
sensitive methods

protected

Developers

Security Admins

Good Flow: A3. Protected Access Request

Sensitive Resources

Dynamic Flow:
D2. Access

DecisionDynamic Flow: D1. Access Request
. . .
1. Cl ass Cust omer {
2. i nt x = z;
3. hel l oWor l d() ;
4. bal ance. r ead() ;
. . .
}
. . .

Policies:
Permission P1 has
(Customer,
 finances.read)

Role R1 has P1

User U1 has R1

Policy Engine:
Request

(method + context)
 -->

Decision
(grant/deny)Custom Application

Dynamic Flow: D3. Protected Access Request

More problems

- All access requests checked at run-time -->
performance overheads + debugging difficulty

- Policies don't map to application code
- Solutions are limited to their limited supported

access control models (RBAC, ABAC, etc)

Input

Static Flow: S1. Protected Access Request:
already checked & allowed at compile-time

- Dynamic Flow: for requests requiring run-time information
--> always routed to Access Policy System

- Static Flow: for requests not requiring run-time information
--> only those that are always allowed will exist in the app

Access Policy System

Authorisation flaws mitigated by
detecting and protecting all sensitive
methods

Catch many errors at compile-time,
aiding debugging and reducing
run-time overheads

Using the CBAC meta-model enables
solution to be adaptable to all access
models (ABAC, RBAC, etc)

Contributes to "security-by-design"
and "shifting security to the left"
movements

Future Work

Build a fully-fledged CBAC-based

policy system & simplify the process
of writing code-level policies

Build highly-usable tools for all

four parts of the solution

Experiments with real applications

in a variety of domains

Enhance Design Patterns to support
widely-used architectures e.g.
inheritance, microservices. etc.

	Secure Development CBAC - Page 1
	Page 1

