Some Basic Concepts of Chemistry

1.1 Introduction

- How many chloride ions are there around sodium ion in sodium chloride crystal? [PMT/ NEET-1988]
 a. 3
 b. 8
 c. 4
 d. 6
- 2. The number of oxygen atoms in 4.4 g of CO_2 is approx.:

[PMT/NEET-1990]

a. 1.2×10^{23} **b.** 6×10^{22} **c.** 6×10^{23} **d.** 12×10^{23}

3. Which one has the highest boiling point?

[PMT/NEET-1990]

- **a.** 0.1N Na₂SO₄ **b.** 0.1N MgSO₄ **c.** 0.1M Al₂(SO₄)₃ **d.** 0.1M BaSO₄
- **4.** The total number of valence electrons in 4.2 gm of N_3^- ion is (N_A is the Avogadro's number):

[PMT/NEET-1995]

- **a.** $1.6N_A$ **b.** $3.2N_A$ **c.** $2.1N_A$ **d.** $4.2N_A$
- 5. If Avogadro number N_A is changed from 6.022×10^{23} mole⁻¹ to 6.022×10^{20} mole⁻¹, this would change:

[PMT/NEET-2015]

- **a.** The ratio of chemical species to each other in a balanced equation
- **b.** The ratio of elements to each other in a compound
- **c.** The definition of mass in units of grams
- d. The mass of one mole of carbon
- **6.** Which of the following is dependent on temperature?

[PMT/NEET-2017]

- **a.** Molarity
- **b.** Mole fraction
- c. Weight percentage
- **d.** Molality

1.2 Units, Dimensions and Measurement

7. The dimensions of pressure are the same as that of:

[PMT/NEET-1995]

- **a.** Force per unit volume
- **b.** Energy per unit volume
- **c.** Force energy
- **d.** Energy
- 8. Given the numbers: 161 cm, 0.161 cm, 0.0161 cm. The number of significant figures for the three numbers is:

[PMT/NEET-1998]

- **a.** 3, 3 and 4 respectively
- **b.** 3, 4 and 4 respectively
- **c.** 3, 4 and 5 respectively
- **d.** 3, 3 and 3 respectively

1.3 Laws of Chemical Combinations

- 9. What is the weight of oxygen required for the complete combustion of 2.8 kg of ethylene? [PMT/NEET-1989]
 - **a.** 2.8 kg **b.** 6.4 kg **c.** 9.6 kg **d.** 96 kg
- 10. The molecular weight of O₂ and SO₂ are 32 and 64 respectively. At 15° C and 150 mm Hg pressure, one liter of O₂ contains 'N' molecules. The number of molecules in two liters of SO₂ under the same conditions of temperature and pressure will be: [PMT/NEET-1990]
 a. N/2
 b. N
 c.2N
 d. 4N

- 11. A sample of pure carbon dioxide, irrespective of its source contains 27.27% carbon and 72.73% oxygen. The data supports: [PMT/NEET-1992]
 - **a.** Law of constant composition
 - b. Law of conservation of mass
 - c. Law of reciprocal proportion
 - d. Law of multiple proportion
- 12. 0.24 g of a volatile gas, upon vaporization, gives 45 mL vapor at NTP. What will be the vapor density of the substance? (Density of $H_2 = 0.089 \text{ g/L}$)

[PMT/NEET-1996]

- 95.93 **b.** 59.93 **c.** 95.39
 - **c.** 95.39 **d.** 5.993
- 13. What volume of oxygen gas (O_2) measured at 0° C and 1 atm is needed to burn completely 1L of propane gas (C_3H_8) measured under the same conditions?

[PMT/NEET-2008]

- **a.** 5 L **b.** 10 L **c.** 7 L **d.** 6 L
- **14.** Equal masses of H₂, O₂ and methane have been in a container of volume V at temperature 27° C in identical conditions. The ratio of the volumes of gases H₂: O₂: methane would be: [PMT/NEET-2014]
 - **a.** 8: 16:1 **b.** 16:8:1 **c.** 16:1:2 **d.** 8:1:2

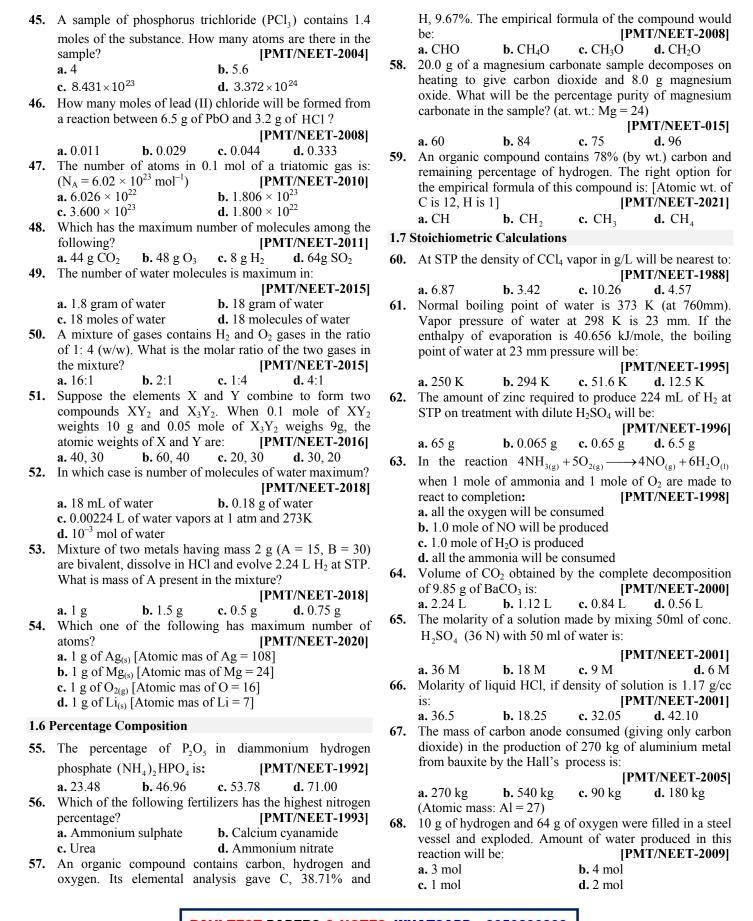
1.4 Atomic Mass, Molecular Masses and Equivalent Weight

- 15. When potassium permanganate is titrated against ferrous ammonium sulphate, the equivalent weight of potassium permanganate is: [PMT/NEET-1988]
 - **a.** Molecular weight / 10
- **b.** Molecular weight / 5
- **c.** Molecular weight / 2
- **d.** Molecular weight
- 16. Elevation in boiling point was 0.52°C when 6gm of a compound X was dissolved in 100gm of water. Molecular weight of X is (K_b for water is 0.52 per 1000 gm of water): [PMT/NEET-1989]
- a. 120
 b. 60
 c. 180
 d. 600
 17. Boron has two stable isotopes, ¹⁰B(19%) and ¹¹B(81%). Calculate average at. wt. of boron in the periodic table.

[PMT/NEET-1990]

- **a.** 10.8 **b.** 10.2 **c.** 11.2 **d.** 10.0
- 18. The total number of gm-molecules of SO_2Cl_2 in 13.5 g of sulphuryl chloride is: [PMT/NEET-1992] a. 0.1 b. 0.2 c. 0.3 d. 0.4
- 19. 4.4 g of an unknown gas occupies 2.24 L of volume at standard temperature and pressure. The gas may be:

[PMT/NEET-1995]


- **a.** Carbon dioxide
- **b.** Carbon monoxide
- c. Oxygen
- **d.** Sulphur dioxide
- 20. Assuming fully decomposed, the volume of CO₂ released at STP on heating 9.85 g of BaCO₃ (Atomic mass of Ba =137) will be: [PMT/NEET-2000]
 - **a.** 0.84 L
- **b.** 2.24 L
- **c.** 4.06 L
- **d.** 1.12 L

RAVI TEST PAPERS & NOTES, WHATSAPP - 8056206308

21.	The weight of a molecule of the compound $C_{60}H_{122}$ is:	32.	The number of moles of SO ₂ Cl ₂ in 13.5 gm is:
22.	[PMT/NEET-2000] a. 1.4×10^{-21} g b. 1.09×10^{-21} g c. 5.025×10^{23} g d. 16.023×10^{23} g Boiling point of chloroform was raised by 0.323 K. When 0.5143 g of anthracene dissolved in 35 g of chloroform		a. 0.1 b. 0.2 c. 0.3 d. 0.4 If 5.85 gms of NaCl are dissolved in 90 gms of water, the mole fraction of NaCl is: [PMT/NEET-1994] a. 0.1 b. 0.2 c. 0.3 d. 0.0196
23.	molecular mass of anthracene: (K _b for CHCl ₃ = 3.9 kg mol ⁻¹) a. 79.42 g/mol b. 132.32 g/mol c. 177.42 g/mol d. 242.32 g/mol The percentage of Se in peroxidase anhydrous enzyme is 0.5% by weight (atomic weight=78.4). Then minimum molecular weight of peroxidase anhydrous enzyme is:		The number of moles of oxygen in one liter of air containing 21% oxygen by volume, under standard conditions, is: [PMT/NEET-1995] a. 0.0093 mol b. 2.10 mol c. 0.186 mol d. 0.21 mol If 0.50 mol of $CaCl_2$ is mixed with 0.20 mol of Na_3PO_4 , the maximum number of moles of $Ca_3(PO_4)_2$ which can be formed, is: [PMT/NEET-1998]
24.	a. 1.568×10^4 b. 1.568×10^3 c. 15.68 d. 3.136×10^4 The relative lowering of vapor pressure produced by dissolving 71.5 g of a substance in 1000 g of water is 0.00713. The molecular weight of the substance will be: [PMT/NEET-2001]	36.	a. 0.70 b. 0.50 c. 0.20 d. 0.10 Hemoglobin contains 0.334% of iron by weight. The molecular weight of hemoglobin is approximately 67200. The number of iron atoms (Atomic weight of Fe is 56) present in one molecule of hemoglobin is: [PMT/NEET-1998] a. 4 b. 6 c. 3 d. 2
	a. 18.0 b. 342 c. 60 d. 180	37.	The number of atoms in 4.25 g of NH ₃ is approximately: [PMT/NEET-1999]
25.	A compound possesses 8% sulphur by mass. The least molecular mass is: [PMT/NEET-2002] a. 200 b. 400 c. 155 d. 355	38.	a. 4×10^{23} b. 2×10^{23} c. 1×10^{23} d. 6×10^{23} When 1.80 gm glucose dissolve in 90 gm of H ₂ O, the mole fraction of glucose is: [PMT/NEET-2000]
26.	$Ca(OH)_2 + H_3PO_4 \rightarrow CaHPO_4 + 2H_2O$. The equivalent weight of H_3PO_4 in the above reaction is: [PMT/NEET-2004]	39.	a. 0.00399 b. 0.00199 c. 0.0199 d. 0.998 Specific volume of cylindrical virus particle is 6.02×10^{-2} cc/g whose radius and length are 7Å and 10 Å,
27.	a. 21 b. 27 c. 38 d. 49 On reduction with hydrogen, 3.6 g of an oxide of metal left 3.2 g of metal. If the vapor density of metal is 32, the simplest formula of the oxide would be: [PMT/NEET-2004]	40	respectively. If $N_A = 6.02 \times 10^{23}$, find molecular weight of virus. [PMT/NEET-2001] a. 15.4 kg/ mol b. 1.54 \times 10 ⁴ kg/mol c. 3.08 \times 10 ⁴ kg/mol d. 3.08 \times 10 ³ kg/mol Which has maximum molecules? [PMT/NEET-2002]
	a. MO b. M_2O_3 c. M_2O d. M_2O_5 An element, X has the following isotopic composition: $^{200}X:90\%$, $^{199}X:8.0\%$, $^{202}X:2.0\%$. The weighted average atomic mass of the naturally occurring element X is closest to: [PMT/NEET-2007] a. 201 amu b. 202 amu c. 199 amu d. 200 amu		a. $7g N_2$ b. $2g H_2$ c. $16g NO_2$ d. $16 g O_2$ How many atoms are contained in one mole of sucrose $(C_{12}H_{22}O_{11})$? [PMT/NEET-2002] a. $45\times6.02\times10^{23}$ atoms/mole b. $5\times6.62\times10^{23}$ atoms/mole c. $5\times6.02\times10^{23}$ atoms/mole d. None of these
	Mole Concept and Molar Masses	42.	How many moles of $K_2Cr_2O_7$ can be reduced by 1 mole
	1 cc N ₂ O at NTP contains [PMT/NEET-1988] a. $\frac{1.8}{224} \times 10^{22}$ atoms b. $\frac{6.02}{22400} \times 10^{23}$ molecules c. $\frac{1.32}{224} \times 10^{23}$ electrons d. All of the above.		of Sn^{2+} ? [PMT/NEET-2003] a. $1/3$ b. $1/6$ c. $2/3$ d. 1 MnO ₄ ²⁻ (1 mole) in neutral aqueous medium is disproportionate to: [PMT/NEET-2003]
	Ratio of C_p of C_v of a gas 'X' is 1.4. The number of atoms of the gas 'X' present in 11.2 liters of its at NTP will be: [PMT/NEET-1989] a. 6.02×10^{23} b. 1.2×10^{23}		 a. 2/3 mole of MnO₄ and 1/3 mole of MnO₂ b. 1/3 mole of MnO₄ and 2/3 mole of MnO₂ c. 1/3 mole of Mn₂O₇ and 1/3 mole of MnO₂
31.	a. 6.02×10^{23} b. 1.2×10^{23} c. 3.01×10^{23} d. 2.01×10^{23} The number of gram molecules of oxygen in 6.02×10^{24} CO molecules is: [PMT/NEET-1990] a. 10 g molecules b. 5 g molecules c. 1 g molecule d. 0.5 g molecules	44.	d. $2/3$ mole of Mn_2O_7 and $1/3$ mole of MnO_2 The maximum number of molecules is present in: [PMT/NEET-2004] a. $15 L$ of H_2 gas at STP b. $5 L$ of N_2 gas at STP c. 0.5 g of H_2 gas d. 10 g of O_2 gas

RAVI TEST PAPERS & NOTES, WHATSAPP - 8056206308

JOIN MY PAID TEST GROUP WITH ANSWERS

RAVI TEST PAPERS & NOTES, WHATSAPP - 8056206308

JOIN MY PAID TEST GROUP WITH ANSWERS

69.	25.3 g of sodium carbonate, Na ₂ CO ₃ is dissolved in enough water to make 250 mL of solution. If sodium carbonate dissociates completely, molar concentration of	79.	What is the weight of oxygen required for the complete combustion of 2.8 kg of ethylene? [PMT/NEET-1989] a. 2.8 kg b. 6.4 kg
	sodium ion, Na ⁺ and carbonate ions, CO ₃ ²⁻ are respectively	00	c. 9.6 kg d. 96 kg
	(Molar mass of $Na_2CO_3 = 106 \text{ g mol}^{-1}$):	80.	The latent heat of vaporization of water is 9700 Cal/mole
	[PMT/NEET-2010]		and if the b.p. is 100°C, ebullioscopic constant of water is:
	a. 0.477 M and 0.477 M b. 0.955 M and 1.910 M		[PMT/NEET-1989]
70	c. 1.910 M and 0.955 M d. 1.90 M and 1.910 M 6.02×10^{20} molecules of urea are present in 100 ml of its		a. 0.513° C b. 1.026° C
70.	solution. The concentration of solution is:		c. 10.26°C d. 1.832°C
	[PMT/NEET-2013]	81.	How many gm of H ₂ SO ₄ is present in 0.25 gm mole of
	a. 0.001 M b. 0.1 M		H ₂ SO ₄ ? [PMT/NEET-1990]
	c. 0.02 M d. 0.01 M		a. 24.5 b. 2.45 c. 0.25 d. 0.245
71.	In an experiment it showed that 10 mL of 0.05 M solution	82	H, evolved at S.T.P on complete reaction of 27 g of
	of chloride required 10 mL of 0.1 M solution of AgNO ₃ .	04.	-
	Which of the following will be the formula of the chloride		aluminium with excess of aqueous NaOH would be:
	(X stands for the symbol of the element other than		[PMT/NEET-1991] a. 22.4 b. 44.8 c. 67.2 d. 33.6 liters
	chlorine)? [PMT/NEET-2013]	02	
	$\mathbf{a.} \ \mathbf{X}_{2}\mathbf{Cl}_{2} \qquad \qquad \mathbf{b.} \ \mathbf{XCl}_{2}$	83.	The relationship between osmotic pressure at 273 K when
	$\mathbf{c.} \ \mathrm{XCl_4} \qquad \qquad \mathbf{d.} \ \mathrm{X_2Cl}$		10g glucose (P_1) ,10g urea (P_2) and 10g sucrose (P_3)
72.	When 22.4 liters of $H_{2(g)}$ is mixed with 11.2 liters of $Cl_{2(g)}$,		are dissolved in 250ml of water is: [PMT/NEET-1996]
	each at STP, the moles of $HCl_{(g)}$ formed is equal to:		a. $P_1 > P_2 > P_3$ b. $P_3 > P_1 > P_2$
	[PMT/NEET-2014]		c. $P_2 > P_1 > P_3$ d. $P_2 > P_3 > P_1$
	$ \begin{array}{lll} \textbf{a.} \ 1 \ \text{mole of HCl}_{(g)} & \textbf{b.} \ 2 \ \text{mole of HC}_{l(g)} \\ \textbf{c.} \ 0.5 \ \text{mole of HCl}_{(g)} & \textbf{d.} \ 1.5 \ \text{mole of HCl}_{(g)} \\ \end{array} $	0.4	
72	c. 0.5 mole of $HCl_{(g)}$ d. 1.5 mole of $HCl_{(g)}$	04.	The ratio of the molar amounts of H ₂ S needed to
73.	1.0 g of magnesium is burnt with 0.56 g O ₂ in a closed		precipitate the metal ions from 20mL each of
	vessel. Which reactant is left in excess and how much? (At. wt. $Mg = 24$, $O = 16$) [PMT/NEET-2014]		$1M \text{ Cd(NO}_3)_2$ and $0.5M \text{ CuSO}_4$ is:
	a. Mg, 0.16 g b. O ₂ , 0.16 g		[PMT/NEET-1997]
	a. Mg, 0.10 g c. Mg, 0.44 g d. O ₂ , 0.28 g		a. 1 : 1 b. 2 : 1 c. 1 : 2 d. Indefinite
74	What is the mass of the precipitate formed when 50 mL of	85.	Number of gm of oxygen in 32.2 g Na ₂ SO ₄ .10H ₂ O is:
, 	6.9% solution of AgNO ₃ is mixed with 50 mL of 5.8%		[PMT/NEET-2000]
	NaCl solution? (Ag = 107.8 , N = 14 , O = 16 , Na = 23 , Cl		a. 20.8 b. 22.4 c. 2.24 d. 2.08
	= 35.5) [PMT/NEET-2015]	86.	Vapor density of a gas is 22. What is its molecular mass?
	a. 3.5 g b. 7 g c. 14 g d. 28 g		[PMT/NEET-2000]
75.	A mixture of 2.3 g formic acid and 4.5 g oxalic acid is		a. 33 b. 22 c. 44 d. 11
	treated with conc. H ₂ SO ₄ . The evolved gaseous mixture is	87.	20 g of hydrogen is present in 5 liter vessel. The molar
	passed through KOH pellets. Weight (in g) of the		concentration of hydrogen is: [PMT/NEET-2000]
	remaining product at STP will be: [PMT/NEET-2018]	00	a. 4 b. 1 c. 3 d. 2
	a. 1.4 b. 3.0 c. 2.8 d. 4.4	00.	Which of the following has maximum number of molecules? [PMT/NEET-2002]
76.	The number of moles of hydrogen molecules required to		a. 16 gm of O ₂ b. 16 gm of NO ₂
	produce 20 moles of ammonia through Haber's process is:		
	[PMT/NEET-2019]		$\mathbf{c.} \ 7 \ gm \ of \ N_2 \qquad \qquad \mathbf{d.} \ 2 \ gm \ of \ H_2$
77	a. 40 b. 10 c. 20 d. 30 The density of 2 M agreeus solution of NeOU is 1.28	89.	The number of molecules in 4.25 g of ammonia is
77.	The density of 2 M aqueous solution of NaOH is 1.28 g/cm ³ . The molality of the solution is [Given that		approximately: [PMT/NEET-2002]
	molecular mass of NaOH = 40 gol^{-1}]:		a. 0.5×10^{23} b. 1.5×10^{23}
	[PMT/NEET-2019]		c. 3.5×10^{23} d. 2.5×10^{23}
	a. 1.20 m b. 1.56 m c. 1.67 m d. 1.32 m	90.	Volume occupied by 1 molecule of water (density = 1g
	a. 1.20 m b. 1.30 m c. 1.07 m d. 1.32 m		cm^{-3}) is: [PMT/NEET-2008]
	Miscellaneous		a. $3.0 \times 10^{-23} \text{ cm}^3$ b. $5.5 \times 10^{-23} \text{ cm}^3$
78.	Osmotic pressure of a solution containing 0.1 mole of		c. $9.0 \times 10^{-23} \text{ cm}^3$ d. $6.023 \times 10^{-23} \text{ cm}^3$
	solute per liter at 273K is: (in atm) [PMT/NEET-1988]	91	What is the [OH ⁻] in the final solution prepared by mixing
	a. $\frac{0.1}{1} \times 0.08205 \times 273$ b. $0.1 \times 1 \times 0.08205 \times 273$	/1.	20.0 mL of 0.050 M HCl with 30.0 mL of 0.10 M
	1 U.1X1XU.00203X2/3		Ba(OH) ₂ ? [PMT/NEET-2009]
			a. 0.12 M b. 0.10 M
	c. $\frac{1}{0.1} \times 0.08205 \times 273$ d. $\frac{0.1}{1} \times \frac{273}{0.08205}$		c. 0.40 M d. 0.0050 M

RAVI TEST PAPERS & NOTES, WHATSAPP - 8056206308

92. Match Column I with Column II. [NEET-202
--

1.1000	on commin min commin	[:\DD1 =0= 1]
	Column I	Column II
	(Conversion)	(Number of Faraday
		required)
(A)	1mol of H ₂ O to O ₂	1. 3F
(B)	$1 \text{ mol of } MnO_4^- \text{ to}$	2. 2F
(C)	1.5 mol of Ca from molten CaCl ₂	3. 1F
(D)	1 mol of FeO to Fe ₂ O ₃	4. 5F

Choose the correct answer from the option given below:

- **a.** A \rightarrow 2, B \rightarrow 4, C \rightarrow 1, D \rightarrow 3
- **b.** A \rightarrow 3, B \rightarrow 4, C \rightarrow 1, D \rightarrow 2
- c. A \rightarrow 2, B \rightarrow 3, C \rightarrow 1, D \rightarrow 4
- **d.** A \rightarrow 3, B \rightarrow 4, C \rightarrow 2, D \rightarrow 1
- 93. 1 gram of sodium hydroxide was treated with 25 mL of 0.75 M HCl solution, the mass of sodium hydroxide left unreacted is equal to: [NEET-2024] **a.** 750 mg **b.** 250 mg **c.** Zero mg **d.** 200 mg
- **94.** The highest number of helium atoms is in [NEET-2024]
 - a. 4mol of helium
- **b.** 4 u of helium
- c. 4 g of helium
- **d.** 2.271098 L of helium at STP
- 95. A compound X contains 32% of A, 20% of B and remaining percentage of C. Then, the empirical formula of [NEET-2024]

(Given atomic masses of A = 64; B = 40; C = 32u)

- $\mathbf{a.} \ \mathbf{A_2BC_2}$
- **b.** ABC_3 **c.** AB_2C_2
- 96. Among the following choose the ones with equal number [NEET-2025]
 - A. 212 g of $Na_2CO_3(s)$ [molar mass = 106 g]
 - B. 248 g of $Na_2O(s)$ [molar mass = 62 g]
 - C. 240 g of NaOH (s) [molar mass = 40 g]
 - D. 12 g of $H_2(g)$ [molar mass = 2 g]
 - E. 220 g of $CO_2(g)$ [molar mass = 44 g]

Choose the correct answer from the options given below:

- a. B, D, and E only
- **b.** A, B, and C only
- c. A, B, and D only
- d. B, C and D only

ANSWERS

1.	2.	3.	4.	5.	6.	7.	8.	9.	10.
d	a	С	a	d	a	b	d	c	c
11.	12.	13.	14.	15.	16.	17.	18.	19.	20.
a	b	a	c	b	b	a	a	a	d
21.	22.	23.	24.	25.	26.	27.	28.	29.	30.
a	c	a	d	b	d	c	d	d	a
31.	32.	33.	34.	35.	36.	37.	38.	39.	40.
b	a	d	a	d	a	d	b	a	b
41.	42.	43.	44.	45.	46.	47.	48.	49.	50.
a	a	a	a	c	b	b	c	c	d
51.	52.	53.	54.	55.	56.	57.	58.	59.	60.
a	a	a	d	c	c	c	b	c	a
61.	62.	63.	64.	65.	66.	67.	68.	69.	70.
b	С	a	b	c	c	c	b	c	d
71.	72.	73.	74.	75.	76.	77.	78.	79.	80.
b	a	a	b	С	d	c	a	b	a

81.	82.	83.	84.	85.	86.	87.	88.	89.	90.
a	d	c	b	b	c	d	d	b	a
91.	92.	93.	94.	95.	96.				
b	a	b	a	b	c				

SOLUTIONS

- (d) In NaCl crystal, every Na⁺ ion is surrounded by 6Cl⁻ ion and every chloride ion is surrounded by 6 Na⁺ ion.
- (a) 44g of CO_2 has $2 \times 6 \times 10^{23}$ atoms of oxygen 4.4g of CO₂ has = $\frac{12 \times 10^{23}}{44} \times 4.4 = 1.2 \times 10^{23}$ atoms.
- (c) Al₂(SO₄)₃ gives maximum ions. Hence, it will show highest boiling point.
- (a) 42g of N_3^- ions have $16N_A$ valence electrons 4.2g of 4. N_3^- ion have $=\frac{16 N_A}{42} \times 4.2 = 1.6 N_A$.
- (d) Mass of 1 mole $(6.022 \times 10^{23} \text{ atoms})$ of carbon = 12g If Avogadro Number (N_A) is changed then mass of 1 mole $(6.022 \times 10^{20} \text{ atoms})$ of carbon

$$= \frac{12 \times 6.022 \times 10^{20}}{6.022 \times 10^{23}} = 12 \times 10^{-3} g$$

Therefore, the mass of 1 mole of carbon is changed

- (a) Molarity depends on the volume of a solution which 6. can be changed with change in temperature.
- **(b)** Pressure = $\frac{\text{Force}}{\text{Area}}$

Therefore, dimensions of pressure = $\frac{MLT^{-2}}{I^{.2}} = ML^{-1}T^{-2}$

and dimensions of energy per unit volume

$$= \frac{Energy}{Volume} = \frac{ML^{2}T^{-2}}{L^{3}} = ML^{-1}T^{-2}$$

- 8. (d) Zeros placed left to the number are never significant, therefore the no. of signification figures for the numbers 161 cm, 0.161 cm and 0.0161 cm are same, i.e., 3.
- (c) $C_{2}H_{4} + 3O_{2} \longrightarrow 2CO_{2} + 2H_{2}O$ 9.

For complete combustion.

2.8 kg of
$$C_2H_4$$
 requires = $\frac{96}{28} \times 2.8 \times 10^3$ g

$$=9.6\times10^3$$
 g = 9.6 kg of O_2

- 10. (c) If 1 L of one gas contains N molecules, 2 L of any gas under the same conditions will contain 2N molecules.
- 11. (a) Law of constant composition.
- **12. (b)** Weight of gas = 0.24g,

Volume of gas = 45

mL = 0.045 liter and density of $H_2 = 0.089$ g/L

Weight of 45 mL of H_2 = density × volume

 $= 0.089 \times 0.045 = 4.005 \times 10^{-3}$ g

Therefore, vapor density

= Weight of certain volume of substance

Weight of same volume of hydrogen

$$=\frac{0.24}{4.005\times10^{-3}}=59.93$$

13. (a)
$$C_3H_8 + 5O_2 \longrightarrow 3CO_2 + 4H_2O_3$$

According to the above equation, 1 vol. or 1 liter of propane requires 5 vol. or 5 liters of O_2 to burn completely.

14. (c) According to Avogadro's hypothesis, ratio of the volumes of gases will be equal to the ratio of there no. of moles.

So, No. of moles
$$=\frac{Mass}{Mol. mass}$$

$$n_{_{H_2}} = \frac{w}{2}; n_{_{O_2}} = \frac{w}{32}; n_{_{CH_4}} = \frac{w}{16}$$

- So, the ratio is $\frac{w}{2} : \frac{w}{32} : \frac{w}{16}$ or 16: 1: 2.
- **15. (b)** Molecular weight / 5

16. **(b)**
$$\Delta T_b = \frac{100 \times K_b \times W}{m \times W}$$

$$\therefore 0.52 = \frac{100 \times 5.2 \times 6}{m \times 100} \text{ m} = \frac{100 \times 5.2 \times 6}{0.52 \times 100} = 60.$$

17. (a) Average atomic mass $19 \times 10 + 81 \times 11$

$$= \frac{19 \times 10 + 81 \times 11}{100} = 10.81$$

18. (a) Molecular weight of SO₂Cl₂

$$= 32 + 32 + 2 \times 35.5 = 135 \text{ gm}$$

 \therefore 135 gm of $SO_2Cl_2 = 1$ gm molecule

$$\therefore$$
 13.5gm of $SO_2Cl_2 = \frac{1}{135} \times 13.5 = 0.1$

- **19.** (a) 2.24 L of gas has mass = 4.4 gm
- \therefore 22.4L of gas has mass = $\frac{4.4}{2.24} \times 22.4 = 44$

So, given gas is CO_2 because CO_2 has molecular mass = 44.

20. (d) $BaCO_3 \rightarrow BaO + CO_2 \uparrow$

Molecular weight of $BaCO_3 = 137 + 12 + 3 \times 16 = 197$

- : 197 gm produces 22.4L at S.T.P.
- \therefore 9.85 gm produces $\frac{22.4}{197} \times 9.85 = 1.12 L$ at S.T.P.
- **21.** (a) Molecular weight of $C_{60}H_{122}$

$$=12\times60+122\times1=720+122=842$$

- \therefore 6×10²³ molecule C₆₀H₁₂₂ has mass = 842 gm
- \therefore 1 molecule $C_{60}H_{122}$ has mass $\frac{842}{6\times10^{23}}$

$$=140.333\times10^{-23}\,\mathrm{gm}$$

- $=1.4\times10^{-21}$ gm.
- **22.** (c) Here: $\Delta T_{\rm b} = 0.323 \text{K}$

w = 0.5143g weight of anthracene.

W = 35g weight of chloroform

 $K_h = Molal elevation constant (3.9 K - Kg/mol)$

$$m = \frac{K_b \times w \times 1000}{W \times \Delta T_b} = \frac{3.9 \times 0.5143 \times 1000}{0.323 \times 35}$$

= 177.42g / mol

23. (a) $0.5 \text{gm Se} \rightarrow 100 \text{gm peroxidase anhydrous enzyme}$ 100×78.4

78.4gm Se
$$\rightarrow \frac{100 \times 78.4}{0.5} = 1.568 \times 10^4$$

Minimum m.w. → molecule at least contain one selenium.

24. (d)
$$\frac{P^0 - P_s}{P^0} = \frac{\frac{W}{m}}{\frac{W}{m} + \frac{W}{M}}$$

or
$$0.00713 = \frac{71.5/m}{\frac{71.5}{m} + \frac{1000}{18}}$$
 m = 180

- 25. (b) 8gm sulphur is present in 100gm of substance
- \therefore 32gm sulphur will present = $\frac{100}{8} \times 32 = 400$.
- **26. (d)** The equivalent weight of

$$H_3PO_4 = \frac{\text{molecular weight}}{2}$$

- : molecular wt. of $H_3PO_4 = 3 + 31 + 64 = 98$: $\frac{98}{2} = 49$
- 27. (c) As we know that

Equivalent weight = $\frac{\text{weight of metal}}{\text{weight of oxygen}} \times 8$

$$= \frac{32}{0.4} \times 8 = 64 \quad \text{Vapor density} = \frac{\text{mol. wt}}{2}$$

Mol. wt =
$$2 \times V.D = 2 \times 32 = 64$$

As we know that
$$n = \frac{\text{mol. wt}}{\text{eq. wt}} = \frac{64}{64} = 1$$

Suppose, the formula of metal oxide be M_2O_n .

Hence the formula of metal oxide $= M_2O$.

28. (d) Average isotopic mass of X

$$= \frac{200 \times 90 + 199 \times 8 + 202 \times 2}{90 + 8 + 2}$$

$$= \frac{18000 + 1592 + 404}{100} = 199.96 \text{ amu} = 200 \text{ amu}$$

- **29.** (d) As we know, 22400 cc of N_2O contain 6.02×10^{23} molecules
- \therefore 1 cc of N₂O contain $\frac{6.02 \times 10^{23}}{22400}$ molecules

Since in N₂O molecule there are 3 atoms

$$\therefore \quad 1cc \text{ N}_2\text{O} = \frac{3 \times 6.02 \times 10^{23}}{22400} \text{ atoms} = \frac{1.8 \times 10^{22}}{224} \text{ atoms}$$

No. of electrons in a molecule of

$$N_2O = 7 + 7 + 8 = 22$$

Hence, no. of electrons in 1 cc of N₂O

$$=\frac{6.02\times10^{23}}{22400}\times22 \text{ electrons} = \frac{1.32}{244}\times10^{23} \text{ electrons}.$$

30. (a) Here, $C_p/C_V = 1.4$, which shows that the gas is diatomic.

22.4 L at NTP =
$$6.02 \times 10^{23}$$
 molecules

: 11.2 L at NTP = 3.01×10^{23} molecules

Since gas is diatomic,

- 11.2 L at NTP = $2 \times 3.01 \times 10^{23}$ atoms= 6.02×10^{23} atom.
- 31. **(b)** Avogadro's no., $N_{\Delta} = 6.02 \times 10^{23}$ molecules = 1 mole
- \therefore 6.02 × 10²⁴ CO molecules = 10 moles CO = 10 g atoms of O = 5 g molecules of O_2
- 32. (a) Gram molecule of $SO_2Cl_2 = 135$

$$n = \frac{w}{m} = \frac{13.5}{135} = 0.1$$
.

33. (d) 5.85 g NaCl = $\frac{5.85}{58.5}$ mole = 0.1 mol

90 g
$$H_2O = \frac{90}{18}$$
 moles = 5 moles

mole fraction of NaCl = $\frac{0.1}{5+0.1} \approx 0.0196$.

34. (a) Volume of oxygen in one liter of air $=\frac{21}{100}\times1000=210\,\text{mL}$

Therefore, no. of moles =
$$\frac{210}{22400}$$
 = 0.0093 mol.

- 35. (d) $3\text{CaCl}_2 + 2\text{Na}_3\text{PO}_4 \rightarrow \text{Ca}_3(\text{PO}_4)_2 + 6\text{NaCl}$
- Mole of $Na_3PO_4 = 3$ mole of $CaCl_2 = 1 \text{ mole } Ca_3(PO_4)_2$
- $0.2 \text{ mole of Na}_3 PO_4 = 0.3 \text{ mole of CaCl}_2 = 0.1$ mole of $Ca_3(PO_4)$,.
- **36.** (a) Quantity of iron in one molecule

$$= \frac{67200}{100} \times 0.334 = 224.45 \text{ amu}$$

No. of iron atoms in one molecule of hemoglobin

$$=\frac{224.45}{56}=4$$

37. (d) 17 g of $NH_3 = 4N_A$ atoms

4.25 g of NH₃ =
$$\frac{4N_A}{17} \times 4.25$$
 atoms
= N_A atoms = 6×10^{23} atoms.

38. (b) Mole fraction of glucose

$$= \frac{n}{n+N} = \frac{0.01}{0.01+5} = 0.00199$$

39. (a) Specific volume (vol. of 1 g) of cylindrical virus particle = 6.02×10^{-2} cc/g

Radius of virus, $r = 7 \text{ Å} = 7 \times 10^{-8} \text{ cm}$

Volume of virus =
$$\pi r^2 \ell$$

$$= \frac{22}{7} \times (7 \times 10^{-8})^2 \times 10 \times 10^{-8} = 154 \times 10^{-23} \text{ cc}$$

Wt. of one virus particle

$$= \frac{\text{Volume(cc)}}{\text{Specific volume(cc/g)}} = \frac{154 \times 10^{-23}}{6.02 \times 10^{-2}} \text{g}$$

Molecular wt. virus = wt. of N_A particles

$$= \frac{154 \times 10^{-23}}{6.02 \times 10^{-2}} \times 6.02 \times 10^{23} \text{ g/mol}$$

= 15400 g/mol = 15.4 kg/mol.

40. (b) Number of molecules = moles \times N_A

Molecules of
$$N_2 = \frac{7}{14} N_A = 0.5 N_A$$

Molecules of $H_2 = N$

Molecules of $NO_2 = \frac{16}{46} N_A = 0.35 N_A$

Molecules of $O_2 = \frac{16}{32} N_A = 0.5 N_A$

- 2 g H₂ (1 mole H₂) contains maximum molecules.
- (a) 1 mole of sucrose contains 6.023×10^{23} molecules
- 1 molecule of sucrose has 45 atoms
- 6.023×10^{23} molecule of sucrose has

 $45 \times 6.023 \times 10^{23}$ atoms/mole

42. (a) $Cr_2O_7^{2-} + 14H^+ + 6e^- \rightarrow 2Cr^{3+} + 7H_2O$

$$(\mathrm{Sn}^{2+} \to \mathrm{Sn}^{4+} + 2\mathrm{e}^{-}) \times 3$$

$$Cr_{2}O_{7}^{2-} + 14H^{+} + 3Sn^{2+} \rightarrow 3Sn^{4+} + 2Cr^{3+} + 7H_{2}O$$

It is clear from this equation that 3 moles of Sn²⁺ reduce one mole of $Cr_2O_7^{2-}$, hence 1 mol. of Sn^{2+} will reduce $\frac{1}{3}$ moles of $Cr_2O_7^{2-}$.

- 43. (a) MnO_4^{2-} in neutral aqueous medium is disproportionate to $\frac{2}{3}$ mole of MnO₄ and $\frac{1}{3}$ mole of MnO₂.
- **44.** (a) At STP, 22.4 L = 6.023×10^{23} molecules

15 L H₂ =
$$\frac{6.023 \times 10^{23} \times 15}{22.4}$$
 = 4.033×10^{23} molecules

5 L N₂ =
$$\frac{6.023 \times 10^{23} \times 5}{22.4}$$
 = 1.344×10²³ molecules

2g H₂ =
$$6.023 \times 10^{23}$$
 molecules

$$0.5 \, \text{g H}_2 = \frac{6.023 \times 10^{23} \times 0.5}{2} = 1.505 \times 10^{23} \, \text{molecules}$$

$$32 \text{ g O}_2 = 6.023 \times 10^{23} \text{ molecules}$$

$$10 \text{ g O}_2 = \frac{6.023 \times 10^{23} \times 10}{32} = 1.882 \times 10^{23} \text{ molecules}$$

45. (c) No. of atoms in one molecule = no. of moles $\times 6.022 \times 10^{23}$

= no. of moles
$$\times 6.022 \times 10^{23}$$

$$=1.4\times6.022\times10^{23}=8.432\times10^{23}$$

46. (b) $\frac{\text{PbO}}{\text{x mole}}$ + $\frac{2\text{HCl}}{2\text{x moles}}$ - $\frac{\text{PbCl}_2}{\text{x mole}}$ + $\frac{\text{H}_2\text{O}}{\text{PbCl}_2}$

$$\frac{6.5}{224}$$
 mole $\frac{3.2}{36.5}$ mole = 0.029 mole = 0.087 mole

Thus, 0.029 mole of lead (II) chloride will be formed from a reaction between 6.5 g of PbO and 3.2 g of HCl.

47. (b) No. of atoms = $N_A \times No.$ of moles $\times 3$

$$=6.023 \times 10^{23} \times 0.1 \times 3 = 1.806 \times 10^{23}$$

- **48.** (c) 8 g H₂ has 4 moles while the other has 1 mole each.
- **49.** (c) 1.8 gram of water = $\frac{6.023 \times 10^{23}}{18} \times 1.8$

$$=6.023\times10^{22}$$
 molecules

18 gram of water = 6.023×10^{23} molecules

18 moles of water = $18 \times 6.023 \times 10^{23}$ molecules

RAVI TEST PAPERS & NOTES, WHATSAPP - 8056206308

50. (d) Number of moles of $H_2 = 1/2$

Number of moles of $O_2 = \frac{4}{22}$

Hence, molar ratio $=\frac{1}{2}:\frac{4}{32}=4:1$

51. (a) Let atomic weight of element X is x and that of element Y is y.

For
$$XY_2$$
, $n = \frac{W}{Mol.wt}$.

$$0.1 = \frac{10}{x + 2y} \Rightarrow x + 2y = \frac{10}{0.1} = 100$$
 ... (i)

For
$$X_3Y_2$$
, $n = \frac{W}{Mol.wt.}$

$$0.05 = \frac{9}{3x + 2y} \Rightarrow 3x + 2y = \frac{9}{0.05} = 180$$
 ... (ii)

On solving equations (i) and (ii), we get x = 4040 + 2y = 100 $\Rightarrow 2y = 60 \Rightarrow y = 30$

52. (a) (a) Mass of water = $V \times d = 18 \times 1 = 18g$

Molecules of water = mole $\times N_A = \frac{18}{18} N_A = N_A$

- (b) Molecules of water = mole $\times N_A = \frac{0.18}{18} N_A$
- (c) Molecules of water = $\frac{0.00224}{22.4} = 10^{-4}$

Molecules of water = mole $\times N_A = 10^{-4} N_A$

- (d) Molecules of water $= \text{mole } \times N_A = 10^{-3} N_A$
- **53.** (a) $A + 2HCl \rightarrow ACl_2 + H_2$

$$Mole = \frac{x}{15} \qquad \frac{x}{15}$$

 $B + 2HCl \longrightarrow BCl_2 + H_2$

$$Mole = \frac{2-x}{30} \quad \frac{2-x}{30}$$

Mole of
$$H_2 = \frac{x}{15} + \frac{2-x}{30} = \frac{2.24}{22.4} = \frac{1}{10}$$

$$\frac{x}{15} - \frac{x}{30} = \frac{1}{10} - \frac{1}{15} \Rightarrow x = 1 \text{ gm}$$

54. (d) 1 mole of substance = N_A atoms $108 \text{ g of Ag} = N_A \text{ atoms}$

- 1 g of Ag = $\frac{N_A}{108}$ atoms 24 g of Mg = N_A atoms
- 1 g of Mg = $\frac{N_A}{24}$ atoms

32 g of $O_2 = N_A$ molecules = 2 N_A atoms

- \Rightarrow 1 g of $O_2 = \frac{N_A}{16}$ atoms 7 g of Li = N_A atoms
- \Rightarrow 1 g of Li = $\frac{N_A}{7}$ atoms

Therefore, 1 g of Li(s), has maximum number of atoms.

55. (c) $2(NH_4)_2HPO_4 \equiv P_2O_5$ 2(36+1+31+64)=264 $\equiv P_2O_5$

% of
$$P_2O_5 = \frac{\text{wt. of } P_2O_5}{\text{wt of salt}} \times 100 = \frac{142}{264} \times 100 = 53.78\%$$
.

56. (c) Urea (NH_2CONH_2) , % of $N = \frac{28}{60} \times 100 = 46.66\%$

Similarly, % of N in other compounds are:

 $(NH_4)_2SO_4 = 21.2\%$; CaCN₂ = 35.0% and $NH_4NO_3 = 35.0\%$

57. (c) Atomic mass of C = 12, H = 1 and O = 16

Element	%composition	Mole ratio	Simple ratio
C	38.71	38.71/12	3.22/3.22
		= 3.22	= 1
Н	9.67	9.67/1	9.67/3.22
		9.67	= 3
О	51.62	51.62/16	3.22/3.22
		= 3.22	= 1

58. (b) MgCO₃ (s) \longrightarrow MgO(s) + CO₂(g)

Moles of MgCO₃ =
$$\frac{20}{30}$$
 = 0.238 mol

From above equation

1 mole MgCO₃ gives 1 mole MgO

0.238 mole MgCO₃ will give 0.238 mole MgO $= 0.238 \times 40 \text{ g} = 9.523 \text{ g MgO}$

Practical yield of MgO = 8g MgO

- % purity = $\frac{8}{9.523} \times 10 = 84\%$
- (c) Element % At. weight $\frac{\%}{\text{At. weight}}$ simplest ratio

22 = 3

Empirical formula of this compound is CH,

60. (a) Weight of 1 mole of CCl₄ vapor

 $= 12 + 4 \times 35.5 = 154 \text{ g}$

Density of CCl₄ vapor = $\frac{154}{224}$ gL⁻¹ = 6.875gL⁻¹

61. (b) Applying Clausius Clapeytron equation

$$\log \frac{P_2}{P_1} = \frac{\Delta H_V}{2.303R} \left[\frac{T_2 - T_1}{T_1 \times T_2} \right]$$

$$\log \frac{760}{23} = \frac{40656}{2.303 \times 8.314} \left\lceil \frac{373 - T_1}{373T} \right\rceil$$

This gives $T_1 = 294.4K$

62. (c) $Z_{n+}H_{2}SO_{4} \longrightarrow Z_{n}SO_{4} + H_{2}$

Since 65g of zinc reacts to liberate 22400 mL of H₂ at STP, therefore, amount of zinc needed to produced 224

mL of H₂ at STP = $\frac{65}{22400} \times 224 = 0.65g$.

- 1 mole of NH₃ requires = 5/4 = 1.25 moles of oxygen while 1 mole of O_2 requires = 4/5 = 0.8 mole of NH_3 . Therefore, all oxygen will be consumed.

RAVI TEST PAPERS & NOTES, WHATSAPP - 8056206308

- **64. (b)** BaCO₃ \longrightarrow BaO + CO₂ 197.3 g 22.4 L at N.7 9.85 g $\frac{22.4 \text{ L at N.7}}{197.3} \times 9.85$ 22.4 L at N.T.P.
- 9.85 g of BaCO₃ will produce 1.118 L of CO₂ at N.T.P. on the complete decomposition.
- **65.** (c) $N_1 V_1 = N_2 V_2$ $36 \times 50 = N_2 \times 100$ $N_2 = \frac{36 \times 50}{100} = 18 18N H_2 SO_4 = 9M H_2 SO_4.$
- **66.** (c) Density = 1.17 g/cc.
- 1 cc. solution contains 1.17 g of HCl
- Molarity = $\frac{1.17 \times 1000}{36.5 \times 1}$ = 32.05
- **67.** (c) $3C + 2Al_2O_3 \longrightarrow 4Al + 3CO_2$ (From bauxite)

4 moles of Al is produced by 3 moles of C.

1 moles of Al is produced by $\frac{3}{4}$ moles of C.

 $\frac{270 \times 1000}{27} = 10^4 \text{ moles of Al is produced by } \frac{3}{4} \times 10^4$

moles of C. Amount of carbon used = $\frac{3}{4} \times 10^4 \times 12g$

$$=\frac{3}{4}\times10\times12kg=90kg$$

- **68. (b)** H_2 + $1/2O_2$ \longrightarrow H_2O 2g 16 g 18g 1 mole 0.5 mole 1 mole 10 g of $H_2 = 5$ mole and 64 g of $O_2 = 2$ mole
- In this reaction, oxygen is the limiting reagent so amount of H₂O produced depends on the amount of O₂. Since 0.5 mole of O₂ gives 1 mole of H₂O
- 2 mole of O_2 will gives 4 mole of H_2O .
- **69.** (c) Molarity = $\frac{25.3 \times 1000}{106 \times 250} = 0.955$ M $Na_{2}CO_{3} \rightarrow 2Na^{+} + CO_{3}^{-2}$ $0.955 \quad 0.955 \text{ M} = 1.910 \text{ M}$
- **70.** (d) Moles of urea = $\frac{6.02 \times 10^{20}}{6.02 \times 10^{23}} = 0.001$

Concentration of solution = $\frac{0.001}{100} \times 1000 = 0.01$ M

- 71. (b) Millimoles of solution of chloride = $0.05 \times 10 = 0.5$ Millimoles of AgNO₃ solution = $10 \times 0.1 = 1$ So, the millimoles of AgNO₃ are double than the chloride solution.
- $XCl_2 + 2AgNO_3 \longrightarrow 2AgCl + X(NO_3)_2$
- 72. (a) 1 mole \equiv 22.4 liters at STP.

$$n_{H_2} = \frac{22.4}{22.4} = 1 \text{ mole}; \ n_{Cl_2} = \frac{11.2}{22.4} = 0.5 \text{ mole}$$

+ $Cl_{2(g)} \longrightarrow 2HCl_{(g)}$ Reaction is as, $H_{2(g)}$ 0.5 mole 0 Initial 1 mole (0.5-0.5) 2× 0.5 Final (1 - 0.5)= 0.5 mole = 0 mole1 mole

Here, Cl₂ is limiting reagent.

So, 1 mole of $HCl_{(g)}$ is formed.

73. (a) $n_{Mg} = \frac{1}{24} = 0.0416 \text{ moles } n_{O_2} = \frac{0.56}{32} = 0.0175 \text{ mole}$

The balanced equation is

$$2Mg$$
 + O_2 \longrightarrow $2MgO$

Initial 0.0416 mole 0.0175 mole Final (0.0416-2×0.0175)02×0.0175=0.0066 mole Here, O_2 is limiting reagent,

- Mass of Mg left in excess = $0.0066 \times 24 = 0.16$ g
- 74. (b) 16.9 % solution of AgNo₃ means 16.9 g of AgNO₃ in 100 mL of solution.

= 8.45 g of AgNO₃ in 50 mL solution.

Similarly, 5.8 g of NaCl in 100 mL solution

 \equiv 2.9 g of NaCl in 50 mL solution.

The reaction can be represented as:

$$AgNO_3 + NaCl \longrightarrow AgCl \downarrow + NaNO_3$$

8.45/170 2.9/58.5 Initial = 0.049 = 0.049Mole

0.049 Final moles 0 0 0.049 Mass of AgCl precipitated = $0.049 \times 143.3 = 7.02 \approx 7g$

- 75. (c) HCOOH $\xrightarrow{\text{Dehydrating agent}}$ CO + H₂O

$$n_i = \frac{2.3}{46} = \frac{1}{20}$$

$$\mathbf{n}_{\mathrm{f}} = 0 \qquad \qquad \frac{1}{20} \qquad \frac{1}{20}$$

$$H_2C_2O_4 \xrightarrow{conc.H_2SO_4} CO + CO_2 + H_2O_3$$

$$n_i = \frac{4.5}{90} = \frac{1}{20} \qquad 0 \qquad 0$$

$$n_f = 0$$
 $\frac{1}{20}$ $\frac{1}{20}$ $\frac{1}{20}$

H₂O gets absorbed by conc. H₂SO₄. Gaseous mixture (Containing CO and CO₂) when passed through KOH pellets, CO₂ gets absorbed.

Moles of CO left (unabsorbed) = $\frac{1}{20} + \frac{1}{20} = \frac{1}{10}$

Mass of CO = moles × molar mass = $\frac{1}{10}$ × 28 = 2.8g

76. (d) Haber's process, $N_2 + 3H_2 \longrightarrow 2NH_3$

2 moles of NH₃ are formed by 3 moles of H₂.

- 20 moles of NH₃ will be formed by 30 mole of H₂.
- 77. (c) Density = 1.28 g/cc, Conc. of solution = 2 MMolar mass of NaOH = 40 g mole^{-1}

Volume of solution = 1 L = 1000 mL

Mass of solution = $d \times V = 1.28 \times 1000 = 1280 g$

Mass of solute = n × Molar mass = $2 \times 40 = 80$ g Mass of solvent = (1280 - 80) g = 1200 g

Number of moles of solute $=\frac{80}{40} = 2$

- Molality = $\frac{2 \times 1000}{1200}$ = 1.67m
- 78. (a) $\pi = \frac{W}{m} \times RT = \frac{0.1}{1} \times 0.0821 \times 273$
- **79. (b)** $C_2H_4 + 2O_2 \rightarrow 2CO_2 + 2H_2O_3$

- 28gm C₂H₄ requires 64gm oxygen
- 2.8×10^3 gm C₂H₄ requires

$$= \frac{64}{28} \times 2.8 \times 10^3 \,\text{gm} = 6.4 \times 10^3 \,\text{gm} = 6.4 \,\text{kg}.$$

80. (a)
$$K_b = \frac{M_1 R T_0^2}{1000 \Delta H_V} = \frac{18 \times 1.987 \times (373)^2}{1000 \times 9700} = 0.513^{\circ} C$$

81. (a)
$$n = \frac{w}{m}$$
; $w = n \times m = 0.25 \times 98 = 24.5 gm$

82. **(d)**
$$H_2O + Al + NaOH \rightarrow NaAlO_2 + \frac{3}{2}H_2$$

- 83. (c) $P = \frac{W}{mv}R.T$ since wvT is constant thus
 $$\begin{split} P \propto \frac{1}{m} \ P_2 > P_1 > P_3 \ . \\ \textbf{84.} \quad \textbf{(b)} \ Cd^{+2} \ + \ S^{2-} \longrightarrow CdS \end{split}$$
- $Cu^{+2} + S^{2-} \rightarrow CuS\ 20 \times 0.5 = 10\ Ratio = 2:1$
- **85. (b)** $\text{Na}_2\text{SO}_4 \cdot 10\text{H}_2\text{O} = 2 \times 23 + 32 + 4 \times 16 + 10 \times 18$ = 46 + 32 + 64 + 180 = 322 gm $322 \text{gm Na}_2 \text{SO}_4.10 \text{H}_2 \text{O}$ contains = 224 gm oxygen 32.2gm Na₂SO₄.10H₂O contains $=\frac{32.2\times224}{322}=22.4\ gm$
- **86.** (c) $MW = 2 \times V.D. = 2 \times 22 = 44$.
- 87. (d) Molar concentration $[H_2] = \frac{\text{Mole}}{\text{Vin litre}} = \frac{20/2}{5} = 2$.
- 88. (d) 2 gm. Hydrogen has maximum number of molecules
- **89. (b)** $17 \, \text{gm NH}_3 = 1 \, \text{mole.}$ (Molecules of)

$$NH_3 = \frac{6.02 \times 10^{23} \times 4.25}{17} = 1.5 \times 10^{23}$$

 $NH_3 = \frac{6.02 \times 10^{23} \times 4.25}{17} = 1.5 \times 10^{23}$ **90.** (a) Weight of 6.023 × 10²³ molecules of water = 18 g As volume occupied by 6.023×10^{23} molecules of water

(density = 1 g cm⁻³) will be = $\frac{18 \text{ g}}{1 \text{ g cm}^{-3}}$ = 18 cm³ or mL

So, volume occupied by 1 molecule of water.

$$= \frac{18}{6.023 \times 10^{23}} = 2.988 \times 10^{-23} = 3.0 \times 10^{-23} \text{ cm}^3$$

91. (b) 20 mL of 0.50 M HCl = 20×0.050 m mole $\stackrel{>}{=}$ 1.0 m mole = 1.0 meq. of HCl 30 mL of 0.10 M Ba($O\dot{H}$)₂ = 30 × 0.1 m mol $= 3 \text{m mol} = 3 \times 2 \text{ meq} = 6 \text{ meq Ba(OH)}_2$ 1 meq of HCl will neutralize 1 meq of Ba(OH)₂ $Ba(OH)_2$ left = 5 meq. Total volume = 50 mL $Ba(OH)_2$ conc. In final solution

$$= \frac{5}{50} N = 0.1N = 0.05M [OH^{-}] = 2 \times 0.05M = 0.10M$$

Alternatively, $Ba(OH)_2 + 2HCl \rightarrow BaCl_2 + 2H_2O$ 2 m mol of HCl neutralise 1 m mole of Ba(OH)₂ 1 m mole of HCl neutralise 0.5 m mole of Ba(OH)₂ $Ba(OH)_2 left = 3 - 0.5 m mole = 2.5 m mole$

[Ba(OH)₂] =
$$\frac{2.5}{50}$$
M = 0.05 M

 $[OH]^- = 2 \times 0.05 = 0.1M$

92. (a) $4OH^{-} \rightarrow 2H_{2}O + O_{2} + 4e^{-}$ For 2 mole of $H_2O = 4F$ charge is required For 1 mole of $H_2O = \frac{4F}{2} = 2 F$ required $\stackrel{^{+7}}{\text{M}} \text{nO}_4^- \rightarrow \stackrel{^{+2}}{\text{M}} \text{n}^{2+}$

For 1 mole MnO₄ 5 F charge is required

$$Ca^{2+} \xrightarrow{+2e^{-}} Ca$$

 $Ca^{2+} \xrightarrow{+2e^{-}} Ca$ For 1 mole Ca^{2+} ion required = 2F

1.5 mole Ca²⁺ ion required =
$$\frac{2}{1} \times 1.5 = 3$$
F

$$\stackrel{+2}{\text{FeO}} \rightarrow \stackrel{+3}{\text{Fe}_2} O_3$$

For 1 mole FeO, 1 F charges is required

93. **(b)**
$$M = \frac{W \times 1000}{M_2 \times V(\text{in mL})}$$

 $W = M = \frac{M \times M_2 \times V(\text{in mL})}{1000} = \frac{0.75 \times 36.5 \times 25}{1000}$

= 0.684 g (Mass of HCl)

 $HCl + NaOH \longrightarrow HCl + NaOH$

36.5 g HCl reacts with NaOH = 40g

0.684 g HCl reacts with NaOH = $\frac{40}{36.5} \times 0.684 \approx 0.750$ g Amount of NaOH left = 1 g -0.750 g = 0.250 g = 250 mg

- (a) (a) 4 mole of He = $4 N_A$ He atoms
 - (b) 4 u of He = $\frac{4u}{4u}$ = 1 He atom
 - (c) 4 u of Helium = $\frac{4g}{4g}$ mole = 1 mole = N_A He atom
 - (d) 2.2710982 of He at STP = $\frac{2.271}{22.710982}$ mole
 - = $0.1 \text{ mole} = 0.1 \text{ N}_A \text{ He atom}$

Element	Mass percentage (%)	No. of Moles	No. of Moles/ Smallest number	Simplest whole number
A	32%	$\frac{32}{64} = \frac{1}{2}$	$\frac{1}{2} \times 2$	= 1
В	20%	$\frac{20}{40} = \frac{1}{2}$	$\frac{1}{2} \times 2$	= 1
С	48%	$\frac{48}{32} = \frac{3}{2}$	$\frac{3}{2} \times 2$	= 3

So, empirical formula of $X \Rightarrow A:B:C::1:1:3$

The correct empirical formula of compound X is BC₃

(c) A, B, and D only

No. of atoms = Atomicity \times mole \times N_A

- (A) No. of atoms = $6 \times \frac{212}{106} \times N_A = 12N_A$
- (B) No. of atoms = $3 \times \frac{248}{62} \times N_A = 12N_A$
- (C) No. of atoms = $3 \times \frac{240}{40} \times N_A = 18N_A$
- (D) No. of atoms = $2 \times \frac{12}{2} \times N_A = 12N_A$
- (E) No. of atoms = $3 \times \frac{220}{44} \times N_A = 15N_A$