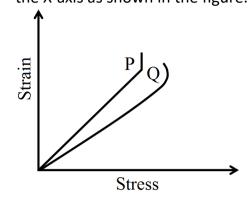

PDF FORMAT DOWNLOAD FROM MY WEBSITE

www.ravitestpapers.com

Test / Exam Name: Jee Physics Test

JOIN MY PAID WHATSAPP TEST PAPERS GROUP WITH ANSWERS. TODAY'S OFFER FEES RS.3000 ONLY. TILL FINAL EXAM UNLIMITED DPP'S. WHATSAPP 8056206308

Q1.	To break a wire, a force of 10^6 Nm ⁻² is required. If the density of the material is 3×10^3 kg-m ⁻³ , then the length of the wire which will break by its own weight will be:					
	A 34mh.	B 30m.	C 31m.	D 29m		
Q2.	A mass of 10kg connected at the end of a rod of negligible mass is rotating in a circle of radius 30cm with an angular velocity of 10 rad/s. If this mass is brought to rest in 10s by a brake, what is the magnitude of the torque applied?					
	A 0.9N-m.	B 0.5N-m.	C 0.2N-m.	D 0N-m.		
Q3.	From the following four graphs representing the variation of velocity of sound in a gas with the pressure p at constant temperature, which one is correct?					
	A Y	B y	C Y	D		
Q4.	Unit of power is:				1 Mark	
	A Watt hour.	B Joule.	C Watt.	D Both (a) and (c).		
Q5.	The two physical quantities	which having same dimensions a	re:		1 Mark	
	A Force and workdone.		B Torque and energy.			
	C Pressure and force.		D Surface tension and stress	5.		
Q6.	A body is released from a great height falls freely towards the earth. Another body is released from the same height exactly a second latter. Then the separation between two bodies, 2 s after the release of the second body is, nearly:					
	A 15m	B 20m	C 25m	D 30m		
Q7.	The apparent change in free	quency heard by the observer due	e to relative motion between so	ource and observer is known as:	1 Mark	
	A Compton effect.	B Raman effect.	C Huygens effect.	D Doppler effect.		
Q8.	Which of the following is the practical application of laws of physics?					
	A Electrical technology.	B Mechanical technology.	C Information technology.	D All the above.		
Q9.	In precession of a body:					
	A Axis of rotation is fixed.		B Axis of rotation translates	on a curved nath		
	C Both ends of axis of rotation move around circular paths.		D One end of rotational axis is fixed.			
Q10.	For n-particles in a space, the suitable expression for the position vector of centre of mass is:					
	A $rac{\Sigma m_i r_i}{m_i}$		B $m_i r_i$			
	C $rac{\Sigma \mathrm{m_i^{i}r_i^{}}}{\mathrm{M}}$		$oldsymbol{D} = rac{\mathbf{m}_{\mathrm{i}}\mathbf{r}_{\mathrm{i}}}{\mathbf{m}_{\mathrm{i}}}$			
Q11.	If work is done on the system in an adiabatic process:					
		·	$\mathbf{B} \ T_{i} = T_{i}$			
	A $T_i < T_i$ C $T_i > T_i$		D Information is insufficient			
Q12.	By sucking through a straw, a student can reduce the pressure in his lungs to 750mm of Hg (density = 13.6gcm ⁻³). Using the straw, he can drink water from a glass upto a maximum depth of:					
	A 10cm.	B 75cm.	C 13.6cm.	D 1.36cm.		
Q13.	What is the torque of a force	se $7\hat{ ext{i}} + 3\hat{ ext{j}} - 5\hat{ ext{k}}$ about the origin?	? The force acts on a particle wh	nose position vector is $\hat{f i}-\hat{f j}+\hat{f k}$:	1 Mark	


c
$$\hat{i} + 10\hat{j} + 10\hat{k}$$
.

$$\textbf{B} \ \hat{i} + 12\hat{j} + 10\hat{k}.$$

D
$$2\hat{i} + 12\hat{j} + 10\hat{k}$$
.

In plotting stress versus strain curves for two materials P and Q, a student by mistake puts strain on the Y-axis and stress on Q14. the X-axis as shown in the figure. Then, the correct statement is/ are:

A P has more tensile strength than Q.

B P is more ductile than Q..

C P is more brittle than Q.

- **D** The Young's modulus of P is more than that of Q
- A unit mass has $r=8\hat{i}-4\hat{j}$ and $8\hat{i}+4\hat{j}$ Its angular momentum is 64units in: Q15.

1 Mark

 $\mathbf{A} - \hat{\mathbf{k}}$ direction.

 ${f B} \, + \hat{f k}$ direction.

C $18 \times 10^7 J$.

- **D** $9 \times 10^7 J$.
- Q16. The force F on a sphere of radius o moving in a medium with velocity v is given by $F = 6\pi \eta av$. The dimension of η is:

1 Mark

- **A** $[ML^{-3}]$
- **B** [MLT⁻²]
- **C** [ML⁻¹]
- **D** $[ML^{-1}T^{-1}]$

For an ideal gas, internal energy depends on: Q17.

1 Mark

A Only molecular kinetic energy.

- **B** Only potential energy of the molecules.
- **C** Both kinetic and potential energies of the molecules.
- **D** None of the above.
- If 3.8×10^{-6} is added to 4.2×10^{-5} giving due regard to significant figures, then the result will be: Q18.

1 Mark

- **A** 4.58×10^{-5}
- **B** 4.6×10^{-5}
- **C** 45×10^{-5}
- **D** None of these.
- Q19. Temperature remaining constant, the pressure of a gas is decreased by 20%. The percentage change in volume:

1 Mark

- A Increases by 20%.
- **B** Decreases by 20%.
- **C** Increases by 25%.
- **D** Decreases by 25%.
- Find the dimensions of a/b in the equation $F = a\sqrt{x} + bt^2$, where F is a force, x is distance and t is time: Q20.

1 Mark

- $\mathbf{A} \ [\mathrm{L}^{-1/2}\mathrm{T}^2]$
- $\mathsf{c} \; [\mathrm{L} \; \mathrm{T}^{-4}]$

- B $[\mathrm{L}^2\mathrm{T}^{-3/2}]$
- D $[\mathrm{L}^{3/2}\mathrm{T}^4]$
- Q21. If the error in the measurement of momentum of a particle is (+ 100%) then the error in the measurement of kinetic energy is: 1 Mark

A 100%

B 200%

C 300%

D 400%

Q22. The ratio between the two principal specific heats of a gas C_{ν} , and C_{p} , is: 1 Mark

A 1

B R(gas constant)

 $\mathbf{C} \gamma$

- $\mathbf{D} \frac{\gamma}{R}$
- 5.74 g of a substance occupies 1.2cm³. Express its density by keeping the significant figures in view: Q23.

1 Mark

- **A** 4.9 g cm^{-3}
- **B** 5.2 g cm⁻³
- **C** 4.8 g cm^{-3}
- Q24. A container having 1 mol of a gas at a temperature 27°C has movable piston which maintains constant pressure of 1 atm in container. The gas is compressed until temperature becomes 127°C. The work done is (Cp for gas is 7.03 cal/ mol-K)

1 Mark

A 703J.

B 814J.

C 121J.

- **D** 2035J.
- Q25. A cube is subjected to a uniform volume compression. If the side of the cube decreases by 2%, then the bulk strain is:

1 Mark

A 0.02

B 0.06

C 0.04

- **D** 0.08
- When 1m, 1kg and 1min are taken as the fundamental units, the magnitude of the force is 36 units. What will be the value of Q26. 1 Mark this force in CGS system?

- $\mathbf{A} \ 10^5 \, \mathrm{dyne}$.
- $\mathbf{B} \cdot 10^3 \, \mathrm{dyne}$.
- \mathbf{C} 10⁸ dyne.
- $D 10^4$ dyne.
- The work per unit volume to stretch the length 1% of a wire with cross-sectional area 1mm² will be [Given, Y = 9×10^{11} N/ m²]. **1 Mark** Q27.

					_	
Δ	2	25	X	1	റ′ I	ı

B
$$4.5 \times 10^7$$
 J.

C
$$1.8 \times 10^7 J$$
.

D 9×10^7 J.

Force (F) and density (d) are related as $F=rac{lpha}{eta+\sqrt{d}}.$ Then, the dimensions lphaof and eta are: Q28.

1 Mark

$$\textbf{A} \ [\text{M}^{3/2}\text{L}^{-1/2}\text{T}^{-2}], \ [\text{ML}^{-3}\text{T}^{0}]$$

c
$$[M^2L^2T^{-1}]$$
, $[ML^{-1}T^{-3/2}]$

$$\begin{array}{l} \textbf{B} \ [M^{3/2}L^{-1/2}T^{-2}], \ [M^{1/2}L^{-3/2}T^{0}] \\ \textbf{D} \ [MLT^{-2}], \ [ML^{-2}T^{-2/3}] \end{array}$$

$$D [MLT^{-2}], [ML^{-2}T^{-2/3}]$$

Q29. For a moving particle (mass m, velocity v) having a momentum p, which one of the following correctly describes the kinetic energy of the particle?

1 Mark

$$\mathbf{A} \quad \frac{p^2}{2m}$$

$$\mathbf{B} = \frac{\mathrm{p}}{2\mathrm{m}}$$

The sum of all electromagnetic forces between different particles of a system of charged particles is zero: Q30.

1 Mark

- 1. Only if all the particles are positively charged.
- 2. Only if all the particles are negatively charged.
- 3. Only if half the particles are positively charged and half are negatively charged.
- 4. Irrespective of the signs of the charges.

Q31. If the gravitational force on body 1 due to 2 is given by F_{12} and body 2 due to 1 is given by F_{21} , then:

1 Mark

A
$$F_{12} = F_{21}$$
.

B
$$F_{12} = -F_{21}$$
.

C
$$F_{12} = rac{F_{21}}{4}$$
.

D None of these.

Q32. Reversibility is not possible because of: 1 Mark

A Resistive force present everywhere.

B Every process around us is quasi-static.

C Gases are viscous.

D Gases have density.

Two wave trains $y_1=a\sin(4000\pi t)$ and $y_2=a\sin(4008\pi t)$ are approaching each other. The number of beats heard per Q33. second is:

1 Mark

A 8

B 4

C 1

D 0

Q34. If work done by a force on displacing a body from one point to another point is different on moving along different paths between the points, then nature of force is:

1 Mark

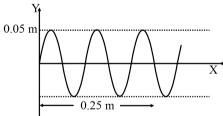
A Conservative.

B Non conservative.

C Only attraction.

D Only repulsion.

Q35. When a bullet is fired at a target, its velocity decreases by half after penetrating 30cm into it. The additional thickness it will 1 Mark penetrate before coming to rest is:


A 30cm.

B 40cm.

C 10cm.

D 50cm.

If the speed of the wave shown in the figure is 330ms⁻¹ in the given medium, then the equation of the wave propagating the Q36. 1 Mark positive x-direction will be (All quantities are in MKS units).

A
$$y = 0.05 \sin 2\pi (4000 t - 12.5 x)$$

$$\mathbf{B} \ \mathrm{y} = 0.05 \sin 2\pi (4000 \mathrm{t} - 122.5 \mathrm{x})$$

$$y = 0.05 \sin 2\pi (3300t - 10x)$$

D
$$y = 0.05 \sin 2\pi (3300x - 10t)$$

Q37. Least count of a screw gauge is: 1 Mark

A 1mm.

B 0.01mm.

C 0.01cm.

D 0.1mm.

A periodic time of a body executing simple harmonic motion is 3s. After how much interval from time t = 0, its displacement Q38. will be half of its amplitude?

1 Mark

A $\frac{1}{8}$ **s**

 $\mathbf{B} \frac{1}{6}\mathbf{S}$

 $\mathbf{C} \frac{1}{4}\mathbf{s}$

D $\frac{1}{3}$ s

When the temperature of a rod increases from t to $t+\Delta t$, its moment of inertia increases from I to I + ΔI . If lpha be the Q39. coefficient of linear expansion of the rod, then the value of $\frac{\Delta}{T}$ is:

1 Mark

A $2\alpha\Delta t$

B $\alpha \Delta t$

_	$lpha\Delta$ 1
L	

 $\mathbf{D} \frac{\Delta t}{\alpha}$

The unit used for measuring nuclear cross-section is 'barn' which is equal to: Q40.

1 Mark

- **A** 10^{-14} m².
- **B** 10⁻²¹m².
- $\mathbf{C} \ 10^{-19} \mathrm{m}^2$.

D 10^{-28} m².

Q41. For a body immersed in a liquid, when the weight of the body is less than the upthrust then the body will: 1 Mark

A Float partially immersed.

B Sink.

C Float full immersed.

D Be of zero weight.

Q42. A shell is fired from a cannon, it explodes in mid air its total: 1 Mark

- **A** Momentum increases.
- **B** Momentum decreases.
- **C** KE increases.
- **D** KE decreases.

Q43. The value of coefficient of restitution (e) for perfectly elastic collision is:

1 Mark

A 1.

- **B** Greater than 1.
- C Less than 1.
- **D** Between 1 and 2.

Q44. Two identical wires of length L and 2L vibrate with fundamental frequencies 100Hz and 150Hz, respectively. The ratio of their tensions will be:

1 Mark

$$egin{array}{l} {f A} \; rac{T_2}{T_1} = rac{8}{1} \ {f C} \; rac{T_2}{T_1} = rac{1}{9} \end{array}$$

$$rac{\mathbf{T}_1}{\mathbf{T}_1} = rac{1}{1}$$

$$egin{array}{ccc} {f B} & rac{{
m T}_2}{{
m T}_1} = rac{9}{1} \ {f D} & rac{{
m T}_2}{{
m T}_1} = rac{18}{1} \end{array}$$

D
$$rac{\mathrm{T_2}}{\mathrm{T_1}}=rac{18}{1}$$

Choose the correct option regarding the given figure: Q45.

1 Mark

$$A
ightarrow \ \leftarrow \ -1.5 A = B$$

B
$$B = -A$$

$$C |B| = |A|$$

D
$$|B| \neq |A|$$

An ideal gas is initially at temperature T and volume V. Its volume is increased by ΔV due to an increase in temperature ΔT , Q46. 1 Mark pressure remaining constant. The T physical quantity $\delta=rac{\Delta T}{V\Delta T}$ varies with temperature as:

Q47. Choose the correct option regarding the given figure: 1 Mark

$$\stackrel{ ext{A}}{\longleftarrow}$$
 \leftarrow
 $-1.5 ext{A} = ext{B}$

$$\mathbf{A} \ \mathbf{B} = \mathbf{A}.$$

B
$$B = -A$$
.

C
$$|B| = |A|$$
.

Q48. Which of the following diagrams (figure) depicts ideal gas behavior? 1 Mark

To break a wire, a force of 10^6 Nm⁻² is required. If the density of the material is 3×10 kg-m⁻³, then the length of the wire which **1 Mark** Q49. will break by its own weight will be:

A 34m.

B 30m.

C 31m.

D 29m.

When both the listener and source are moving towards each other, then which of the following is true regarding frequency Q50. 1 Mark and wavelength of wave observed by the observer?

A More frequency, less wavelength.

B More frequency, more wavelength.

C Less frequency, less wavelength.

D More frequency, constant wavelength.

Q51. Let E, G and N represent the magnitudes of electromagnetic gravitational and nuclear forces between two electrons at a given 1 Mark separation. Then:

- 1. N > E > G
- 2. E > N > G
- 3. G > N > E
- 4. E > G > N

	A Energy can neither be created nor be destroyed. B Mass can neither be created nor be destroyed.		created nor be destroyed.			
	C Mass can be created out of energy and vice-versa. D Total of mass and energy of a system is constant.					
Q53.	A source of unknown frequency gives 4 beat/s when sounded with a source of known frequency 250Hz. The second harmonic of the source of unknown frequency gives 5 beat/s when sounded with a source of frequency 513Hz. The unknown frequency is:					
	A 254Hz.	B 246Hz.	C 240Hz.	D 260Hz.		
Q54.	Two pulses having equal and opposite displacements moving in opposite directions overlap at $t = t_1 s$. The resultant displacement of the wave at $t = t_1 s$ is:					
	A Twice the displace	ement of each pulse.	B Half the displacemen	B Half the displacement of each pulse.		
	C Zero.		D Either (a) or (c).	D Either (a) or (c).		
Q55.	The potential energy	of a system increase, if work is done	:		1 Mark	
	A By the system aga	inst a conservative force.	B By the system agains	B By the system against a non-conservative force.		
	C Upon the system by a conservative force.		D Upon the system by	D Upon the system by a non-conservative force.		
Q56.	inertia of the system $m/2$ $-l/2$ $-l/2$ $A \frac{Ml^2}{2}$ $C Ml^2$	ed with a light rod and the system is reabout the axis is:	$egin{array}{ccc} oldsymbol{B} & rac{ ext{Ml}^2}{4} \ oldsymbol{D} & rac{ ext{Ml}^2}{6} \end{array}$		1 Mark	
Q58.	The average kinetic energy of a molecule of an ideal gas depends on:					
	A Pressure.	B Volume.	C Temperature.	D Nature of gas.		
Q59.	A wire of diameter 1mm breaks under a tension of 1000N. Another wire of same material as that of the first one, but of diameter 2mm breaks under a tension of:					
	A 500N.	B 1000N.	C 10000N.	D 4000N.		
Q60.	U is the potential energy, K is the kinetic energy and E is the mechanical energy. Which of the following is not possible for a stable system?					
	A U > E	B U < E	C E > K	D K > E		