NEET JEE - SOLUTIONS

- 1) b 2) a 3) b 4) c
- 5) c 6) a 7) a 8) d
- 9) b 10) a 11) c 12) b
- 13) a 14) b 15) b 16) c
- 17) c 18) d 19) c 20) a
- 21) c 22) d 23) a 24) b
- 25) a 26) b 27) d 28) c
- 29) c 30) a 31) c 32) a
- 33) c 34) a 35) b 36) a
- 37) b 38) d 39) b 40) b

 (π) glucose $=(\pi)$ unknown compound

$$0.05 = \frac{3}{M}$$

$$M = \frac{3}{0.05} = 60$$

$$n = \frac{60}{30} = 2$$
 (e.f.m. for $CH_2O = 30$)

so, molecular formula= $C_2H_4O_2$

$$\triangle T_f = tk_f m$$

where $\triangle T_f$ = depression in freezing point

i=van,t Hoff factor

m= molality and

and k_f = freezing point depression constant

For 0.01 molal NaCl solution

$$0.37 = 2 \times k_f \times 0.01$$

$$k_f = \frac{0.37}{2 \times 0.01}$$
 ----(i)

For 0.02 molal urea solution

$$\Delta T_f = 1 \times k_f \times 0.02$$

$$k_f = \frac{\Delta T_f}{0.02} \qquad ----(ii)$$

From Eqs (i) and (ii)

$$\frac{0.37}{2 \times 0.01} = \frac{\triangle T_f}{0.02}$$

$$\Delta T_f = \frac{0.37 \times 0.02}{2 \times 0.01}$$

$$\triangle T_f = 0.37^{\circ}C$$

3 (b)

$$Na_2SO_4 \rightleftharpoons 2Na^+ + SO_4^{2-}$$

van't Hoff factor $i=[1+(y-1)\alpha]$

where y is the number of ions from one mole solute, (in this case =3), α the degree of dissociation.

 $i=(1+2 \alpha)$

4 **(c)**

$$N = \frac{w \times 1000}{\text{eq. wt.} \times V(\text{mL})}$$

$$=\frac{10 \times 1000}{60 \times 100} = 1.66 \text{ N}$$

6 **(a)**

Molality =
$$\frac{18}{180}$$
 = 0.1 molal

7 **(a)**

$$P_{N_2} = K_H \times \text{mole} - \text{fraction}(N_2)$$

mole-fraction

$$(N_2) \frac{1}{10^3} \times 0.8 \times 5 = 4 \times 10^{-3} \text{mol}^{-1}$$

In 10 mole solubility is 4×10^{-4} .

8 **(d)**

$$P_T = P_A^{\circ} X_A + P_B^{\circ} X_B$$

Mixture solution boil at 1 atm = 760 mm = total pressure.

$$760 = 520 X_A + 100(1 - X_A)$$

$$X_A = 0.5$$
, mol% of $A = 50\%$

9 **(b)**

Depression in freezing point is colligative property. The solute which produces highest number of ions will have minimum freezing point .

1. One molal NaCl aqueous solution

$$NaCl \rightarrow Na^+ + Cl^-$$

∴ 2 ions/molecule

2. One molal *CaCl*₂ solution

$$CaCl_2 \rightarrow Ca^{2+} + 2Cl^{-}$$

- ∴3 ions/molecule
- 3. One molalKCl aqueous solution

- ∴ 2 ions/molecule
- 4. One molal urea aqueous solution →no dissociation
 - ∵ CaCl₂ solution has highest number of ions
 - : It has lowest freezing point.
- 10 **(a)**

Ideal solution $\triangle H = 0$

△ V =0

$$F_{A-A} = F_{B-B} = F_{A-B}$$

11 **(c)**

Given, vapour pressure of benzene,

 $p^{\circ}=640 \text{ mm Hg}$

Vapour pressure of solution,

p=600 mm Hg

Weight of solute, w=2.175 g

Weight of benzene, W= 39.08 g

Molecular weight of benzene,

M = 78 g

Molecular weight of solute, *m*=?

According to Raoult's law,

$$\frac{P^{\circ} - P}{P^{\circ}} = \frac{w \times M}{m \times W}$$

$$\frac{640 - 600}{640} = \frac{2.175 \times 78}{m \times 39.08}$$

$$\frac{40}{640} = \frac{2.175 \times 78}{m \times 39.08}$$

$$m = \frac{16 \times 2.175 \times 78}{39.08}$$

$$m=69.60$$

12 **(b)**

$$N = \frac{w \times 1000}{\text{eq. wt.} \times V(\text{mL})} = \frac{4 \times 1000}{40 \times 100} = 1.0 \text{ N}$$

13 **(a)**

Van't Hoff's factor (i)=4 $\{3K^+[Fe(CN)_6]^{3-}\}$

Molality
$$=\frac{0.1}{329} \times \frac{1000}{100} = \frac{1}{329}$$

$$\Rightarrow$$
 $-\Delta T_f = \ell K_f. m$

$$=4 \times 1.86 \times \frac{1}{329} = 2.3 \times 10^{-2}$$

$$\rightarrow T_f = -2.3 \times 10^{-2} \, ^{\circ}\text{C}$$

(As freezing point of water is Q^*C)

$$\Delta x = t \times k_f \times m$$

$$7.10 \times 10^{-8} = t \times 1.86 \times 0.001$$

$$t = 3.817$$

$$\alpha = \frac{t-1}{n-1}$$

$$1 = \frac{3.817 - 1}{(x+1) - 1}$$

$$x = 2.817 \approx 3$$

∴ molecular formula of the compound is K₃ [Fe(CN)₆]

15 **(b)**

For NaCl, t = 2

$$\Delta T_f = 2k_f \times m = 2 \times 1.86 \times 1 = 3.72$$

$$T_s = T - \Delta T_f = 0 - 3.72 = -3.72$$
°C

16 **(c)**

Number of moles = Molarity \times Volume (in L)

 \Rightarrow Number of moles of H_2 SO_4 = 2.0 $M \times 5.0 L$

= 10 moles

17 **(c)**

We know that 1 g equivalent weight of NaOH = 40 g

∴ 0.275 g of NaOH =
$$\frac{1}{40}$$
 × 0.275 eq.

$$=\frac{1}{40} \times 0.275 \times 1000$$

=6.88 meg

$$N_1V_1 = N_2V_2$$

(HCl) (NAOH)

$$N_1 \times 35.4 = 6.88$$
 (: meq = NV)

$$N_1 = 0.194$$

18 **(d)**

Equivalent weight of

$$K_2Cr_2O_7$$
 = $\frac{\text{molecular weighty of } K_2Cr_2O_7}{\text{oxidation number of } Cr}$

Oxidation number of Cr in K2Cr2O7

$$2[+1]+2(x)+7(-2)=0$$

$$2+2x-14=0$$

$$2x = 12$$

$$x=6$$

Equivalent weight = $\frac{294.19}{6}$ = 49.08

$$\frac{\text{weight of } K_2 Cr_2 O_7}{\text{equivalent wt. (E)}} = N \times V(L)$$

$$w = 0.1 \times 1 \times 49.03 = 4.903 \text{ g}$$

20 **(a)**

According to Raoult's law

$$p = p_A^{\circ} X_A + p_B^{\circ} X_B$$

$$= 290 = 200 \times 0.4 + p_B^{\circ} \times 0.6$$

$$p_B^* = 350$$

21 **(c)**

Two solutions are isotonic if their osmotic pressure are equal.

$$\pi_1 = \pi_2$$

$$M_1ST_1 = M_2ST_2$$

 $(M_1 \text{ and } M_2 \text{ are molarities})$

At a given temperature,

$$M_1 - M_2$$

$$\frac{1000w_1}{m_1 V_1} = \frac{1000w_2}{m_2 V_2} \qquad (V_1 = V_2 = 100mL)$$

Cane sugar unkown

$$\therefore \quad \frac{W_1}{m_1} = \frac{W_2}{m_2}$$

$$\frac{5}{329} - \frac{1}{m_2}$$

$$m_2 = \frac{342}{8} = 68.4 \text{ g mol}^{-1}$$

22 **(d)**

According to Raoult's law,

$$P_A = P_A^{\circ} \varkappa_A$$

or
$$\kappa_A = \frac{P_A}{P_A^2}$$

$$=\frac{32 \text{mm Hg}}{40 \text{ mm Hg}} = 0.8$$

23 **(a)**

One molar (1 M) aqueous solution is more concentrated than one molal aqueous solution of the same solute. In solution, $H_2 SO_4$ provides three ions. While NaCl provides two ions. Hence, vapour pressure of solution of NaCl is higher (as it gives less ions). Therefore, 1 molal NaCl will have the maximum vapour pressure.

24 **(b)**

The number of moles or gram molecules of solute dissolved in 1000 g of solvent = molality

117 g NaCl = 2 mol

Hence, concentration of solution = 2 molal

25 **(a)**

In solution the KCl and CuSO₄ produces same number of ions in solution.

$$CuSO_4 \rightleftharpoons Cu^{2+} + SO_4^{2-}$$

Both produced two ions in solution.

So, ionic strength of a solution is combined ionic strength of both of the salt.

$$=0.1+.02=0.3 \text{ mol/kg}$$

26 **(b)**

$$\triangle T_f = t \times k_f \times m$$

$$HBr \rightarrow H^+ + Br^-$$

Ions at equilibrium 1-a a

$$= 1 + \alpha$$

$$i = 1 + \alpha$$

Given,
$$k_f = 1.86 \text{ K mol}^{-1}$$

Mass of HBr =
$$8.1 g$$

Mass of
$$N_2Q = 100 \text{ g}$$

$$(\alpha)$$
 = degree of ionization = 90%

$$m(molality) = \frac{mass of solute mol.wt.of solute}{mass of solvent in kg}$$

$$= \frac{8.1/81}{100/1000}$$

WEBSITE www.ravitestpapers.com BLOG www.ravitestpapers.in

$$t = 1 + \alpha$$
=1+90/100

=1.9

$$\triangle T_f = t \times k_f \times m$$

= 1.9× 1.86 × $\frac{8.1/81}{100/1000}$

= 3.534°C

 ΔT_f = (depression in freezing point) = freezing point of water - freezing point of solution 3.534 = 0 - freezing point of solution.

∴ Freezing point of solution = -3.534°C

27 **(d)**

$$\mathbf{M} = \frac{1000 \times k_f \times w}{\Delta T_f \times w}$$

$$= \frac{1000 \times 1.86 \times 4.5}{0.465 \times 100}$$

28 **(c)**

$$\frac{p^0 - p_s}{p^0} = \frac{w}{m} \times \frac{M}{w}$$

$$\frac{0.30 \text{ mm}}{17.54 \text{ mm}} = \frac{20}{m} \times \frac{18}{100} \implies m = \frac{20 \times 18 \times 17.54}{0.30 \times 100} = 210.48$$

29 **(c)**

For ideal solution,

$$\triangle H_{\text{solution}} = \triangle H_1 + \triangle H_2 + \triangle H_3$$

31 **(c)**

WEBSITE www.ravitestpapers.com BLOG www.ravitestpapers.in

moles of urea
$$=\frac{120}{60}$$
 $= 2$

weight of solution = weight of solution + weight of solute

$$=1000 + 120 = 1120 g$$

$$\Rightarrow Volume = \frac{1120g}{\frac{1.15g}{mL}} \times \frac{1}{1000mL/L}$$

$$=0.974 \text{ K}$$

⇒Molarity =
$$\frac{2.000}{0.974}$$
 = 2.05 M

32 **(a)**

$$\pi = CRT$$

Hence,
$$C = 0.2 M$$

$$R = 0.082 L atm mol^{-1} K^{-1}$$

$$T = 27 + 273 = 300 \text{ K}$$

$$\pi = 0.2 \times 0.082 \times 300 K$$

$$=4.92$$
 atm.

33 **(c)**

Molarity of base =
$$\frac{\text{Normality}}{\text{Acidity}} = \frac{0.1}{1} = 0.1$$

$$M_1V_1 = M_2V_2$$

$$0.1 \times 19.85 - M_2 \times 20$$

$$M_2 = 0.09925 \approx 0.099$$

34 **(a)**

Molarity = normality × equivalent weight molecular weight

Given, normality of Na₂CO₂ solution =0.2 N

Equivalent weight = M

Molecular weight 2 M (" Na₂CO₃ is dipositive.)

∴ Molarity =
$$0.2 \times \frac{M}{2M}$$

0.1 M

35 **(b)**

Given $p_s = 19.8 \text{ mm}$

$$n_A = 0.1$$

$$n_B = \frac{178.2}{18} = 9.9$$

According toRaoult's law

$$\frac{p_s - p}{p_s} = \frac{n_A}{n_A + n_B}$$

$$\frac{19.8 - p}{19.8} = \frac{0.1}{9.9 + 0.1}$$

or
$$198-10 p = 19.8 \times 0.1$$

$$10 p = 198-1.98$$

p = 19.602 mm

36 **(a)**

$$N_1V_1 = N_2V_2$$

 $36 \times 50 = N_2 \times 100$

$$N_2 = \frac{36 \times 50}{100} = 18$$

∴ Molarity of acid =
$$\frac{\text{Normality}}{\text{Basicity}} = \frac{18}{2} = 9 \text{ M}$$

37 **(b)**

$$\Delta T_f = t \times k_f \times m$$

i for HBr=1 + α

where, α =degree of dissociation

$$i=1+0.9=1.9$$

$$\Delta T_f = 1.9 \times 1.86 \times \frac{8.1 \times 1000}{100 \times 81}$$
=3.534°C

Freezing point =-3.534°C

38 **(d)**

Given, mass of Al_2 (SQ_4)₃ = 50 g

molecular mass of Al_2 (SQ₄)₈ = 342

∴ Moles of
$$Al_2$$
 (SO_4)₃ = $\frac{80}{342}$ = 0.14 mol

39 **(b)**

Let the volume of 0.4 M HCl is V_1 and that of 0.9 M HCl is V_2 .

We know that,

$$NV = N_1V_1 + N_2V_2$$

(Mixture) (for 0.4 M HCl) (for 0.9 M HCl)

$$0.7(V_1 + V_2) = 0.4 \times V_1 + 0.9 \times V_2$$

$$[\because \text{Im HCl} = \text{IN HCl}]$$

$$0.7V_1 + 0.7V_2 = 0.4 V_1 + 0.9 V_2$$

$$0.7V_1 + 0.4V_1 = 0.9V_2 + 0.7V_2$$

$$0.3V_1 = 0.2V_2$$

$$\frac{V_1}{V_2} = \frac{0.2}{0.3} = \frac{2}{3}$$

n-heptane and ethanol forms non-ideal solution. In pure ethanol, Molecules are hydrogen bonded. On adding *n*-heptane, its molecules get in between the host molecules and break sme of the hydrogen bonds between them. Due to weaking of interactions, the solution shows positive deviation from Raoult's law.