SEARCH GOOGLE FOR FREE MATERIALS

FOR ANSWERS

www.ravitestpapers.in

FOR PDF FILES

www.ravitestpapers.com

1 Mark

Instructions

Q9.

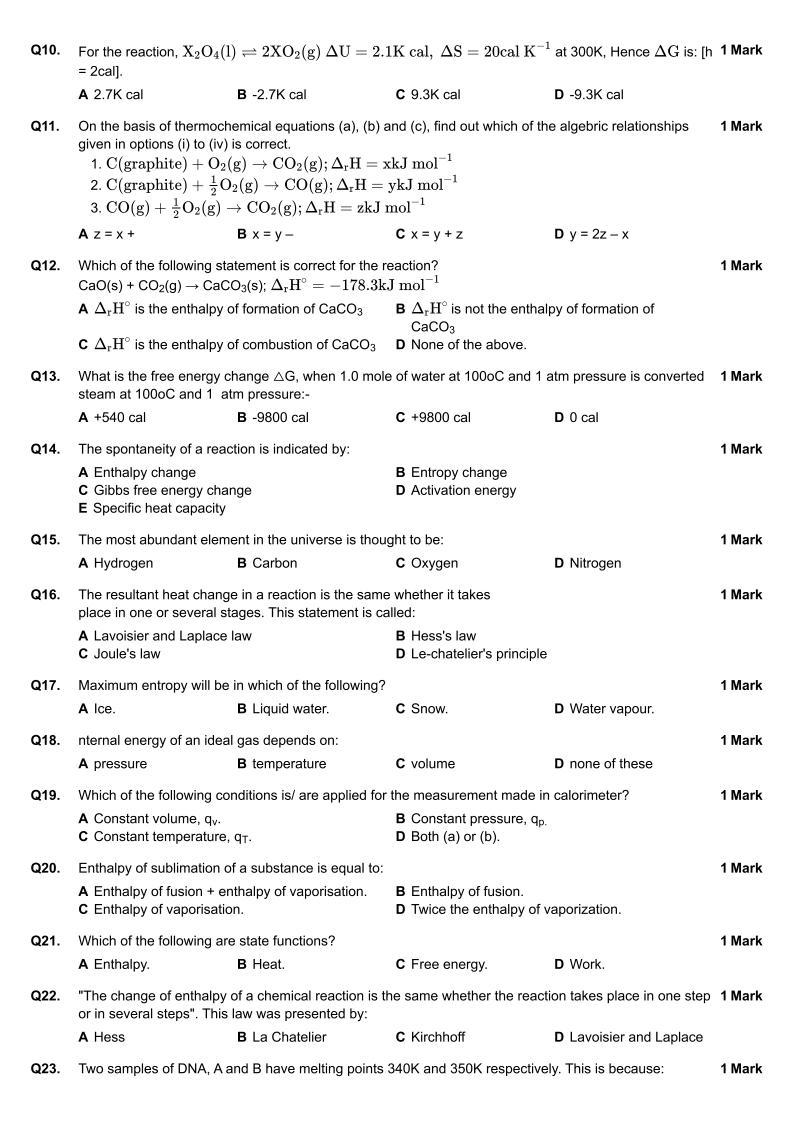
1. JOIN MY PAID WHATSAPP GROUP & GET PDF FORMAT PAPERS WITH ANSWERS FOR ALL MY UNLIMITED DPP UPDATES. ONE TIME FEES RS.3000/ OR PER MONTH RS.500 TILL 2026 EXAM RAVI TEST PAPERS & NOTES WHATSAPP - 8056206308

Q1.	•	orrect option for free expansion of an ideal gas under adiabatic condition from the following.				
	A $q=0,~\Delta T eq 0,~w=0$	=0	В	$ m g \ q eq 0, \ \Delta T < 0, \ w = 0$	= 0	
	$\mathbf{C} \; \mathbf{q} = 0, \; \Delta \mathbf{T} = 0, \; \mathbf{w} = 0$	=0	D	$ m q=0,~\Delta T<0,~w$ 7	<i>é</i> 0	
Q2.	Actual flame temperature	e is always lower than the	adi	abatic flame temperatur	e, because there is	1 Mark
	A no possibility of obtain at high temperature.	ing complete combustion	В	always loss of heat fro	m the flame.	
	C both (a) and (b).		D	neither (a) nor (b).		
Q3.	In the given reaction, H_2 The enthalpy change is H_2	(g) $ ightarrow$ 2H(g); $\Delta { m H} = 435.0$ known as:)kJ	$1 \mathrm{mol}^{-1}$		1 Mark
	A Enthalpy of formation.C Bond dissociation enth			Enthalpy of atomisatio Both (b) and (c).	n.	
Q4.	Therm is the unit of:					1 Mark
	A Heat	B Temperature	С	Thermometry	D Work	
Q5.	Q5. In which of the processes, does the internal energy		/ of	the system remain con	stant?	1 Mark
	A Adiabatic	B Isochoric	С	Sisobaric	D Isothermal	
Q 6.	carefully and choose the Assertion : Absolute value	ns, the Assertion and Reas correct alternative from th ue of internal energy of a s to determine exact values	ne fo	ollowing: stance cannot be detern	nined.	1 Mark
	A Both Assertion and Re Reason is the correct	eason are true and explanation of Assertion.	В	Both Assertion and Re Reason is not the corre Assertion.		
	C Assertion is true but R	eason is false.	D	Both Assertion and Re	ason are false.	
Q7.	Q7. Which of the following drives spontaneous reactions?			1 Mark		
	A Low enthalpy values a C High enthalpy values a			Low enthalpy values a High temperatures and	· ·	
Q8.	The laws of thermodyna	mics speak about:				1 Mark
	A Rates of chemical cha	nges	В	Feasibility and energy a Process	transformations of	
	C Both the rate and ene	rgy changes of a process	D	Energy changes in che	emical reactions only	

The pressure-volume work for an ideal gas can be calculated by using the expression

volume V_i to V_f . choose the correct option.

A w (reversible) = w (irreversible).


C w (reversible) > w (irreversible).

 $w=-\int^{\cdot}p_{ex}dV$.The work can also be calculated from the PV– plot by using the area under the curve

B w (reversible) < w (irreversible).

D w(reversible) = w (irreversible) $+p_{ex}$. ΔV .

within the specified limits. When an ideal gas is compressed (a) reversibly or (b) irreversibly from

	A B has more GC content C B has more AT cotent			A has more GC conte both have same AT co		
Q24.	For the process, H ₂ O(I) -	→ H ₂ O(g) at T = 100°C an	d 1	atm, the correct choice	e is:	1 Mark
	A $\Delta S_{System} > 0$ and Δ C $\Delta S_{System} < 0$ and Δ			$rac{1}{2} \Delta S_{ m System} > 0, \; \Delta S_{ m System} < 0, \; \Delta S_{ m S$		
Q25.	Which of the following is	an extensive property?				1 Mark
	A Temperature.	B Density.	С	Gibbs free energy.	D Molar volume.	
Q26.	If a △Go for a given read	tion is known one may de	eter	mine all the following e	except the:	1 Mark
	A Direction of Spontaneo	oun change at the	В	Position of equilibrium	at temperature for	
	standard condition C Usefulness of catalyst reaction	in controlling the	D	which △Go is known Maximum amount of open produced at standard	useful work that can be condition.	
Q27.	Which of the following is	not true about a reversible	e re	action?		1 Mark
	A The reaction does notC Number of moles of realways equal	· ·		It cannot be influence It can be attained only	-	
Q28.	A reaction, A + B + C + D	+ q is found to have a po	sitiv	ve entorpy change. The	e reaction will be:	1 Mark
	A Possible at high temper C Not possible at any temper C			Possible only at low to Possible at any tempo		
Q29.	A bomb calorimeter is us	ed to measure the value o	of he	eat of reaction at a con	stant:	1 Mark
	A Volume	B Pressure	С	Temperature	D None of these	
Q30.	Entropy is:					1 Mark
	A A thermodynamic condC Independent of path.	cept.		A state function. All of the above.		
Q31.	carefully and choose the	ns, the Assertion and Reas correct alternative from the emperature and pressure change is zero.	ne fo	ollowing:		1 Mark
	A Both Assertion and Re Reason is the correct	eason are true and explanation of Assertion.	В	Both Assertion and Reason is not the cor		
	C Assertion is true but R	eason is false.	D	Assertion. Both Assertion and Re	eason are false.	
Q32.	In the given reaction, Na The enthalpy of atomisat					1 Mark
	A Enthalpy of dissociation C Enthalpy of association			Enthalpy of sublimation Enthalpy of vaporisation		
Q33.	carefully and choose the	ns, the Assertion and Reas correct alternative from the enthalpy of neutralization	ne fo	ollowing:	d. Read the statements ase is numerically less than	1 Mark
		s furnished by 1 g equival		_		
	A Both Assertion and Re Reason is the correct	eason are true and explanation of Assertion.	В	Both Assertion and Re Reason is not the cor Assertion.		
	C Assertion is true but R	eason is false.	D	Both Assertion and Re	eason are false.	
Q34.	Hess's law deals with:					1 Mark

	A Heat changes in a C Equilibrium consta			Rate of reaction Influence of pressu	re on volume of a gas	
Q35.		pies of formation of $CO_2(g)$, H_2 e^{-1} respectively. The standard			25°C are -400kJ/ mol, -300kJ/ per gram of glucose of 25°C	1 Mark
	A +2900kJ	B -2900kJ	С	-16.11kJ	D +16.11kJ	
Q36.	In the following Questions, the Assertion and Reason carefully and choose the correct alternative from the fassertion: An exothermic process which is non-spor spontaneous at a low temperature. Reason: There occurs a decrease in entropy factor as		ne fo pon	illowing: taneous at high tem	perature may become	1 Mark
	A Both Assertion and	d Reason are true and ect explanation of Assertion.	В	Both Assertion and	Reason are true but correct explanation of	
007						454
Q37.	For both reversible a $\mathbf{A} \; \Delta U = 0, \Delta S_{total}$ $\mathbf{C} \; \Delta U = 0, \Delta S_{total}$	•	В	eal gas, under isoth $\Delta ext{U} eq 0, \Delta ext{S}_{ ext{total}} \ \Delta ext{U} eq 0, \Delta ext{S}_{ ext{total}}$	=0	1 Mark
Q38.	The bond dissociation enthalpy of formation	n energies of H ₂ , Cl ₂ , and HC of HCl would be:	l are	e 104, 58 and 103kd	al mol ⁻¹ respectively. The	1 Mark
	A -22kcal mol ⁻¹	B -44kcal mol ⁻¹	С	+44kcal mol ⁻¹	D +22kcal mol ⁻¹	
Q39.	carefully and choose Assertion: Internal en Reason: Internal ene A Both Assertion and	stions, the Assertion and Reas the correct alternative from the energy is an extensive property ergy depends upon the amour d Reason are true and ect explanation of Assertion.	ne fo y. nt of	the system. Both Assertion and	ard. Read the statements Reason are true but correct explanation of	1 Mark
	C Assertion is true b	ut Reason is false.	D	Assertion. Both Assertion and	Reason are false.	
Q40.	Which of the followin	g expression is correct for a re	ever	sible process in a s	tate of equilibrium?	1 Mark
	A $\Delta \mathrm{G} = -2.30\mathrm{RT}$ C $\Delta \mathrm{G}^\circ = -2.303\mathrm{F}$	$\log K$	В	$\Delta ext{G} = 2.30 ext{RT lo} \ \Delta ext{G}^{\circ} = 2.303 ext{RT}$	gK	
Q41.	All natural processes	are:				1 Mark
	A Spontaneous	B Non- spontaneous	С	Exothermic	D Endothermic	
Q42.	In the following Questions, the Assertion and Reason have been put forward. Read the statemed carefully and choose the correct alternative from the following: Assertion: A process is called adiabatic if the system does not exchange heat with the surrounce Reason: It does not involve increase or decrease in temperature of the system.		heat with the surroundings.	1 Mark		
		d Reason are true and ect explanation of Assertion.	В		Reason are true but correct explanation of	
	C Assertion is true b	ut Reason is false.	D	Both Assertion and	Reason are false.	
Q43.	The enthalpy of vapo	ourisation of a liquid is 30kJ mo quid at 1atm is:	ol ⁻¹	and enthalpy of vap	ourisation is 75J mol ⁻¹ . The	1 Mark
	A 250K.	B 400K.	С	450K.	D 600K.	
Q44.	The volume of gas is A Reduce to half.	reduced to half from its origin B Be doubled.		olume. The specific Remain constant.	heat will be D Increase four times.	1 Mark

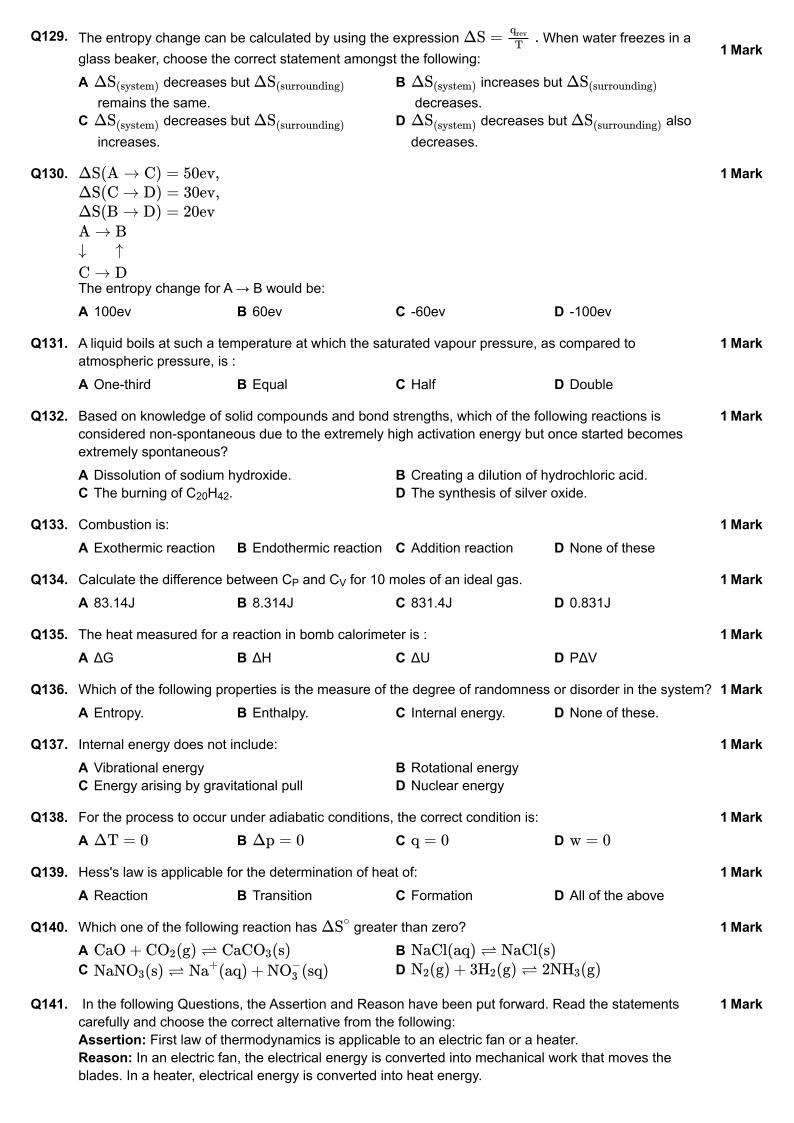
Q45.	When we take acetone in	n a test tube it feels cold. V	Vhich reaction occurs in th	e process?	4.84
	A Endothermic reaction	B Exothermic reaction	C Reversible process	D Adiabatic process	1 Mark
Q46.	Two moles of an ideal ga	-	y and reversibly from 1L to	10L at 300K. The enthalpy	1 Mark
	A 11.4kJ	B -11.4kJ	C 0kJ	D 4.8kJ	
Q47.	Which of the following en	ndothermic processes are	spontaneous?		1 Mark
	A Melting of ice	B Evaporation of water	C Heat of combustion	D Both (a) and (b)	
Q48.	The total heat content of	a system is:			1 Mark
	A Entropy	B Free energy	C Enthalpy	D Kinetic energy	
Q49.		tions in deciding if a reaction.			1 Mark
	A Stability & state of readC Exothermic energy & rproductsE Endothermic energy &		B Energy gained & heatD Endothermic energy & products		
Q50.	The internal energy of a contemperature, is:	compressed real gas, as c	ompared to that of the nor	mal gas at the same	1 Mark
	A Less C Sometimes less, some	etimes more	B MoreD None of these		
Q51.		ystem, but q amount of he in internal energy of a sys		stem and given to the	1 Mark
	$\begin{array}{l} \textbf{A} \ \Delta U = -q \\ \textbf{C} \ \Delta U = W_{ad} \end{array}$		$\begin{array}{l} \textbf{B} \ \Delta U = +q \\ \textbf{D} \ \Delta U = q - W \end{array}$		
Q52.	The value of $\Delta_r G^\circ$ is eq	ual to:			1 Mark
	$egin{aligned} {\sf A} & -2.303 { m RT} \log { m K} \ {\sf C} & \Delta_{ m r} { m H}^{\circ} - { m T} \Delta_{ m r} { m S}^{\circ} \end{aligned}$		${f B}$ $+2.303{ m RT}\log{ m K}$ ${f D}$ Both (a) and (c).		
Q53.	-	nd in a well insulated conta 2.50L to a final volume of 4		ternal pressure of 2.5atm al energy in Joule's will he:	1 Mark
	A -500J	B -506J	C +505J	D 1136.25J	
Q54.	.,	en one mole of solute diss	•	nt of solvent is called:	1 Mark
	A Enthalpy of dilution.C Enthalpy of association	n.	B Enthalpy of solution.D Enthalpy of dissociation	on.	
Q55.	carefully and choose the Assertion: T, P and V ar	ns, the Assertion and Reas correct alternative from the se state variables or state for epend on the state of the sy	e following: unctions.		1 Mark
	A Both Assertion and Re Reason is the correct of	eason are true and explanation of Assertion.	B Both Assertion and Re Reason is not the corr Assertion.		
	C Assertion is true but R	eason is false.	D Both Assertion and Re	eason are false.	
Q56.	The correct thermodynan	nic conditions for the spon	taneous reaction at all tem	perature is:	1 Mark
	A $\Delta H < 0$ and $\Delta S > 0$ C $\Delta H < 0$ and $\Delta S = 0$		B $\Delta H < 0$ and $\Delta S < 0$ D $\Delta H > 0$ and $\Delta S < 0$		
Q57.	The enthalpies of all elen	nents in their standard stat			1 Mark
	A Unity. C < 0.		B Zero.D Different for each elem	nent.	

Q58.		of an unknown metal. You pe . What could be the identity			figure out the specific heat	1 Mark
	A Gold E None of the above	B Silver	С	Iron	D Aluminum	
Q59.	carefully and choose the Assertion: There is ex	ions, the Assertion and Reas ne correct alternative from the schange in internal energy in s is the one in which the syte	ne fo n a c	llowing: yclic process.		1 Mark
	A Both Assertion and Reason is the correct	Reason are true and ct explanation of Assertion.	В	Both Assertion and R Reason is not the co Assertion.		
	C Assertion is true but	Reason is false.	D	Both Assertion and F	Reason are false.	
Q60.	Energy hidden in a def	inite quantity of substance is	s:			1 Mark
	A Enthalpy	B Internal energy	С	Free energy	D Entropy	
Q61.	In a thermodynamic sy A Kinetic energy only C Potential energy	rstem working subtance is id	В	gas, its internal energ Kinetic and potential None of these	•	1 Mark
Q62.	$\begin{aligned} \textbf{A} \ [H_m(CO_2,g) + 2H_m(CH_4,\ g)] \end{aligned}$	$egin{aligned} ext{CH}_4(ext{g}) + 2 ext{O}_2(ext{g}) & ightarrow ext{CO}_2(ext{g}) \ & ext{I}_{ ext{m}}(ext{O}_2, ext{g})] - [2 ext{H}_{ ext{m}}(ext{H}_2 ext{O}, ext{l}) \ & ext{I}_{ ext{m}}(ext{H}_2 ext{O}, ext{l})] - [ext{H}_{ ext{m}}(ext{CH}_4, ext{g})] \end{aligned}$	l) B	$\begin{split} &[2H_m(O_2,g)+H_m(O_2,g)+H_m(H_2,O,l)] \end{split}$	$(\mathrm{CH_4,g})] - [\mathrm{H_m}(\mathrm{CO_2,g})$	1 Mark
Q63.	The statement "The chin one or several steps		ical ı	reaction is same whe	ther the reaction takes place	1 Mark
	A Le Chatelier's law C first law of thermody	vnamics		van't Hoff's law Hess's law.		
Q64.	Hess's law is related to):				1 Mark
	A Change in heat duri C Equilibrium constant	· ·		Rates of reaction Influence of pressure	on volume of a gas	
Q65.	Hess law of heat sumr	nation includes:				1 Mark
	A Initial reactants only C Final products only			Initial reactants and f Intermediates only	inal products	
Q66.	The amount of heat re-	quired to raise the temperat	ure d	of a substance throug	h 1oC is called:	1 Mark
	A Thermal energy	B Calories	С	Heat capacity	D Specific heat capacity	
Q67.	The mathematical exp	ression of first law of thermo	dyn	amics is:		1 Mark
	$ \begin{array}{l} \textbf{A} \ \Delta U = q \\ \textbf{C} \ \Delta U = q + W \end{array} $			$egin{aligned} \Delta \mathrm{U} &= \mathrm{W} \ \Delta \mathrm{U} &= \mathrm{W}_{\mathrm{ad}} \end{aligned}$		
Q68.	The enthalpies of elem compound.	nents in their standard states	s are	taken as zero.The ei	nthalpy of formation of a	1 Mark
	A Is always negative.C May be positive or n	negative.		Is always positive. Is never negative.		
Q69.	Thermodynamics is no	t concerned about				1 Mark
	A Energy changes inv reaction.C The rate at which a			The extent to which a proceeds. The feasibility of a ch		

Q70.	Specific heat may be defined as:		4 M
	 A Heat capacity at constant volume C Heat capacity mol⁻¹ 	B Heat capacity at constant pressureD Heat capacity g⁻¹	1 Mark
Q71.	The internal energy U is a unique function of any s	tate because change in U:	1 Mark
	A Does not depends upon pathC Corresponds to adiabatic process	B Depends upon pathD Corresponds to an isothermal process	
Q72.	In a cyclic process, the change in the internal energ	gy of a system over one complete cycle:	1 Mark
	A depends on the path B is always negative	C is always zero D is always positive	
Q73.	The temperature at the bottom of a high water fall i	s higher than that at the top because:	1 Mark
	A by itself heat flows from higher to lower temperatureC thermal energy is transformed into mechanical energy	 B the difference in height causes a difference in pressure D mechanical energy is transformed into thermal energy 	
Q74.	Which of the following processes is a nonspontane	eous process?	1 Mark
	 A Dissolution of salt or sugar in water C Precipitation of copper when zinc rod is dipped in aqueous solution of copper sulphate 	B Mixing of different gases through diffusionD Flow of heat from a cold body to a hot body in contact of these	
Q75.	In the following Questions, the Assertion and Reas carefully and choose the correct alternative from the Assertion: The mass and volume of a substance a each other. Reason: The ratio of mass of a sample to its volume.	ne following: are the extensive properties and are proportional to	1 Mark
	A Both Assertion and Reason are true and	B Both Assertion and Reason are true but	
	Reason is the correct explanation of Assertion.	Reason is not the correct explanation of Assertion.	
	C Assertion is true but Reason is false.	D Both Assertion and Reason are false.	
Q76.	A spontaneous reaction occurs:		1 Mark
	A by itself and quicklyC by itself and slowlyE by itself but it has now effect on how fast the reaction takes	B with outside intervention and quicklyD with outside intervention and slowly	
Q77.	Consider the reactions given below. On the basis of relations given in options (i) to (iv) is correct? $ \text{1. } C(g) + 4H(g) \rightarrow CH_4(g); \Delta_r H = xkJ \text{ mode} $ 2. $C(\text{graphite},s) + 2H_2(g) \rightarrow CH_4(g); \Delta_r H = xkJ \text{ mode} $	l^{-1}	1 Mark
	$\mathbf{A} \mathbf{x} = \mathbf{y}$	$\mathbf{B} \mathbf{x} = 2\mathbf{y}$	
	$\mathbf{C} \times \mathbf{y}$	$\mathbf{D} \mathbf{x} = 2\mathbf{y}$ $\mathbf{D} \mathbf{x} < \mathbf{y}$	
Q78.	Internal energy per mole of gas depends on		1 Mark
	A Viscosity B Density	C Temperature D Thermal conductivity	
Q79.	Which statement about reactions that produce hea	t is not correct?	1 Mark
	A Burning magnesium produces hear energyC The products have more energy than the reactants	B The overall reaction is exothermicD The temperature of the surroundings increases	
Q80.	Thermodynamics is the branch of science concerne energy and work:	ed with and and their relation to	1 Mark
	A Heat, temperature B Tmperature, pressure	C Heat, volume D Volume, pressure	
Q81.	Whether a reaction is endothermic or exothermic c	an be indicated by:	1 Mark

	 A Enthalpy change. B Entropy change. C Gibbs free energy change. D Activation energy. E Specific heat capacity. 					
Q82.	A thermochemical equation	on:				1 Mark
	A Includes only the balar	nced chemical reaction	В	Includes the balanced		
	C Includes only the chan E Includes the unbalance change in enthalpy val	ed chemical reaction and	D	change in enthalpy value. None of these options	Je	
Q83.	options given below:	action between zinc and o ${ m nO(s)}; \Delta { m H} = -693.8 { m kJ}$			ect options out of the	1 Mark
	 A The enthalpy of two methe total enthalpy of two mole of oxygen by 693 C 693.8kJ mol⁻¹ energy reaction. 	o moles of Zn and one .8kJ.		The enthalpy of two mother total enthalpy of two mole of oxygen by 693 693.8kJ mol ⁻¹ energy in reaction.	.8kJ.	
Q84.	For a reaction to be spon	taneous, the sign on delta	G	should be :		1 Mark
	A positiveC NegativeE Positive or Negative			There should be no sig Spontaneity is not relat	n ed to Gibbs Free Energy	
Q85.	Which of the following sta	atements is not correct?				1 Mark
	A For a spontaneous pronegative.		В	Enthalpy, entropy, free variables.	energy etc. are state	
	C A spontaneous process is reversible in nature. D Total of all possible kinds of er is called its internal energy.					
Q86.	_	**			can be calculated by using expanded isothermally and	1 Mark
	reversibly to ten times of its original volume, in two separate experiments. The expansion is carried out at 300K and at 600K respectively. Choose the correct option.					
	A Work done at 600K is 20 times the work done at 300K.			B Work done at 300K is twice the work done at 600K.		
	C Work done at 600K is 300K.	wice the work done at	D	$\Delta \mathrm{U} = 0$ in both cases		
Q87.	What will be the value of reaction is $\Delta G^\circ = -115$	logarithm of equilibrium co $5 \mathrm{kJ}$ at 298K will be:	ons	tant K_P if the standard fr	ee energy change of a	1 Mark
	A 2.303	B 13.83	С	2.015	D 20.15	
Q88.	What describes a sponta	neous reaction?				1 Mark
	A Positive ΔH	B Negative ΔH	С	Positive ΔG	${f D}$ Negative ΔG	
Q89.	Which of the following is	technique used to measur	e tl	ne heat of a reaction?		1 Mark
	A Gibbs Free Energy	B Entropy	С	Enthalpy	D Calorimetry	
Q90.	Enthalpy change for the r	reaction, $4H(g) \rightarrow 2H_2(g)$ is of H-H bond is:	s -8	369.6kJ,		1 Mark
	A -869.6kJ	B +434.8kJ	С	+217.4kJ	D -434.8kJ	
Q91.	Which one of the followin	g process is non-spontane	eou	ıs?		1 Mark
	A Dissolution of CuSO₄ iC Water flowing down hil			Reaction of H ₂ and O ₂ Flow of electric current high potential		

Q92.	The thermal motion me	ans:			1 Mark	
	A Motion due to heat e C Motion of the body th	•	B Disorderly motionD Random motion or	of the body as a whole f molecules		
Q93.	Which of the following	can be calculated from Bo	orn-Haber cycle for Al ₂ O ₃	?	1 Mark	
	A Lattice energy of Al ₂ : C Ionisation energy of		B Electron affinity ofD All of these	O-atom		
Q94.	What is the change in t does 350cal of work on	=	Ocal of heat energy are a	added to a system and system	1 Mark	
	A -150cal	B +150cal	C +850cal	D -850cal		
Q95.	For a thermodynamics working substance sho	•	the temperature differen	ce between hot body and the	1 Mark	
	A zero	B minimunm	C maximum	D infinity		
Q 96.	If there were no atmosp	ohere, the average tempe	rature on earth surface v	vould be:	1 Mark	
	A lower	B higher	C same	D 0°C		
Q97.	Lattice enthalpies are o	letermined by:			1 Mark	
	A Born-Haber cycle.	B Hess' law.	C Lattice cycle.	D None of these.		
Q98.	Total enthalpy H_{τ} of reactants H Total enthalpy H_{τ} in the re- of products	evolved. action			1 Mark	
	The above diagram represents:					
	A Enthalpy for exother C Entropy for exothern		B Enthalpy for endoD Entropy for endoth			
Q99.		Q when brought together erent from both P and Q. \		the evolution of heat. The	1 Mark	
	A A compound	B An element	C A metal	D A mixture		
Q100.	The reaction 2A(g)→A2	2(g), will be spontaneous:			1 Mark	
	A At high temperatureC At all temperature		B At low temperature D Never at any temp			
Q101.	Which of the following i	s not a thermodynamic co	oordinate?		1 Mark	
	A Gas constant (R)	B Pressure (P)	C Volume (V)	D Temperature (T)		
Q102.	Select the incorrect exp	pression from the following] .		1 Mark	
	A $\Delta S_{ ext{total}} = \Delta S_{ ext{system}}$		$^{f B}$ $\Delta m S_{ m surr} = rac{\Delta m H_{ m surr}}{T}$:	$= -\frac{\Delta H_{\mathrm{sys}}}{2}$		
	c $\Delta S_{total} < 0$ (spontaneous process)					
Q103.	What is multiplied by te	mperature in the equation	n that calculates free ene	erav?	1 Mark	
4,,,,,	A Positive ΔH E Positive ΔS	B Negative ΔH	C Positive ΔG	D Negative ΔG		
Q104.	Hess's law of constant	heat summation in based	on:		1 Mark	
	A E = mc ² C First law of thermody	vnamics	B Conservation of m D None of the above			
Q105.					1 Mark	


Q117.

	Name th	he type o	of wall	used in	the	above	figure.
--	---------	-----------	---------	---------	-----	-------	---------

	Maine the type of wall us	ed in the above figure.				
	A Adiabatic walls.C Thermally conducting	walls.		Thermally insulating was None of the above.	alls.	
Q106.	Hess law is based on:					1 Mark
	A Law of conservation of C Enthalpy is a state fun			Law of conservation of None of these	energy	
Q107.	The internal energy of a	perfect gas depends on:				1 Mark
	A Pressure	B Temperature	С	Volume	D Specific heat	
Q108.	$\Delta_f U^\ominus$ of formation of CI	$ m H_4~(g)$ at certain temperat	ure	e is $-393~\mathrm{kJ~mol}^{-1}$. Th	e value of $\Delta_{ m f}{ m H}^\ominus$ is:	1 Mark
	$\begin{array}{l} \textbf{A} \mathbf{Zero} \\ \textbf{C} > \Delta_f U^\ominus \end{array}$			$egin{aligned} \mathbf{S} &< \Delta_{\mathrm{f}} \mathbf{U}^\ominus \ \mathbf{O} & \mathrm{Equal} \; \mathrm{to} \; \Delta_{\mathrm{f}} \mathbf{U}^\ominus \end{aligned}$		
Q109.	The internal energy of a	perfect gas is:				1 Mark
	A Completely kineticC Sum of potential and k molecules	inetic energy of the		Completely potential Difference of kinetic an molecules	d potential energy of the	
Q110.	A quantity that cannot be	directly measured is:				1 Mark
	A Heat of formation of Heat of fusion of	= .,		Heat of formation of CH Heat of combustion of		
Q111.	Which of the following is	not correct?				1 Mark
	A ΔG is zero for a rever C ΔG is negative for a s			$\Delta \Delta G$ is positive for a spoon ΔG is positive for a no	ontaneous reactio. n-spontaneous reaction.	
Q112.	Which heat depends on t	he direction of current?				1 Mark
	A Joule heat	B Peltier heat	С	Thompson effect	D None of these	
Q113.	Free energy change for t	he process $A(s) \rightleftharpoons B(I)$ will	l be	e:		1 Mark
	A 0	B 1	С	2	D 3	
Q114.	Which of the following, is	correct when decrease in	er	ntropy has been taken pl	ace?	1 Mark
	0K to 115K.	alline solid is raised from			a solid.	
	$oldsymbol{c} \ _{2\mathrm{NaHCO}_{3}(\mathrm{s})} \stackrel{\Delta}{ ightarrow} \mathrm{Na}$	$_2\mathrm{CO}_3(\mathrm{s}) + \mathrm{CO}_2(\mathrm{g}) + \mathrm{H}$		$H_{(g)}^{H_2(g)}$? 2H(g)		
Q115.	The state of gas can be o	described by quoting the re	elat	tionship between:		1 Mark
	A Pressure, volume, temp C Amount, volume, temp	•		Temperature, amount, Pressure, volume, tem	•	
Q116.	Which of the following is	most likely to produce a sp	por	ntaneous reaction?		1 Mark
	A Negative EnthalpyC Negative EntropyE Negative Enthalpy and	positive Entropy		Positive Enthalpy Positive Entropy		

1 Mark

	The heat released whe crystal lattice is known	n the requisite amount of ior as:	ns in the gaseous state	combine to give 1 mol of	
	A lattice energy	B hydration energy	C formation energy	D none of the above	
Q118.		ontaining two liquid compone olar ratio of the liquids is:	ents A and B, the Gibbs	free energy of mixing is	1 Mark
	A 1:1	B 1:2	C 1 :10	D 1:1000	
Q119.	Hess's law is based on	:			1 Mark
	A Law of conservationC Law of active mass.	of mass.	B Law of conservation D Both (a) and (b).	n of energy.	
Q120.	Which heat is produced	throughout the conducting	wire?		1 Mark
	A Petlier heat	B Thomson effect heat	C Joule heat	D none of these	
Q121.	The sign of ΔG for a s	pontaneous and non-sponta	neous process respecti	ively are:	1 Mark
	A Positive and negative	e. B Negative and positive.	C Zero and positive.	D Positive and zero.	
Q122.	Mixture of ice and wate	er is form a:			1 Mark
	A Closed system	B Open system	C Isolated system	D Heterogeneous system	
Q123.	carefully and choose th	ons, the Assertion and Reas e correct alternative from the id melts, decrease in enthal olid is endothermic.	e following:	ard. Read the statements	1 Mark
	A Both Assertion and F Reason is the correct	Reason are true and t explanation of Assertion.	B Both Assertion and Reason is not the c Assertion.	Reason are true but orrect explanation of	
	C Assertion is true but	Reason is false	D Both Assertion and	Reason are false.	
Q124.	Regarding a thermoche	emical equation, wrong state	ment is:		1 Mark
	and products	sical states of reactants tropic form (if any) of the	endothermic	reaction is exothermic or	
O125	For the reaction $N_{\alpha}(\alpha)$	$0+3 ext{H}_2(ext{g}) ightleftharpoons 2 ext{NH}_3(ext{g}); \; ext{A}$	ΛH ie·		1 Mark
Q123.	A $\Delta U - 2RT$ C $\Delta U + RT$	f = 21113(g), 2	B $\Delta \mathrm{U} - \mathrm{RT}$ D $\Delta \mathrm{U} + 2\mathrm{RT}$		i Wai N
Q126.	Which of the following i	s slow process:			1 Mark
4.20.	A Isothermal	B Adiabatic	C Isobaric	D None of these	
Q127.	carefully and choose the Assertion: Many endo spontaneous at high te	ons, the Assertion and Reas be correct alternative from the thermic reactions that are no mperature. The system increases with increases	e following: ot spontaneous at room		1 Mark
	A Both Assertion and F Reason is the correct	Reason are true and et explanation of Assertion.	B Both Assertion and Reason is not the c Assertion.	Reason are true but orrect explanation of	
	C Assertion is true but	Reason is false.	D Both Assertion and	Reason are false.	
Q128.	Name the apparatus us	sed to measure the heat abs	orbed or released by a	reaction:	1 Mark
	A CentrifugeE Battery	B Barometer	C Balance	D Calorimeter	

	Reason is the correct	eason are true and explanation of Assertion.	В	Reason is not the co Assertion.		
	C Assertion is true but R	Reason is false.	D	Both Assertion and F	Reason are false.	
Q142.	Which specific process has A Saturated vapours	nas negative value of spec B Ice		heat? Water	D Vapours	1 Mark
Q143.	At the boiling point of wa	ater the saturated vapour p	res	sure will be (in mm of	Hg):	1 Mark
	A 750	B 760	C	850	D 860	
Q144.	Hess's law is used to cal A Enthalpy of reaction	lculate: B Entropy of reaction	С	Work done in reaction	n D All the above	1 Mark
Q145.	Which of the following pa	arameters does not charate B pressure		e the thermodynamic work	state of matter? D volume	1 Mark
Q146.	The heat required to rais A Specific heat	se the temperature of a boo B Thermal capacity		oy 1K is called: Water equivalent	D None of these	1 Mark
	·			·	D None of these	
Q147.	Magnitude of Seebeck eA ThermocoupleC Temperature of hot full	mf between the junctions on the section of the sect	В	s not depend on: Temperature of cold Neutral temperature	junction	1 Mark
Q148.	Which of the following st	atements is correct?				1 Mark
	beaker is an example			matter between the s surroundings in a clo	sed system.	
	C The presence of react made up of copper is system.	ants in a closed vessel an example of a closed	D	The presence of read any other closed instead example of a closed		
Q149.	For which of the followin	g processes $\Delta \mathrm{S}$ is negativ	/e?			1 Mark
	A H ₂ (g) ?2H(g) C 2SO ₃ (g) ? 2SO ₂ (g) +	O ₂ (g)		N ₂ (g, 1atm) ? N ₂ (g, 5 C(diamond) ? C(grap	•	
Q150.	According to Hess's law,	the heat of reaction deper	nds	upon:		1 Mark
	A Initial condition of readC Intermediate path of the			Initial and final condi End conditions of rea		
Q151.	Which of the following pr	rocess is non-spontaneous	?			1 Mark
	A Heat flow from hot endC Gas flow from lower ppressure region.				er level to lower level. pressure region to lower	
Q152.	How many joules of hear [Take : LV = 2260kJ/ kg]	t are absorbed when 70.0g	g of	water is completely v	aporised at its boiling point?	1 Mark
	A 22352	B 52460	С	22344	D 158200	
Q153.	During complete combus reaction for above change	stion of one mole of butane ge is:	e, 2	658kJ of heat is relea	sed. The thermochemical	1 Mark
		$ m (g) ightarrow 8CO_2(g) + 10H_2O$	($\Delta C_4 H_{\overline{10}}(\mathrm{g}) + rac{13}{2} \mathrm{O}_2(\mathrm{g})$	$ m (g) ightarrow 4CO_2(g) + 5H_2O(g)$	$\Delta_{ m c}{ m H}=$
	$-2658.0 { m kJ~mol}^{-1}$ C ${ m C_4H_{10}+rac{13}{2}O_2(g)}$ $-$	$ ightarrow 4 ext{CO}_2(ext{g}) + 5 ext{H}_2 ext{O}(ext{l}) \Delta$	_с р	$\begin{array}{l} -1329.0 kJ \ mol^{-1} \\ -1329.0 kJ \ mol^{-2} \\ -1329.0 kJ \ mol^{-2} \end{array}$	$ ightarrow 4 ext{CO}_2(ext{g}) + 5 ext{H}_2 ext{O(l)} \Delta_{ ext{c}}$	=
	$-2658.0\mathrm{kJ~mol}^{-1}$			$+2658.0\mathrm{kJ}\;\mathrm{mol}^{-1}$		

1 Mark

Q154. For a spontaneous process:

	negative		B entropy change of the system must be positive		
	C entropy change of the surrounding must be positive		D entropy change of the system plus surrounding must be positive		
Q155.	The spontaneity means, having the potential to proceed without the assistance of external agency. The processes which occur spontaneously are:				1 Mark
	A Flow of heat from colder to warmer body.C Gas expanding to fill the available volume.		B Gas in a container contracting into one corner.D Burning carbon in oxygen to give carbon dioxide.		
Q156.	The reverse of a spontaneous reaction is:				1 Mark
	A always spontaneousC sometimes spontaneousE There is no way of telling		B always non spontaneousD sometimes non spontaneous		
Q157.	In an exothermic reaction, heat is evolved, and system loses heat to the surrounding. For such system:				1 Mark
	$\mbox{\bf A}\ q_p$ will be negative.		B $\Delta_{\rm r} { m H}$ will be negative.		
	$oldsymbol{C}\ q_p$ will be positive.		D $\Delta_{ m r} H$ will be positive.		
Q158.	Which of the following property is not a thermodynamic property of the system?				1 Mark
	A pressure	B temperature	C specific volume	D heat	
Q159.	For the reaction, $NaCl(s) \rightarrow Na^+(g) + Cl^-(g)$ Identify the enthalpy involved in the above reaction:				1 Mark
	 A Enthalpy of hydration. B Lattice enthalpy. C Enthalpy of solution. D Enthalpy of dissociation. 				
Q160.	The internal energy of a piece of lead when beaten by a hammer will:				1 Mark
	A Increase C Remain constant		B DecreaseD Sometimes increases and sometimes decreases		
Q161.	If the sublimation energy and enthalpy of fusion of I_2 are 57.3kJ mol ⁻¹ and 15.5kJ mol ⁻¹ , respectively then, calculate the enthalpy of vaporisation of I_2 .				1 Mark
	A -72.8kJ mol ⁻¹	B 72.8kJ mol ⁻¹	C -41.8kJ mol ⁻¹	D +41.8kJ mol ⁻¹	
Q162.	Which of the following is an endothermic process?				1 Mark
	$\begin{array}{l} \textbf{A} \ 2H_2+O_2\rightarrow 2H_2O; \ \Delta H=-q \ kJ \\ \textbf{C} \ CH_4+2O_2\rightarrow CO_2+2H_2O; \end{array}$			$\begin{array}{l} \textbf{B} \ N_2 + O_2 \rightarrow 2NO - Y \ kJ \\ \textbf{D} \ NaOH + HCl \rightarrow NaCl + H_2O + Z \ kJ \end{array}$	
	$\Delta \mathrm{H} = -\mathrm{X~kJ~mol}^{-1}$				
Q163.	Thermodynamics mainly deals with:				1 Mark
	A Interrelation of various forms of energy and their transformation from one form to another.		depend only on initi	B Energy changes in the processes which depend only on initial and final states of the microscopic systems containing a few molecules.	
	C How and at what rate these energy transformations are carried out.		D The system in equilibrium state or moving from one equilibrium state to another equilibrium state.		
Q164.	The energy of a system available to do work is called as:				1 Mark
	A Gibbs free energy C Specific heat D Heinsenberg uncertainty principle E Heat of vaporization			ainty principle	
Q165.	What can be used in combination with a calorimeter to compare the specific heats of two substances?				1 Mark
	A Thermometer	B Conductivity tester	C Graduated cylinder	D Buret	

Q166. In the following Questions, the Assertion and Reason have been put forward. Read the statements carefully and choose the correct alternative from the following:

1 Mark

Assertion: For an isothermal reversible process Q = -W i.e. work done by the system equals the heat absorbed by the system.

Reason: Enthalpy change ('H) is zero for isothermal process.

A Both Assertion and Reason are true and Reason is the correct explanation of Assertion.

B Both Assertion and Reason are true but Reason is not the correct explanation of Assertion

C Assertion is true but Reason is false.

D Both Assertion and Reason are false.

Q167. If the bond energies of H-H, Br-Br and H-Br are 433, 192 and 364kJ mol⁻¹, respectively, then ΔH° for the reaction.

1 Mark

 $H_2(g) + Br(g) \rightarrow 2HBr(g)$ is:

A -261kJ

B -103kJ

C +261kJ

D -1031kJ

Q168. What is the characteristic of a material which undergo spontaneous combustion?

1 Mark

1 Mark

A High calorific value

B High vapour pressure

C Low ignition temperature

D All of the above

Q169. For a given reaction, $\Delta H = 35.5 \mathrm{kJ} \ \mathrm{mol}^{-1}$ and $\Delta S = 83.6 \mathrm{Jk}^{-1} \mathrm{mol}^{-1}$. The reaction is spontaneous at (assume that ΔH and ΔS do not vary with temperature):

A T > 425K

B All temperature.

C T > 298K

D T < 425K

WHATSAPP TEST GROUP FEES

CBSE 10/12 - FEES RS.2000 **NEET/JEE** - FEES RS.3000

MONTHLY 10 PAPERS YOUR CHOICE.

OVERALL MONTHLY 20 TO 30 PAPERS UPLOAD IN GROUP

ONE TIME FEES

FROM AUGUST TO TILL FINAL FINAL EXAM

WHATSAPP NOW

8056206308 ravitestpapers.com

JOIN MY PAID GROUP, IF YOU WANT ALL MY DPP WITH PDF ANSWERS TILL FINAL EXAM

PAY RS.500 TO GET MAY JUNE JULY UPLOADED PAPERS