Mitigating Authorisation Flaws with Hybrid Enforcement of Category-Based Access Control (CBAC)

Dr. Asad Ali, Innovation Manager, asad.ali@identitymethods.co.uk

Context & Problem Solution

Problem Statement 1. Policy Language 2. Software patterns

Code-level CBAC-based Incorporating policy Application with

Authorisation flaws in software are an IEEE Top 10 Security Design Flaw : .
policy language to specify

i 3 lements: Output—p sensitive methods
How can we ensure each sensitive method can run only when allowed by an access policy? icies i i € " -)
. . .. y y P y access poI|C|es_, '”C'“O!'T‘g resources, sensitive detectable
-Is access queried prior to every "sensitive" call? Resources, their sensitive methods, roles/categories

methods, Roles/Categories

-Is the method only run if the decision is to grant access?

Access Policy System ~<—Edit Access— o 1 Byl Ve

Policy Engine: Policies: - Code-generation algorithm
Request Permission P1 has to surround calls to sensitive
methods with calls to IAM

Input

3. Static Verifier
Code analysis algorithm to
check at compile-time if

D Developers Application with

sensitive methods ~«—Output

| (method + context) (Qustomer, Security Admins G o) v S e
: Good Flow: — (e Bl TETE REERES CETENTS method abides by the policy
Write Rl Access. Decision on dynamic attributes
Request (grant/deny) Role R1 has P1 Good Flow:
Cust Aoplicati A2. Access
ustom ication | isi ' " . . .

User U1 has R1 Decision « Dynamic Flow: for requests requiring run-time information Access Policy System
1. @lbes CUSHITER | --> always routed to Access Policy System Policy Engine: Policies:
2. int x = z; » Static Flow: for requests not requiring run-time information Request Permission P1 has

3. helloworld(): Good Flow: A3. Protected Access Request

- --> only those that are always allowed will exist in the app (method + context) (C.usmmer’
= finances.read)
4. balance.read(); f Bad Flow Decision Dynamic Flow:
oo 5 5 D2. A
B1. Unprotected Access Request Custom Application = (grant/deny) Role R1 has P1 ooos
- skips Access Policy System Dynamic Flow: D1. Access Request Decision

User U1 has R1

. Class Customer {

Sensitive Resources

More problems . int x = z; -
 "Sensitive" methods accessing sensitive resources « All access re P . helloworld(); : .
quests checked at run-time --> . balance.read(); Dynamic Flow: D3. Protected Access Request
- Hard'to detect and protect performance overheads + debugging difficulty
* Inadequate protection (access control) is a critical source Policies don't map to application code P
of security attacks e.g., data leaks, system misuse, etc T ey U e iaic * oW ST Protected Ac comp"gtime.

access control models (RBAC, ABAC, etc)

Results & Outcomes Future Work

Authorisation flaws mitigated by
detecting and protecting all sensitive
methods

Using the CBAC meta-model enables .
g ‘=l # Build a fully-fledged CBAC-based . Experiments with real applications

solution to be adaptable to all access = policy system & simplify the process o* : oty of d :
models (ABAC, RBAC, etc) ElJ 5 - N a variety ot domains
of writing code-level policies

T

Catch many errors at compile-time, Contributes to "security-by-design" Elp{s Enhance Design Patterns to support
- . . e : . il Build highly-usable tools for alll : :

aiding debugging and reducing / ﬁ and "shifting security to the left : f “th i widely-used architectures e.g.
run-time overheads movements ©k CHIFEEIS ® il e Vel inheritance, microservices. etc.

IDENTITY +448452 411836

INFO@IDENTITYMETHODS.CO.UK

M ET H 0 D S® LINKEDIN.COM/COMPANY/IDENTITY-METHODS

	Secure Development CBAC - Page 1
	Page 1

